Permutation notations for the exceptional Weyl group F4

Patricia Cahn

Dartmouth College, pcahn@smith.edu
Ruth Haas
Smith College, rhaas@smith.edu
Aloysius G. Helminck
North Carolina State University
Juan Li
Cornell University
Jeremy Schwartz
University of Maryland

Follow this and additional works at: https://scholarworks.smith.edu/mth_facpubs
Part of the Mathematics Commons

Recommended Citation

Cahn, Patricia; Haas, Ruth; Helminck, Aloysius G.; Li, Juan; and Schwartz, Jeremy, "Permutation notations for the exceptional Weyl group F4" (2012). Mathematics and Statistics: Faculty Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/mth_facpubs/58

This Article has been accepted for inclusion in Mathematics and Statistics: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu

0
 involve a journal of mathematics

Permutation notations for the exceptional Weyl group F_{4}

Patricia Cahn, Ruth Haas, Aloysius G. Helminck, Juan Li and Jeremy Schwartz

Permutation notations for the exceptional Weyl group F_{4}

Patricia Cahn, Ruth Haas, Aloysius G. Helminck, Juan Li and Jeremy Schwartz

(Communicated by Joseph Gallian)

This paper describes a permutation notation for the Weyl groups of type F_{4} and G_{2}. The image in the permutation group is presented as well as an analysis of the structure of the group. This description enables faster computations in these Weyl groups which will prove useful for a variety of applications.

1. Introduction

Weyl groups, or finite Coxeter groups, are widely used in mathematics and in applications (some examples are given in Section 2). They are most commonly represented by generators and relations. The disadvantage of that representation is that elements are not uniquely represented by strings or even minimal strings of generators. For the classical Weyl groups combinatorialists use one-line permutation notation, which corresponds to the orbit of the standard basis vectors under the Weyl group. This combinatorial representation provides unique representation, which makes it efficient for computation (see [Haas and Helminck 2012]). Many properties of the elements, such as length and order, can be quickly read from the combinatorial representation (see, for example, [Haas et al. 2007]). Further, the unique representation provides insight into more complex structures such as involution and twisted involution posets; see [Haas and Helminck 2011].

For the exceptional Weyl groups of type G_{2}, F_{4}, E_{7} and E_{8}, the orbit of the standard basis vectors includes not just the positive and negative axes but additional vectors, making description by permutation somewhat less obvious. Nonetheless,

[^0]similar representations can be made in these cases as well. In this paper we give a permutation representation for the Weyl group of type F_{4} and discuss a number of properties of this representation. We also give a similar presentation for G_{2}.

2. Motivation

Given a field k, symmetric k-varieties are the homogenous spaces G / H, where G is the set of k-rational points of reductive group \bar{G} defined over k and H the set of k-rational points of the set of fixed points of an automorphism σ (defined over k) of the group \bar{G}. For k the real or p-adic numbers these are also known as reductive symmetric spaces. These symmetric k-varieties have a detailed fine structure of root systems and Weyl groups, similar to that of the group G itself. This fine structure involves 4 (restricted) root systems and Weyl groups. To study the structure of symmetric k-varieties one needs detailed descriptions of this fine structure and how they act on the various types of elements of these root systems and Weyl groups. For example, to study the representations associated with these symmetric k-varieties one needs a detailed description of the orbits of (minimal) parabolic k-subgroups acting on these symmetric k-varieties. A characterization of these orbits was given in [Helminck and Wang 1993]. They showed that these orbits can be characterized by $\bigcup_{i \in I} W_{G}\left(A_{i}\right) / W_{H}\left(A_{i}\right)$, where $\left\{A_{i} \mid i \in I\right\}$ is a set of representatives of the H-conjugacy classes of the σ-stable maximal k-split tori, $W_{G}\left(A_{i}\right)$ is the set of Weyl group elements that have a representative in $N_{G}\left(A_{i}\right)$, the normalizer of A_{i} in G, and $W_{H}\left(A_{i}\right)$ is the set of Weyl group elements that have a representative in $N_{H}\left(A_{i}\right)$. To fully classify these orbits one needs to compute the subgroups $W_{H}\left(A_{i}\right)$ of $W_{G}\left(A_{i}\right)$. This requires a detailed analysis of the structure of the Weyl groups and their subgroups.

