ded by RAF - Repository of the Faculty of Architecture - University of Belgra

CORE

Places and Technologies 2015

KEEPING UP WITH TECHNOLOGIES TO MAKE HEALTHY PLACES

Nova Gorica, Slovenia, 18.–19.6.2015

BOOK OF CONFERENCE PROCEEDINGS

A healthy city is one that is continually creating and improving those physical and social environments and expanding those community resources which enable people to mutually support each other in performing all the functions of life and developing to their maximum potential. Health Promotion Glossary (1998)

ORGANIZERS:

SPONZORS:

KREAL, Creative Aluminium, Kidričevo, Slovenia

SUPPORTERS:

CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana

614:711.4(082)(0.034.2)

INTERNATIONAL Academic Conference Places and Technologies (2 ; 2015 ; Nova Gorica)

Keeping up with technologies to make healthy places [Elektronski vir] : book of conference proceedings / [2nd International Academic Conference] Places and Technologies 2015, Nova Gorica, 18.-19. 6. 2015 ; editors Alenka Fikfak ... [et al.]. - Ljubljana : Faculty of Architecture, 2015

ISBN 978-961-6823-68-5

1. Gl. stv. nasl. 2. Dodat. nasl. 3. Fikfak, Alenka 279986432

University of Belgrade, Faculty of Architecture, Serbia

University of Ljubljana, Faculty of Architecture, Slovenia

Professional Association, Urban Laboratory, Serbia

University of Ljubljana

Faculty of Architecture

General Hospital, »Dr Franca Derganca« Nova Gorica, Slovenia Places and Technologies 2015

KEEPING UP WITH TECHNOLOGIES TO MAKE HEALTHY PLACES

BOOK OF CONFERENCE PROCEEDINGS

Editors:

Alenka Fikfak, Eva Vaništa Lazarević, Nataša Fikfak, Milena Vukmirović, Peter Gabrijelčič

Nova Gorica, Slovenia

Contents

INTRODUCTION	10
HEALTHY CITY - TECHNOLOGY AND URBAN RESILIENCE Eva Vaništa Lazarević	11
A PLACE FOR PLACES: LIVE AND STAY	13
NOVA GORICA	14
MATELARČON	14
HEALTHY CITY - TECHNOLOGY AND URBAN RESILIENCE Ružica Božović Stamenović	17
INNOVATING AT LISBON'S WATERFRONT PLACE,	
THE "TAGUS PLATFORM" PROJECT	19
Pedro Ressano Garcia	
TOPIC I: Architecture and Health	19
HEALTHY BUILDINGS: THE ICF CLASSIFICATION AS A DESIGNING TOOL Alberto Arenghi, Daniele Malgrati, Michele Scarazzato	20
THE HEALTH ASPECTS OF SUSTAINABLE ARCHITECTURE	26
Kosara Kujundžić	
UNIVERSITY AND DWELLERS' ASSOCIATIONS TOGETHER FOR CREATING SUSTAINABLE AND HEALTHY URBAN ENVIRONMENTS	32
Lucia Martincigh, Francesco Bianchi, Cecilia De Marinis, Marina Di Guida, Giovanni Perrucci	
"VERTICAL" CITY	39
Damjana Lojaničić	
HEALTHY WORKPLACE: UTOPIA OR REALITY OF MODERN	
ARCHITECTURAL DESIGN IN BOSNIA AND HERZEGOVINA	45
TIJANA VUJIČIĆ, TANJA TRKULJA	
SUSTAINABLE DESIGN FOR IMPROVEMENT OF HEALTHY BUILT ENVIRONM	ENT52
Aleksandar Petrovski, Ognen Marina, Georgi Dimkov, Dimitar Papasterevski	
HEALTHCARE DESIGN REVISITED – NEW APPROACHES TO USER – CENTRIC, EFFICIENT AN EFFECTIVE DESIGN	59
Eva Vaništa Lazarević, Jelena Marić, Milena Vukmirović, Goran Radović	
BUILDING MATERIALS AND HUMAN HEALTH: DESIGNERS' PERSPECTIVE	74
Saja Kosanović, Alenka Fikfak, Mirko Grbić	

