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ABSTRACT 

Geolocation is one of the most significant manifestations of the current devel-

opment of information technologies and it is used for multiple applications, such 

as mobile networks, military systems, or in the stock market. For that reason, it is 

important to verify the source of this type of signals, as they could be susceptible 

to being tricked by spoofing attacks, namely fake transmitters. This thesis is 

based on the development of a GNSS signal type classifier based on radio fre-

quency (RF) fingerprinting methods that will determine if a signal belongs to an 

authorized transmitter or if it comes from a non-authorized GNSS signal genera-

tor/repeater. First, a total of 620 signals have been recorded in lab environments, 

follows: 40 different scenarios of real GNSS signal (with antennas located on the 

roof of the university) and 580 scenarios of the generated signal (using a GNSS 

signal generator). Each of the scenarios contains different types of signals (dif-

ferent GNSS constellations and/or bands, different satellites, etc.). Then, using a 

MATLAB-based simulator, the recorded signal is read, a certain time-frequency 

transform is applied (in this case the discrete Wavelet Transform), and an image 

of the wavelet transform of each sample is saved. These images include the fea-

tures of the signal's RF fingerprinting. Next, a machine learning algorithm called 

SVM, also designed in MATLAB, is used. This algorithm classifies two or more 

different signal classes, and finally evaluate the classification accuracy. We used 

80% of the images in each category for training and the remaining 20% for test-

ing. Finally, a confusion matrix is obtained showing the accuracy obtained by the 

SVM algorithm in the testing phase. 

 

The analysis of the results has shown that the SVM classification algorithm 

can be a very effective model for the identification of GNSS transmitters through 

the use of fingerprinting features. It has been observed that when the Spectracom 

scenario is configured with more than one satellite, accuracy is lower compared 

to being configured with only one. This is because the signal obtained when more 

than one satellite is configured is more similar to the signal obtained from the 

antenna in comparison to the single satellite configuration, and for that reason, 

SVM has more difficulty in classifying it correctly. Another observation is that ac-

curacy is also reduced when more than two categories are classified at the same 

time compared to a binary classification. Despite this, the accuracy is very high 

in the scenarios used, with 99.47% being the lowest value obtained and 100% 

the highest. Therefore, this implementation of RF fingerprinting methods is very 

promising in the context of determining whether a signal belongs to the actual 

GNSS satellite constellation or to a signal generator with a high level of accuracy. 

Keywords: Spoofing; radio frequency fingerprinting; GNSS; Spectracom; wavelet transform; 
SVM. 
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1. INTRODUCTION 

This chapter gives a brief introduction to the addressed topic. In first place, the 

motivation and the objectives of the thesis are discussed, then the Author’s con-

tribution is emphasized. After that, the structure of the thesis is described. 

1.1 Motivation  

Radio frequency fingerprinting presents a new model of transmitter identifica-

tion based on the fingerprint that characterizes the signal they emit. This finger-

print is unique to each device, which normally occurs due to hardware imperfec-

tions causing a number of signal effects such as I/Q imbalance, phase imbalance, 

frequency error or signal strength. Such imperfections, combined, form the radi-

ometric fingerprint of the transmitter. By implementing RF fingerprinting methods, 

it is possible to identify whether a signal is coming from a transmitter of the GNSS 

constellation or whether it is coming from a GNSS signal generator with possible 

malicious intentions such as spoofing or Jamming attacks. This will ensure more 

secure communications minimizing the risk of being attacked. 

1.2 Thesis objectives 

The main purpose of this thesis has been the implementation of RF fingerprint-

ing methods based on recorded Global Navigation Satellite System (GNSS) sig-

nals in order to identify and classify features of the different GNSS signals. The 

purpose of an RF fingerprinting algorithm is to determine if a certain received 

GNSS signal belongs to the real constellation of satellites or rather to an attacker 

(e.g., spoofer, jammer, etc.) generating and transmitting fake GNSS-like signals. 

Therefore, the final goal is to obtain a detector that by using the features extracted 

from both real and fake signals is capable to perform this distinction. 

1.3 Author’s contributions 

The main contributions of this thesis work have been: 

- Co-defining a set of target measurement scenarios in collaboration with 

the supervisors. The scenarios were defined based on available equip-

ment at TAU, namely two GNSS roof antennas and a Spectracom GNSS 

simulator. 

- Literature review on RF fingerprinting approaches in the context of GNSS. 

- Setting the measurement set-up and detailed data collection based on the 

pre-defined scenarios. 
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- Data classification with machine learning algorithms and analysis of the 

results. 

