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A Decision Framework for Optimal Pairing of
Wind and Demand Response Resources

1

2

C. Lindsay Anderson, Member, IEEE, and Judith B. Cardell, Member, IEEE3

Abstract—Day-ahead electricity markets do not readily accom-4
modate power from intermittent resources such as wind because5
of the scheduling difficulties presented by the uncertainty and6
variability in these resources. Numerous entities have developed7
methods to improve wind forecasting and thereby reduce the8
uncertainty in a day-ahead schedule for wind power generation.9
This paper introduces a decision framework for addressing the in-10
evitable remaining variability resulting from imperfect forecasts.11
The framework uses a paired resource, such as demand response,12
gas turbine, or storage, to mitigate the generation scheduling13
errors due to wind forecast error. The methodology determines the14
cost-effective percentage, or adjustment factor, of the forecast er-15
ror to mitigate at each successive market stage, e.g., 1 h and 10 min16
ahead of dispatch. This framework is applicable to any wind17
farm in a region with available pairing resources, although the18
magnitude of adjustment factors will be specific to each region19
as the factors are related to the statistics of the wind resource20
and the forecast accuracy at each time period. Historical wind21
data from New England are used to illustrate and analyze this22
approach. Results indicate that such resource pairing via the23
proposed decision framework will significantly reduce the need for24
an independent system operator to procure additional balancing25
resources when wind power participates in the markets.26

Index Terms—Decision support, demand response, electricity27
markets, wind integration, wind power.28

I. INTRODUCTION29

MANY states in the U.S. have passed either voluntary or30

mandatory requirements for a percentage of energy in31

their region to be served by renewable resources [1]. With hydro32

resources already exploited in most regions, it is assumed that33

wind power will be a main contributor in meeting these new34

standards. Although the energy generated by wind turbines is35

close to zero cost, nonzero costs are incurred when the power36

system as a whole responds to the uncertainty and variability37

associated with the wind resource itself. These costs arise from38

the need to dispatch other resources to ramp up or down to39

mitigate wind power deviating from its forecast output.40

System analyses often focus on the costs of using the existing41

power system and, hence, conventional technologies, such as42

Manuscript received September 21, 2012; revised November 15, 2012;
accepted November 19, 2012. This work was supported in part by the
Consortium for Electric Reliability Technology Solutions and in part by the
Office of Electricity Delivery and Energy Reliability of the U.S. Department of
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Northampton, MA 01063 USA.
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gas turbines, to mitigate wind [2], [3] and to increasingly 43

include the option of storage as well. A third option is to use 44

responsive demand to mitigate the variations in wind output that 45

arise from forecasting errors. System operators are currently 46

exploring the concept of using responsive demand to mitigate 47

wind variability and for ancillary grid benefits. In particular, the 48

California Independent System Operator (CAISO) is currently 49

developing the grid state indicators to inform end-user response 50

decisions [4], [5]. 51

This paper presents a methodology to reduce the net vari- 52

ability of the wind power output and to therefore allow wind 53

to participate more fully in forward markets. The proposed 54

methodology uses power generation forecasts 1 h and 10 min 55

ahead of dispatch. These forecasts are compared, successively, 56

to the submitted day-ahead schedule to quantify the expected 57

megawatt deviation in output (i.e., the variability) for the suc- 58

ceeding time period (1 h and 10 min). The proposed framework 59

then schedules a dedicated paired resource, such as responsive 60

load or storage, to mitigate the deviation from the day-ahead 61

schedule. The optimal amount of the forecast error to be miti- 62

gated at 1 h and 10 min ahead of real time is determined through 63

the proposed methodology. 64

Results demonstrate that the optimum level of mitigation 65

with the paired resource is related to the relative costs of the 66

resource, the accuracy of the wind forecast, and the penalty 67

imposed for spilling wind energy. The capacity of a paired 68

resource that would be required and the costs associated with 69

the use of responsive load as the pairing resource are presented 70

in a case study. 71

Section II discusses the government regulations and recent 72

state-level developments related to the participation of wind 73

generation in electricity markets. Section III describes the 74

framework proposed for optimal pairing of resources with wind 75

generation. The framework is tested using Nantucket sound 76

region data, described in Section IV, and Section V quantifies 77

the capacity that would be required from each of the paired 78

resource options to maintain the net wind generation output 79

to within acceptable deviation from the submitted day-ahead 80

schedule. Section VI presents the conclusions and future work. 81

II. WIND POWER PARTICIPATION 82

IN ELECTRICITY MARKETS 83

Electricity market structures operated by independent system 84

operators (ISOs) in the U.S. include day-ahead, hour-ahead, 85

and real-time markets, as well as an increasing number of 86

ancillary services markets. As investment in wind generation 87

grows and regional expansion plans include possibilities for 88

1932-8184 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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significant wind capacity, the uncertainty and variability in89