Another example is that the classification of Cartan subspaces can be reduced to a classification of $W_{H}(A)$-conjugacy classes of σ-singular involutions. The $W_{G}(A)$-conjugacy classes of involutions were classified in [Helminck 1991]. A detailed analysis of the Weyl groups and their subgroups will enable one to determine how a $W_{G}(A)$-conjugacy class breaks up in $W_{H}(A)$-conjugacy classes. There are many other problems related to symmetric k-varieties for which one needs a detailed description of the various Weyl groups and their subgroups. The detailed combinatorial analysis of the structure of the Weyl groups of types F_{4} and G_{2} in this paper enables us to compute the necessary data to solve those problems for those symmetric k-varieties that have a restricted Weyl group of type F_{4} and G_{2}.

The classical text on Weyl groups is [Bourbaki 2002], while a good modern treatment to Weyl groups and their uses in Lie theory can be found in [Humphreys 1972]. The Weyl groups of type F and G are two of the exceptional Coxeter groups; see [Humphreys 1990] for a basic treatment of these groups.

3. The Weyl group of type $\boldsymbol{F}_{\mathbf{4}}$

The root system of type F_{4} has the following characteristics. There are $n=48$ roots. The usual basis is the set

$$
\left\{\alpha_{1}=e_{2}-e_{3}, \alpha_{2}=e_{3}-e_{4}, \alpha_{3}=e_{4}, \alpha_{4}=\frac{1}{2}\left(e_{1}-e_{2}-e_{3}-e_{4}\right)\right\} .
$$

The complete set of roots is $\left\{ \pm e_{i}, \pm e_{i} \pm e_{j}, \frac{1}{2}\left(\pm e_{1} \pm e_{2} \pm e_{3} \pm e_{4}\right)\right\}$. The positive roots are $\left\{e_{i}, e_{i} \pm e_{j}, \frac{1}{2}\left(e_{1} \pm e_{2} \pm e_{3} \pm e_{4}\right)\right\}$. Recall the associated Weyl group is generated by the reflections over the hyperplanes orthogonal to the basis roots. These are usually denoted $s_{\alpha_{i}}$, which we abbreviate to s_{i}. Here we label the short positive roots with the numbers 1-12 and describe how the Weyl group of type F_{4} is associated with a subgroup of the permutation group on $[-12, \ldots, 12]$. I.e., each element in $W\left(F_{4}\right)$ will be associated with a signed permutation on $\{1, \ldots, 12\}$.

To begin compute the images of the short roots under the basis. These are given in Table 1. Each column in the table describes where each root goes under each basis reflection, so when read from top to bottom, the column gives one-line notation for the generators of the Weyl group. These generators are

$$
\begin{aligned}
& s_{1}=(1,3,2,4,5,7,6,8,9,11,10,12), \\
& s_{2}=(1,2,4,3,5,6,8,7,9,10,12,11), \\
& s_{3}=(1,2,3,-4,12,11,10,9,8,7,6,5), \\
& s_{4}=(9,10,11,12,-5,6,7,8,1,2,3,4) .
\end{aligned}
$$

	root r	$s_{\alpha_{1}}(r)$	$s_{\alpha_{2}}(r)$	$s_{\alpha_{3}}(r)$	$s_{\alpha_{4}}(r)$
1	e_{1}	1	1	1	9
2	e_{2}	3	2	2	10
3	e_{3}	2	4	3	11
4	e_{4}	4	3	-4	12
5	$\frac{1}{2}\left(e_{1}-e_{2}-e_{3}-e_{4}\right)$	5	5	12	-5
6	$\frac{1}{2}\left(e_{1}-e_{2}+e_{3}+e_{4}\right)$	7	6	11	6
7	$\frac{1}{2}\left(e_{1}+e_{2}-e_{3}+e_{4}\right)$	6	8	10	7
8	$\frac{1}{2}\left(e_{1}+e_{2}+e_{3}-e_{4}\right)$	8	7	9	8
9	$\frac{1}{2}\left(e_{1}+e_{2}+e_{3}+e_{4}\right)$	9	9	8	1
10	$\frac{1}{2}\left(e_{1}+e_{2}-e_{3}-e_{4}\right)$	11	10	7	2
11	$\frac{1}{2}\left(e_{1}-e_{2}+e_{3}-e_{4}\right)$	10	12	6	3
12	$\frac{1}{2}\left(e_{1}-e_{2}-e_{3}+e_{4}\right)$	12	11	5	4

