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ABSTRACT 

MD ASHIQUR RAHMAN: TIME- AND FREQUENCY-ASYNCHRONOUS ALOHA FOR  

ULTRA-NARROWBAND COMMUNICATIONS 

Master of Science Thesis 

Tampere University 

Master’s Degree Programme in Information Technology 

February 2020 
 

A low-power wide-area network (LPWAN) is a family of wireless access technologies which 
consume low power and cover wide areas. They are designed to operate in both licensed and 
unlicensed frequency bands. Among different low-power wide-area network (LPWAN) technolo-
gies, long range (LoRa), Sigfox, and Narrowband Internet of Things (NB-IoT) are leading in IoT 
deployment in large-scale. However, Sigfox and LoRa both have advantages in terms of battery 
lifetime, production cost and capacity whereas lower latency and better quality of service are 
offered by Narrowband Internet of Things (NB-IoT) operating licensed cellular frequency bands. 
The two main approaches for reaching wide coverage with low transmission power are (i) spread 
spectrum, used by LoRa, and (ii) ultra-narrow band (UNB) which is used by Sigfox. 

This thesis work focuses on the random-access schemes for UNB based IoT networks mainly. 
Due to issues related to receiver synchronization, two-dimensional time-frequency random ac-
cess protocol is a particularly interesting choice for UNB transmission schemes. However, UNB 
possess also some major constraints regarding connectivity, throughput, noise cancellation and 
so. 

This thesis work investigates UNB-based LPWAN uplink scenarios. The throughput perfor-
mance of Time Frequency Asynchronous ALOHA (TFAA) is evaluated using MATLAB simula-
tions. The main parameters include the interference threshold which depends on the robustness 
of the modulation and coding scheme, propagation exponent, distance range of the IoT devices 
and system load. Normalized throughput and collision probability are evaluated through simula-
tions for different combinations of these parameters. We demonstrate that, using repetitions of 
the data packets results in a higher normalized throughput. The repetition scheme is designed in 
such a way that another user's packets may collide only with one of the target packets repetitions. 
The power levels as well as distances of a user’s all repetitions are considered same. By using 
repetitions, reducing the distance range, and increasing the interference threshold, the normal-
ized throughput can be maximized. 
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1. INTRODUCTION 

Internet of Things (IoT) is widely considered as a central element of the future connected 

world. Internet of things refers to a network consisting of physical devices, home appli-

ances, automobiles and any other items which are used in accordance with sensors, 

software, actuators, and electronics for the enhancement of data exchange. IoT provides 

a platform for connecting these devices with people and Internet, creating huge oppor-

tunities. Internet of things promotes economic and environmental benefits, performance 

efficiency and minimizes human involvement. Internet connectivity is extended beyond 

mobile devices and personal computers with the help of IoT, allowing to reach various 

non-internet enabled devices. Internet of things plays an important role in this digital 

technology world by creating an ecosystem where many systems are linked for providing 

smart performance. Within 2020, the world is set to be IoT oriented completely. IoT guar-

antees secured data processing and high-quality data, also reduces production cost 

while maximizing outcome. 

Wireless network operators are widely deploying dedicated IoT or machine-to-machine 

(M2M) communication networks for enabling better service with wireless IoT. With the 

commercial applications growing rapidly, it is clearly seen and understood that there are 

many cases of mobile IoT applications for which existing devices and networks are not 

fitting properly. Production cost, battery life and network coverage are the central rea-

sons for that. When discussing about network coverage, an important thing to mention 

that, current cellular networks can provide very good wide area coverage. However, 

many connected devices which are in remote areas, far from the next base station. In a 

place with weak network signal, it makes necessary for a device transmitter to keep 

functioning at very high power, hence draining the device battery. Current cellular stand-

ards do not support power saving mechanisms and lead to not supporting battery life for 

several years. Another important factor is device costs. Messaging, data transmission 

with good speed, and entailing mobile voice these are the services intended for mobile 

devices working on Long Term Evolution (LTE), Third Generation (3G), and Global Sys-

tem for Mobile (GSM). Machine type communication applications require relatively low 

speed, but they need reliable date connection and low device cost, and practical factors 

like installation simplicity are important.  It is rather important for public having knowledge 
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of different LPWAN technologies and knowing how to implement them in different situa-

tions. Different LPWAN systems, technologies, protocols and applications, benefits and 

potential challenges are discussed and examined in this thesis work.   

 

1.1 Background  

In recent times, IoT represented latest innovations in smart sensor, Radio Frequency 

Identity (RFID), important internet protocols, enhanced communication technologies and 

more for users. IoT relies on Machine to Machine communications or M2M, having less 

interception, human involvement, and interference, hence increasing productivity, au-

thenticity and performance. The main idea behind IoT is, lower production cost, more 

transparency, portability, and greater effectiveness and making it compatible with rapidly 

changing technology industries such as telecom industry facing issues like production 

cost, technological inputs, competencies, scalability at present and upcoming future.  

Thus, for upcoming years, it is assumed that, IoT will have a critical impact in information 

technology sector, focusing on critical growth, diversification, propagation and progres-

sion globally, especially for M2M communications and interfacing dissemination, identi-

fication and dispersion of Big Data through IoT deployment.  

IoT, possess significant advantages as well as suffering major drawbacks which are also 

focused in this thesis work. Generally, IoT technology study involves benefits, motivators, 

and applications, as well as technical issues like power consumption and support of mas-

sive number of devices for saving costs and adding high utility value, offering extensive 

scope for M2M expansion and growth. 