1.4 Thesis structure 

The document is organized as follows: Section 2 contains an introduction to 

GNSS and to the main concepts that will help to understand better next sections. 

Section 3 contains explanations about interferences in GNSS frequency bands, 

as for example, spoofing or space weather interferences. Section 4 is dedicated 

to the explanations of what Radio Frequency Fingerprinting (RFF) is, by explain-

ing some of the properties that can be found during the radio transmission. Sec-

tion 5 goes deeper in the main topic of this thesis. It is explained in Section 5 how 

the transmitter-specific features can be extracted from the recorded signal and 

how different machine learning extractor methods can be applied to classify the 

collected data. 

 

Sections 6 and 7 describe the measurement campaigns and the measure-

ment-based results. First, an explanation of the setup where the measurements 

were recorded is given in Section 6. Section 7 analyses the measurement-based 

results according to the selected machine learning classifiers. This chapter will 

include the use of a learning algorithm, in particular linear support vector machine 

(SVM) which will help us to compare the large number of signal recordings. In 

addition, methods and particular signal features will be explained. Finally, conclu-

sions and future works are addressed in Sections 8 and 9, respectively.  
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2. GNSS SIGNAL CONCEPTS 

    GNSS term refers to four global satellite constellations, that by transmitting 

specific signals to a terrestrial GNSS receiver, can help in determining the re-

ceiver’s position at any location around the world. By solving the position as a 

result of the reception of signals from different constellations of artificial satellites 

we can determine the geographical coordinates (including the altitude) of the 

given receiver. 

 

Currently, the four global GNSS systems that exist are: 

 

 GPS (Global Positioning System). It is a service which belongs to the 

United States and provides users with information on positioning, navi-

gation and chronometry. 

 GLONASS (Global Navigation Satellite System). This system was de-

veloped by the Soviet Union and today belongs to the Russian Federa-

tion. The deployment of satellites began in 1982. 

 Galileo. It is the European satellite positioning system, developed by 

the European Union together with the European Space Agency (ESA). 

Developments are still on-going.  

 BeiDou. It is a project developed by China to obtain its own navigation 

system for its country and neighboring regions. The first generation of 

the system dates from the year 2000. Developments are still on-going. 

 

 

 

 

 

 

 

Figure 1. Graph of the six orbital planes of the GPS constellation [1]. 
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For each GNSS constellation there is a frequency-band assignment. This pro-

cess can be complex as there may be services operating in the same frequency 

ranges. Depending on the country, the same frequency bands can be used for 

different purposes. There is an institution in charge of coordinating this issue at a 

global level called ITU. Figure 2 shows the different frequency bands in which the 

most important constellations work.  This figure shows the two frequency bands 

marked ARNS (Aeronautical Radio Navigation Service) for GNSS signals; and 

RNSS (Radio navigation Satellite Service), which is used for terrestrial services. 

 

 

 

 

 

Each GNSS signal is composed of: 

 

 Carrier Frequency: It is a radio frequency sinusoidal signal whose 

function is to carry information on a given frequency through space. 

 

 Ranging Code: It is a binary code, called pseudorandom noise codes 

(PRN). PRN codes work as an identifier for each satellite by using Code 

Division Multiple Access (CDMA) technique. These codes must be 

known by the receiver in order to decrypt the message that the signal 

contains.  

 

 Navigation Data: It contains information about the satellites such as 

the position of the satellite at a given time, which is called ephemeris, 

condition of the satellite, a reduced-precision ephemeris called alma-

nac, and the satellite clock bias. 

 

Figure 2. Frequency bands of GNSS most important constellations [2]. 
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The stages that a receiver performs in order to ultimately obtain its position are: 

acquisition, tracking, navigation data extraction, and position resolution. The pur-

pose of the first stage is to identify the visible satellites from the position where 

the receiver is located. The signal from the satellites is received, the carrier fre-

quency is removed and then a correlation between the received signal and the 

individual codes (PRN sequences) of the different satellites is performed. After 

this, it must be determined if a satellite has been acquired or not by comparing if 

the higher value of the correlation obtained is higher than a certain chosen thresh-

old. If the satellite is considered acquired, a rough estimation of parameters such 

a Doppler frequency or code delay is performed. Once this acquisition stage is 

finished, it is followed by the tracking stage that refines the previously estimated 

parameters to keep track of these as the signal changes over time [3]. After this, 

when enough data of the navigation message has been received, and the track 

of the satellites is stable enough, the position of the receiver can be determined 

by combining the information received from at least four satellites (three satellites 

to solve the x, y and z coordinates, and one more to solve the time unknown). 

