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(Disturbance-Disturbance Relation in Quantum Mechanics)

Tesis presentada al

Posgrado en F́ısica Aplicada

como requisito parcial para la obtención del grado de

Maestro en Ciencias

por
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Benemérita Universidad Autónoma de Puebla

Facultad de Ciencias F́ısico Matemáticas
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Summary

In this thesis we propose a new Uncertainty Relation, that we call Entropic Uncertainty

Relation for Disturbance-Disturbance, which relates the uncertainty associated with a pro-

perty of a system with the uncertainty of other property of the same system. This relation

talks about the impossibility to obtain a completely accurate probability distribution of an

observable when it is measured and the fact that measuring a system yields a disturbance

that produces a collapse of the state of the system, therefore changing the probability

distribution and the statistics of the other observables (properties) of the system.

To make understandable this topic, in the Introduction of this work we exhibit many

important ideas of Quantum Mechanics that give the background needed to realize our

work, like the postulates of Quantum Mechanics and the idea of uncertainty. In Chapter

1 we show the difference between the Uncertainty Raltions and the Uncertainty Principles

and we present a summary of the Entropic and non-Entropic Relations associated to each

of the Uncertainty Principles. Also, in order to show the importance of the postulates, we

use them to analyze the famous Stern-Gerlach experiment. In Chapter 2 we introduce the

development of our work, in which we establish the adequate theoretical framework by

means of the postulates of quantum mechanics and what is know as a probability metric

in order to measure the uncertainty, obtaining as our final product the new formulation of

an Uncertainty Relation, the Entropic Uncertainty Relation for Disturbance-Disturbance.

The obtained relation is discussed and it is proposed an statement associated to it. Finally,

the general conclusions of this work are presented in Chapter 3.
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Introduction

Physics is a science that has had an extraordinary development through the centuries

and decades. The knowledge about nature has increased thanks to the investigation

and experimentation in Particle, Statistical, Optical, and Quantum Physics. All this

kwnowledge needs to convey to new generations of physicists in an acceptable form, thus,

the importance of teaching Physics should be a main topic into our academic routine[2].

In particular, Quantum Mechanics is somewhat rough for theaching. Many bad habits

in teaching have affected the general understanding of this area and has effects such as

a general misunderstanding of many main topics like the Uncertainty Principle and the

measurement in Quantum Mechanics.

A very important example of these misunderstandings is the Stern-Gerlach experiment

(SGE). In many textbooks the SGE is studied in a semi- classical manner[3–5]. This gives

a wrong idea about what is the meaning of the SGE and the way that we understand it.

In a recent work [1] we studied the SGE by means of a complete quantum analysis. In

particular, we found that the SGE is a creator of entangled states with an easy treatment

(simply employing the general solution of the Schrödinger equation), a result that is not

unknown to the Quantum Physics community, but which is not mentioned on usually

textbooks.

In particular, we want to focus on one of the most controversial topics on Quantum Me-

chanics. Even nowadays, the Uncertainty Principle is the center of many works around the

globe, due to its theoretical and experimental importance, from the stability of matter[6]

to electromagnetic field modes enclosed in a cavity[7]. The uncertainty principle is a fun-

damental part of Quantum Mechanics, which has had a great development in the last

years. The understanding of the nature of quantum systems shown in the recent works

on the area has implied an exhaustive revision of the fundamentals of the theory in gene-

ral, and, in particular, on the uncertainty principle[8–11]. To understand this changes we

review the basic axioms or postules of Quantum Mechanics.
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1 Postulates of Quantum Mechanics

Quantum Mechanics has a set of postulates, which are a base for the theory and establish

a logical frame in order to enlighten the theory. In the literarture there are a lot of

presentations of these postulates [5, 12–17], so we show here a basic set of four postulates

that we consider suitable for the following chapters.

Postulate 1. Any quantum system is associated with a Hilbert space, and the state of

the system is represented by a vector on that Hilbert space.

Postulate 2. The dynamic evolution of a quantum system is described by an unitary

operator.

Postulate 3. The measurable physical variables are represented by self-adjoint operators.

The probability of finding in a measurement that the state of the system is

an eigenvector of the operator Â, |ak〉, is |〈ψ|ak〉|2, where |ψ〉 is the initial

state of the system.

Postulate 4. The measurement of observable Â collapses the state of the system to one

of the eigenvectors of Â.

With this four main postulates one can begin to study any quantum system. The adequate

treatment of a particular quantum system depends on the intrinsic characteristics of that

system.

An example of the use of the postulates in the treatment of a quantum

system: the SGE

The SGE was made by Stern and Gerlach in 1922 [18]. This experiment was proposed to

show the space quantization of the Debye-Somerfeld old quantum theory, and curiously,

three years later it was used to prove the existence of spin [19, 20].