 

1.2 Work description 

Thesis theoretical part involves LPWAN study having focus on ultra-narrowband and 

spread spectrum based IoT technologies. These are the main modulation schemes for 

supporting transmission over channels with high path loss, which is necessary in wide-

area IoT operation. Both approaches are available commercially: Sigfox is based on UNB 

and LoRa on spread spectrum schemes.    
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The technical part of this thesis work includes overview of Time Frequency Asynchro-

nous ALOHA (TFAA) and its throughput performance and scalability issues. Two differ-

ent channel models, collision model and capture channel model are discussed along with 

throughput analysis of the capture channel model. Finally study of throughput perfor-

mance of TFAA is done using MATLAB simulations. The main parameters include the 

interference threshold, propagation exponent, distance range of the IoT device, and sys-

tem load. Normalized throughput and collision probability are evaluated through simula-

tions for different combination of these parameters. 

Research Methodology 

➢ Scientific literature review. 

➢ Study of the materials to develop good and detailed understanding about UNB 

IoT. 

➢ Analytical TFAA models and earlier numerical studies in literature. 

➢ Developing Matlab code for simulation. 

➢ Adding repetition pattern in the code. 

➢ Preliminary simulation result with limited statistics. 

➢ Final simulation results with graph. 

Writing part of the thesis is done as following: 

Chapter 2 describes LPWAN technologies focusing on Sigfox and LoRa. Time frequency 

asynchronous ALOHA (TFAA) overview, throughput performance and some issues are 

discussed in chapter 3. Technical aspects of the thesis are addressed in chapter 4 where 

two different channel models are studied, and the capture channel model is analysed in 

detail. Chapter 5 focuses on Contention resolution time frequency asynchronous ALOHA 

(CR-TFAA). Chapter 6 presents simulation-based analysis of TFAA, its’ throughput per-

formance is evaluated and discussed.  

Finally, conclusion part of the thesis work is in chapter 7. 
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2. LPWAN 

Low-power wide-area network (LPWAN) is a family of wireless access technologies 

which consume less power and cover wide areas. They are able to operate in both li-

censed and unlicensed frequency bands. LPWANs have gained popularity for low-rate 

and long-range radio communication technology with the growth of IoT market. Among 

different LPWAN technologies, Sigfox, LoRa, and NB-IoT are leading in IoT deployment 

in large-scale. However, Sigfox and LoRa both have advantage in case of battery life-

time, production cost and capacity whereas latency and quality of service are offered by 

NB-IoT [1]. Two main LPWAN technologies Sigfox (Ultra narrowband) and LoRa (spread 

spectrum) are being discussed in detail in this chapter. 

  

2.1 Sigfox 

Sigfox is a network operator based in France and it builds wireless networks for connect-

ing low-power objects that need to emit small data infrequently. Sigfox technology is one 

of the LPWAN technologies, mainly employed for the IoT network development having 

low volume of data which need to be sent within long operating range and low power 

consumption during the transmission. Sigfox uses Differential Binary Phase-Shift Keying 

(D-BPSK) modulation in which the message possesses a fixed bandwidth of 100 Hz and 

the transmission speed is 100 bps for Europe region. It is operated in below 1 GHz unli-

censed frequency spectrum that varies within region, 868 MHz for Europe and 915 MHz 

for U.S. region. To provide communication service across the globe like cellular commu-

nication service Sigfox follows business-to-business model (B2B). The technology pro-

vides low data rate which is 100 bps, maximum payload (uplink/downlink) of 12/8 octets 

and a maximum transmission of 140/4 per day, which is very limited [3]. 

In Sigfox, IoT device transmission initiation is done by sending three uplink packages 

sequentially onto three carrier frequencies randomly. Even if two transmissions get lost 

due to collision or interference, the base station will receive the package successfully. In 

the EU ISM band (868 MHz) the duty cycle restriction is 1 percent, hence a device can 

transmit 36 seconds per hour only and having 6 second air time per package allows 6 

messages per hour to transmit with payload of 4,8, or 12 bytes [4]. 
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2.1.1 LTN network architecture 

LAPs (LTN access points), WAN/cloud port, LEPs (LTN end points) and various type of 

servers are parts of a typical LTN network architecture, as shown in figure number 1. 

BSS/OSS or Central Registration Authority (CRA) and LTN server are included in various 

servers for LTN network architecture [5]. Different interfaces are used to connect different 

entities of LTN network and all the interface types from interface A to F are described 

below in table number 2.  

 

Figure 1.  LTN network architecture 

 

Specifications  Sigfox 

Frequency band 868 MHz in Europe and 902 MHz in U.S. 

System band-
width 

200 kHz 

Distance Urban area (3-10 km), Rural area (30-50 km) 

Data rate 10-1000 bps (100 bps ideal for IoT applications) 

Message/data 
size 

12 bytes (frame 26 bytes) 

Modulation 
scheme 

D-BPSK 

Applications M2M and IoT 

Capacity Sigfox base station can handle 30,00000 devices 

Architecture Star consisting of Sigfox objects, Customer IT server, and Sigfox cloud  

Table 1. Sigfox features. 
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Table 2. LTN network interface 

 

   

 

 
 

 

Interface type Description 

Interface A Radio access technologies are used for creating connection 

between LAP (base station) and LEP (end device) in this inter-

face type.  

Interface B This interface is utilized via WAN mediums (satellite, ADSL, 

microwave links) between LTN servers and LAPs. 

Interface C Between application provider server and LTN server this inter-

face is being found which ensures usage of IP protocols. 

Interface D Interface D is used between LTN servers and LTN CRA. 

Interface E Interface E is used between different LTN servers (used mostly 

during roaming). 

Interface F This interface is used to exchange information for network sta-

tus and registration between OSS servers and LTN servers. 

Interface A’ This interface is used inside LEP, between LTN module and 

Data Collection System (DCS). For execution AT commands 

are employed over serial connection. 