Table 1. Generators of $W\left(F_{4}\right)$.

In cycle notation, they can be expressed as products of transpositions as follows:

$$
\begin{array}{ll}
s_{1}=(2,3)(6,7)(10,11), & s_{3}=(8,9)(7,10)(6,11)(5,12)(4,-4) \\
s_{2}=(3,4)(7,8)(11,12), & s_{4}=(1,9)(2,10)(3,11)(4,12)(5,-5)
\end{array}
$$

Note that the elements of $W\left(F_{4}\right)$ are in one-to-one correspondence with only a subset of signed permutations on $[1, \ldots, 12]$. In particular, since the first 4 elements give the image of the standard basis of \mathbb{R}^{4}, they determine the other 8 positions uniquely. In Section 3.10 we will see that there are further restrictions on what can occur in the first four places.
3.1. A minimal word algorithm. We develop a method for the important task of converting from this one-line notation to the standard representation of an element as a minimal word. For $x \in W\left(F_{4}\right)$, recall that the length of $x, l(x)$, is the number of letters in the minimal word of x. It is well-known that the length of x equals the number of positive roots mapped to negative roots by x.

Lemma 3.2. Any nontrivial element of $W\left(F_{4}\right)$ maps at least one of $e_{4}, e_{2}-e_{3}$, $e_{3}-e_{4}$, and $\frac{1}{2}\left(e_{1}-e_{2}-e_{3}-e_{4}\right)$ to a negative root.
Proof. This set of roots is exactly the set of roots which get mapped to negative roots under the basis reflections.

Lemma 3.3. Let $x \in W\left(F_{4}\right)$. Then x maps α_{i} to a negative root if and only if $l\left(x s_{i}\right)<l(x)$.

Proof. This follows directly from the definitions.
Algorithm 3.4. Given an element $x=\left(a_{1}, a_{2}, \ldots, a_{12}\right) \in W\left(F_{4}\right)$, the following algorithm will output a minimal word for x.

1. If all $a_{i}>0$, go to step 6 . Otherwise, go to step 2.
2. If $a_{4}<0$, right multiply by s_{3} and go to step 1 . Otherwise, go to step 3 .
3. If $a_{5}<0$, right multiply by s_{4} and go to step 1 . Otherwise, go to step 4 .
4. If $a_{3}<0$, right multiply by s_{2} and go to step 1 . Otherwise, go to step 5.
5. Right multiply by s_{1} and go to step 1.
6. If the resulting element is not the identity, compare it to the following list in order to determine the final step(s).
(a) $\{1,3,2,4,5,7,6,8,9,11,10,12\}=s_{1}$.
(b) $\{1,2,4,3,5,6,8,7,9,10,12,11\}=s_{2}$.
(c) $\{1,3,4,2,5,7,8,6,9,11,12,10\}=s_{2} s_{1}$.
(d) $\{1,4,2,3,5,8,6,7,9,12,10,11\}=s_{1} s_{2}$.
(e) $\{1,4,3,2,5,8,7,6,9,12,11,10\}=s_{1} s_{2} s_{1}$.

Theorem 3.5. Algorithm 3.4 produces a minimal word for x.

Proof. Note that even if $a_{i}>0$ for all i, the length of x may not be zero because not all positive roots are represented in the list of twelve roots. In particular, there are six elements of $W\left(F_{4}\right)$ such that $a_{i}>0$ for all i. They are precisely those listed in Step 6. of the algorithm together with the identity. Clearly steps 2 and 3 reduce the length of x. If we arrive at step 4 , i.e., $a_{4}>0$, and $a_{3}<0$, then one can check that $e_{3}-e_{4}$ maps to a negative root under x, so multiplying by s_{2} will reduce the length of x.