PLACES AND TECHNOLOGIES 2015 KEEPING UP WITH TECHNOLOGIES TO MAKE HEALTHY PLACES 18 & 19 JUNE 2015 NOVA GORICA SLOVENIA

2ND INTERNATIONAL ACADEMIC CONFERENCE

c	UIS NOVA GURICA SLOVENIA	ALCH A
	TOWARDS A NEW UNDERSTANDING OF HEALTHY PLACE Saja Kosanović, Eva Vaništa Lazarević, Slađan Timotijević	80
	ENVIRONMENTAL FEATURES OF BUILDING MATERIALS OF TRADITIONAL OHRID HOUSE AND THEIR CONTRIBUTION TO ITS HUMAN DESIGN RADMILA TOMOVSKA, ANA <u>RADIVOJEVIĆ</u>	86
	HEALTHY ARCHITECTURE AS A RESULT OF BALANCED INTEGRATION OF ARTIFICIAL AND NATURAL RULES Dženana Bijedić, Rada Čahtarević, Senaida Halilović	93
	HEALTHY ARCHITECTURE FOR CHILDREN	101
	MEDICINE AND ARCHITECTURE IN THE CONTEMPORARY SOCIETY Ilka Čerpes	107
	MARGINALISATION OF LOCAL COMMUNITIES ALONG THE STRAIT OF SINGAPORE Magnus Nickl, Verena Stecher	115
	THE SCALE OF ACUTE CARE HOSPITALS IN SERBIA - THE NEED FOR RETHINKING Marko Matejić	121
	ARCHITECTURE AND HEALTHY LIVING SPACE Goran Radović	127
	TOPIC II: Physical Planning and Quality of Place	140
	DEVELOPMENT DIRECTIONS OF URBAN STRUCTURE THROUGH REGISTRATION OF CHANGES OF SEGMENTS OF URBAN COMPLEX VELIMIR STOJANOVIĆ	141
	THE TRANSFORMATION OF THE SQUARE CARICA MILICA IN NOVI SAD (SERBIA) Ivana Sentić, Ksenija Hiel	147
	VARESE LIGURE: AN ITALIAN RURAL MUNICIPALITY WHICH HAS IMPLEMENTED AN EXEMPLARY MODEL OF SUSTAINABLE DEVELOPMENT GIOVANNI SERGI, CARLO BERIO, GIULIA CANTON, GIACOMO CROVO	154
	CYBERPARKS CHALLENGES - NEW DIGITAL MEDIA FOR ATTRACTIVE URBAN OPEN SPACES	163
	INA ŠUKLIE ERJAVEC, CARLOS SMANIOTTO COSTA MEDIA ARCHITECTURE AND SUSTAINABLE ENVIRONMENT	171

Jasna Čikić-Tovarović, Jelena Ivanović-Šekularac, Nenad Šekularac

2ND INTERNATIONAL ACADEMIC CONFERENCE PLACES AND TECHNOLOGIES 2015

KEEPING UP WITH TECHNOLOGIES TO MAKE HEALTHY PLACES

18 @ 19 JUNE 2015 NOVA GORICA SLOVENIA

IMPLEMENTATION OF NORWEGIAN EXPERIENCE TO SLOVENIAN HOSPITAL SECTOR	179
Alenka Temeljotov-Salaj, Svein Bjoerberg, Simon Vrhunec, Andrej Baričič	179
TOWARDS OPEN, THERMODYNAMIC CITY P&T 2015	186
Marija Bojović, Irena Rajković, Sanja Paunović Žarić	
INTERWEAVING OF BANJALUKA'S URBAN AND RURAL LANDSCAPES	194
DIJANA SIMONOVIĆ	
AN APPLICATION OF THE "ENVIRONMENTAL ISLAND": A PRESCRIPTIVE TOOL TO CREATE HEALTHIER URBAN ENVIRONMENTS	201
LUCIA MARTINCIGH, CECILIA DE MARINIS, JANET HETMAN	
DEVELOPMENT OF PUBLIC SQUARES IN NORTH WESTERN EUROPEAN CITY CENTRES	209
BOB GIDDINGS, JAMES CHARLTON	
MUSIC AND SOUND AS A TOOL INTO DESIGNING HEALTHIER ENVIRONMENT Anja Kostanjšak, Morana Pap, Tena Lazarević	216
DESIGNING PARKING STRUCTURES IN SERVICE OF PUBLIC HEALTH	225
Tanja Trkulja, Tijana Vujičić	
DESIGNING THE WORKING ENVIRONMENT WHEN PLANNING BUSINESS ZONES	232
FOUR PARADIGMS FOR THE VENETO REGION'S CENTRAL AREA	240
MUNICIPALITY POLICY AS KEY FACTOR FOR THE ROLE OF ARCHITECTURE AND TECHNOLOGY IN PUBLIC HEALTH	248
DEJAN VASOVIĆ, NATAŠA ĆUKOVIĆ IGNJATOVIĆ, DUŠAN IGNJATOVIĆ	
INDUSTRIAL HERITAGE IN ALBANIA AND THE OPPORTUNITIES FOR REGENERATION AND ADAPTIVE RE-USE	255
FLORIAN NEPRAVISHTA	
THE POSSIBILITIES OF THE APPLICATION OF THE CONCEPT OF HEALTHY CITY IN ILLEGAL SETTLEMENTS IN SERBIA	266
BRANISLAV ANTONIĆ, BISERKA MITROVIĆ	
URBAN REGENERATION AS A TOOL FOR POPULATION HEALTH IMPROVEMENT FILIP PETROVIĆ	272
URBANIZATION OF METROPOLITAN AREAS – THE IMPORTANCE	
OF NEW SPATIAL DATA ANALYSIS TOOLS	281
Hanna Obracht-Prondzynska	