Interface C’ Application provider provides this interface. This interface is 

used as an end user interface. 

Interface F’ This interface is being applied between OSS servers and ap-

plication provider. 
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2.1.2 Sigfox Architecture 

The Sigfox cloud, Sigfox objects, servers, and gateway these are the main components 

of the Sigfox architecture. For connecting the gateways with the objects star topology is 

used in Sigfox technology. For interfacing the server with the cloud, HTTP, MQTT, 

SNMP, and IPv6 these different protocols are applied depending on end applications [4]. 

Sensing or control are done by objects which is the main purpose for the network. Allo-

cating locations of the elements and communicating with the Sigfox gateway are done 

remotely. From the objects, signals are received by the Sigfox gateway and then the 

signals are passed on the Sigfox cloud which supports many Sigfox services such as 

management of the objects and message retrieval. Ethernet, cellular and other telecom-

munication connections are elements of the network which are either wired or wireless. 

For connecting Sigfox cloud with the gateways, secured IP connections are being used 

which are basically a direct secure point to point (P2P) links which are located in between 

the cloud and gateway. Data utilization following a standard protocol are done in this way 

which also can be linked with public or private telecommunication network. The backhaul 

network’s spare capacity can be used by co-locating one of the Sigfox gateways and a 

cellular base station. 

 

Figure 2. Sigfox architecture 

 

The above figure illustrates simple Sigfox network architecture which is almost the same 

as LTN architecture having difference in terminologies. LAPs are termed as Sigfox gate-

way or base station while the LEPs are designated as objects. Sigfox cloud is repre-

sented by WAN and it links base stations via different interfaces with business applica-

tions [7]. Uplink transmissions are directed from LTN end points towards the network 
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which can be either gateways or base stations whereas downlink transmissions are di-

rected from the network towards the LTN end points.  

2.1.3 Sigfox Protocol Stack 

Physical layer, MAC layer, Radio layer, and application layer, these are the four layers 

of Sigfox Protocol Stack where each of the layers possess unique characteristics that 

enables to perform specific functions. Frequency assignment and setting the transmis-

sion or reception power for Sigfox end points and base stations are done by Radio layer. 

Two different transmission schemes, Orthogonal Sequence Spread Spectrum (OSSS) 

and UNB are also supported by the Radio layer, as well as upholding different frequency 

spectrum which depends on region (Europe 868 MHz, United States 902 MHz, and 

China 433 MHz). Sigfox receiver sensitivity is also ensured by the layer which is better 

than -135 dBm as well as maximum transmission power for UNB uplink transmissions 

(Europe) which is 25 mW in Europe. 

During transmission and reception, handling the MAC frames are done by the physical 

layer. Inserting preamble (for synchronization purposes) at the time of transmission at 

the transmit end and at the receive end during reception removing the preamble is also 

done by the physical layer also. In the uplink, Binary Phase-Shift Keying (BPSK) modu-

lation is applied and, in the downlink, Gaussian Frequency Shift Keying (GFSK) modu-

lation is applied by it. Managing the MAC messages is dealt by the Media Access Control 

(MAC) layer as well as preparing frames according to the format of the uplink and down-

link, which will be discussed in the following section.  

Finally, application layer which is a LTN technology supporting various applications uses 

different interfaces or protocols between servers and clouds, for example, HTTP, IPv6, 

SNMP and hence defining different applications as per user requirements. 

2.1.4 Sigfox Frame Structure 

Uplink MAC frame and downlink MAC frame are the two-frame structures that Sigfox 

MAC has. Certain characteristics for each of the frame structures can be seen in the 

figure 3. For the uplink MAC frame (UNB implementation) the preamble is 4 bytes and 

the frame synchronization consist of 2 bytes, 4 bytes is the end device identification and 

the payload are from 0 to 12 bytes. Error detection by FCS is 2 bytes but the authentica-

tion varies in length [8]. The preamble for downlink MAC frame is the same as uplink 

MAC frame, 32 bits or 4 bytes but the frame synchronization consists of 13 bits. FCS 
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and authentication are 8 bits and 16 bits respectively. Error codes and payload for down-

link MAC frame varies in length and flags are 2 bits.  

 

Figure 3.  Sigfox frame structure 

 

2.2 LoRa 

LoRa is a wireless technology and based on spread spectrum transmission module and 

it operates on the ISM radio bands of varying frequencies depending on the region. LoRa 

operates in 51 countries including 100 deployed LoRa-WANs and it is a non-profit asso-

ciation (open standard) for over 500 companies with commitment of enabling deployment 

of LPWAN IoT in larger scale using the LoRaWAN promotion and deployment [9]. 

LoRa operates on the same frequency bands as of Sigfox. It has a cellular topology 

where gateways or base stations receive packets from devices and transmit the data on 

TCP connection to a server [10]. LoRaWAN has capacity of providing service of wide 

area network and the network consists of different elements such as server, LoRa gate-

ways, endpoints, and remote computer [11]. Having a spectrum range between 863 and 

928 MHz allows to transmit over long distances and through obstacles consuming very 

low power, which is the main goal for IoT technology. 

For M2M (machine-to-machine) applications and IoT applications, LoRa which is a phys-

ical layer protocol enables low power and long-range communication. For transmitting at 

different frequencies and data rates, a spread spectrum approach is used by LoRa within 

the sub-GHz spectrum [12]. LoRa technology allows to connect many applications that 
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operate in the same proprietary or public network with multiple users. Unlike Sigfox, 

LoRa modules allow for granular configuration and course of action, suggesting if two 

devices are designed differently, they will encounter problems while communicating with 

themselves [13]. 