If we arrive at step 5, i.e., $a_{3}, a_{4}, a_{5}>0$, but some other a_{i} is negative, then we show that a_{2} must be negative. Suppose instead that $a_{2}>0$. Let $\langle i\rangle+\langle j\rangle$ denote the root which is the vector sum of roots i and j. E.g., $\langle 5\rangle=\frac{1}{2}(\langle 1\rangle-\langle 2\rangle-\langle 3\rangle-\langle 4\rangle)$ and since x is a linear map this implies $\left\langle a_{5}\right\rangle=\frac{1}{2}\left(\left\langle a_{1}\right\rangle-\left\langle a_{2}\right\rangle-\left\langle a_{3}\right\rangle-\left\langle a_{4}\right\rangle\right)$. Rearranging gives $\left\langle a_{1}\right\rangle=\left\langle a_{2}\right\rangle+\left\langle a_{3}\right\rangle+\left\langle a_{4}\right\rangle+2\left\langle a_{5}\right\rangle$, with all terms on the right positive by assumption. Therefore, $a_{1}>0$. Similar calculations done in the correct order show that all other a_{i} must be positive. Explicitly: $\left\langle a_{10}\right\rangle=\left\langle a_{5}\right\rangle+\left\langle a_{2}\right\rangle ;\left\langle a_{12}\right\rangle=\left\langle a_{5}\right\rangle+\left\langle a_{4}\right\rangle$; $\left\langle a_{11}\right\rangle=\left\langle a_{5}\right\rangle+\left\langle a_{3}\right\rangle ;\left\langle a_{6}\right\rangle=\left\langle a_{12}\right\rangle+\left\langle a_{3}\right\rangle ;\left\langle a_{7}\right\rangle=\left\langle a_{12}\right\rangle+\left\langle a_{2}\right\rangle ;\left\langle a_{8}\right\rangle=\left\langle a_{10}\right\rangle+\left\langle a_{3}\right\rangle ;$ $\left\langle a_{9}\right\rangle=\frac{1}{2}\left(\left\langle a_{1}\right\rangle+\left\langle a_{2}\right\rangle+\left\langle a_{3}\right\rangle+\left\langle a_{4}\right\rangle\right)$.

Thus $a_{2}<0$. In this case $e_{2}-e_{3}$ will be mapped to a negative root, so right multiplication by s_{1} will reduce the length.

If we arrive at step 6 then all $a_{i}>0$. Clearly these must be products of s_{1} and s_{2} only. The 5 elements listed above plus the identity are all the possibilities.

One can determine the length of any $x \in W\left(F_{4}\right)$ by finding a reduced word as above. In what follows we give a combinatorial description of length. Partition the short roots of F_{4} into the three sets

$$
\alpha=\{ \pm 1, \pm 2, \pm 3, \pm 4\}, \quad \beta=\{ \pm 5, \pm 6, \pm 7, \pm 8\}, \quad \gamma=\{ \pm 9, \pm 10, \pm 11, \pm 12\} .
$$

Lemma 3.6. For all $x \in W\left(F_{4}\right),\{x(\alpha), x(\beta), x(\gamma)\}=\{\alpha, \beta, \gamma\}$. In other words, x permutes the sets α, β and γ.
Theorem 3.7. For an element $x=\left(a_{1}, a_{2}, \cdots, a_{12}\right)$, define

$$
N(x)=\left|\left\{i: a_{i}<0\right\}\right|
$$

and

$$
p\left(a_{i}, a_{j}\right)= \begin{cases}0 & \text { if }\left|a_{i}\right|<\left|a_{j}\right| \text { and } a_{i}>0, \\ 2 & \text { if }\left|a_{i}\right|<\left|a_{j}\right| \text { and } a_{i}<0, \\ 1 & \text { if }\left|a_{i}\right|>\left|a_{j}\right| .\end{cases}
$$