2ND INTERNATIONAL ACADEMIC CONFERENCE: PT 2015

AQUAPONICS BASED ARTIFICIAL BIOSPHERE INCLUDED IN ARCHITECTUR MITIGATION OF NEGATIVE IMPACTS TO POSITIVE ADDED VALUES OF UR					
SPATIAL STRUCTURES ON LOCAL, REGIONAL AND GLOBAL SCALE PIOTR MAREK SMOLNICKI	288				
INSTITUTIONAL CHALLENGES IN THE URBAN PLANNING WATER SENSITIVE PLACES Višnja Sretović Brković, Matija Brković	297				
TOPIC III: Lifetime Communities and Participation	308				
COHOUSING FOR BUILDING REUSE	309				
Adolfo Baratta, Fabrizio Finucci, Annalisa Metta, Luca Montuori					
HOW TO DESIGN HEALTHY BUILDING FOR HEALTHY LIVING? Anja Jutraž, Sanja Štimac	315				
PARTICIPATORY URBAN PLANNING AND PUBLIC POLICY	326				
Višnja Kukoč					
TOPIC IV: Cultural Patterns and Sensitivity	332				
SENSE OF PLACE IN ARCHITECTURAL DESIGN:					
TOWARDS HEALTHY PLACES P&T 2015	333				
Eglé Navickiené					
HOLIDAY HOMES IN THE VICINITY OF SPLIT, CROATIA, DESIGNED					
BY FRANO GOTOVAC – CONTINUITY OF ARCHITECTURAL HERITAGE	341				
VESNA PERKOVIĆ JOVIĆ	247				
ARCHITECTURE AND ITS AFTERLIFE; GREEN URBANITY GABRIELLA MEDVEGY, GÁBOR VERES	347				
INVESTIGATION OF RELATIONSHIP BETWEEN CULTURE					
OF THE INHABITANTS AND QUALITY OF HOUSING	353				
Ana Špirić, Sanja Trivić					
UTOPIAN PROJECTS DRAWINGS AS INDICATORS					
OF MODERN SOCIETY NEEDS	361				
Vladimir Kovač					
YOUTH AND THE FEELING OF SAFETY IN PUBLIC SPACES	368				
Svetlana Stanarević, Stevan Tatalović					

TOPIC V: Health Intensive Care	375
OPTICAL COHERENCE TOMOGRAPHY - GUIDED PRIMARY PERCUTANEOUS CORONARY INTERVENTION IN ACUTE MYOCARDIAL INFARCTION IGOR KRANJEC	375
FRACTAL ARCHITECTURE OF THE CORONARY ARTERY TREE Matjaž Klemenc	386
HUMANIZATION OF DIALYSIS: GREEN AND COZY Jadranka Buturović-Ponikvar	392
CONTEMPORARY CHALLENGES OF PUBLIC HEALTH AND AN ACTIVE APPROACH TO OVERCOME THEM Marko Vudrag	397
ANALYSIS AND CONTEMPORARY APPROACH OF SPACE DESIGN OF INTESIVE PSYCHIATRIC CARE UNIT Nevena Dutina, Aleksandra Dutina	406
TOPIC VI: Inclusive and Accessible Environment	413
TOWARDS INCLUSIVE FIRE SAFETY DESIGN Valeria Tatano, Elisabetta Carattin	414
INCLUSIVE AND THERAPEUTIC URBAN ENVIRONMENT: INVOLVING USERS IN THE DESIGN PROCESS Ilaria Garofolo, Barbara Chiarelli	422
DEVELOPING INNOVATIVE SOCIAL HOUSING TO FOSTER INCLUSIVE COMMUNITIES	429
SILVIA GRION, PAOLA COLONI URBAN PUBLIC SPACES ACCESSIBLE FOR ALL: A CASE STUDY IN A HISTORICAL DISTRICT OF ROME	436
LUCIA MARTINCIGH, CECILIA DE MARINIS ECOLOGICAL LANDSCAPE, PHYTODEPURATION AND MANMADE	
WETLANDS IN MAGOK LAKE PARK, SEOUL Cristian Suau, Carmelo Zappulla	445
ADVANCED SYSTEMS FOR IMPROVING COMMON HEALTH Urška Kalčič, Janez Peter Grom	458
INCLUSIVE AND ACCESSIBLE ENVIRONMENT: PLANNING FOR THE FUTURE Sankalp Shukla, Apoorva Gangrade, Anshula Gumber	466
FACTS4STOPS – USER NEEDS REGARDING PUBLIC TRANSPORT STATIONS AND ENVIRONMENT CHRISTINE CHALOUPKA-RISSER, DANIEL BELL	472