2.2.1 Features of LoRa 

Some of the LoRa features are mentioned in the table below. 

Table 3. LoRa features 

Specification Feature 

Frequency bands 868 MHz (Europe), 915 MHz (U.S) 

Range  2-5 km (urban area), 15 km (suburban area) 

Standard  IEEE 802.15.4g 

Transmission BW 125 kHz and 250 kHz 

Modulation  LoRa DSSS 

Bandwidth  250 kHz 

Latency  Insensitive  

Data rates  0.250-11 kb/s (Europe) 

Spectrum  Spread spectrum 

Applications  M2M and IoT based 

Synchronization (Time) Supported  
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2.2.2 Physical Layer 

Physical layer of LoRa technology enables operating effectively low power transmission 

over long distances for data links. Over the radio interface, the physical layer encloses 

all direct contacts with outer world [14]. Parameters of the layer includes modulation, 

frequencies, bands, basic RF protocols, and power levels which can be encapsulated 

with attributes of LoRa physical layer.  

2.2.3 LoRa Network 

Having capacity of providing service of wide area network, LoRa is also referred to as 

LoRaWAN. Server, LoRa gateway, endpoints, and remote computer are the different 

elements of a LoRa network [4]. Endpoints is an important part of LoRa network where 

sensing or control takes place. All the elements have communication with LoRa gateway 

and mostly remotely located which can be seen in figure 4. From the endpoints, signals 

are received by the LoRa gateway and then passed to the backhaul system. The network 

element might be ethernet, cellular or other connection (telecommunication) which is ei-

ther wireless or wired [14]. Standard IP connections are being used for connecting gate-

ways with the network server and by this way a standard protocol is being utilized by the 

data which is possible to be linked with a telecommunication network, either public or 

private. Co-locating LoRa gateways within cellular base station can be done frequently 

while observing similarities between LoRa and a cellular network that allows using the 

spare capacity of the backhaul network. Server which is another important element of 

LoRa network controls the network. Scheduling acknowledgements and adapting data 

rates are tasks done by the server for managing the network [14]. Server which is a part 

of the network can easily be deployed and connected, which enables network’s easy 

implementation. Finally, for gathering information, a remote computer controls the end-

point operation having the network being transparent. Multicast operation is possible 

while having bi-directional communication to the endpoints and this is useful for upgrade 

of software and other mass distribution data. 
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Figure 4. LoRa network architecture [14]. 

 

2.2.4 Modulation 

CSS (Chirp Spread Spectrum), a spread spectrum modulation is used by the LoRa phys-

ical layer. Wide-band modulation pulses having linearly time-varying frequency is utilized 

by the LoRa modulation scheme [14]. Increase or decrease of frequency over time can 

be applied for encoding the information that needs to be conveyed. In this LoRa modu-

lation technique spread spectrum can be achieved by producing a chirp signal that con-

tinuously changes within frequency [15]. Depending on this, for signal detection, timing 

offset and frequency offset are not considered critical, which makes the receiver design 

simple because of avoiding complex algorithms. A correspondence is seen between 

chirp frequency bandwidth and system’s spectral bandwidth. This modulation technique 

allows demodulation of the received signal at 20 dB below the noise with the help of 

effective Forward Error Correction (FEC) [16]. The FEC of LoRa allows recovery of data 

bits with 25 dB lower SNR comparing with basic FSK system. 

2.2.5 Modulation parameters  

Some basic parameters for LoRa modulation include bandwidth (difference between 

minimum and maximum frequency), spreading factor (quantity of encoded bits per sym-

bol), and the code rate (measure for level of FEC). LoRa technology uses the spreading 
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factor (SF) as the number of transmitted data bits per symbol. The parameter SF defines 

the bit-rate, robustness of detection, and interference and noise resistance [16]. Among 

all LoRa modulation parameters the most significant one is the bandwidth. The frequency 

of the LoRa signal varies during every chip interval over the whole frequency band, which 

is known as chirp, and SF chirps make each single LoRa symbol. At the beginning of 

every symbol interval, the initial frequency represents the symbol value where SF bits 

are carried by each symbol. Wrapping around from highest frequency to lowest one dur-

ing symbol interval at some point is done by the chirp and it depends on the value of the 

symbol. The following figure illustrates LoRa transmission where BW denotes bandwidth 

and fc is the channel centre frequency. 

 

Figure 5. Variation of frequency of a signal over time emitted by LoRa transmit-
ter[14] 

 

 

2.2.6 Frequency bands (LoRa) 

The unlicensed ISM frequencies which can be accessed in various parts of the world are 

utilized by the LoRa system. Depending on region the mostly utilized frequencies for 

North America is 915 MHz, for Europe 868 MHz, and 433 MHz for Asia [17]. For gaining 

better coverage especially for indoor nodes, the system utilizes lower frequencies than 

the 2.4 GHz ISM bands widely used, e.g., by WLANs. However, it is possible to use 

different available frequency bands by LoRa technology that is not particular for any fixed 

frequency.  
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3. TIME FREQUENCY ASYNCHRONOUS ALOHA 

TFAA or Time and Frequency Asynchronous Aloha is a random-access scheme for un-

coordinated packet transmission scheme both in the time and the frequency domains. 

TFAA originally allows reduction in packet collision rate down to a level that is not achiev-

able in traditional time-domain Aloha systems. TFAA in combination with ultra-narrow-

band (UNB) transmission can be considered as an alternative of spread spectrum, since 

it allows similar reduction in transmission power and increase in communication range, 

which is necessary in LPWAN systems. UNB concentrates the transmitted energy within 

a very narrow bandwidth, which provides high signal-to-noise ratio (SNR) at the receiver 

due to reduced noise power. However, the frequency synchronization of UNB transmis-

sions from different devices becomes very difficult. This issue can be circumvented from 

the device point of view by using significant intentional random frequency offsets for dif-

ferent devices. TFAA becomes a natural transmission scheme in such uplink IoT trans-

mission scenarios. 