The mechanism is called trilateration where a range called pseudo range 𝜌(𝑖) is 

measured from i-th satellite and it can be expressed by  

 

𝜌(𝑖) = √(𝑥(𝑖) − 𝑥𝑢)2 + (𝑦(𝑖) − 𝑦𝑢)2 + (𝑧(𝑖) −  𝑧𝑢)2 + 𝑐 ∗ 𝜏𝑢 + 𝛾 

 

where 𝑥(𝑖), 𝑦(𝑖), 𝑧(𝑖) stands for the satellite position and 𝑥𝑢, 𝑦𝑢, 𝑧𝑢 for the receiver 

position. Additionally, 𝑐 stands for the speed of light, 𝜏𝑢 for the receiver clock bias 

(due to relativity effects and to a less stable receiver clock compared to the sat-

ellites’ clocks) and 𝛾 for the sum of errors during the transmission such as atmos-

phere effects, interferences or background noise. Using pseudo ranges from at 

least four satellites we end up with a set of non-linear equations which can be 

solved using closed form solutions (e.g. Least Squares), iterative techniques 

based on linearization (e.g. Iterative Least Squares) or various types of Kalman 

filters (e.g. Kalman extended filter). Lastly, position of the receiver is given in Car-

tesian coordinates that are then transformed into geodetic coordinates specifying 

its latitude, longitude, and altitude [4].  
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3. GNSS INTERFERENCES 

 

Signal interference represents one of the most notorious weaknesses of 

GNSS. One of the reasons why GNSS is so vulnerable to interferences is be-

cause of the low power the signal is received (approximately around -130 dBm). 

As it can be seen from the Table 1, there are two main groups that include the 

different types of interferences, and they can be distinguished by the source of 

the interference: i) artificially produced interference by wireless transmitters and 

ii) interference produced due to the wireless channel effects.  

Within the interference produced in an artificial way, there are two different 

types, called unintentional (e.g. adjacent channel interferences due to harmonics 

of systems transmitting in nearby frequency bands to GNSS bands) and inten-

tional interference (e.g. spoofing or jamming). In addition, intentional interference 

is formed by two categories named: adjacent channel and co-channel interfer-

ences. Adjacent channel interferences take place when, during a RF transmis-

sion, an amount of power is transmitted to those channels which are adjacent to 

the assigned channel in the transmission (e.g. intermodulation products). Differ-

ently, co-channel interferences are produced when two transmitters use the same 

channel at the same time, therefore creating an interference (e.g. cross-talk).  

 

 

 

 

 

 

 

 

 

 

Table 1. Interference level classification. 

 

Interferences 

 

Artificially Produced 

 

Channel-based 

Intentional Unintentional Space 

Weather 

Multipaths Other 

Jamming Spoofing Adjacent  

Channel 

Co-channel 
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The other interference category is the one based on natural interferences over 

the wireless channels.  Multipath-type interference can be classified into this cat-

egory and it takes place when one or more paths are received from the same 

antenna, e.g, due to reflections, refractions or scattering on obstacles. As Space 

weather type, two ionospheric effects should be considered: fast and large iono-

spheric changes and ionospheric scintillation. The first one can cause changes 

in telemetry and they occur because large changes in the ionosphere occur near 

the geomagnetic equator. The second, in contrast, occurs in the equatorial re-

gions and may cause momentary loss of the signal emitted by one or several 

satellites. Finally, as Other type of channel-based interference, we can include 

those produced by Doppler shifts, fading, and shadowing effects.  

 
   Having briefly explained the different types of interference, it is important to 

point out that this thesis focus on identifying intentional interference such as those 

mentioned before, namely Jamming and Spoofing.  

The first one, called Jamming is typically a synonym for intentional (narrowband) 

interference, which is the deliberate radiation of the electromagnetic signals at 

GNSS frequencies. The aim is to overpower the extremely weak GNSS signals 

so that they cannot be acquired and tracked anymore by the GNSS receiver. 

There are two main types of jamming: military jammers that are used in part of 

the military strategies, disabling civil GNSS, and Privacy Protection Devices 

(PPD)s. PPDs are a type of device, with very small dimensions and despite being 

banned in most countries, they are easily available via online for only a few euros.  

 

The second intentional interference type, the Spoofing type of interference, is 

a more complex attack compared to Jamming. It consists in the transmission of 

a fake GNSS-like signal with the intention of fooling a GNSS receiver into provid-

ing false position, velocity, and time. In the most common examples, an attacker 

would position a broadcast antenna and point it at the target’s GNSS receiver 

antenna in order to interfere with signals of proximate buildings, ships, or aircraft. 