The SGE consists on an oven from which a beam of silver atoms leave. Next, with the

use of a slit or a pinhole, the direction of the atoms is selected, and then, the resultant

beam passes through an inhomogeneus magnetic field. Finally, a screen is placed after the

magnetic field to see the result of the interaction between the atoms and the magnetic

field. A scheme is shown in Figure 1.
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Figure 1: Scheme of the Stern Gerlach Experiment.

In order to describe the initial state of the atoms that leave the oven, we associate the

state of spin of these (Postulate 1) whith a linear combination of the kets of spin up, |z1〉,
and down, |z2〉, in z-direction:

α|z1〉+ β|z2〉. (1)

Moreover, we can consider the position of the beam of atoms and represent it by a

Gaussian wave packet, and then, put a general state of the system as

|ψ(0)〉 = ψ0 (α|z1〉+ β|z2〉) , (2)

where ψ0 is given by

ψ0 =
1

(2πσ20)3/4
exp

(
− r2

4σ20
+ ik · r

)
(3)

with σ0 the width of the wave packet, r the position of the particle and k the wave vector.

Now, to know the behavior of the system over time, we recall the Hamiltonian of the

system,

Ĥ =
−~2

2m
∇2 + µc(σ ·B), (4)

3
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where µc = g e~
4me

, g is the gyromagnetic ratio, σ is the Pauli spin matrices vector and B

is the inhomogeneus magnetic field with the form B = −bx̂ı + (B0 + bz)k̂.

Next, to obtain the dynamics of the system we apply simply the unitary evolution

operator (Postulate 2) to the initial state [21]

|ψ(t)〉 = Û [ψ0 (α|z1〉+ β|z2〉)]

= exp

(
−it
~
Ĥ

)
[ψ0 (α|z1〉+ β|z2〉)] . (5)

On this way we obtain the state of the system at time t [1]

|ψ(t)〉 = exp

[(
−it
~

)3 ~2µ2
cb

2

6m

]
[σ0/(2π)1/2]3/2

[
σ2
0 +

i~t
2m

]−3/2

exp
(
−σ2

0k
2
y

)
× exp

(
−1

4[σ2
0 + i~/2m]

(−i4yσ2
0ky)

)
exp

(
−1

4[σ2
0 + i~/2m]

(x2 + y2 − 4σ4
0k

2
y)

)
×

{
α exp

(
−it
~

(B0 + bz)

)
exp

[
−1

4[σ2
0 + i~/2m]

(
z − t2µcb

2m

)2
]
|z1〉

+ β exp

(
it

~
(B0 + bz)

)
exp

[
−1

4[σ2
0 + i~/2m]

(
z +

t2µcb

2m

)2
]
|z2〉

}
. (6)

Now, suppose we want to obtain the probability to find an electron of the beam in

spin up state, |z1〉, at time t. By means of Postulate 3, we have

|〈z1|ψ(t)〉|2 = |α|2[σ0/(2π)1/2]3

[
σ4
0 +

(
~t
2m

)2
]−3/2

exp(−2σ2
0k

2
y) exp

 ~tyσ0ky
m
(
σ4
0 +

( ~t
2m

)2)


× exp

{
−2σ2

0

4[σ4
0 +

( ~t
2m

)2
]

[
x2 + y2 − 4σ4

0k
2
y +

(
z − t2µcb

2m

)2
]}

. (7)

In this case the probability depends on the time, therefore, when one puts a screen after

the magnet of the SGE (see Figure 1), one collapses the state of the system, represented

by Equation 6, to an eigenstate of the position of the system (Postulate 4), and we can

see two areas of concentration of silver atoms. See Figure 2 below.

Thus, we see clearly that it is possible to study any particular quantum system with

the use of the Postulates of Quantum Mechanics. Once we have introduced ourselves in

the Quantum Mechanic context we can talk about the Uncertainty Principle in Quantum

Mechanics.
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2 Uncertainty

The Uncertainty Principle in Quantum Mechanics was proposed by Werner Heisenberg in

1927 [22]. The principal implication of this proposal was that it exists an upper bound for

the accuracy with which we can identify the state of a quantum system [8]. This caused

theorethical, experimental and philosophical implications [23] that changed the way in

which physicists think about Quantum Mechanics and the fact that we can not predict

with certainty the result of experiments in the quantum world.

Thus, the notion of disturbance in quantum mechanics is introduced naturally due to

the interaction between the observer and the system. The first work that fully characterizes

disturbance in Quantum Mechanics was made by Ozawa in 2003, [11]. In this work Ozawa

proposed a new Uncertainty Principle which talks about the noise and disturbance in a

measurement. In particular the disturbance in a system is related to a measure made by

an apparatus.