2ND INTERNATIONAL ACADEMIC CONFERENCE PLACES AND TECHNOLOGIES 2015 KEEPING UP WITH TECHNOLOGIES TO MAKE HEALTHY PLACES

18 @ 19 JUNE 2015 NOVA GORICA SLOVENIA

TOPIC VII: Environmentally Friendly Transport	478
SHIFTING TO MORE ENVIRONMENTALLY FRIENDLY MODES IN LONG-DISTANCE TRANSPORT	479
Aleksandra Nešić, Ivana Čavka, Olja Čokorilo	
ASSESSING PUBLIC TRANSPORT EFFICIENCY IN THE CONTEXT OF SUSTAINABLE DEVELOPMENT	485
Evgenia Yosifova	
THE ROLE OF PUBLIC TRANSPORT PRIORITY	
IN SUSTAINABLE URBAN MOBILITY	492
Dino Šojat, Davor Brčić, Marko Slavulj	
APPLICATION OF PV MODULES ON NOISE BARRIERS	498
Budimir Sudimac, Andjela Dubliević	
PLANNING OF ELECTRIC TRANSPORTATION IN THE KRŠKO REGION	505
Ana Tivadar, Stanko Manojlović, Simon Podkoritnik	
INTELLIGENT TRANSPORT SYSTEMS FOR SMART CITIES	511
Bia Mandžuka, Liupko Šimunović, Mario Ćosić	
TOPIC VIII: Building Technologies	518
RETROFITTING OF MULTI-FAMILY BUILDINGS TOWARDS	
HEALTHIER SETTLEMENTS	519
Aleksandra Krstić-Furundžić, Aleksandra Đukić	
FERROCEMENT ARCHITECTURAL STRUCTURES	
FROM THE ASPECT OF SOCIAL WELL-BEING	526
Aleksandra Nenadović	
DAYLIGHT ANALYSES OF "READY-MADE" FAÇADES WITH	
MODULAR OPENINGS - CASE STUDY LOCATION IN PODGORICA	532
Sanja Paunović Žarić, Irena Rajković, Marija Bojović	
ACTIVE SOLAR SYSTEMS – STUDY OF POTENTIAL FOR APPLICATION	500
IN THE MATERIALIZATION OF TOURIST FACILITIES IN MONTENEGRO	539
Irena Rajković, Sanja Paunović Žarić, Marija Bojović	
PREFABRICATED PASSIVE HOUSE VENTILATED FAÇADE	E 40
PANEL SYSTEM WITH RECYCLED CONCRETE	548
LUBOMIR MIŠČEVIĆ, IVANA BANJAD PEČUR, BOJAN MILOVANOVIĆ	
POTENTIAL ANALYSIS OF DYNAMIC, THERMAL BUILDING SIMULATIONS AND DEVELOPMENT OF MEASUREMENT AIDED SIMULATION TECHNIQUE	556