3.1 TFAA overview 

In TFAA, frequency synchronization is relaxed significantly. Within the system band-

width, packets can be transmitted easily with randomized frequency offsets. The fre-

quency synchronization of received packets is handled at the gateway receiver side, 

where complexity and power consumption are not critical. Hence the need for precise 

oscillators is avoided and cheaper transmitters can be considered for devices which is a 

general advantage of TFAA. Another advantage of TFAA is robustness to Doppler shifts. 

TFAA is mainly designed for supporting frequency uncertainty in a high amount and be-

cause of this relatively high Doppler shifts can be managed [18]. Using low rate FEC 

helps to cope with MAI (Multiple Access Interference) in TFAA. This characteristic has 

already been known from time asynchronous Aloha, and for time-frequency asynchro-

nous case it was studied in [19][20]. In spread spectrum systems the throughput drops 

very fast when there is power imbalance [21], whereas for TFAA the throughput perfor-

mance increases in such scenarios, which is an important feature for LPWANs having 

simplified power control system.  

UNB TFAA is gaining more interest for LPWAN applications because radio interface of 

UNB TFAA allows increasing the communication range significantly or reducing needed 

transmission power. This is done by reduction in transmission bandwidth under the level 
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which is needed for conventional FDMA systems. However, the application of TFAA for 

LPWANs possess some issues also. In the demodulation process, the TFAA scheme 

increases the receiver complexity in gateways. For M2M satellite systems, UNB TFAA 

has also become popular. It is shown in the study of TFAA application for low earth orbit 

satellite system under collision channel model that having low transmission rate com-

pared with Doppler rate, the MAC performance is affected by timing issues [22].  

 

3.2 TFAA Throughput Performance 

According to the collision channel model [20], if and only if any other packet is not being 

transmitted over region (see figure 6) [fi−B, fi+B]×[ti−Tp, ti+Tp], only then a TFAA packet 

is considered to be transmitted successfully. Here Tp denotes packet duration and B is 

the packet bandwidth whereas W is the total system bandwidth, with W>>B. For a given 

channel load G, the throughput T of TFAA can be shown as 

T=G⋅exp[−4G]                                                        (1) 

when B/W → 0. Equation (1) can be seen in figure 7 which also shows comparison with 

basic ALOHA throughput. Under the collision channel model the pure (1- dimensional) 

ALOHA performance is better than that of TFAA, but allowing non-zero  packet error 

probability can reduce the gap of performance significantly [20]. 
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Figure 6. Two-dimensional representation of TFAA. 
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Figure 7. Normalized throughput vs normalized channel load for ALOHA and TFAA 
under the collision channel model.  

 

 

3.3 TFAA Scalability Issues 

For efficient RA operation, using TFAA in its simplest form is not enough. Additionally, 

one access point covers a wide area in LPWAN hence making it difficult to reutilize fre-

quency, which is a major drawback for LPWAN. To improve the capacity in of TFAA 

based UNB, making use of collision resolution techniques at the receiver side can be 

considered as an alternative.  
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4. CHANNEL MODELS 

4.1 Collision Channel Model 

 

A communication situation where packets containing messages of fixed length are trans-

mitted over the channel is commonly known as multiple access collision channel. The 

packets are synchronized, and one packet’s transmission length correspond to a time 

slot considered as time limit. Channel input users are unlimited in number without coop-

erating with each other, hence different packet senders are not able to exchange infor-

mation. A test packet is considered successfully being transmitted if and only if no other 

packet overlaps with the target one in any extent, under the collision channel model. A 

packet collision is considered destructive always under the collision channel model. 

4.2 Capture Channel Model 

The capture channel model assumes that collision of the target packet with one or more 

interfering packets does not necessarily affect the packet. The receiver can detect pre-

ambles of all the arriving packets and are able to extract necessary control data. This 

statement is justified only if, probability of two time-frequency aligned packets is very 

small at the receiver end. The test packet detection success after synchronization com-

pletely depends on total interference from partially colliding packets. SIC technique helps 

both packet synchronization and PER performance improvement. On the other hand, 

using low-rate FEC improves PER performance greatly. [20].  

4.3  TFAA Throughput Analysis under Capture Channel Model 

In the TFAA random-access scheme, packet transmissions are not being coordinated 

either in time or in frequency domain. The capture channel model increases the proba-

bility of successful detection, and this effect can be enhanced by effective feed-forward 

error control coding (FEC) and/or advanced receiver signal processing, like successive 

interference cancellation (SIC). Furthermore, these benefits can be expected to be in-

creased in TFAA schemes because the number of alternative transmission instances is 

greatly increased without increasing the frame size in time and frequency beyond prac-

tical limits. Keeping the collision effect in mind, TFAA performance evaluation is needed. 

Two models, collision model and capture channel model are considered by Almonacid 
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and Franck[18]. Using semi-analytical process, the throughput for capture channel mode 

is derived whereas throughput for collision channel model is obtained through a closed-

form analytical model. To improve TFAA performance, a low-rate FEC can be deployed 

for TFAA performance improvement [18]. A very basic low-rate coding scheme is repe-

tition coding, i.e., transmitting the same data packet multiple times in non-overlapping 

positions in time-frequency domain. This scheme is adopted for our study below.  