Due to the closeness between Quantum Mechanics and Information Theory in the

second half of the 20th century, new measures of uncertainty were needed. The Shannon

Entropy was the first natural measure of uncertainty [24–26],

H(P ) = −
N∑
i=1

pi ln pi. (8)

In equation (8), pi is the probability associated with a particular probability distribution,

where
∑N

i=1 pi = 1. It was natural that different uncertainty relations related with the

Shannon Entropy appeared through the years[8, 27–30]. But Shannon Entropy is not

the only measure of uncertainty related with entropy, so a new research branch called

Entropic Uncertainty Relations was formed[25, 30–34]. In 2014, for the first time, an

article that combines the concepts of entropy and disturbance came to light [35]. This

paper proposes a Quantum Entropic Uncertanty Relation for noise and disturbance and

it uses the conditional entropy[25, 26, 36] as a measure of that uncertainty. This thesis is

also a proposal of a new Entropic Uncertainty Relation, but with other type of measure

of uncertainty and a different physical meaning.

To this point we have discussed the importance of the postulates of Quantum Me-

chanics and the notion of uncertainty. By doing so, we tried to establish a solid base in

order for us to be able to study a quantum system. We have proposed a set of postulates,

Postulates 1, 2, 3 and 4, which is composed of necessary statements to describe completely

and logically a quantum system. In addition, we show here an example of the application
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Figure 2: Gerlach’s postcard to Niels Bohr, where we can see the state of the beam at a given
time [18].

of this set of postulates to an important topic in Quantum Mechanics, the Stern-Gerlach

experiment. On the other hand, the uncertainty plays an important role in the formalism

of Quantum Mechanics due to the probabilistic nature of the theory, and never should be

diminished. In this introduction we talked briefly about the concept of uncertainty and

uncertainty measures with the intention to give context to the work to be done in this

thesis.
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Chapter 1

Uncertainty Principles and
Uncertainty Relations

First, we can talk about three different Uncertainty Principles [37], each one with its own

Uncertainty Relation. It is clear that we can not associate one Uncertainty Relation with

two or more sentences (Uncertainty Principles) due to the fact that sentences are not

equivalent. We should note that it is impossible to prove that the sentences are equivalent

(see below). To this day we can find in the literature three well-established Uncertainty

Principles with their own Uncertainty Relation.

The first one reads: It is impossible to prepare states in which position and momentum

are simultaneously arbitrarily well localized [37]. The Uncertainty Relation associated with

this sentence is the Robertson-Kennard Uncertainty Relation [27, 38]

σÂ(ψ)σB̂(ψ) ≥ |〈ψ|[Â, B̂]|ψ〉|
2

, (1.1)

where |ψ〉 is the initial state of the quantum system, Â and B̂ two observables of the

system, σÂ(ψ) and σB̂(ψ) the standar deviations of Â and B̂, and [Â, B̂] = ÂB̂− B̂Â, the

commutator between the two observables. It is important to note that this Uncertainty

Relation is the one appearing in most of the textbooks [3, 6, 13, 17, 39], giving an incom-

plete picture of the Quantum Mechanics Uncertainty Principles and Relations [27]. The

Heisenberg’s Uncertainty Relation [22, 27] is a particular case of this Uncertainty Relation

where Â = x and B̂ = p are the canonical position and momentum respectively,

σx(ψ)σp(ψ) ≥ ~/2. (1.2)

Equation (1.2) has an irreducible lower bound, in this sense, is more correct than (1.1),

7
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RELATIONS

because the lower bound does not depend on the state of the system, something that in

Quatum Mechanics is more correct due to the constant evolution of states into others [8].

The second well-known Uncertatiny Principle says that it is impossible to know with

complete certainty the value of position and momentum of a system that are simulta-

neously measured [37]. The Uncertainty Relation for this case only exists for the case of

the canonical conjugate observables x̂ and p̂ [27]

σx̂(ψ)σp̂(ψ) ≥ 1. (1.3)

The third Uncertainty Principle establishes that it is impossible to measure one pro-

perty of a system without disturbing other property of the same system [37]. The most

accepted Uncertainty Relation associated to this principle is the Uncertainty Relation of

noise and disturbance. This was demonstrated by Ozawa in 2003 [11] and says that it is

impossible to know with total certainty the value of an observable Â due to the noise of the

measurement device and it is also impossible to measure this property without disturbing

the other property of the system, B̂. The Uncertainty Relation of Noise-Disturbance is

expressed as

εÂ(ψ)ηB̂(ψ) + εÂ(ψ)σB̂(ψ) + σÂ(ψ)ηB̂(ψ) ≥ |〈ψ|[Â, B̂]|ψ〉|
2

. (1.4)

The sigmas are the standar deviations of Â and B̂, εÂ(ψ) is the noise and ηB̂(ψ) the

disturbance. For more details see [11].

The logic of mathematical propositions rules out the possibility to relate many propo-

sitions with only a mathematical relation, which in general provide us with a proof that

these Uncertainty Principles are not equivalent and neither are its uncertainty relations.

Furthermore, from this point of view we can say that it is relatively easy to see the differ-

ence between the three Uncertainty Principles.

Similarly, we can talk about three different Entropic Uncertainty Principles and their

Entropic Uncertainty Relations. Here we present a summary.