Find k such that $\left\{ \pm a_{4 k+1}, \pm a_{4 k+2}, \pm a_{4 k+3}, \pm a_{4 k+4}\right\}=\alpha$. If $k=1$,

$$
l(x)=\sum_{i>j} p\left(a_{4 k+i}, a_{4 k+j}\right)+N(x) .
$$

Otherwise,

$$
l(x)=\sum_{i<j} p\left(a_{4 k+i}, a_{4 k+j}\right)+N(x) .
$$

Proof. The length counts the number of positive roots mapped to negative roots under x. The function $N(x)$ counts the number of short roots mapped to negative roots, while the $p\left(a_{4 k+i}, a_{4 k+j}\right)$ terms account for the number of long roots mapped to negative roots. There are three cases depending on which set is mapped to α.

Suppose $x(\alpha)=\alpha$. Each of the positive long roots $e_{i} \pm e_{j}, i<j$ is the sum or difference of the roots $\langle 1\rangle,\langle 2\rangle,\langle 3\rangle,\langle 4\rangle$; where the difference is taken as $\langle i\rangle-\langle j\rangle$ where $i<j$. Thus to determine which of these is mapped to a negative long root, we need only consider the sum and difference of $\left\langle a_{i}\right\rangle$ for $i=1, \ldots, 4$. It is easy to check that $\left\langle a_{i}\right\rangle+\left\langle a_{j}\right\rangle$ is a negative root exactly when either $\left|a_{i}\right|>\left|a_{j}\right|$ and $a_{j}<0$ or when $\left|a_{i}\right|<\left|a_{j}\right|$ and $a_{i}<0$. As well, $\left\langle a_{i}\right\rangle-\left\langle a_{j}\right\rangle$ is negative exactly when $\left|a_{i}\right|<\left|a_{j}\right|$ and $a_{i}<0$ or when $\left|a_{i}\right|>\left|a_{j}\right|$ and $a_{j}>0$.

Suppose $x(\beta)=\alpha$. Each of the positive long roots $e_{i} \pm e_{j}, j<i$ is the sum or difference of the roots $\langle 5\rangle,\langle 6\rangle,\langle 7\rangle,\langle 8\rangle$ where the difference is taken as $\langle i\rangle-\langle j\rangle$ where $j<i$. With this reversed order the same conditions for when $\left\langle a_{i}\right\rangle+\left\langle a_{j}\right\rangle$ and $\left\langle a_{i}\right\rangle-\left\langle a_{j}\right\rangle$ are negative will still hold.

Suppose $x(\gamma)=\alpha$. Each of the positive long roots $e_{i} \pm e_{j}, i<j$ is the sum or difference of the roots $\langle 9\rangle,\langle 10\rangle,\langle 11\rangle,\langle 12\rangle$; where the difference is taken as $\langle i\rangle-\langle j\rangle$ where $i<j$. Again the same conditions hold.
3.8. Group structure and notation properties. It is also useful to consider the images of the three sets of short roots as permutations in signed S_{4}. Refer to the elements in positions $1-4$ as set A, the elements in positions $5-8$ as set B, and the elements in positions $9-12$ as set C. Formally, let $f \in F_{4}$ such that $f=$ $\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, f_{7}, f_{8}, f_{9}, f_{10}, f_{11}, f_{12}\right)$. For $1 \leq i \leq 4$ let $a_{i}=f_{i}(\bmod$ $4)$, using the representatives $\{1,2,3,4\}$ for \mathbb{Z}_{4}. Similarly, $b_{i}=f_{4+i}(\bmod 4)$, and $c_{i}=f_{8+i}(\bmod 4)$, for $1 \leq i \leq 4$ again using the representatives $\{1,2,3,4\}$ for \mathbb{Z}_{4}. Let $A=\left(a_{1}, a_{2}, a_{3}, a_{4}\right), B=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$, and $C=\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$. Denote $\left(\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|,\left|a_{4}\right|\right)$ by $|A|$, and define $|B|$ and $|C|$ analogously. For example, if $f=(6,-8,5,-7,9,11,-10,12,-2,4,1,3)$, then $|A|=(2,4,1,3),|B|=$ $(1,3,2,4)$, and $|C|=(2,4,1,3)$.