To execute these attacks, attackers take advantage of the fact that the structure 

of civil GNSS signals is publicly known at the processing level, and therefore it 

can be replicated by a (cheap) GNSS receiver. GNSS spoofing can be accom-

plished with cheap and portable software-defined radio running open source soft-

ware or with more powerful and expensive transmitters for wide-scale attacks. 

The awareness about this type of intentional interference dates among 2001 and 

2003, and recently, a research group from United states called C4ADS published 

a report detailing nearly 10,000 instances in which Russia interfered with satellite 

navigation of more than 1,300 civilian vessels in ten different locations around 

Russia, Ukraine, and Syria. Other organizations have also reported widespread 

examples of interference with GNSS signals [5]. 
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4. RADIO FREQUENCY FINGERPRINTING 

 

RF (Radio frequency) fingerprinting is a process that identifies the device from 

which a radio transmission was originated by looking at the properties or features 

of its transmission [6]. Like people, each radio transmitter has unique fingerprints 

called RF fingerprints, which are based on its location and configuration. It can 

be said that the features that can be found on each transmitter are different from 

each other due to differences in hardware between different transmitters. The 

main components that are part of the structure of the radio signal transmitter and 

therefore cause different fingerprints between devices are e.g. filters, amplifiers, 

and oscillators. These differences on the electronic components are randomly 

generated and usually due to imperfections in the material of the component itself 

[7]. These imperfections cause a number of signal effects such as I/Q imbalance, 

phase imbalance, frequency error or signal strength, which combined form the 

fingerprint of the transmitter. 

 

This RF fingerprinting technique is very interesting for authentication of GNSS 

signals as it is based on the physical layer, which is very difficult or impossible to 

replicate. It can provide a superior performance than traditional higher-layer en-

cryption solutions [8,9]. One of the problems of using RF fingerprinting localiza-

tion is the creation and correct maintenance of a fingerprinting database. This 

process is slow and complex because it requires a large number of measures of 

the same device to obtain an adequate statistical value. That is why for the study 

of the fingerprinting methods of this thesis and its consequent development of a 

product classifier detector, a large number of signals from different satellites of 

different frequency bands and different constellations GNSS has been recorded. 

Once this is done, the features that the classifier will use for the training are ex-

tracted. Classification algorithms such as SVM (Support Vector Machine) [10] or 

CNN (Convolutional neural network) [11]  are used for this type of classification 

techniques, where after training with a large number of extracted features, these 

trained models are able to predict if a certain feature corresponds to a specific 

type of GNSS signal. 



15 

5. FINGERPRINTING EXTRACTION METHODS 

 

Different features can be obtained from RF fingerprinting such as I/Q imbal-

ance, phase imbalance or other hardware-related features. Such features can be 

extracted by using various transforms of the received I/Q signal. The transforms 

may reveal the behavior of the data in time and frequency, which may allow one 

to obtain many useful features for machine learning classification methods. 

Wavelet transform also allows representations of functions in which are retained 

both the scale as space information. Many functions can be approximated with 

great accuracy using only a small number of wavelet coefficients. In the case of 

thesis, this type of transformation serves to decompose the signal and identify 

the features for its later extraction. There are different types of transforms suitable 

for this case, such as the Continuous Wavelet Transform (CWT) and Discrete 

Wavelet Transforms (DWT) [12].  DWT will be used as based on some prelimi-

nary studies they proved to be adequate for the specific case of GNSS RF finger-

printing. 

 

The process would be as follows in Figure 3. First the signals are collected for 

study, converted into a digital signal through the Analog-to-Digital (ADC) block 

and the most important characteristics are extracted through a feature extractor 

transform. Once these characteristics are extracted, two different processes are 

distinguished. The first would be the construction of a training database where 

the fingerprints reside (i.e., ‘fingerprint creator’ block), and the second is the eval-

uation of the new fingerprints to check if they match those from the database (i.e., 

‘fingerprint matcher’ block). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Radio fingerprinting process [13]. 
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In order to classify extracted features, there are different classification algo-

rithms, for example Support Vector Machine (SVM) or Convolutional Neural Net-

work (CNN). In SVM, there are two stages: training and classification. Classifica-

tion is done by first drawing hyperplanes as it can be seen in Figure 4 using train-

ing data. The stablished hyper-planes will split the different classes to classify. 