Under the capture channel model, TFAA throughput performance is analysed by trans-

mitting all the packets using BPSK (binary phase shift keying) and SRRC (square-root-

raised-cosine) pulse shaping. A conventional filter architecture (single user) is followed 

by the receiver and the focus is on the test packet reception. The interference is varied 

depending on the time and frequency overlaps of the colliding packets which have ran-

dom time and frequency offsets in with respect to the test packet.  Every packet is char-

acterized by its arrival time, transmission frequency, amplitude, and initial phase, which 

are all randomized parameters and independent for each packet. Within the transmission 

time of the packet, packet amplitude remains constant and independent [20]. 

In the capture channel model, the receiver is assumed to have the capability to synchro-

nize to all the arriving packets. Probability of two packets being aligned completely in the 

time-frequency is very small at the receiver end. The test packet detection success de-

pends on total interference which comes from the interfering packets that are collided 

partially after synchronization. Successive interference cancellation (SIC) techniques im-

prove the packet error rate (PER) performance and help also in packet synchronization. 

Additional performance improvements of PER and throughput can be obtained using 

low-rate FEC , both with and without the SIC element [18][20].  
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5. CR-TFAA SYSTEM MODEL 

The high PER problem has been examined in [18] by Almonacid & Franck that offers a 

protocol named ‘Contention Resolution Time and Frequency Asynchronous ALOHA 

(CR-TFAA)’ for high throughput random access LPWAN networks. This is an advanced 

and modified version of TFAA, and it works by applying diversity by making multiple 

copies of a packet and transmitting them in different time and frequency locations ran-

domly. PER issue and its mitigation to reach higher throughput has also been addressed 

by another protocol named Asynchronous Contention Resolution ALOHA (ACRDA) [18] 

and it has been compared with the performance of CR-TFAA. Increasing the throughput, 

like doubling it, is possible by using these post-ALOHA protocols which makes these 

protocols preferable for systems like mobile and satellite networks [18]. Employing CR-

TFAA in UNB LPWANs enhances performance and offers an interesting alternative to 

spread spectrum techniques. Integrating SIC techniques into TFAA and transmitting 

packets randomly in both time and frequency results in the CR-TFAA protocol, which 

offers improved and enhanced performance for UNB LPWANs through diversity scheme 

[18]. 

5.1 Simulation Based Analysis 

In this thesis, a throughput analysis study of a two-dimensional random-access scheme 

has been done using a MATLAB code for simulation. The main parameters include the 

interference threshold, propagation exponent of the wireless channel, distance range of 

the IoT devices, and the system load. Normalized throughput and collision probability 

were evaluated through simulations for different combinations of these parameters.  

The overall packet arrival rate is λ packets/s. Available total system bandwidth is denoted 

as W whereas the fixed packet duration is Tp and its bandwidth is B. For an UNB signal, 

the packet bandwidth B is much smaller than system bandwidth W. Each packet is car-

rying payload of Lb information bits. The offered traffic, i.e., total packet arrival number 

with packet duration Tp, over system bandwidth W can be given as Ga=λTp. Ga is usually 

greater than 1 since TFAA allows many packet transmissions and decoding simultane-

ously. Hence, normalized throughput can be determined as 

     T(G)≜G×(1−Pe),          (2) 
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Here the normalized average channel load is G=Ga×B/W and PER is Pe. Over a packet 

bandwidth B, the average offered traffic is represented by G. 

Framework introduced in [23] for ACRDA, organizes packet transmissions in virtual 

frames (VF). Having Nslots as time slots per frame, TF=Nslots×Tp is the duration for a VF. 

At the MAC unit when a new packet has been generated, Nrep packet replicas as well as 

a new VF are generated. The packets are placed at random time slots and random car-

rier frequencies within the VF, also keeping in mind that packet replicas do not overlap 

each other. It is also assumed that the replicas' energy is fully held within a bandwidth 

B. The system spectrum is centered at f=0 and the carrier frequencies must be chosen 

in the interval [fm, fM], where fm = −B([W/B]−1)/2 and fM = B([W/B]−1)/2.  

In CR-TFAA the frame size is defined as the number of time-frequency points without 

overlapping. It can be expressed as Nslots x Nf=TF/Tp x W/B. Each user terminal gener-

ates and transmits VFs in an asynchronous manner and hence arrival at the receiver 

end happens with random time offsets. Main difference of ACRDA and CR-TFAA VF 

structures is that VF spans much greater bandwidth compared to the packet bandwidth, 

allowing packet replicas to be transmitted freely within the system bandwidth W. Having 

Nrep=2, W/B=10 and Nslots=5 an example is shown in figure 8 where four different users’ 

transmissions are shown.  

 

Figure 8. CR-TFAA frame structure. Four different colours represent four different 
users.  

The SIC-based CR-TFAA scheme of [23] assumes that each replica has the information 

about the other Nrep−1 replicas’ relative positions in extra few bits along with payload bits 
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Lb. In the adopted diversity scheme, the frequency axis is not divided in any slots since 

the use of frequency slots requires frequency synchronization and very good oscillator 

stability which is difficult to achieve in simple IoT devices. 

Sliding window approach is used for sampling the incoming signal at the receiver side 

[23]. The sliding window extends over WVF VFs having a step size of ΔWVF which is 

expressed as fraction of one VF. For detecting the replica presence, the SIC process 

scans sliding window samples over W. After locating a replica correctly, it is demodulated 

by a filter detector and then turbo decoded. From sliding window buffer, interference 

contribution is removed after successful decoding of one replica. Other replicas’ interfer-

ence on colliding other users' packets are removed from the sliding window after that. 