Theorem 3.9. The parity of the negations in each block, given the order of the sets α, β, and γ, is the following:

set order	block A (1-4)	block B (5-8)	block C (9-12)
$\alpha \beta \gamma$	even	even	even
$\alpha \gamma \beta$	odd	even	even
$\beta \alpha \gamma$	odd	odd	odd
$\beta \gamma \alpha$	even	odd	odd
$\gamma \alpha \beta$	odd	even	odd
$\gamma \beta \alpha$	even	odd	even

Proof. Note that generators s_{1} and s_{2} do not change the parity of negations in any set, nor do they change the order of the sets. Therefore it suffices to inductively show that this table holds after operating by generators s_{3} and s_{4} on the right. It is simple to compute using the following rules. s_{3} swaps the second and third blocks, and adds or subtracts one negative from the first block. s_{4} swaps the first and third blocks, and adds or subtracts one negative from the second block.
3.10. Restrictions on the values of $\left|\boldsymbol{a}_{i}\right|$. Let \mathbb{V} be the subset of S_{4} generated by (12)(34) and (13)(24), and K be the subset of S_{4} generated by (23) and (34).

For $X \in S_{4}$ define $v(X)$ to be the unique element of \mathbb{V} in the coset $K X$.
Theorem 3.11. Let $f \in W\left(F_{4}\right)$ with sets A_{f}, B_{f} and C_{f} as defined above. Then $\left|C_{f}\right|=\left|B_{f}\right| v\left(\left|A_{f}\right|\right),\left|B_{f}\right|=\left|A_{f}\right| v\left(\left|C_{f}\right|\right)$, and $\left|A_{f}\right|=\left|C_{f}\right| v\left(\left|B_{f}\right|\right)$.
Alternative statement: Let $f \in W\left(F_{4}\right)$ with sets f_{α}, f_{β}, and f_{γ} as defined above. Then $f_{\gamma}=f_{\beta} v\left(f_{\alpha}\right), f_{\beta}=f_{\alpha} v\left(f_{\gamma}\right)$, and $f_{\alpha}=f_{\gamma} v\left(f_{\beta}\right)$.
Proof. We proceed by induction. The statement is true for $f=$ identity. Assume its true for f, we show its true for $s_{i} f$ for each s_{i}. Note that $v\left(\left(s_{i} f\right)_{\mu}\right)=v\left(f_{\mu}\right)$ when $i=1,2,4$ and $\mu=\alpha, \beta, \gamma ; v\left(\left(s_{3} f\right)_{\alpha}\right)=v\left(f_{\alpha}\right), v\left(\left(s_{3} f\right)_{\beta}\right)=(14)(23) v\left(f_{\gamma}\right)$ and $v\left(\left(s_{3} f\right)_{\gamma}\right)=(14)(23) v\left(f_{\beta}\right)$. The cases for s_{i} where $i \neq 3$ are straightforward.