The first Uncertanty Principle talks about preparation of states, and says that it is

impossible to prepare with total accuracy two quantum states. The most general Uncer-

tainty Relation associated with this principle is [40]

SÂ(ψ) + SB̂(ψ) ≥ −2 ln c, (1.5)

where S(ψ) = −
∑N

i |〈ψ|aj〉|2 ln |〈ψ|aj〉|2, and we have a similar expression for B̂, and

8
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c = maxj,k |〈aj |bk〉|, is the maximum overlap between the observables Â and B̂.

The second Entropic Uncertainty Principle says that it is impossible to know with

total certainty the value of two properties of a system if we make a simultaneous measure

on it. In this case, to the best of our knowledge, there is not an Entropic Uncertainty

Relation associated with this principle.

The third Entropic Uncertainty Relation is the Entropic Noise-Disturbance Uncer-

tainty Relation. This relation was proposed in 2014 [35] and relates the noise and the dis-

turbance with relative entropies. The Entropic Uncertainty Principle of Noise-Disturbance

says that it is impossible to measure a property of a quantum system without obtaining

a result with noise nor without disturbing the system. The general Entropic Uncertainty

Relation of Noise-Disturbance is

N(M.X) +D(M.Z) ≥ − log2 c. (1.6)

Here X and Z are two observables of the system and M is the measuring apparatus, and

we have

c = max
x,z
‖〈ϕx|ψz〉|2 (1.7)

the maximum overlap between the sets of eigenstates of observables X, {|ϕx〉}, and Z,

{|ψz〉}.
In equation (1.6) N(M.X) is associated with the noise and D(M.Z) with the distur-

bance. Both are related with what is known as conditional entropy [25, 26, 35].

In this section we introduce the three well known Uncertainty Principles and their cor-

responding non-Entropic and Entropic Uncertainty Relations. The historic development

of the Uncertainty Principles and Relations is presented intrinsically. A summary of the

principles and relations can be found on Table 1.1.

9
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Uncertainty Priciple Uncertainty Relation Entropic Uncertainty
Relation

It is impossible to prepare
states in which position and Eq. (1.1)
momentum are simultaneously Robertson-Kennard Eq. (1.5)
arbitrary well localized Uncertainty Relation

It is impossible to measure
position and momentum Eq. (1.3) -
simultaneously

It is impossible to measure Eq. (1.4) Eq. (1.6) Entropic
position without disturbing Uncertainty Relation Uncertainty Relation
momentum and viceversa of Noise-Disturbance of Noise-Disturbace

Table 1.1: Summary of Uncertainty Principles

10



Chapter 2

Uncertainty Principle of
Disturbance-Disturbance

2.1 An Uncertainty Relation using all the axioms of Quan-

tum Mechanics

The Robertson-Kennard Uncertainty Principle talks about preparation of states and its

Uncertainty Relation is easily proved by using only three of the basic postulates of Quan-

tum Mechanics and the Cauchy-Schwarz Inequality. We believe that a complete Uncer-

tainty Relation should be proved using the four basic postulates, included the fourth

postulate of quantum measurement.

To prove the Robertson-Kennard Generalized Uncertainty Relation we need two main

results [39]:

Standard Deviation: It is defined as the second statistical moment. In Dirac no-

tation we have the standard deviation associated to an observable Q̂ in some determined

state as

σ2
Q̂

= 〈(Q̂− 〈Q̂〉)2〉 = 〈(Q̂− 〈Q̂〉)Ψ|(Q̂− 〈Q̂〉)Ψ〉. (2.1)

Cauchy-Schwarz Inequality: ∀v, w ∈ V , V a vector space, we have,

|〈v, w〉| ≤ ‖v‖‖w‖. (2.2)

Proof of the Cauchy-Schwarz Inequality [41]: When w = 0 the relation is trivial. Now,

suppose that w = e is an unitary vector, this is e ∈ V and ‖e‖ = 1. If c is the component

of v along e, then v − ce is perpendicular to e, and so, perpendicular to ce.

11
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DISTURBANCE-DISTURBANCE

2.1. AN UNCERTAINTY RELATION USING ALL THE AXIOMS OF QUANTUM
MECHANICS

Using the Pythagorean theorem we have

‖v‖2 = ‖v − ce‖2 + ‖ce‖2

= ‖v − ce‖2 + c2. (2.3)

Then, c2 ≤ ‖v‖2, so |c| ≤ ‖v‖. Finally, if w is an arbitrary, 6= 0, vector, we have the

unitary vector e = w
‖w‖ and now, ∣∣∣∣〈v, w

‖w‖

〉∣∣∣∣ ≤ ‖v‖. (2.4)

Then

|〈v, w〉| ≤ ‖w‖‖v‖, (2.5)

as we wanted to prove.