ISTVÁN KISTELEGDI, BÁLINT BARANYAI, BÁLINT BACHMANN

	56
COMPARISON OF THE SUSTAINABILITY OF DIFFERENT TECHNIQUES FOR THE STRENGTHENING OF REINFORCED CONCRETE SLABS TANYA CHARDAKOVA, MARINA TRAYKOVA	50
SYSTEMS FOR THE REQUALIFICATION OF NON-LISTED ARCHITECTURE: THE <i>"ADAPTIVE EXOSKELETON"</i>	56
FRANCESCA GUIDOLIN	
RECONSTRUCTION AND REVITALIZATION OF THE COMPLEX SENARA, WITHII THE MONASTERY HILANDAR, IN ORDER TO ADAPT TO MODERN TRENDS AN	D
SOCIAL CHANGES Jelena Ivanović-Šekularac, Jasna Čikić-Tovarović, Nenad Šekularac	5
RENEWAL OF JUGOMONT PREFABRICATED RESIDENTIAL BUILDINGS JU-61 Ivan Mlinar, Lea Petrović Krajnik, Tamara Marić	58
BROWNFIELDS AS PLACES AND RENEWABLE ENERGY SYSTEMS AS TECHNOLOGIES: POTENTIALS AND RISKS IN CASE OF SERBIA Anita Stoilkov-Koneski, Zoran Koneski	5
LANDFILL JAKUŠEVEC IN ZAGREB – POTENTIAL FOR NEW SPACE IDENTITY AND ENHANCEMENT OF QUALITY OF LIFE	5
TOPIC X: Active Living and Health	60
OPEN PUBLIC SPACES FOR HEALTHIER CITIES	6
Aleksandra Stupar, Aleksandra Đukić	
RESPONSIBILITY TO THE EMPLOYEES' HEALTH UNAVOIDABLE IN THE CREATIVE AND INNOVATIVE DESIGN OF OFFICE SPACES	6
RESPONSIBILITY TO THE EMPLOYEES' HEALTH UNAVOIDABLE IN THE CREATIVE AND INNOVATIVE DESIGN OF OFFICE SPACES Nikola Z. Furundžić, Dijana P. Furundžić, Aleksandra Krstić- Furundžić HEALTHY PLACES, ACTIVE PEOPLE	-
RESPONSIBILITY TO THE EMPLOYEES' HEALTH UNAVOIDABLE IN THE CREATIVE AND INNOVATIVE DESIGN OF OFFICE SPACES Nikola Z. Furundžić, Dijana P. Furundžić, Aleksandra Krstić- Furundžić	6
RESPONSIBILITY TO THE EMPLOYEES' HEALTH UNAVOIDABLE IN THE CREATIVE AND INNOVATIVE DESIGN OF OFFICE SPACES Nikola Z. Furundžić, Dijana P. Furundžić, Aleksandra Krstić- Furundžić HEALTHY PLACES, ACTIVE PEOPLE Katarina Ana Lestan, Ivan Eržen, Mojca Golobič THE IMPACT OF QUALITY OF PEDESTRIAN SPACES ON WALKING AS A MODERATE PHYSICAL ACTIVITY	6 6 6

STUDENT PHYSICAL EDUCATION FOR HEALTHY LIFESTYLE ALES GOLIA	646
KEY POINTS OF HUMAN AWARENESS AND EMERGENCY PLANNING. SCHOOLS AS A CASE STUDY	655
Maddalena Coccagna ANOTHER SIDE OF THE COMFORT OF LIVING – ELECTROMAGNETIC POLLUTION Nebojša Arsić, Jordan Radosavljević, Nataša Fikfak, Saša Štatkić	661
RECOMMENDATIONS FOR UNIVERSAL DESIGN OF OUTDOOR LEISURE AND RECREATIONAL AREAS LARA SLIVNIK	667
TOPIC XII: Social Networks and Human Basic Needs	673
TOPIC XII: Social Networks and Human Basic Needs VISUAL REPRESENTATION AND EXPERIENCE OF PLACE: CASE STUDY ALHAMBRA IN GRANADA Isidora Karan, Vedrana Ikalović	673 674
VISUAL REPRESENTATION AND EXPERIENCE OF PLACE: CASE STUDY ALHAMBRA IN GRANADA	
VISUAL REPRESENTATION AND EXPERIENCE OF PLACE: CASE STUDY ALHAMBRA IN GRANADA Isidora Karan, Vedrana Ikalović BEYOND THE QUANTIFIED SELF: A LOOK AT THE SOCIAL DIMENSION OF HEALTH	674

APPLICATION OF PV MODULES ON NOISE BARRIERS

Budimir Sudimac¹

Assistant Professor, dipl.ing.arch, Faculty of Architecture, Bulevarkralja Aleksandra 73/II, Belgrade, Serbia, sudimac@arh.bg.ac.rs

Andjela Dubljević

Teaching Assistant, dipl.ing.arch, Faculty of Architecture, Bulevarkralja Aleksandra 73/II, Belgrade, Serbia, andjela.dubljevic@arh.bg.ac.rs

ABSTRACT

The aim of this research is to consider possibilities for improving the street lighting on the E75 highway, which passes through Serbia, using renewable sources of energy. In this paper, we analyzed the possibilities for installing sound barriers along the highway and integrating photovoltaic (PV) modules, which would generate electrical energy to power the lighting on the section of the highway running through Belgrade. Sound barriers are necessary along the highway running through populated areas, and they are identified as elements on which PV modules for power generation can be installed. The illumination of the highway powered by conventional sources of electricity is very expensive and has negative environmental impact, which is the reason why this paper investigates the connection between sound barriers and electricity generation from renewable energy sources. The paper seeks to show the hybridity of using sustainable technologies in solving environmental issues. This structure solves the problem of noise in populated areas and provides the electricity from renewable source.