wind generation do impose real costs on system operation90

in terms of efficient unit commitment and through providing91

services such as balancing and regulation.92

The characteristic of uncertainty in wind generation can93

be addressed to some extent by improving the accuracy of94

forecasting the wind resource. To this end, the Minnesota Public95

Utilities Commission ordered a study to investigate the impacts96

of incorporating wind generation at the level of 20% of retail97

electricity sales by the year 2020 [6]. For this study, sophisti-98

cated meteorological modeling was performed by WindLogics99

[7] for 2003, 2004, and 2005. The results of this study demon-100

strated that the day-ahead forecast errors were as low as 20%. In101

addition, the broader analysis, as performed by EnerNex, found102

that, as spatial and geographic diversity of the wind turbine sites103

increased, the error decreased by up to 43% [6].104

A report conducted by GE Energy consulting on behalf of the105

CAISO [8], showed that the implications of ignoring forecasts106

were so significant that a central forecasting approach was107

implemented. A mechanism to facilitate the use of the state-108

of-the-art wind forecasting has been implemented in Califor-109

nia through the Participating Intermittent Resource Program110

(PIRP) [9], [10]. If the participating resources submit schedules111

consistent with the ISO-approved forecasts, then they are not112

subject to penalties for deviations from the forecasts. The113

PIRP in California has been operating since August 2004, and114

achieved cumulative average deviation of the forecast close to115

1% by 2005 and 2009 [11].116

A recent study from the New York ISO (NYISO) provides a117

detailed analysis of the impacts of increasing wind penetration118

on power system operations and the need for transmission119

system expansion. The analysis is based upon serving “net120

load,” determined by subtracting the variable wind generation121

from the variable load data series. As with many previous122

analyses, the NYSIO study assumes wind plants will operate123

in the markets as price takers, which allows this use of net load.124

These state-level analyses and programs demonstrate that125

wind forecasting decreases the uncertainty in day-ahead sched-126

ules, and when combined with flexible market structures and127

settlements facilitate increased involvement of wind power128

generation in the day-ahead markets.129

Although, some of the inherent variability in wind generation130

remains, even as the uncertainty is reduced. To address this131

variability, this paper investigates pairing wind output with132

responsive demand to reduce the variability in the net wind133

output. On the surface, this appears similar to using a net-134

load data stream as in the NYISO study. The difference is that,135

for the analysis presented in this paper, responsive load (not136

the entire system load) is actively paired with wind, and both137

are assumed to participate in the markets. Recent advances in138

demand response that would enable this pairing are discussed139

in earlier work from this project [12].140

A contribution of the analysis presented in this paper is to141

advance the discussion of whether wind plants can and should142

participate fully in electricity markets. Such an assumption143

carries with it the need to demonstrate that such participation144

will not degrade the efficiency of the markets or harm system145

operations. This paper demonstrates the ability of wind to146

Fig. 1. Flowchart of decision structure for dispatch of paired (demand re-
sponse) resource.