We may now prove the Robertson-Kennard Uncertainty Relation [12]:

Take two self-adjoint operators Â and B̂, and a quantum state |ψ〉. Let us suppose

〈ψ|ÂB̂|ψ〉 = x+ iy, where x and y are real numbers. We note that 〈ψ|[Â, B̂]|ψ〉 = 2iy and

〈ψ|{Â, B̂}|ψ〉 = 2x. This implies

|〈ψ|[Â, B̂]|ψ〉|2 + |〈ψ|{Â, B̂}|ψ〉|2 = 4|〈ψ|ÂB̂|ψ〉|2. (2.6)

By applying the Schwarz inequality for vectors Âψ and B̂ψ we get

|〈Âψ, B̂ψ〉|2 = |〈ψ|ÂB̂|ψ〉|2 ≤ 〈ψ|Â2|ψ〉〈ψ|B2|ψ〉, (2.7)

where we should remember that the norm of a vector v is ‖v‖ =
√
〈v, v〉. Combining these

last two expressions we have

|〈ψ|[Â, B̂]|ψ〉|2 ≤ 4〈ψ|Â2|ψ〉〈ψ|B̂2|ψ〉. (2.8)

Now assume that Ĉ and D̂ are two observables. Replacing Â = Ĉ − 〈Ĉ〉 and B̂ =

D̂ − 〈D̂〉 in the last equation, and remembering the definition of standard deviation, we

obtain the Robertson-Kennard Generalized Uncertainty Relation

σĈσD̂ ≥
|ψ|[Ĉ, D̂]|ψ〉|

2
. (2.9)

12



CHAPTER 2. UNCERTAINTY PRINCIPLE OF
DISTURBANCE-DISTURBANCE

2.1. AN UNCERTAINTY RELATION USING ALL THE AXIOMS OF QUANTUM
MECHANICS

2.1.1 A thought experiment and the Jensen-Shannon uncertainty rela-

tion for disturbance

The main goal of this thesis is to find an Uncertainty Principle with its own Uncertainy

Relation, making use of all of the four postulates as a principal background, and a relation

between the disturbance of one of the properties of the system and the disturbance of

another property of the same system. We conclude that a real Uncertainty Principle

should have a one to one relation with its Uncertainty Relation. We want to develop an

Uncertainty Relation in the style of the distribution error estimation, in the sense of [42].

In [42] the value-comparison error is discussed as well. The difference between these two

ways of comparing results is that the first one compares probability distributions while

the second one compares the results individually.

In this case we want to know how a system with two properties, represented by two

operators Â and B̂, behaves when a measurement is applied on it, and to observe how the

distance between the probability distributions of its properties changes. It is known to all

that when one makes a measurement of any kind on a quantum system one produces a

disturbance on it. Moreover, as it is well known, the observables do not have a pre-existing

value prior to measurement, therefore, we take as a departure that the disturbance is

produced in the state of the system. Then, this disturbance affects only the probability

distributions. In order to describe the resulting disturbance we wish to measure the

distance between the probability distributions of two properties of the system at different

times, i.e. before and after the measurement.

The thought experiment which we consider is as follows. We have a quantum system,

that has two properties which we want to know. We realize a projective measurement

on one property, say Â, then we disturb the system, and, due to the measurement, the

system collapses to an eigenstate of the observable Â and the value of the observable B̂ is

now unknow to us. However, we know that this has been disturbed by our measurement.

Now we want to compare the probability distribution of the observable Â before the mea-

surement and the probability distribution of the same observable after the measurement

(in this case we compare a probability distribution versus only a possible state). Also,

we compare the distance between the distributon of observable B̂ before and after the

measurement of observable Â.

13



CHAPTER 2. UNCERTAINTY PRINCIPLE OF
DISTURBANCE-DISTURBANCE

2.1. AN UNCERTAINTY RELATION USING ALL THE AXIOMS OF QUANTUM
MECHANICS

To measure the distance between two probability distributions there exist the so-called

probability metrics [29, 32, 36, 43–46]. In physics the most common probability metric

is the relative entropy or Kullback-Leibler divergence [25, 26]. Between two probability

distributions P (x) and Q(x), we have

S(P,Q) =
∑
x

p(x) log
p(x)

q(x)
= EP log

p(x)

q(x)
. (2.10)

The last equality tells us that the relative entropy can be interpreted as the expectation

value of the logarithm function of p(x)
q(x) , commonly identified as the most simple uncertainty

measure.

In the present work we will use a different metric of those used in some other works

[25, 35, 42]. A good measure of the distance between two discrete probability distributions

is the symmetric Jensen Shannon Divergence [44],

DPQ =

√√√√ N∑
i=1

(
pi ln

2pi
pi + qi

+ qi ln
2qi

qi + pi

)
, (2.11)

where pi and qi are two probability distributions. This metric has never before been related

to physics.

