

Introduction

- Identify denial of service attacks, port scans, and other cyber-attacks using network graphs.
- identifies approach that Unique anomalous hotspots by tracking sudden increases/decreases edges connecting to a vertex; or the sudden (dis)appearance of edges with high weight
- **SNAPSKETCH** is fully unsupervised, has constant memory space usage, and can be used for real-time anomaly detection.

Research Objective

Problem Statement:

Given a graph stream $G_s = \{G_1, G_2, ..., G_t, ...\},\$ our goal is to learn a graph representation function f for each graph $G_t \in \mathbb{R}^{|v|^2}$ such that $f: G_t \rightarrow v_{G_t} \in \mathbb{Z}^d \text{ and } d \ll |v|^2$

and using v_{G_t} detect whether a graph G_t at any time t contain an anomalous hotspot.

Goals

Ŭ U

- fixed-size feature vector Generate а (SNAPSKETCH) to represent a graph in a graph stream.
- Detect DoS attack (a type of anomalous) hotspot) in network traffic using a **SNAPSKETCH.**

Experimentation

Run RRCF [1] anomaly detection algorithm on sketch vector generated by **SNAPSKETCH** generated, Spotlight [3], and StreamSpot [2] on the following two datasets and compare their performances.

Dataset	# of	# of	Edges
	Graph	Anomalies	
Smart Homes IoT	9,678	1,007	29,959,737
DARPA 1998	3,497	361	3,904,797

. Guha, Sudipto, Mishra, Nina, Roy, Gourav, and Schrijvers, Okke. "Robust random cut forest based anomaly detection on streams." In International conference on machine learning," pages 2712-2721, 2016. 2. Manzoor, Emaad, Milajerdi, Sadegh M, and Akoglu, Leman. "Fast memory efficient anomaly detection in streaming heterogeneous graphs." In "Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining," pages 1035-1044. ACM, 2016. 3. Eswaran, Dhivya, Faloutsos, Christos, Guha, Sudipto, and Mishra, Nina. "Spotlight: Detecting anomalies in streaming graphs." In "Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining," pages 1378-1386. ACM, 2018. . Grover, Aditya and Leskovec, Jure. "node2vec: Scalable feature learning for networks." In "Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discoveryand data mining," pages 855-864. ACM, 2016.

SNAPSKETCH: Graph Representation Approach for Anomaly Detection in Graph Stream Ramesh Paudel and Dr. William Eberle **Department of Computer Science**

SNAPSKETCH Framework

- Perform node2vec [5] random walk on the graph and construct n-shingles.
- Identify discriminative shingles (shingles with the highest frequency) and randomly project them into a d-dimensional projection h_d .
- Sketch graphs using a simplified hashing of projection vector h_d and the cost of shingles c_t .
- The sketching converts the graph G_t into a d-dimensional sketch vector v_{G_t} .
- Detect anomalous hotspot using RRCF [2] in the sketch vector.
- **SNAPSKETCH** has several advantages, fully unsupervised learning, constant memory space usage, entire-graph embedding, and real-time anomaly detection.

SnapSketch SpotLight

Fig 3: Anomaly score reported on DARPA dataset.

Algor Grou **S**NAPS SpotI Stream Groui SNAPSI SpotL Stream

Funding provided by Tennessee Tech University, **College of Engineering for achieving Carnegie** classification.

SNAPSKETCH Algorithm

4	Algorithm 1: SNAPSKETCH Algorithm						
	Input: Graph Stream $G_s = \{G_1, G_2,, G_t,\}$						
	Parameters: Sketch Dimension d, Number of						
	Discriminative Shingle k , Walk Length l , Size						
	of Shingle n						
	Output: Graph Sketch v _{Gt}						
1	Function Main(G _s , d, p, k, l, n):						
2	while not end of stream do						
3	$p_{G_t} \leftarrow \text{node2vecWalk}(G_t, l)$						
4	$S_t \leftarrow [p_{G_t}[i:i+n] \text{ for } i \text{ in range } (\operatorname{len}(p_{G_t}) - (n-1))]$						
5	$S_t^k \leftarrow S_t$.sort(reverse=True)[: k] //get						
	k-discriminative shingles						
6	$h_d \leftarrow \text{Hashing}(S_t^k, d, r = 0.2)$						
7	$v_{G_t} \cup \text{Sketching}(S_t^k, h_d)$						
8	Anom_score $\leftarrow \operatorname{RRCF}(v_{G_t})$						
9	d						
10	end						
11	return v_{G_t}						
12	2 Function Hashing(S _k , d, r):						
13	for $S_i = S_k[1,, k]$ do						
14	$h_d \cup random([0,1], d, p=[1-r, r])$						
15	end						
16	return <i>h</i> _d						
17	Function Sketching(S_k , h_d):						
18	for $S_i = S_k[1,, k]$ do						
19	$c_t \cup w_{s_i} \times r_{s_i}$						
20	end						
21	$v_{G_t} = c_t \times h_d$						
22	return v_{G_t}						

Results

rithm	Precision (top -m)			Recall (top -m)						
	100	200	300	100	200	300				
Smart Home IOT Dataset										
nd Truth	1.0	1.0	1.0	.099	.198	.298				
KETCH	.94	.86	.80	.093	.170	.239				
Light	.77	.73	.63	.076	.145	.190				
mSpot	.69	.57	.54	.068	.114	.161				
DARPA Dataset										
nd Truth	1.0	1.0	1.0	.277	.554	.831				
KETCH	.83	.52	.34	.229	.288	.288				
Light	.80	.51	.34	.221	.282	.282				
mSpot	.49	.29	.20	.135	.160	.163				

Conclusion

SNAPSKETCH can effectively represent the graph into a fixed-size sketch vector.

Using RRCF [1] on sketch vector anomalous events like denial-of-service attacks can be detected.

SNAPSKETCH has better precision and recall than baseline SpotLight [3] and StreamSpot [2] approaches on top –m anomalous graphs.

Acknowledgements