Furthermore, $\left(s_{3} f\right)_{\beta}=(14)(23) f_{\gamma}$ and $\left(s_{3} f\right)_{\gamma}=(14)(23) f_{\beta}$. These equations provide all of the required components for the proof. For example assume $f_{\beta}=f_{\gamma} v\left(f_{\alpha}\right)$. Since $v\left(\left(s_{3} f\right)_{\alpha}\right)=v\left(f_{\alpha}\right)$ and $\left(s_{3} f\right)_{\gamma}=(14)(23) f_{\beta}$ and $\left(s_{3} f\right)_{\beta}=$ (14)(23) f_{γ} it follows that $\left(s_{3} f\right)_{\gamma}=\left(s_{3} f\right)_{\beta} v\left(\left(s_{3} f\right)_{\alpha}\right)$.
3.12. $\boldsymbol{W}\left(\boldsymbol{F}_{4}\right)$ as a semidirect product. Let F_{D} denote the subgroup of $W\left(F_{4}\right)$ containing all $d \in F_{D}$ where $d(\alpha)=\alpha, d(\beta)=\beta$, and $d(\gamma)=\gamma$, and let F_{S} be the subgroup of $W\left(F_{4}\right)$ generated by the generators s_{3} and s_{4}. Let T be the group representing the order of the sets α, β and γ. Define $\tau: W\left(F_{4}\right) \mapsto T$ in the obvious way. Note that $\tau(f)=i d$ if and only if $f \in F_{D}$. Now by Theorem 3.9, the sets α, β and γ occur in order $\alpha \beta \gamma$ in the bottom row notation of f if and only if the permutation A_{f} contains an even number of negative signs.
Lemma 3.13. F_{D} is isomorphic to D_{4}.
Proof. The map $\psi: F_{D} \rightarrow D_{4}$ such that $\psi(f)=A_{f}$ for $f \in F_{D}$ provides the isomorphism.
Theorem 3.14. $W\left(F_{4}\right)=F_{D} \rtimes F_{S}$.
Proof. We can represent $f \in W\left(F_{4}\right)$ by a pair (d, s) where $f=d s$ and s is the unique element of F_{S} such that $\tau(s)=\tau(f)$. Define $\phi_{s}: F_{D} \mapsto F_{D}$ where $\phi_{s}(d)=s d s^{-1}$ for $d \in F_{D}$ and $s \in F_{S}$. One can check that if $f_{1}=d_{1} s_{1}$, represented by the pair $\left(d_{1}, s_{1}\right)$, and $f_{2}=d_{2} s_{2}$, represented by the pair (d_{2}, s_{2}), then $f_{1} f_{2}=$ $d_{1} \phi_{s_{1}}\left(d_{2}\right) s_{1} s_{2}$, represented by the pair $\left(d_{1} \cdot \phi_{s_{1}}\left(d_{2}\right), s_{1} \cdot s_{2}\right)$.

One might hope that this semidirect product would provide an efficient notation for computation in $W\left(F_{4}\right)$. A road block to this seems to be finding a combinatorial description of the multiplication.

4. The Weyl group of type $\boldsymbol{G}_{\mathbf{2}}$

The root system of type G_{2} has the following characteristics. There are $n=12$ roots. The usual basis is the set $\left\{\alpha_{1}=e_{1}-e_{2}, \alpha_{2}=-2 e_{1}+e_{2}+e_{3}\right\}$. The complete set of roots is $\left\{ \pm\left(e_{i}-e_{j}\right)\right\}$, where $i<j$ and $i, j \in\{1,2,3\}$, and $\left\{ \pm\left(2 e_{i}-e_{j}-e_{k}\right)\right\}$, where $\{i, j, k\}=\{1,2,3\}$. The positive roots are $\left\{\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+\right.$ $\left.\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}\right\}$. Again we let s_{i} denote the reflection over the hyperplane orthogonal to α_{i}. We label the short positive roots $2 \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}$, and α_{1}, with the numbers 1-3 respectively, and describe how the Weyl group of type G_{2} is associated with a subgroup of the permutation group on $[-3, \ldots, 3]$. Here are the images of roots 1,2 , and 3 under the generators of $W\left(G_{2}\right)$:

	$\operatorname{root} r$	$s_{\alpha_{1}}(r)$	$s_{\alpha_{2}}(r)$
1	$-e_{2}+e_{3}$	2	1
2	$-e_{1}+e_{3}$	1	3
3	$e_{1}-e_{2}$	-3	2

Reading from top to bottom in each column gives one-line notation for the generators, namely $s_{1}=(2,1,-3)$ and $s_{2}=(1,3,2)$.

As with $W\left(F_{4}\right)$ we can give a simple combinatorial length formula for $W\left(G_{2}\right)$.