Additionally, there exists a relation between the Jensen Shannon divergence (2.11) and

the Kullback-Leibler divergence (2.10) and Shannon Entropy (8) [32],

D2
P,Q = S

(
P,
P +Q

2

)
+ S

(
Q,

P +Q

2

)
= H

(
P +Q

2

)
− 1

2
H(P )− 1

2
H(Q). (2.12)

Then, we have the Symmetric Jensen Shannon Entropy in terms of the eigenstates of

the observables. In this case we want to compare the distribution of observable B̂ before

the measurement versus the distribution of the same observable after the measurement,

we take DB̂ as the disturbance in the statistics of B̂ due to the measurement of Â, and

we find it given as,

DB̂ =

√√√√ N∑
j=1

(
|〈bj |as〉|2 ln

2|〈bj |as〉|2
|〈bj |as〉|2 + |〈bj |ψ〉|2

+ |〈bj |ψ〉|2 ln
2|〈bj |ψ〉|2

|〈bj |ψ〉|2 + |〈bj |as〉|2

)
,

(2.13)

where |〈bj |ψ〉|2 is the probability of finding the state in a eigenstate of the observable B̂,

14
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2.1. AN UNCERTAINTY RELATION USING ALL THE AXIOMS OF QUANTUM
MECHANICS

and |〈bj |as〉|2 is the probability of finding the system in an eigenstate of the observable B̂,

given that the state after the measurement is an eigenvector of Â, |as〉.
Now, we want to investigate how the distance between the probability distributions

behaves when one of the probability distribitions tends to the other, i. e. we want to

study the next limit,

lim
P→Q

D2
PQ, (2.14)

which, expanded term by term, tends in first order of pi to [44]

1

4
χ2 =

1

4

∑
i

(pi − qi)2

qi
. (2.15)

This is the distance χ2 between pi and qi. This distance is not symmetric, thus we can

express it in terms of the probability distributions of B̂. The two χ2 distances that we

can have are the following,

1

4
χ2(|〈bj |as〉|2, |〈bj |ψ〉|2) =

1

4

∑
j

|〈bj |as〉|2
(

1− |〈bj |ψ〉|
2

|〈bj |as〉|2

)2

, (2.16)

1

4
χ2(|〈bj |ψ〉|2, |〈bj |as〉|2)

1

4
=
∑
j

|〈bj |ψ〉|2
(

1− |〈bj |as〉|
2

|〈bj |ψ〉|2

)2

. (2.17)

Now, we want to find the minimum value of this distance, different of zero. To obtain a

result we make the next considerations. First, we want that the minimun does not depend

on the state of the system, so we want to consider a little change over the initial state

of the system. Thus, we can write the initial state as an eigenvector |as〉 of the operator

Â plus a variation due to the fact that the distance χ2 is zero when the initial state is

an eigenvalue of Â. So, we take |ψ〉 = |as〉 + δ(|as〉), normalized. Then we can write

respectively the equations (2.16) and (2.17) as

1

4
χ2(|〈bj |as〉|2, |〈bj |ψ〉|2) ≥

1

4

∑
j

|cj |2
(

1− |cj |
2 + δ(|cj |2)
|cj |2

)2

= χ
(1)

B̂,min
, (2.18)

1

4
χ2(|〈bj |ψ〉|2, |〈bj |as〉|2) ≥

1

4

∑
j

(
|cj |2 + |δcj |2

)(
1− |cj |2

|cj |2 + δ(|cj |2)

)2

= χ
(2)

B̂,min
, (2.19)

making cj = 〈bj |as〉.
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Taking into consideration the aproximation we get relations for the minimum distance

between two different probability distributions of a quantum system,

DB̂ ≥
1

2

√
χ2(|〈bj |as〉|2, |〈bj |ψ〉|2) ≥

√
χ
(1)

B̂,min
, (2.20)

DB̂ ≥
1

2

√
χ2(|〈as|bj〉|2, |〈ψ|bj〉|2) ≥

√
χ
(2)

B̂,min
, (2.21)

where DB̂ is expresed in equation (2.13). This last two expressions are the same due to

the simmetry of Jensen Shannon Entropy.

The existence of the two equations, 2.20 and 2.21, is because the distance χ2 is not sym-

metric. For practical purposes we can take the minimum between

√
χ
(1)

B̂,min
and

√
χ
(2)

B̂,min

as min

{√
χ
(1)

B̂,min
,

√
χ
(2)

B̂,min

}
, and take in consideration only one of these relations.

Therefore, we can show our first result as the following equation, that we can name

the Jensen Shannon Uncertainty Relation for Disturbance

DB̂ ≥ min

{√
χ
(1)

B̂,min
,

√
χ
(2)

B̂,min

}
. (2.22)

Now, we want to obtain a relation between the two observables of the system Â and B̂.

For this purpose we can make a treatment of the observable Â before and after realizing

a proyective measurement of Â.

