
Methodology (continued)

• Create multiple testbeds to run same test files; 

use differential testing of code outputs to reveal 

bugs

• Under further study of suspect scripts, potential 

bugs can be readily isolated and addressed

Motivation

• As researchers write more code, higher 

probability of errors follow (Soegler, 2015)

• Traditional software testing methods are not 

always enough to find critical, result-altering 

bugs (e.g. Bhandari Neupane et al. 2019)

• Need for a “new” software testing technique, 

fuzzing: feeding predesigned data to a 

program to trigger crash/unexpected behavior
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Background

• Scientific software: software applications 

primarily focused on exploration and analysis 

of data

• Mostly developed by researchers/graduate 

students with deadlines, not software 

developers; potential introduction of bugs

Methodology

• Traditional fuzzing: hand-written fuzzers

• Three typical methods:

• We first implemented traditional hand-written 

fuzzers in Python for 7 Julia repositories

• Combinations of random, generation-based, and 

mutation-based fuzzers

• Wrote traditional fuzzers for each unique 

function in each of 7 Julia libraries

• We then began to implement automated fuzzing 

techniques utilizing machine learning following 

Cummins et al. (2018)

• Mined 8,211 public Julia repositories from 

GitHub (107K Julia files, in 34K directories, 

~8.2M lines of code) to obtain training  

corpus

• Applied consistent variable naming/code 

formatting to ease machine learning process

• Will use Long Short-Term Memory (LSTM) 

style of Recurrent Neural Network to learn 

structure and syntax of Julia

• Sample LSTM to create very large (~1M files) 

synthetic corpus as a test suite: represents 

“repositories that have yet to be written”

Conclusions and Future Work

• The present work shows the inefficiency of 

traditional fuzzing methods and demonstrates 

potential for machine learning techniques to 

improve fuzzing efficiency

• Present methodology using machine 

learning techniques can be extended to a 

much larger set of open-source repositories 

to evaluate their functionality and help reduce 

the presence of defects
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Research Goal

The goal of this research project is to help scientists 

in conducting correct and verifiable scientific 

computations by identifying latent bugs in 

scientific software.

True 

random 

inputs

• Purely random 

strings

• Less likely to find 

bugs

Generation-

based

• Use grammars to 

generate inputs

• More likely to find 

bugs

Mutation-

based

• Modify existing 

inputs

• More likely to find 

bugs

Image courtesy Amazon.

Image courtesy Brilliant.

Image courtesy Khan 

Academy.

Figure 2: Different stages of fuzzing a program..

Figure 4: Testbed approach to detect anomalous results, 

adapted from Cummins et al. (2018).
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Research Question

How can we identify crash-prone inputs that can 

be used as fuzz data to discover bugs in scientific 

software?

Datasets

List of fuzzed Julia packages:

• FFTW.jl

• GLFW.jl

• HTTP.jl

• WebSockets.jl

• SymPy.jl

• LightXML.jl

• LinearOperators.jl

Hypothesis

Through qualitative analysis we can identify 

characteristics of bugs in scientific software that 

we can leverage to identify undiscovered bugs.
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Table 1: Three approaches for traditional fuzzing.

Results

• Traditional fuzzing has been completed for 7 

Julia repositories using Python

• Traditional approach required over 3 months 

and does not scale well; a scalable solution is 

needed

Results (continued)

• Nevertheless, preliminary analysis using 

traditional techniques found several 

unhandled exception conditions in the 7 

Julia libraries, for a total of 9 bugs found:

FFTW Bugs HTTP Bugs

MethodError MethodError

Invalid escape sequence Invalid escape sequence

String juxtapose error Invalid string syntax error

UndefVarError BoundsError

StatusError

Figure 1: Result-altering bugs due to different operating systems, 

reproduced from Bhandari Neupane et al. (2019).

Figure 3: Machine learning workflow to generate test suite.

Table 2: Bugs discovered using traditional fuzzing approach.
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