Keywords: noise, PV modules, solar energy, sound barriers.

INTRODUCTION

This paper presents the possibilities of using solar energy for illuminating the highway running through Belgrade, the capital of Serbia. Serbia has 267 sunny days per year, and each square meter of the earth's surface receives 1000 hours of solar energy. In Serbia there is a potential to generate electricity using solar power because the insolation is 20-30 per cent more than the European average. There is an average of 2096 hours of sunlight per year (which accounts for 45.48 per cent of potential/possible insolation). The highest insolation of about 10 hours per day is in July and August, while December and January are the cloudiest, with insolation of 2 to 2.3 hours per day (Fig. 1). The mean annual number of cloudy

¹ Corresponding author

days is 103.8, most of them during winters. The mean number of clear days per year is 67. The application of photovoltaic (PV) modules for generating the electricity into sound barriers provides the electricity to illuminate the section of the highway using alternative sources. At the same time, the noise level is reduced in a populated area, as well as the level of CO2 in the air. The calculations and computer simulations of PV system for all variants of integrating modules into sound barriers were made in the software PVSYST version 4.37. Standard modules with mono-crystalline cells were used for the calculations.

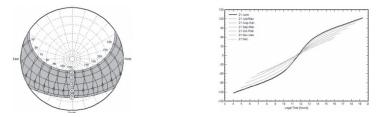


Figure 1: Annual Solar paths diagram and Sun's azimuth at Belgrade (44.4^oN, 20.4^oE).

Methods

The analysis presented in this paper is hypothetical and it aims to demonstrate the architectural and energy possibilities of using active solar systems by integrating PV modules on noise abatement elements on the section of the highway which runs through Belgrade. The results obtained were comparatively analyzed. Energy efficiency is treated through the consumption of electricity for powering the lighting on the highway using standard light sources – high pressure sodium and new technologies using LED technology.

NOISE BARRIERS

Reducing the negative impact of traffic noise on the environment can be successfully solved by installing appropriate barriers, structures that prevent direct noise transmission. Noise barriers interrupt the original straight line path of sound waves, thus reducing the noise level (Fig. 2a). The effect of noise reduction is reflected in creating an acoustic shadow behind the barrier and it reduces the sound level coming to the receiver. Traffic noise barriers are solid obstacles installed along the road to absorb, transmit or reflect sound. Barriers reduce the level of noise by 5 to 10 dB, thus reducing the level of traffic noise by as much as half. To effectively reduce the noise coming around the ends of the barrier, it should be 8 times as long as the distance between the receiver and the barrier itself. It is desirable to locate a noise barrier four times its height from settlements and provide landscaping near the barrier to avoid visual dominance. A barrier can achieve a 5dB noise level reduction when the line-of-sight is broken from the highway. After the line-of-sight is broken, the barrier may reduce the noise level by an additional 1.5dB for each one meter of barrier height (Fig. 2b). The level of noise generated

by traffic on the highway through Belgrade is 70-90db. According to the law in Serbia, the maximum allowed noise level in residential areas is 55dB during the day, and 45dB during the night. In Belgrade, there are no noise barriers which meet the standard. The vicinity of the highway and the noise produced is a serious environmental issue for the analyzed area in Belgrade.

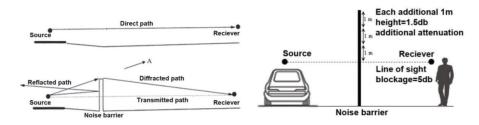
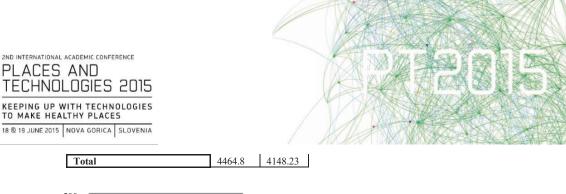
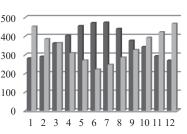


Figure 2: a) Path of sound waves without and with noise barrier b) High of noise barrier.