The hyper-plane with the maximum distance between Support Vectors, which are 

the closest data points to the hyper-plane, is the hyper-plane used to classify, 

called optimal hyperplane. It can be observed that a margin is now defined as 

being the distance between hyperplanes and the closest support vector. The goal 

is to obtain the largest margin distance, therefore minimizing the possibility of 

error. In the classification stage, the characteristics of the new data will be then 

used to predict the group to which the new input belongs. 

 

 
 

 

 

    Classification is simple when dealing with two-dimensional cases, but the al-

gorithm must deal with more difficult cases according to real cases. These cases 

can be: Dealing with more than two predictor variables, non-linear separation 

curves, chaos where data sets cannot be completely separated, or classifications 

into more than two categories. For this type of cases, the SVM uses the Kernel 

functions, mapping the input space to a new space of characteristics of greater 

dimensionality. Most used types of Kernel Functions are enumerated below: 

 

 Polynomial. Usually used in image processing. Equation is: 

 k(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖 ∙ 𝑥𝑗)𝑛 

 

 Gaussian. It is a general-purpose kernel; used when there is no prior 

knowledge about the data. Equation is: 

k(𝑥𝑖 , 𝑥𝑗) = exp(−𝛾||𝑥𝑖 ∙ 𝑥𝑗||𝑛) 

Figure 4. SVM binary classification [14]. 
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 Sigmoid. It can be use it as the proxy for neural networks. Equation is: 

k(𝑥,y) = 𝑡𝑎𝑛ℎ(𝛼𝑥𝑇𝑦 + 𝑐) 

 

 

    Kernel types are different when making the hyperplane decision boundary be-

tween the classes. Normally, linear and polynomial kernels are faster in decision 

making but provide less accuracy than Gaussian kernels. For that reason and 

given that Gaussian kernel is the most common type used with SVM classifiers, 

this type has been chosen for the analysis of the work. 

 

     In section 7, there will be a study of the performance of a learning algorithm 

such as SVM using the I/Q samples that were recorded in the measurements-

based setup. A more detailed explanation of the process that is going to be car-

ried out is; once I/Q samples are obtained, methods to obtain signal transforms 

will be executed by using the MATLAB program in order to set up a database of 

the RF fingerprinting features. After that, with the help of the learning algorithms 

and selecting the most suitable type of classification of SVM, unlabeled plots from 

the transforms will be compared to the database and we will be able to get final 

accuracy results. In the next chapter, the setup used to obtain the measurements 

will be explained in detail. 
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6. MEASUREMENTS-BASED SETUP 

 

 

We can split the RF fingerprinting implementation into four steps: Signal col-

lection, features extraction, set-up database and training/classification. In order 

to accomplish these steps, a setup has been designed, which is shown in Figure 

5. The process would be as follows: the signals from the antennas and the Spec-

tracom are collected obtaining a *.bin file that later will be used to extract the 

characteristics of the signal. Then, after extracting those features, a percentage 

of the extracted characteristics will be used for the training of the machine learn-

ing algorithm and the rest will be used for the classification test to check the ac-

curacy of this algorithm. 

 

 

 

 

 

 

 

 

 

    For the signal collection phase, a measurement setup has been designed. First 

device is a GNSS signal generator called Spectracom, in particular the model 

Spectracom GSG-6 Series.  The Spectracom model used for the thesis is able to 

collect the signal from any of the following constellations: GPS, GLONASS, Gal-

ileo, BeiDou, QZSS and IRNSS. We have from 1 to 64 channels available where 

one can use any of the GNSS frequency bands L1, L2, L2C, L5, E1, E5, B1 or 

B2. The output signal power can be selected from -65 to -160 dBm. 

 

Figure 5. Block diagram showing processing steps 
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    The Spectracom generator has to connect its output signal to a Universal Soft-

ware Radio Peripheral (USRP) device which will be also connected to the com-

puter. In that way it will be able to record the signal from Spectracom. USRP is a 

type of software-defined radio (SDR) which can transmit and receive RF signals 

in several bands. USRPs are connected to a host computer through a high-speed 

link. A specific software can be used to control the USRP hardware to transmit/re-

ceive data. These devices are quite accessible for everyone and can be used 

from teaching to advanced wireless research, including dynamic spectrum ac-

cess, whitespace, and PHY- and MAC-layer research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. GSG-6 Series Spectracom used in the measurements. 

Figure 7. USRP model 2954R used for recording the signal. 
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Figure 8. Tallysman model antenna. 

Figure 9. Novetell model antenna. 