participate in electricity markets as facilitated by the proposed 147

method for mitigating the day-ahead schedule deviations with 148

optimized dispatch of demand response. This method addresses 149

the issue of whether wind will or should always assume a 150

passive price-taker role in electricity markets, or whether, as the 151

presence of wind increases significantly, it should have active 152

participation in more aspects of power systems and electricity 153

market operations. 154

III. FRAMEWORK FOR PAIRING WIND AND DRRS 155

The proposed framework, discussed here, determines the 156

optimal amount of a paired resource to schedule to mitigate 157

the variability in wind power generation. An important aspect 158

of the proposed framework uses updated wind forecasts at 159

each market stage to schedule the pairing resource as the 160

time horizon approaches real-time dispatch. The amount of the 161

paired resource scheduled at each time period is related to the 162

magnitude of the discrepancy between the updated forecast and 163

the day-ahead schedule. 164

At each time period considered, the shortfall or overshoot 165

of forecast wind production is assessed, and the need for 166

demand response or other paired resources is determined. The 167

framework is shown in Fig. 1. As shown in this flowchart, 168

the first step is to compare the day-ahead schedule to the 169

hour-ahead schedule (both discussed in more detail in the 170

following). The result of this comparison is a megawatt value 171

of generation shortfall or excess expected between the day- 172

ahead and hour-ahead schedules (see box 3 in Fig. 1). Based 173

on the magnitude of this discrepancy, a decision will be made 174

whether to activate the demand response resource (DRR) or not 175

(see box 4 in Fig. 1). The purpose of this assessment one hour 176

ahead of dispatch is to take advantage of the additional weather 177

information available and to be able to utilize slower responding 178

resources to mitigate some fraction of the expected scheduling 179

deviation. However, as further deviations are expected between 180

the hour-ahead schedule and real-time output, the paired DRR 181

will never be dispatched to meet completely the deviation be- 182

tween the day-ahead and hour-ahead schedules. The framework 183
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Fig. 2. Distribution of day-ahead forecast errors as percentage of capacity.

developed below is used to determine the optimal portion of the184

mismatch to mitigate at each time step. The remaining excess185

or shortfall in wind power output will be addressed with faster186

responding demand response alternatives, to be dispatched after187

each next-10-min forecast is made (see boxes 6–8 in Fig. 1).188

Day-Ahead Forecast: At t0, a day-ahead forecast determines189

a day-ahead schedule G1 for the wind farm. For this project, an190

autoregressive (AR) persistence model is used for forecasting191

wind generation one day ahead, i.e.,192

G1 = α24h + β24hP24h

where α24h and β24h are regression parameters, and P24h is the193

wind generation observed 24 h ahead.194

Although more sophisticated forecasting algorithms are re-195

quired for actual wind farm scheduling, for purposes of illus-196

trating the proposed framework, the linear regression model is197

sufficient. Fig. 2 provides a sample histogram of forecast errors198

for one year (8760 observations) as a percentage of capacity199

for a single site in New England. The mean absolute error200

(MAE) corresponding to these data are approximately 5%. This201

corresponds well to the forecasting accuracy of the NYISO at202

4.8% of the hour-ahead forecast [7].203

Hour-Ahead Corrections: Although the day-ahead forecast204

is useful for initial scheduling, more accurate information about205

expected wind speed is available in the hour-ahead time frame.206

Although the most accurate wind speed data will not be avail-207

able until 5–10 minutes ahead of actual dispatch, a first estimate208

of the discrepancy between the day-ahead forecast and real-209

time generation can be made 60–90 min ahead of real time.210

The correction at t = t0 + 23 is determined by the discrepancy211

∆1h, between the day-ahead schedule and the updated hour-212

ahead forecast (determined 90 min in advance of dispatch).213

Once again, an AR model is used for forecasting. At one214

hour ahead (t = t0 + 23), the accuracy of a persistence model215

is significantly higher than it is day ahead, i.e.,216

∆1h = G1 − (α1h + β1hP1h)

DR1h =

{
∆1hγ1h, if ∆1h > 0
0, otherwise

where DR1h is the quantity of DRR to schedule one hour217

ahead of dispatch, calculated from γ1h, which is the fraction of218

forecast deviation to cover with the paired resource, one hour 219

ahead. 220

A main contribution of the framework proposed here is to 221

determine the value of γ1h (and of γ10min, see the following) 222

that will trade off between minimizing the deviation in wind 223

generation in real time with minimizing the cost of dispatching 224

the paired resource. The case study in Section V demonstrates 225

the process for selecting γ1h and γ10min. 226

Ten-Minute Ahead Corrections: Ten minutes before the real- 227

time dispatch, a third forecast is determined. At this time, the 228

discrepancy between the hour-ahead schedule and 10-min fore- 229

casts is estimated (see box 7 in Fig. 1), where this discrepancy, 230

∆10min, is between the day-ahead schedule and the sum of the 231

10-min forecast and scheduled demand response resulting from 232

the hour-ahead forecast DR1h. This is described as follows: 233

∆10min = G1 − DR1h − (α10min + β10minP10min)

DR10min =

{
∆10minγ10min, if ∆10min > 0
0, otherwise

where γ10min and DR10min are the fraction of forecast deviation 234

to cover and the quantity of DRR to schedule 10 min ahead, 235

respectively, (see box 8 in Fig. 1). 236

Minimizing Paired Resource Costs Associated With This 237

Strategy: The final step in the proposed framework uses the 238

cost of the DRRs that are utilized across all time scales. The 239

fractions of the shortfall or overgeneration to mitigate at each 240

decision point, i.e., γ1h and γ10min, are estimated by minimiz- 241

ing the overall cost of paired resources in this strategy. This cost 242

is given by 243

CT = ∆1hγ1hC1h + ∆10minγ10minC10min + ∆RTCRT.