2.1.2 Example of the Jensen-Shannon Uncertainty Relation for distur-

bance

Suppose that we have a particle of 1
2 spin, consider that the initial state is

|φ〉 =
1√
2

(|x1〉+ |x2〉), (2.23)

then, when we realize a projective measure on it, we collapse its state to one of the

components of the superposition state. Whithout loss of generality, suppose that we

collapse its state to |x1〉. In this way we can apply directly the equation and obtain

D(Sz) ≥ min

{√
χ
(1)

B̂,min
(Sz),

√
χ
(2)

B̂,min
(Sz)

}
(2.24)
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where

D(Sz) =

√√√√ N∑
j=1

(
|〈zj |x1〉|2 ln

2|〈zj |x1〉|2
|〈zj |x1〉|2 + |〈zj |φ〉|2

+ |〈zj |φ〉|2 ln
2|〈zj |φ〉|2

|〈zj |φ〉|2 + |〈zj |x1〉|2

)
;

(2.25)√
χ
(1)

B̂,min
(Sz) =

1

2

√√√√∑
j

|〈zj |x1〉|2
(

1− |cj |
2 + δ(|cj |2)
|〈zj |x1〉|2

)2

, (2.26)

√
χ
(2)

B̂,min
(Sz) =

1

2

√√√√∑
j

(|cj |2 + δ(|cj |2))
(

1− |〈zj |x1〉|2
|cj |2 + δ(|cj |2)

)2

. (2.27)

We can write |x1〉 = 1√
2
(|z1〉 + |z2〉) and then, the equations (2.26),(2.27) can be written

as √
χ
(1)

B̂,min
(Sz) =

1

2

√
2(δ(|c1|2))2 + 2(δ(|c2|2))2, (2.28)

√
χ
(2)

B̂,min
(Sz) =

1

2

√
(δ(|c1|2))2
1
2 + δ(|c1|2)

+
(δ(|c2|2))2
1
2 + δ(|c2|2)

. (2.29)

With the condition δ(|c1|2) = −δ(|c2|2) due to the normalization this expressions are√
χ
(1)

B̂,min
(Sz) = |δ(|c1|2)|, (2.30)

√
χ
(2)

B̂,min
(Sz) =

1

2

√
(δ(|c1|2))2

1
4 − (δ(|c1|2))2

. (2.31)

To obtain a numeric result we can give small values to δ(|c1|2), such as |δ(|c1|2)| << 1
2 ,

see Figure 2.1.

2.2 The Uncertainty Relation of Disturbance-Disturbance

Now, to complete our study, we calculate the distance between the probability distri-

butions of observable Â. Remember that in our though experiment we are measuring the

observable Â and we obtain as a result that the system collapses to an eigenstate of the

same observable. So the probability of finding the system in an eigenstate of Â before the
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Figure 2.1: Values of
√
χ
(1)

B̂,min
,
√
χ
(2)

B̂,min
when δ(|c1|2) takes values in the interval [−.25, .25].

measurement is |〈aj |ψ〉|2 and after the measurement we can say with total accuracy that

the system is in an eigenstate of Â, say |as〉. This is, the probability of finding the system

in |as〉 is 1.

We know from equations (2.14), (2.15) that the Jensen-Shannon entropy tends to χ2

when one distribution tends to the other, so we have

DÂ ≥
1

2

√
χ2(|〈aj |ψ〉|2, δj,s), (2.32)

DÂ ≥
1

2

√
χ2(δj,s, |〈aj |ψ〉|2), (2.33)

where

χ2(|〈aj |ψ〉|2, δj,s) =
∑
j

|〈aj |ψ〉|2
(

1− δj,s
|〈aj |ψ〉|2

)2

, (2.34)

χ2(δj,s, |〈aj |ψ〉|2) =
∑
j

δj,s

(
1− |〈aj |ψ〉|

2

δj,s

)2

. (2.35)

To obtain a trade-off relation we take into consideration the same aproximation for the

initial state: |ψ〉 = |as〉 + |das〉, where |ψ〉 is normalized, as it should be. We can make

this because χ2 is minimum when ψ is an eigenstate of Â, that is |as〉.

18



CHAPTER 2. UNCERTAINTY PRINCIPLE OF
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Figure 2.2: Values of
√
χ
(1)

Â,min
(Sx),

√
χ
(2)

Â,min
(Sx) when δ(|d1|2) takes values in the interval

[−.25, 0].

So, with this approximation we have now the minimum values for equations (2.34),

(2.35),

1

4
χ2(|〈aj |ψ〉|2, δj,s) ≥

1

4

∑
j

(
δj,s + δ(|dj |2)

)(
1− δj,s

δj,s + δ(|dj |2)

)2

= χ
(1)

Â,min
, (2.36)

1

4
χ2(δj,s, |〈aj |ψ〉|2) ≥

1

4

∑
j

δj,s

(
1− δj,s + δ(|dj |2)

δj,s

)2

= χ
(2)

Â,min
, (2.37)

where dj = 〈aj |as〉 is the probability distribution. We should note that δ(|ds|2) is always

negative, because we are measuring the distance between δs,j and a probability distribution

close to it, and any probability must take values in the interval [0, 1].