The SIC process is repeated up to Nit iterations. During the iterations, the packets of all 

or most of the different user’s data packets are decoded successfully. After that, the 

sliding window is shifted by ΔWVFTF seconds and the process is repeated.  
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6. SIMULATION BASED TFAA ANALYSIS 

Experimental throughput study of a two-dimensional random access is done in this chap-

ter. For the simulation of time and frequency asynchronous ALOHA (TFAA), a MATLAB 

code is generated and analysed. The main parameters include the interference thresh-

old, propagation exponent, distance range of the IoT devices, and system load. Normal-

ized throughput and collision probability are evaluated through simulations for different 

combination of these parameters.  

CR-TFAA protocol model explained by Almonacid & Franck differs a lot from TFAA anal-

ysis presented here both regarding the system model and scenarios. No power control 

is assumed in the analysis of TFAA here and there are big variations in the power levels 

of the target packets and interfering packets, whereas CR-TFAA model assumes very 

good power control for the uplink signals. A simpler scheme for implementation is con-

sidered in the analysis here assuming maximum ratio combining (MRC) of the repeated 

packets while all packet repetitions from a device are assumed to be received at the 

same power level. CR-TFAA makes use of a cleaver (and rather complicated) succes-

sive interference cancellation (SIC) scheme, including also physical layer simulations 

and error-control coding, as well as receiver process to synchronize to the received pack-

ets. 

6.1 Analysis process 

Parameters for this study are given and defined below. 

6.1.1 Load  

The channel load is defined by the ratio of active device number or transmitted packet 

number within a virtual frame to the maximum number of transmitted packets without 

collision, T/Tp x W/B. 

6.1.2 Throughput  

At the receiver end, product of the transmission rate and success probability of a scheme 

is defined as throughput. Normalized throughput is evaluated by dividing evaluated 

throughput by the throughput of the ideal orthogonal transmission scheme supporting 

T/Tp x W/B packets per frame without collisions. 
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6.1.3 Collision  

Transmission of data packets are done randomly with uniform distribution over the virtual 

frame, leading collisions between different users’ transmitted data. If the interference 

threshold is not exceeded, the collisions with other users’ packets are not considered 

harmful. The probability of successful transmission of data is increased within low SINR 

threshold.  

6.1.4 Interference threshold 

Interference threshold is a parameter which defines the assumed robustness of the de-

modulation and decoding scheme, in terms of the minimum signal-to-interference-plus-

noise ratio (SINR) allowing enough detection. The relative interference power produced 

by a colliding packet in terms of time and frequency offset between the packets is eval-

uated using a separate physical layer simulator. The TFAA simulator obtains this infor-

mation from a table containing 100 different offset values in both dimensions. All colliding 

packets' powers are combined when calculating the SINR. The received signal powers 

depend on the path losses of the target and interfering signals. For simplicity, the trans-

mission powers of all devices are assumed to be equal. 

6.1.5 Propagation exponent  

Path loss exponent or propagation exponent is defined by the ratio of transmission power 

and received power as a function of the transmission distance. The propagation expo-

nent is 2 in free-space, and in urban areas typically 4 or more.  

6.1.6 Distance range 

Different packets have variation in power levels at the access point and the throughput 

depends on this. One user’s strong packet can prevent detecting the target users’ weak 

packet even when having slight overlap of the packets. Variation in power depends on 

propagation exponent and distance. In order to avoid excessive differences in received 

power levels, we assume that the distances of all devices from the access point are 

limited to a certain range, defined by the shortest and longest distance.  

 



25 
 

6.2 Code explanation  

Initialization of various constants are done at the beginning of the code such as symbol 

interval which is set 0.01 having unit in seconds (here symbol interval corresponds to 

symbol rate of 100 Hz), length of packet is considered to be 100 symbols, length of 

packet tail is 2 symbols, time window length is set to 10000 symbols, signal bandwidth 

is considered 200 Hz, the total channel bandwidth is set to 10000 Hz. Since theoretically 

the minimum frequency distance needed for transmitting orthogonal packets simultane-

ously is 100 Hz, so 10000 is the maximum number of non-colliding packets. The mini-

mum distance from access point is set to 100 m and the maximum distance is 300 m or 

1000 m in different simulations. A loop starting from 500 and ending at 10000 having an 

increment of 500 denotes the selection of device number and full load is represented by 

the last value obtained using the loop. 

We assume uniform 2-dimensional geographical distribution of the IoT devices within the 

ring-shaped region defined by the minimum and maximum distances. Results are gath-

ered taking the average over 10000 simulation instances which are independent for get-

ting relatively smooth output plots. A separate waveform simulation is used for obtaining 

the normalized interference power which is caused because of packet overlapping and 

the interference powers are then stored in a matrix. The matrix row and column corre-

spond to the time and frequency distances among the colliding packets, and in the matrix 

the interference values correspond to the scenario where at the receiver the target signal 

and the interfering signal have the same power level. Selection of each active device is 

done randomly having an assumption of uniform distribution within the used distance 

range for each simulation instance. Having uniform distribution within transmission time 

interval and frequency band, each packet’s timing and frequency are also selected ran-

domly. Based on the pathloss model mentioned above, each packet’s power levels at 

the access point is evaluated. The first packet and its replicas are considered as the 

target one and from all the other packets the total interference is calculated. If there is a 

possibility of interference for any of the target replicas, first it is checked whether it is 

overlapping the target one. In case there happens an overlap, from interference matrix 

the normalized interference value is obtained first and after that it is scaled by the ratio 

of the interfering signal and the target signal for obtaining actual interference power. The 

resulting interference powers are accumulated independently for each target replica. 