The fractions to mitigate at both the 1-h- and 10-min-ahead time 244

horizons are determined by selecting the mitigation fractions 245

γi to minimize the overall cost of the strategy. To simplify 246

notation, henceforth, the decision points will be denoted with 247

numbers [1, 2, 3] representing hour ahead, 10 min ahead, 248

and real time, respectively. Note that it is assumed that real- 249

time shortfalls are covered through procurement in the real- 250

time energy market or penalized at the real-time market price 251

CRT. This assumption is not critical to the formulation and 252

can be altered to represent specific rules in any market under 253

consideration. 254

The overall framework is presented mathematically as follows: 255

arg min
γi, i=1,2,3

[
CT = γ1∆

+
1 C1 + γ2∆

+
2 C2 + ∆+

3 C3 + ∆−
3 CP

]

Subject to
CRT > C10min > C1h > 0

CP ≥ 0

0 ≤ γi ≤ 1, for i = 1, 2, 3.

Note that it is assumed here that C1h < C10min < CRT. In fact, 256

the actual costs are not important in determining the appropriate 257

mitigation fractions γ as long as the relative costs can be 258

estimated. Also note that overgeneration penalties can be also 259

included in this framework by defining the penalty cost for 260

overproduction as CP > 0; otherwise, when CP = 0, there is 261
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Fig. 3. Chart of time-series wind-speed data preaggregation and postaggrega-
tion algorithms.

no penalty for overgeneration, and the last term in the cost262

function CT is zero.263

The following step is application of this framework to a case264

study. For this purpose, offshore wind data from Nantucket265

Sound in Massachusetts is selected and discussed in Section IV.266

IV. CASE STUDY REGION: NANTUCKET SOUND267

To test the feasibility of this decision framework, a case study268

of a hypothetical wind farm is presented. The wind farm is269

modeled using data for Nantucket Sound, obtained from [13]270

and [14] and includes wind speed measurements at 10-min271

intervals.272

To represent the aggregate output of a wind farm instead of a273

single turbine, the effects of geographic diversity across the in-274

stallation area are considered. These effects inherently decrease275

the variability of the wind generation and include two factors:276

the propagation of the wind and its associated dynamic events277

(e.g., wind gusts) through the wind farm, and the smoothing of278

the aggregate power curve due to multiple turbines. To model279

the decreased variability from the geographic diversity, the280

10-min raw data are processed based on the algorithm presented281

in [13]. Samples of the results obtained from this process are282

presented in Figs. 3 and 4. Fig. 3 compares the distribution283

of wind speeds before and after adjustment, and shows signif-284

icant smoothing effects for higher wind speeds, between 5 and285

10 m/s. Fig. 4 shows the smoothing in the time series of wind286

power generation before and after applying the aggregation287

algorithm described in [12].This time series is used to represent288

the output from a hypothetical wind farm in Nantucket Sound.289

These figures are one example of the decreased variability in290

wind power generation at any wind site as a result of geographic291

diversity.292

V. CASE STUDY RESULTS293

The decision framework in Section III is then applied using294

the data from Nantucket Sound discussed in Section IV. The295

steps required for this analysis are: determination of the optimal296

mitigation fractions γ1h and γ10min, implementation of the297

framework using historical data and forecasts, and analysis of298

cost and variability outcomes.299

Note that these results do not represent a 24-h time series300

simulation but rather are analyses of distinct snapshots at301

Fig. 4. Time series of wind power generation preaggregation and postaggre-
gation algorithms.

