
Methodology (continued)

• Create multiple testbeds to run same test files;

use differential testing of code outputs to reveal

bugs

• Under further study of suspect scripts, potential

bugs can be readily isolated and addressed

Motivation

• As researchers write more code, higher

probability of errors follow (Soegler, 2015)

• Traditional software testing methods are not

always enough to find critical, result-altering

bugs (e.g. Bhandari Neupane et al. 2019)

• Need for a “new” software testing technique,

fuzzing: feeding predesigned data to a

program to trigger crash/unexpected behavior

Fuzzing to Identify Undiscovered Bugs in Scientific Software
Raunak Shakya1, Jonathan Gibson1, and John Brackins2 (Advisor: Dr. Akond Rahman1)

1Department of Computer Science, Tennessee Tech University
2Department of Civil and Environmental Engineering, Tennessee Tech University

Background

• Scientific software: software applications

primarily focused on exploration and analysis

of data

• Mostly developed by researchers/graduate

students with deadlines, not software

developers; potential introduction of bugs

Methodology

• Traditional fuzzing: hand-written fuzzers

• Three typical methods:

• We first implemented traditional hand-written

fuzzers in Python for 7 Julia repositories

• Combinations of random, generation-based, and

mutation-based fuzzers

• Wrote traditional fuzzers for each unique

function in each of 7 Julia libraries

• We then began to implement automated fuzzing

techniques utilizing machine learning following

Cummins et al. (2018)

• Mined 8,211 public Julia repositories from

GitHub (107K Julia files, in 34K directories,

~8.2M lines of code) to obtain training

corpus

• Applied consistent variable naming/code

formatting to ease machine learning process

• Will use Long Short-Term Memory (LSTM)

style of Recurrent Neural Network to learn

structure and syntax of Julia

• Sample LSTM to create very large (~1M files)

synthetic corpus as a test suite: represents

“repositories that have yet to be written”

Conclusions and Future Work

• The present work shows the inefficiency of

traditional fuzzing methods and demonstrates

potential for machine learning techniques to

improve fuzzing efficiency

• Present methodology using machine

learning techniques can be extended to a

much larger set of open-source repositories

to evaluate their functionality and help reduce

the presence of defects

References

• Bhandari Neupane, J., Neupane, R. P., Luo, Y.,

Yoshida, W. Y., Sun, R., & Williams, P. G. (2019).

Characterization of leptazolines A–D, polar

oxazolines from the cyanobacterium Leptolyngbya

sp., reveals a glitch with the “Willoughby–Hoye”

scripts for calculating NMR chemical shifts. Organic

letters, 21(20), 8449-8453.

• Cummins, C., Petoumenos, P., Murray, A., &

Leather, H. (2018, July). Compiler fuzzing through

deep learning. In Proceedings of the 27th ACM

SIGSOFT International Symposium on Software

Testing and Analysis (pp. 95-105).

• Farhana, E., Imtiaz, N., & Rahman, A. Synthesizing

Program Execution Time Discrepancies in Julia

Used for Scientific Software. In 2019 IEEE

International Conference on Software Maintenance

and Evolution (ICSME) (pp. 496-500). IEEE.

• Soergel, D. A. (2014). Rampant software errors

may undermine scientific results.

F1000Research, 3.

Research Goal

The goal of this research project is to help scientists

in conducting correct and verifiable scientific

computations by identifying latent bugs in

scientific software.

True

random

inputs

• Purely random

strings

• Less likely to find

bugs

Generation-

based

• Use grammars to

generate inputs

• More likely to find

bugs

Mutation-

based

• Modify existing

inputs

• More likely to find

bugs

Image courtesy Amazon.

Image courtesy Brilliant.

Image courtesy Khan

Academy.

Figure 2: Different stages of fuzzing a program..

Figure 4: Testbed approach to detect anomalous results,

adapted from Cummins et al. (2018).

rshakya@students.tntech.edu

jagibson44@students.tntech.edu

jtbrackins42@students.tntech.edu

Research Question

How can we identify crash-prone inputs that can

be used as fuzz data to discover bugs in scientific

software?

Datasets

List of fuzzed Julia packages:

• FFTW.jl

• GLFW.jl

• HTTP.jl

• WebSockets.jl

• SymPy.jl

• LightXML.jl

• LinearOperators.jl

Hypothesis

Through qualitative analysis we can identify

characteristics of bugs in scientific software that

we can leverage to identify undiscovered bugs.
Acknowledgements

We would like to thank our CSC-6220 professor,

Dr. Akond A. Rahman. This material is based

upon work supported by the National Science

Foundation Graduate Research Fellowship

Program under Grant No. 1649609. Any opinions,

findings, and conclusions or recommendations

expressed in this material are those of the

author(s) and do not necessarily reflect the views

of the National Science Foundation.

Table 1: Three approaches for traditional fuzzing.

Results

• Traditional fuzzing has been completed for 7

Julia repositories using Python

• Traditional approach required over 3 months

and does not scale well; a scalable solution is

needed

Results (continued)

• Nevertheless, preliminary analysis using

traditional techniques found several

unhandled exception conditions in the 7

Julia libraries, for a total of 9 bugs found:

FFTW Bugs HTTP Bugs

MethodError MethodError

Invalid escape sequence Invalid escape sequence

String juxtapose error Invalid string syntax error

UndefVarError BoundsError

StatusError

Figure 1: Result-altering bugs due to different operating systems,

reproduced from Bhandari Neupane et al. (2019).

Figure 3: Machine learning workflow to generate test suite.

Table 2: Bugs discovered using traditional fuzzing approach.

mailto:rshakya@students.tntech.edu
mailto:jagibson44@students.tntech.edu
mailto:jtbrackins42@students.tntech.edu