Illumination of the e75 highway


The E75 highway is the longest international route; class A, running north-south from Norway to Greece. The total length of this highway is 5639 km, and the section running through Serbia spans 239km and it is a part of the Pan-European corridor X. The lighting is provided using high-pressure sodium light sources, of 400W, featured by high luminous efficiency and limited spectrum of radiation peaking in the yellow-orange. The length of the highway running through Belgrade is 25km, and a section, 8.5km long, 2x12m wide, was chosen for detail analysis. This section of the highway is illuminated by 420 light sources mounted on 210 metal poles, each 12m high. The poles are arranged centrally, at the distance between each other of 40m and a slope of 5⁰.


ANALYSIS OF POWER CONSUMPTION FOR ILLUMINATING

According to the valid calendar for switching public lighting on and off for the city of Belgrade (updated 16 October 2011), the total number of operating hours of public lighting in Belgrade is 4148.23 hours per year.

operating hours of public lighting of highway.									
Month	Length of daylight for Belørade	Operating hours of public lighting	Month	Length of daylight for Relarcodo	Operating hours of public				
1	282.32	452.00	7	473.42	248.00				
2	291.44	385.15	8	439.93	286.45				
3	362.99	364.15	9	376.96	327.00				
4	403.52	310.13	10	343.14	392.45				
5	455.08	271.15	11	294.07	422.00				
6	471.40	222.30	12	270.56	467.45				

Table 1: Length of daylight for Belgrade and operating hours of public lighting of highway.

Length of daylight

■ Number of operating hours of public lighting

The shortest number of operating hours of lighting is in June - 222.30 hours, and the highest is in December and it is 467.45 hours. Total length of daylight for Belgrade and total number of operating hours of public lighting of highway by month are shown in Table 1. The existing sodium lamps have 400W installed power/each. The number of lamps on the analyzed section of the highway is 420.The required amount of electricity to power this type of lighting, depending on the number of operating hours of public lighting, is 696902.64 kWh per year. There is a noticeable difference in reducing the electricity consumption by replacing the light source.The rationalization of electricity consumption for street lighting on the section of the highway is possible by replacing the existing 400W sodium lamps with more modern lamps for public lighting, with degree of protection IP66, 279 LED. Comparison of consumption of electricity for sodium lamp 400W and 279W LED lamp are shown in Table 2.

Month	Number of operating hours of lamp	Consumpti on of 400 W sodium Jamp	Consumptio n of 279W LED lamp	Month	Number of operating hours of lame	Consumptio n of 400 W sodium lamp	Consumptio n of 279W LED lamp
1	452	75936	52965	7	248	41664	29060
2	385	64705	45132	8	286	48123	33566
3	364	61177	42671	9	327	54936	38318
4	310	52102	36341	10	392	65931	45987
5	271	45553	31773	11	422	70896	49450
6	222	37346	26049	12	467	78531	54776
Total	4148	696902	486089				

Table 2: Consumption of electricity for sodium lamp 400W and 279W LED lamp by month.

RESULTS AND DISCUSSION

For a comparative analysis of the integration of photovoltaic modules into sound barriers, different positions of PV modules were proposed giving different results

of total annual electricity generation. For the analysis, 6 variants of positions of photovoltaic modules were adopted (Fig. 3): Variant 1 - PV modules in vertical wall, opaque; Variant 2 - PV modules in vertical wall with sheds disposition; Variant 3 - PV modules in vertical wall with sun-shield disposition; Variant 4 - PV modules in vertical wall, semi-transparent (50%); Variant 5 - PV modules in vertical wall with sun-shield disposition; Variant 6 - PV modules in vertical wall with sun-shield disposition, semi-transparent (50%); Variant 6 - PV modules in vertical wall with sun-shield disposition, semi-transparent (50%). All the variants of the integration of PV modules into sound barriers were analyzed for the same surface area of the barrier, i.e. 4900 sq.m. Photovoltaic modules integrated into the noise abatement element (Variant 1), covering the total area of 4900 sq.m. monthly generate the amount of electricity ranging from min 24379 kWh in December to max 88147 kWh in July. The total annual electricity production is 698229 kWh in Variant 1. The required electricity to power lighting using sodium lamps is 696902.64 kWh, and for LED lamps 486089.59 kWh.

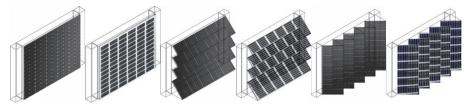


Figure 3: Design of 6 different variants of integrated PV modules.