Fig. 5. γ values: DRR cost 10 min ahead/1 h ahead = 1.

different time steps, gradually approaching real time, with the 302

day-ahead schedule initiating the analysis, as shown in Fig. 1. 303

Determining the Mitigation Fractions, γT : In Section III, 304

the proposed decision framework was discussed as a general 305

approach. The objective of this framework is determining the 306

magnitude of the forecast error to mitigate with the alternative 307

resource at each step. These magnitudes are represented by the 308

parameter γT , where T denotes the time remaining to real-time 309

dispatch. As aforementioned, the value of γT must depend on 310

the accuracy of the forecast and the cost of the pairing resource. 311

The fact that forecast accuracy improves as T decreases (as the 312

time to dispatch gets closer) means that each γT is likely to 313

have a different value at each time horizon (T ). However, faster 314

ramping resources often have higher marginal costs; therefore, 315

the cost of the pairing resource increases as T decreases. 316

Balancing these opposing factors is necessary to determine 317

the optimal γT value for each T and can be quantified by 318

optimization. To frame the optimization, it is not necessary 319

to know the actual costs of the alternative resources at each 320

T but only to know the relative costs. For illustration, we 321

consider a range of DRR costs and the resulting γT values. The 322

optimization is straightforward and solved in this case study 323

using Solver tool in Microsoft Excel. 324

Representative results from applying the equations in 325

Section III are provided in Fig. 5. This figure shows the optimal 326
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mitigation fractions for hour-ahead and 10-min-ahead DRRs327

given different ratios of real-time to hour-ahead resource costs.328

Note that each line on the figure includes information for the329

mitigation factor γT at both time steps, i.e., hour ahead and330

10 min ahead, assuming any additional forecast error between331

the 10-min-ahead time frame and real time will be mitigated332

by the real-time resources. In Fig. 5, the x-axis represents333

an increasing cost ratio for real time to hour-ahead DRRs.334

Each line then graphs the optimal γT values for mitigating335

wind variability first with hour-ahead DRR γ1h and then with336

10-min-ahead DRR γ10min. The lines differ in terms of the337

assumed fixed ratio of 10-min-ahead to hour-ahead resource338

costs.339

The first two series (blue) in Fig. 5 depict a scenario in which340

the cost for DRRs is the same at 1 h and 10 min ahead of341

dispatch. In this case, the optimal γ values show that no DRRs342

should be used to cover deviations at an hour ahead, i.e., the343

line (with circles) for γ1h is equal to zero for all real-time-to-344

hour-ahead DRR cost ratios. Since there is no additional cost345

incurred for waiting to mitigate the wind power forecast errors346

until 10 min ahead of the real-time dispatch, it is optimal to use347

the more accurate forecast at 10 min before dispatch to make348

decisions on mitigating the wind variability. It is also shown349

in Fig. 5 that γ10min (shown with dashed line) varies with the350

ratio of real-time to hour-ahead DRR costs. For this scenario, in351

which the hour-ahead and 10-min-ahead DRRs have the same352

cost, the optimal fraction of the wind variability to mitigate353

in the 10-min-ahead time period increases to 100% for the354

situation in which real-time DRR costs are 150% or more of355

the cost of hour ahead.356

The third and fourth series in Fig. 5 illustrate the case of357

a DRR that, at 10 min ahead of dispatch, demand response358

costs are 50% more than of the hour-ahead resources. This359

difference is significant enough to overcome the cost associated360

with the forecast inaccuracies at 1 h ahead. In this case, the361

expected deviation in wind generation at 1 h ahead should be362

mitigated by the cheaper hour-ahead DRR in entirety, even with363

the knowledge that the anticipated deviation is likely to change364

once the improved 10-min-ahead forecast is available.365

Similar to the situation in the first series, the mitigation366

fraction at 10 min ahead γ10min varies in a predictable way as367

a function of the cost of real-time DRR. Initially, none of the368

10-min-ahead DRRs are cost effective. Once the real-time costs369

reach twice the cost of 10-min resources however, the 10-min370

mitigation factor γ10min reaches 100%.371

Finally, the fifth and sixth series (triangles) in Fig. 5 show372

similar results, but for the scenario in which the cost of 10-min-373

ahead DRR is nearly twice that of hour ahead resources. In374

this situation, it is also cost effective to mitigate the entire375

expected deviation with hour-ahead resources. In contrast to376

the smaller cost ratio series, in this case, it is not until the cost377

ratio for real-time to hour-ahead resources reaches 2.6 that it is378

optimal to mitigate the entire 10-min-ahead deviation with the379

10-min DRR.380

The results presented in Fig. 5 illustrate the optimal fraction381

of the wind scheduling error to be mitigated at each market382

stage, given different cost ratios for the DRRs that can respond383

in the different market time periods. These results are applicable384

Fig. 6. Comparison with and without spillage penalty.