Just as the Spectracom signal is recorded, the same process will be done to 

capture signal from the GNSS antennas. The antennas are located on the roof of 

one of the buildings at Tampere University. There are two different antennas. The 

first antenna model is a Tallysman TW3872 and the second antenna model is a 

Novatel GPS-703-GGG. Both of them provides triple band functionalities. It 

means that both antennas are able to record any of the following constella-

tions/frequency bands: GPS L1/L2/L5, GLONASS G1/G2/G3, BeiDou B1/B2, 

Galileo E1/E5a+b and L-band corrections services. The two antenna models 

used for the study can be observed in Figure 8 and Figure 9. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Using a Labview interface, as it is shown in Figure 10, different parameters of 

the recording can be chosen, such as, channels of the USRP that we want to 

record, IQ rate, carrier frequency, or gain. This Labview interface is used to ac-

quire and record the signal received by the USRP on the selected frequency. In 

Figure 11 it can be seen the frequency spectrum of channel 0 and channel 1 that 

it is being recorded. It can be observed how in the channel 0 the spectrum is the 

typical GNSS spectrum shape because it comes from the Spectracom, in which 

we have not included any noise. On the contrary, the signal that is observed from 

channel 1 has much more noise. This is due to the fact that the received power 

is really low since it comes from the satellites, which are tens of thousands km 

away. This is the main reason why practically only noise is seen. 
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Figure 10. Labview interface. 

Figure 11. Frequency spectrum of channel 0 and 1 of the Labview interface. 
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In order to train and evaluate the classifier, a large number of independent 

recordings were needed to be realized in order to determine statistical patterns 

of each signal. Moreover, by performing them at different times, we will be able 

to obtain more reliable statistics of them. Two scenarios were used for the an-

tenna and over a hundred recordings at different times and days were collected 

from each one. Fifty-eight scenarios were used for the Spectracom recordings as 

it can be observed in Table 2. Despite the large number of data collected, only 

scenarios from GPS L1 and GALILEO E1 were finally used in the data analysis 

due to time limitations of the thesis analysis. 

 

 

 

 

 

 

The parameters used in the USRP during the recordings were: 

 Sampling frequency: 50MSamples/s 

 Quantization bits: 16 bits 

 Time interval for data collected per each scenario: 20 seconds 

 Intermediate Frequency (IF): 0 Hz 

 Antenna Gain: 30dBm 

 

Table 2. List of recorded scenarios, each having been repeated 10 times. 

 

Device Scenario Constellation Number of Satellites 

Antenna Tallysman A1 GPS L1, GALI-

LEO E1, BeiDou B1 

Based on the time of recording 

A3 GPS L5, GALI-

LEO E5, BeiDou B2 

Based on the time of recording 

Antenna Novatell A2 GPS L1, GALI-

LEO E1, BeiDou B1 

Based on the time of recording 

A4 GPS L5, GALI-

LEO E5, BeiDou B2 

Based on the time of recording 

 

 

 

Spectracom 

S1-S9 GPS L1 1 in scenario S1 to S7, 5 in S8, 10 in S9 

S10-S18 GPS L5 1 in scenario S10 to S16, 5 in S17, 10 in S18 

S19-S27 GALILEO E1 1 in scenario S19 to S25, 5 in S26, 10 in S27 

S28-S36 GALILEO E5 1 in scenario S28 to S34, 5 in S35, 10 in S36 

S37-S45 GLONASS G1 1 in scenario S37 to S43, 5 in S44, 10 in S45 

S46-S54 BeiDou B1 1 in scenario S46 to S54, 5 in S55, 10 in S56 

S55-S56 GPS L1, GALI-

LEO E1, BeiDou B1 

1 in scenario S55, 5 in S56 

S57-S58 GPS L1, GALI-

LEO E1, BeiDou B1, 

GLONASS G1 

1 in scenario S57, 5 in S58 
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The parameters used in the Spectracom during the GNSS signal generation: 

 Transmit Power: -70dBm 

 CN0: No-Noise (i.e., infinite CN0) 

 Movement: Static receiver 
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7. MEASUREMENT ANALYSIS 

After recording a comprehensive number of signals, an analysis was per-

formed. Before using the recorded signals, the recordings were checked to 

verify if they included the satellites that we were expecting. For that pur-

pose, we use a MATLAB-based GNSS Software Defined Receiver (SDR). 