Photovoltaic modules integrated into the noise abatement element (Variant 2), covering the total area of 4900 sq.m., monthly generate the amount of electricity ranging from min 23414 kWh in December to max 86285 kWh in July. Photovoltaic modules integrated into the noise abatement element (Variant 3) monthly generate the amount of electricity ranging from min 20036 kWh in January to max 71073 kWh in August. Photovoltaic modules integrated into the noise abatement element (Variant 4), monthly generate the amount of electricity ranging from min 12190 kWh in January to max 44073 kWh in July. Photovoltaic modules integrated into the noise abatement element (Variant 4), monthly generate the amount of electricity ranging from min 12190 kWh in January to max 44073 kWh in July. Photovoltaic modules integrated into the noise abatement element (Variant 5), generate monthly the amount of electricity ranging from min 11707 kWh in December to max 43142 kWh in July. Photovoltaic modules integrate the amount of electricity ranging from min 10018 kWh in January to max 35537 kWh in August. Comparative review of monthly and annual production of electricity for all 6 variants of PV modules is shown in Table 3.

2ND INTERNATIONAL ACADEMIC CONFERENCE PLACES AND TECHNOLOGIES 2015

KEEPING UP WITH TECHNOLOGIES TO MAKE HEALTHY PLACES

18 @ 19 JUNE 2015 NOVA GORICA SLOVENIA

Month	Variant 1	Variant 2	Variant 3	Variant 4	Variant 5	Variant 6
1	24675	23869	20036	12338	11934	10018
2	37130	36280	30892	18565	18140	15446
3	57834	56565	48429	28917	28282	24215
4	67037	65494	54976	33518	32747	27488
5	81244	79402	60057	40622	39701	30028
6	81077	79215	54186	40538	39607	27093
7	88147	86285	61079	44073	43142	30539
8	86293	84640	71073	43146	42320	35537
9	69141	67800	59835	34571	33900	29918
10	52368	51327	44807	26184	25663	22404
11	28903	28103	23861	14452	14051	11931
12	24379	23414	20117	12190	11707	10058
Total	698228	682394	549348	349114	341194	274675

Table 3: Comparative review	of monthly	and ann	al production	of	electricity	for	different
variants of PV modules.							

CONCLUSION

The contribution of renewable sources of energy to electricity production using PV modules was evaluated through comparative analysis of variant solutions for integrating PV modules into noise barriers. Annually, integrated photovoltaic modules can generate the amount of electricity ranging from min 274675 kWh (Variant 6) to max 698228 kWh (Variant 1). The analysis showed that only Variant 1 can generate enough electricity for lighting. The percentage share of obtained electricity from hypothetical models in relation to the annual demand is the following: Variant 1 – 100 per cent, Variant 2 – 97.92 per cent, Variant 3 – 78.83 per cent, Variant 4 – 50.01 per cent, Variant 5 – 48.96%, Variant 6 – 39.41%. It is noted a significant difference in amounts of generated electricity by variants. It may be concluded that standard opaque mono-crystalline PV modules, placed vertically, generate the most electricity. Standard semi-transparent mono-crystalline PV modules with sun-shield disposition are the least efficient.

Adequate orientation, choice and position of PV modules may contribute to their greater energy efficiency. It is necessary to further analyze the combination of individual variants to meet shaping and visual aspects of the application of noise barriers in populated areas. In implementing such systems, the adaption of PV modules to the designed type of noise barrier could pose a problem.

REFERENCES

Holties, H.A. 1998. "Railway Noise Reduction using Porous Sur-faces and Small Barriers." *Euro Noise*, 98: 301–305.

Johannsen, K. and Möser. M. 2000. "The Influence of the Sur- face of Small Barriers on the Sound Reduction Efficiency of Shroud-Barrier Combinations." *Seventh International Congress on Sound and Vibration*, 2623–2630.

Jones, C.J.C. and Thompson, D.J. 1999. "Application of Numerical Models to a System of Train- and Track-Mounted Acoustic Shields." *Sixth International Congress on Sound and Vibration*, 2661–2668.

Krstic-Furundzic, A. 2007. "PV Integration in Design of New and Refurbishment of Existing Buildings: Educational Aspect." *JAAUBAS-Journal of the Association of Arab Universities for Basic and Applied Sciences*, 4: 135-146.

Möser, M. and Volz., R. 1999. "Improvement of Sound Barriers using Headpieces with Finite Impedance." *JASA*, 106: 3049–3060.

Nordmann, T., Frölich, A., Clavadetscher, L. 1997. "Eight Years of Operation Experience with two 100 kWp PV Soundbarriers." *14 th European Photovoltaic Solar Energy Conference*, Barcelona, Spain.