when there is no financial penalty associated with scheduling 385

errors. 386

In general, electricity market design has imposed a penalty 387

on generators that deviate more than 1.5%, for example, from 388

their schedule. This financial incentive to meet a submitted 389

schedule is consistent with the operation of dispatchable gen- 390

erators. However, it has been recognized that such penalties 391

are not consistent with the operation of generators that rely 392

on an intermittent resource such as wind since the operator of 393

such a nondispatchable generator would rarely be responsible 394

for schedule deviations. Therefore, the penalties for schedul- 395

ing deviations included in Open Access Tariffs are routinely 396

waived for wind farms, at least at the current level of low 397

penetration. 398

The case study presented here recognizes that the schedule 399

deviation penalties could be imposed on nondispatchable forms 400

of generation as penetration of these resources increases. The 401

case studies are not embedded in any specific market design 402

but rather include the possibility of such penalties and analyze 403

their effect. 404

Fig. 6 builds upon the scenario in Fig. 5 by analyzing the 405

effect of a penalty for not meeting the submitted day-ahead 406

schedule. If there were to be penalties imposed on wind gen- 407

eration for generation deviations in real time (based upon the 408

day-ahead forecast), then there would be additional financial 409

incentives to schedule a paired resource for mitigating the wind 410

variability. 411

Fig. 6 compares the cost-effective mitigation fractions γ1h 412

and γ10min, when there is a penalty associated with over- 413

generation, in comparison with the same scenarios without 414

overgeneration penalty. Note that this penalty could be a direct 415

financial penalty imposed by an ISO or could be the oppor- 416

tunity cost associated with unnecessarily spilling wind that 417

appeared to be excess generation an hour or 10 min ahead of 418

dispatch. 419

Fig. 6 shows that with a penalty for overgeneration, the 420

hour-ahead mitigation fraction (γ1h) does not ever reach unity, 421

regardless of the fact that the resources that can respond 1 h 422

ahead are assumed to be only half the cost of the faster 423

resources that respond in the 10-min time frame. This result 424
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TABLE I
ASSUMED DRR COSTS FOR NANTUCKET SOUND

TABLE II
γ VALUES FOR THREE DIFFERENT MITIGATION STRATEGIES

is consistent with the fact that if too much of the hour-ahead425

DRR is scheduled, there is significant risk of incurring an426

overgeneration penalty in real time.427

Fig. 6 also shows that it only becomes cost effective to428

mitigate the entire forecast error at the 10-min time frame when429

the relative costs of real-time to hour-ahead resources reach a430

ratio of 2.8, when an overgeneration penalty is imposed.431

It is cost effective to cover the entire deviation at lower432

cost ratios, for both the hour-ahead and 10-min-ahead time433

frames, only when the wind generator is not penalized for434

overgenerating.435

The results for the particular γT shown here are specific436

to the data set from Nantucket Sound, the forecasting method437

used, and the scenarios defined in Figs. 5 and 6. The overall pat-438

tern of the results is useful for demonstrating implementation of439

the proposed decision framework for determining the amount of440

a paired resource to schedule for mitigating the uncertainty in441

wind power schedules.442

In the following section, we consider the costs associated443

with the implementation of this strategy for the Nantucket444

Sound case study.445

Cost Results for Nantucket Sound Case Study: In consider-446

ing the benefit of using the proposed strategy for mitigating447

wind variability, it is important to consider the availability of448

the proposed pairing resources and the cost of implementation.449

To this end, we analyze the outcome of the decision framework450

using the Nantucket Sound site and DRR costs, as shown in451

Table I. These costs are consistent with Fig. 5, and assuming452

the real-time-to-hour-ahead cost ratio (x-axis) to be 2.0.453

For comparing the use of the proposed decision framework to454

two somewhat naive approaches, three scenarios with different455

sets of gamma values are analyzed, shown in Table II.456

The first scenario is the case in which no DRR used until real457

time and the simplest approach. The second scenario represents458

arbitrary values, as would likely be chosen if there were no459

guiding decision framework. For this example, these values are460

selected to bracket the gamma values that would result from461

applying the decision framework proposed here. Thus, the third462

set of gamma values are those obtained in Fig. 8, assuming a463

real-time-to-hour-ahead cost ratio of 1.5.464

Using this strategy, the annual usage of DRR is summarized465

for the three scenarios (described in Table II) in Figs. 7–9.466

These figures compare the DRR usage for each time step prior467

to dispatch: hour ahead, ten minutes ahead, and real time.468

Fig. 7. Histogram of demand response usage, Scenario 1.