The receiver is able to acquire and track the GNSS signals in order to de-

termine which satellites are present and track them in order to provide a 

Position Velocity and Time (PVT) solution. During the acquisition, in order 

to determine if a certain satellite was present or not a certain threshold was 

set (in our case to 1.5).  As illustrated in Figure 12 and Figure 13, only when 

the acquired metric is higher than this threshold, the Space Vehicle (SV) is 

considered acquired (it is present in the signal).  

 

 

 

 
 

Figure 12. PRN number of acquired satellites from GPS constellation.   
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After this process we have to make sure that the acquisition is correct, we use a 

website called GNSSplanning [15], provided by Trimble, that tells us the visible 

satellites from every constellation in any day or time and. Then we finally compare 

the satellites that the MATLAB receiver found and the ones that are supposed to 

be visible. This process was only undertaken for the signals collected from the 

antennas, as they are real signals from satellites and it is important to verify the 

satellites included in it. In the case of the signals collected by the Spectracom, it 

is not strictly necessary since it is assumed to be error free, but it would also be 

interesting since the Spectracom can replicate the signal at any time. 

 

 

 

Figure 13. Acquisition plot results from GNSS Software receiver 

Figure 14. Visible satellites on November 26 at 00:00 located in Tampere using 
GNSSplanning service.  
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After being sure that the recorded signals are correct, the extraction of finger-

printing features procedure is conducted. For this purpose, we used a MATLAB 

script. The main procedure is that it reads the binary files in which the recordings 

were saved. Then it reads the number of milliseconds that we choose from it and 

we get the IQ (phase and quadrature components, which corresponds to real and 

complex part of the recorded signal) data from each millisecond. After that, we 

performed the Discrete Wavelet Transform for each 1 ms IQ data and we plot the 

transform (the imaginary versus the real part of the DWT, see an example in 

Figure 16). We saved the images in two different directories, one containing im-

ages that will be used during the training of the Machine Learning (ML) algorithm 

and another containing the images that will be used during testing. We set 80% 

of the images to be saved in the training folder and 20% to the test folder. So as 

we decided to read 15000 milliseconds, 12000 will go for training and the remain-

ing 3000 will go for testing the SVM algorithm.  

 

 

 

 

                                                

 

 

 

 

 

Figure 15. Block diagram showing analysis steps. 

Figure 16. Image of discrete wavelet transform of one millisecond from GPS L1 

with one satellite recording. 
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The classification was performed with GPS L1 signal when only one and ten 

satellites were present and with Galileo E1 as well with 1 satellite and with 10. 

These signals will be directly compared to the ones from the Novatel antenna at 

the same band frequency (1.57542 GHz). The purpose is to use SVM algorithm 

that will be executed in MATLAB and to introduce the training samples first so the 

algorithm classifies between signals from the Spectracom and from the antennas. 

Then the algorithm uses unlabeled test samples to classify them, after that we 

evaluate how many of the testing samples were right classified and which weren’t.  

 

The SVM algorithm implementation works as follows:  

 

1. Path definition of the testing and training datasets. 

2. As SVM is a supervised method, it must be informed manually, that an 

image from a specific type belongs to that category. Then, the bag of 

features is used to extract features from the image in order to have in-

formation to classify. 

3. These features are used to train the SVM model, which will learn to 

associate the different features extracted to the specific label type. 

4. After the model is trained, testing data is used to evaluate the classifier 

accuracy performance. 

5. Finally, it represents a confusion matrix showing the results and accu-

racy of the classifier for the used data. Being the y axis, the different 

categories in the analysis, and x axis, the number of times that the al-

gorithm classified test data in any of the available categories. I they 

match it indicates that the accuracy is good. 

 

 

 

 

Figure 17. Image of discrete wavelet transform from GalileoE1 with ten satel-
lites on the left and discrete wavelet transform from antenna on the right. Show-
ing the good performance of the SVM, despite being a complicated task when 
evaluating a signal with 10 satellites, due to its similarity with the one coming 

from the antenna. 
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   Finally, a matrix is created with the number of times the algorithm has placed a 

type of category in the available categories and thus determine the accuracy of 

each one and the total of the evaluation if it has placed it correctly. Here we have 

final accuracy values from the SVM algorithm for different scenarios: 

 

 
 

 

 

Figure 18. Image of discrete wavelet transform from GalileoE1 with one satel-
lite. 

Figure 19. Accuracy result between GPS L1 and Antenna recordings. 
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Figure 20. Accuracy result between GPS L1 with 10 satellites and Antenna re-

cordings. 