These last two equations can be reduced, so that

χ
(1)

Â,min
=

1

4

(
1 + δ(|ds|2)

)(
1− 1

1 + δ(|ds|2)

)2

+
1

4

∑
k 6=s

δ(|dk|2), (2.38)

χ
(2)

Â,min
=

1

4
(δ(|ds|2))2. (2.39)
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For our example we have

√
χ
(1)

Â,min
(Sx) =

1

2

√
(1 + δ(|d1|2))

(
1− 1

1 + δ(|d1|2)

)2

− δ(|d1|2) (2.40)

√
χ
(2)

Â,min
(Sx) =

1

2
|δ(|d1|2)|, (2.41)

under the condition δ(|d1|2) = −δ(|d2|2). These results are plotted in Figure 2.2.

Now, we can obtain the Entropic Uncertainty Relation of Disturbance-Disturbance as

the sum of the uncertainties of observables Â and B̂,

DÂ +DB̂ ≥ min

{√
χ
(1)

Â,min
,

√
χ
(2)

Â,min

}
+ min

{√
χ
(1)

B̂,min
,

√
χ
(2)

B̂,min

}
. (2.42)

Thus, we have found a new Entropic Uncertainty Relation. This relation relates the

disturbance of two observables of a system, one of which is measured. Its important to

say that there is not a similar relation in the literature, and because of this we need to

associate it to a new statement, namely, a new Uncertainty Principle. We can say that:

It is impossible to measure an observable without disturbing simultaneously its statistic

distribution and the statistic distribution of other observable.

Therefore we have found an Uncertainty Relation using the four postulates of quantum

mechanics, Postulates 1, 2, 3 and 4. One of its most important properties is that this is

an Uncertainty Relation comparing probability distributions.

Once we have shown the most important result of our work, we want to emphasize the

role of δ(|cj |2) and δ(|dj |2) in the above relations. This quantities are small and they never

are zero; its size depends entirely on the quantum sytem and the observer. It is physically

impossible that this numbers are zero because it is impossible (until now) to know with

total accuracy the state of the system, or, equivalently, to obtain the same probability

distribution as the expected.

In this Chapter there were proposed two new Entropic Uncertainty Relations, to which

the four postulates of Quantum Mechanics are utterly important. On the one hand, we

have that the important components of said relations are, first, that the measure associated

to the uncertainty is the Jensen-Shannon Entropy, which in turn is a probabilistic metric.

In consequence what we are comparing, or measuring, are probability distrubutions of
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quantum systems. The second component is the fact that we tried to find a lower bound

for the uncertainty of the system which does not depend on the state of the system. On the

other hand, we proposed a new Uncertainty Principle related to our Uncertainty Relation.

To the best of our knowledge this new statement is not found on the literature. We can say

that our new Uncertainty Principle and Uncertainty Relation talk about the disturbance

that one caused when one interacts with a quantum system.

21



CHAPTER 2. UNCERTAINTY PRINCIPLE OF
DISTURBANCE-DISTURBANCE

2.2. THE UNCERTAINTY RELATION OF DISTURBANCE-DISTURBANCE

22



Chapter 3

Conclusions

In this work we have seen a new proposal of an Entropic Uncertainty Relation com-

pletely related with the act of measurement, which is a fact that we can not exclude of any

quantum treatment of a system. Also, we propose a new Uncertainty Principle associated

with our Uncertainty Relation, somethig that is very important to establish a complete

treatment to the topic.

This Entropic Uncertainty Relation of Disturbance-Disturbance is established with

the use of the four Postulates of Quantum Mechanics, specially, the fourth postulate

is very important to our relation because it depends completely on the state obtained

when one makes a projective measurement. The intermediate result, that we called the

Jensen Shannon Uncertainty Relation for Disturbance was shown and it is by itself a well

established uncertainty relation, which can be utilized in a variety of escenaries. Also, we

introduce an example of the use of our Entropic Uncertainty Relation.

In the future we plan to give to our relation a more general use, in particular we are

interested in the case of the canonical observables, position and momentum. Also we

want to show more examples of our relation on many physical systems. It is important to

mention that we are working on a new paper where we will show a quantum treatment of

a series of rotated SGE magnets.

The lack of adequate measures of uncertainty has made the area of Entropic Uncer-

tainty Relations grow and actually there is a growing number of attemps to relate it with

fundamental physics, in particular with Quantum Mechanics and the Quantum Mechanical

Uncertainty Relations in their diverse presentations. A main topic in this thesis is the co-

rrect understanding of the difference between the Uncertainty Relations and Uncertainty
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Principles, because it plays a central role in the basic courses of Quantum Mechanics,

therefore it is important to present a comprehensive overview to undergraduate students.

The uncertainty in Quantum Mechanics must be understood as something inherent

to the theory and practice due to our inability to interact with matter in its simplest

expression.
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[27] L. M. Arévalo Aguilar, C. P. Garćıa Quijas, and Carlos Robledo-Sanchez. The Im-

provement of the Heisenberg Uncertainty Principle, Advances in Quantum Mechanics,

chapter 4, pages 67–77. InTech, 2013.

[28] J. Hilgevoord and J. B. M. Uffink. More certainty about the uncertainty principle.

Eur. J. Phys., 6(3):165–170, July 1985.

[29] Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Trans. Inf.

Theory, 37(1):145–151, January 1991.
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