Fig. 8. Histogram of demand response usage, Scenario 2.

Fig. 9. Histogram of demand response usage, Scenario 3.

Fig. 10 shows a fourth scenario, when there is no penalty 469

for overproduction at the wind farm. In this case, the optimal 470

gamma variables are γ1h = 1.0 and γ10min = 0.90. 471

Figs. 7–9 show that the usage patterns of paired resources 472

have an impact on cost. Of scenarios 1–3, where there is a 473

minor penalty for overproduction, the optimal strategy (0.90, 474

0.35) is not intuitive but does produce lower overall costs for 475

covering deviations. Table III summarizes the average nonzero 476

use of DRRs (MW) at each decision point, and the cost savings 477

associated with scenarios 2, 3, and 4 relative to scenario 1. It 478

is interesting to note that, if overgeneration penalties are not 479

imposed (scenario 4), the decision framework proposed here 480

becomes even more beneficial, resulting in estimated savings 481
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Fig. 10. Histogram of demand response usage, no overproduction penalty.

TABLE III
AVERAGE DRR USE AND SAVINGS FOR NANTUCKET SOUND CASE

TABLE IV
MAXIMUM SINGLE USE OF DRR BY SCENARIO

of 200% of the cost of a naïve strategy of mitigating the entire482

deviation in real time.483

It is important to consider both the relative costs of these484

strategies and the availability of this level of DRR in the485

relevant region of New England. Therefore, in Table IV, we486

summarize the maximum single use of DRR usage for each487

scenario. In this table, TTD is the time to dispatch, for hour-488

ahead, 10-minute-ahead, and real-time market stages.489

The size of the largest single use of DRRs at each decision490

point is important in assessing the resources necessary for im-491

plementation of such a strategy. It appears that scenario 2 uses492

the smallest amount of paired resource. However, comparing493

Table III and Fig. 9 shows that real-time DRR is used very494

frequently in this scenario. It is common in DRR contracts495

for the number of uses to be contractually limited; therefore,496

larger and less frequent uses might be more desirable. In the497

case without overgeneration penalties, the average magnitude498

of overproduction in real time is actually smaller than in other499

scenarios; however, data in Table IV shows that there are a small500

number of overgeneration events that are larger than in the other501

scenarios. The optimal balance depends on the specific DRR502

contracts of the region, and as a result, the optimal gamma503

values should be quantitatively determined on a case-by-case504

basis. It is also important to note that the error distributions can505

be nonstationary, particularly with a basic forecast model such506

as the one implemented here. The use of more sophisticated507

(and proprietary) forecasting models will result in more reliable 508

error statistics and therefore more confidence in the optimal 509

mitigation fractions estimated. 510

VI. CONCLUSION 511

In general, the uncertainty and variability in load is accepted 512

as the basis for power system operations. These same charac- 513

teristics in the wind resource raise significant obstacles for the 514

integration of wind power generation into system and market 515

operations. This paper introduces an analysis of pairing wind 516

generation with DRRs to decrease the net variability of the wind 517

generation. 518

Results from the application of this decision framework to a 519

Nantucket Sound case study indicate that the balance between 520

forecasting accuracy, availability, and cost of pairing resources 521

(in this case demand response) is complex. Therefore, determi- 522

nation of the optimal level of mitigation of forecasting errors at 523

each time step must be determined quantitatively on a site-by- 524

site basis using specific forecasting methods, cost ratios, and 525

wind data. 526

The results demonstrate that wind power can participate 527

in day-ahead electricity markets through submitting schedules 528

with price offers and do not need to be restricted to participating 529

as price-takers. The analysis presented here also shows that the 530

imposition of penalties for overgeneration at wind farms is the 531

major contributor to the cost of the strategy. This highlights 532

the importance of market policy and rules, as well as the im- 533

portance of accurate forecasting techniques for the successful 534

implementation of wind in existing power markets and systems. 535
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