Figure 21. Accuracy result between Galileo E1 with 10 satellites and Antenna 
recordings. 
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The results obtained are very accurate when classifying all scenarios. This 

high accuracy is to a certain degree due to the fact that signals received from 

Spectracom are being captured without noise, which makes them recognisable 

to extract the features in comparation to those coming from the antennas. Bino-

mial training is quicker compared to working with several categories, since the 

SVM algorithm uses less information for training and testing. This also usually 

results in a higher accuracy of the algorithm. 

Figure 22. Five classes comparison. 
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8. CONCLUSIONS 

After obtaining the results using different scenarios, it can be highlighted that 

the accuracy has reached more than 99% in all cases. This shows that SVM was 

a good choice for the classification of signal features from a real antenna and 

signals generated by a GNSS signal generator. It is also important to mention 

that the signal coming from the Spectracom does not include noise or channel 

effects, that is why it is easier to obtain better the features when performing the 

wavelet transform, and therefore, to obtain a better result by the SVM algorithm 

than what one would expect in the presence of noises and multipath. This does 

not happen with the signals coming from the antenna, which includes noise. An-

other conclusion that we can emphasize is that when it is intended to classify a 

GNSS signal generated by the Spectracom configured with more than one satel-

lite, the percentage of accuracy is lower compared to when it has only one satel-

lite. This happens because the image of the spectrum generated by the discrete 

transformation of the signal with a satellite is easier to distinguish with the first 

glance, than the one generated with more satellites, which is more similar to the 

one generated by the antenna. Another highlight of the study is the image collec-

tion process, which takes a considerably high time, approximately 5 hours for a 

binary study of 15000 samples of each category. It is fair to mention that this time 

used is only necessary for training and testing the algorithm, once this is done, 

the images can be classified online as soon as raw data is received. On the other 

hand, execution time of the SVM algorithm in the MATLAB program is consider-

ably shorter, approximately 1.5 hours for a binary study. One solution to reduce 

this time is to change parameters such as the window size or the number of fea-

tures that can be extracted per image. However, it could decrease algorithm’s 

performance. 

 

The main conclusions for the thesis could be summarized as: 

 SVM classification algorithm demonstrated to be a very effective model 

for the extracted radio fingerprinting features for identifying GNSS trans-

mitters.  

 When a binary classification is made, the SVM algorithm obtains prac-

tically perfect accuracy data, but when it comes to a classification of 

several categories, the accuracy is slightly reduced, although still rather 

high. 

 

 The accuracy of the classifier is nearly perfect when comparing a signal 

generated with the Spectracom configured with a single satellite with 
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the signal from the antenna. But this accuracy is reduced when the sig-

nal is configured with more satellites. In our case the comparison was 

made with a signal containing 10 satellites, both for GPS and Galileo. 

 

Part of our measured data has been uploaded on Zenodo open-access repos-

itory under CC BY 4.0 license [16]. 
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9. FUTURE WORK 

Once the development and initial validation of the classifier is finished, and 

verified its performance using RF fingerprinting feature extraction methods suc-

ceeded, there are still several aspects that must be worked on in the future. The 

first would be to check the precision data with more GNSS systems, such as 

GLONASS and Beidou, which were also recorded but, due to lack of time, the 

analysis could only be performed on GPS L1 and E1. Despite obtaining satisfac-

tory results with the GNSS GPS and Galileo systems, other systems could cause 

more difficulties in classifying them. Especially considering that different GNSS 

constellations transmit at the same frequency and at the same time. Another fu-

ture work would be to use signals coming from more combinations of GNSS sys-

tems with other configurations, for example with different number of satellites and 

also different satellites in each configuration. By doing this we would obtain more 

reliable and comprehensive results. In addition to these additional tests, it would 

also be helpful to use a larger number of samples for each scenario. In these 

results 15000 ms were used; a future objective would be to use much more data. 

The problem of increasing the amount of data used for training is that this will 

increase also the time needed for the generating the training images and to train 

the SVM algorithm model. This increment of time could also be a future work for 

the project, trying to compensate it by using different parameters such as lower 

resolution images, reduced window size for analyzing the image features or re-

duce the maximum number of features to extract.  

 

Once all this type of new testing of the classifier product has been done using 

the recorded scenarios, we would proceed to the most important future work, this 

would be to use real Spoofing signals generated to fool the GNSS receiver. Test-

ing the product with this type of signal would verify the true potential of the clas-

sifying algorithm. Finally, once the necessary checks are made and the verifica-

tion that the product is optimal for this type of signals, a last future job would be 

to select a minimum training time for the execution of the SVM algorithm where 

we would obtain reasonable precision data, with the saving of processing time 

that this would imply. 
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