Then the overall SINR is calculated using the MRC principle. If the interference threshold 

is exceeded during the accumulation, it is decided that the target packet transmission is 

lost and for the ongoing simulation instance the process can be stopped. 
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Two different interference power thresholds, 0.25 and 1, are considered, corresponding 

to minimum SINR values of 6 dB and 0 dB, respectively. In the simulation, the propaga-

tion exponents of 2 and 4 are used. We consider 1, 2, and 4 number of repetitions for 

the simulation process. 
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6.3 Results having 100-300 m distance range from access 

point 

 

Figure 9. Normalized throughput with repetition factor 1, propagation exponent 2 
and 100-300 m distance ranges from access point. 
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Figure 10. Normalized throughput with repetition factor 2, propagation exponent 2 
and 100-300 m distance ranges from access point. 
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Figure 11. Normalized throughput with repetition factor 1, propagation exponent 4 
and 100-300 m distance ranges from access point. 
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Figure 12. Normalized throughput with repetition factor 2, propagation exponent 
4 and 100-300 m distance ranges from access point. 
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Figure 13. Normalized throughput with repetition factor 4, propagation exponent 4 

and 100-300 m distance ranges from access point. 

 

 

 

 

 

 

 



32 
 

6.4 Results having 100-1000 m distance range from access 

point  

 

 

 

 

Figure 14. Normalized throughput with repetition factor 1, propagation exponent 2 
and 100-1000 m distance ranges from access point. 
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Figure 15. Normalized throughput with repetition factor 2, propagation exponent 
2 and 100-1000 m distance ranges from access point. 
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Figure 16. Normalized throughput with repetition factor 4, propagation exponent 
2 and 100-1000 m distance ranges from access point. 
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Figure 17. Normalized throughput with repetition factor 1, propagation exponent 4 
and 100-1000 m distance ranges from access point. 
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Figure 18. Normalized throughput with repetition factor 2, propagation exponent 4 
and 100-1000 m distance ranges from access point. 
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Figure 19. Normalized throughput with repetition factor 4, propagation exponent 4 
and 100-1000 m distance ranges from access point. 
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6.5 Result comparison 

 

Table 4. Normalized throughput for different combinations for 100-300 m   

        distance range. 

 

 

 

System 

load 

Repeti-

tion  

Threshold  Propagation expo-

nent 

Normalized 

throughput  

0.4 1 0.25 4 0.15 

1 2 0.32 

2 0.25 4 0.24 

1 2 0.40 

4 0.25 4 0.34 

1 2 0.40 

0.8 1 0.25 4 0.13 

1 2 0.42 

2 0.25 4 0.23 

1 2 0.71 

4 0.25 4 0.39 

1 2 0.80 
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Table 5. Normalized throughput for different combinations for 100-1000 m   

        distance range. 

 

 
 

 

 

System 

load 

Repeti-

tion  

Threshold  Propagation expo-

nent 

Normalized 

throughput  

0.4 1 0.25 4 0.12 

1 2 0.28 

2 0.25 4 0.21 

1 2 0.39 

4 0.25 4 0.31 

1 2 0.40 

0.8 1 0.25 4 0.127 

1 2 0.36 

2 0.25 4 0.218 

1 2 0.61 

4 0.25 4 0.33 

1 2 0.78 
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6.6 Discussion  

The throughput of the system decreases with the increase in the propagation exponent, 

because the variation of the power levels of different packets at the receiver are in-

creased by it. Increasing the interference threshold increases the normalized throughput 

because it means more robust modulation and coding scheme tolerating higher interfer-

ence. So basically, with increase in interference threshold and decrease in the propaga-

tion exponent, and repetition factor set to 4 the normalized throughput can be maximized. 

With threshold set to 1, propagation exponent 2, and nrep 4, the throughput is seen at 

maximum value of 0.40 for load value 0.4 and 0.80 for load value 0.8 with the distance 

range 100-300 m and 0.40 for load value 0.4 and 0.78 for load value 0.8 with the distance 

range 100-1000 m. When the threshold is decreased to the minimum 0.25, the propaga-

tion exponent is increased to the maximum value of 4, and nrep is 1, the normalized 

throughput can be seen to be as low as 0.15 for load value 0.4 and 0.13 for load value 

0.8 with the distance range of 100-300 m and 0.12 for load value 0.4 and 0.127 for load 

value 0.8 with the distance range of 100-1000 m. 
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7. CONCLUSIONS 

The presented thesis work has investigated different aspects of ultra-narrowband (UNB) 

technologies and its’ applications, emphasizing the 2-dimensional ALOHA protocol with 

two different channel models which are important elements of UNB technology. 

The narrow bandwidth of UNB technology involves both benefits and some concerns as 

well, while considering reachability over large network area with low energy consumption 

along with minimal cost. But, in terms of connectivity and throughput, it possesses some 

major constraints. Most importantly, UNB is not suitable for applications requiring higher 

data rates. Main utility of it lies in M2M applications like smart grid, smart parking system, 

traffic management, smart meters, waste management and other centrally controlled 

systems. UNB is beneficial in for application requiring low data rate and in-frequent (spo-

radic) packet transmissions, e.g., fitness or health tracking, self-monitoring patients, re-

motely done health management system and many more.  

The throughput study carried out in the thesis work indicates that high throughput gain 

is possible with the robust transmission scheme using packet repetitions, which improves 

the tolerance to higher interference levels. In this study, throughput is measured by con-

sidering successful transmission of packets. It is important to mention that, no power 

control is assumed in the analysis of TFAA in this thesis work and there are big variations 

in the power levels of the target packets and interfering packets. Adding packet repeti-

tions increases the success rate of packet transmission, hence providing much improved 

normalized throughput. Also, higher interference threshold value (i.e., lower SINR 

threshold) leads to a higher successful packet transmission probability. This corresponds 

to robust modulation and coding scheme, which provides smaller data rate per packet 

compared with transmission schemes which require higher SINR value. 
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