Theorem 4.1. The length of an element $x=\left(a_{1}, a_{2}, a_{3}\right)$ in $W\left(G_{2}\right)$ is given by $l(x)=\sum_{i<j} p\left(a_{i}, a_{j}\right)$ where $p\left(a_{i}, a_{j}\right)$ is defined as follows:

$$
p\left(a_{i}, a_{j}\right)= \begin{cases}0 & \text { if }\left|a_{i}\right|<\left|a_{j}\right| \text { and } a_{i}>0 \\ 2 & \text { if }\left|a_{i}\right|<\left|a_{j}\right| \text { and } a_{i}<0 \\ 1 & \text { if }\left|a_{i}\right|>\left|a_{j}\right|\end{cases}
$$

Proof. The length counts the number of positive roots mapped to negative roots under x. One can check that the positive roots in $W\left(G_{2}\right)$ are of the form $\langle i\rangle \pm\langle j\rangle$ where $i<j$ and $i, j \in\{1,2,3\}$. To determine which of $\langle i\rangle \pm\langle j\rangle$ are mapped to negative roots, we need to determine when $\left\langle a_{i}\right\rangle \pm\left\langle a_{j}\right\rangle$ is a negative root. One can check that $\left\langle a_{i}\right\rangle+\left\langle a_{j}\right\rangle$ is negative when $\left|a_{i}\right|<\left|a_{j}\right|$ and $a_{i}<0$, or when $\left|a_{i}\right|>\left|a_{j}\right|$ and $a_{j}<0$. Similarly $\left\langle a_{i}\right\rangle-\left\langle a_{j}\right\rangle$ is negative when $\left|a_{i}\right|<\left|a_{j}\right|$ and $a_{i}<0$, or when $\left|a_{i}\right|>\left|a_{j}\right|$ and $a_{j}>0$.

Acknowledgements

The results presented here were obtained as part of the NCSU summer REU program. We would like to thank NSF and NSA for their support of this program.

References

[Bourbaki 2002] N. Bourbaki, Lie groups and Lie algebras. Chapters 4-6, Elements of Mathematics (Berlin), Springer, Berlin, 2002. MR 2003a:17001 Zbl 0983.17001
[Haas and Helminck 2011] R. Haas and A. G. Helminck, "Admissible sequences for twisted involutions in Weyl groups", Canad. Math. Bull. 54:4 (2011), 663-675. MR 2894516 Zbl 05987122
[Haas and Helminck 2012] R. Haas and A. G. Helminck, "Algorithms for twisted involutions in Weyl groups", Algebra Colloq. 19:2 (2012), 263-282.
[Haas et al. 2007] R. Haas, A. G. Helminck, and N. Rizki, "Properties of twisted involutions in signed permutation notation", J. Combin. Math. Combin. Comput. 62 (2007), 121-128. MR 2008d: 05163 Zbl 1125.20030
[Helminck 1991] A. G. Helminck, "Tori invariant under an involutorial automorphism. I", Adv. Math. 85:1 (1991), 1-38. MR 92a:20047 Zbl 0731.20029
[Helminck and Wang 1993] A. G. Helminck and S. P. Wang, "On rationality properties of involutions of reductive groups", Adv. Math. 99:1 (1993), 26-96. MR 94d:20051 Zbl 0788.22022
[Humphreys 1972] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics 9, Springer, New York, 1972. MR 48 \#2197 Zbl 0254.17004
[Humphreys 1990] J. E. Humphreys, Reflection groups and Coxeter groups, Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge, 1990. MR 92h:20002 Zbl 0725.20028

Received: 2011-06-25	Revised: 2011-08-22 Accepted: 2011-08-28
patricia.cahn@gmail.com	Department of Mathematics, Dartmouth College, rhaas@smith.edu Hanover, NH 03755, United States
loek@ncsu.edu	Department of Mathematics and Statistics, Smith College, Northampton, MA 01063, United States
jl879@cornell.edu	Department of Mathematics, North Carolina State University, Raleigh, NC 27695, United States
jschwart@math.umd.edu	School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14850, United States
	Department of Mathematics, University of Maryland, College Park, MD 20742, United States

involve

msp.berkeley.edu/involve
EDITORS
MANAGING Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu
Board of Editors

John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Pietro Cerone	Victoria University, Australia pietro.cerone@ vu.edu.au	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@ mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Errin W. Fulp	Wake Forest University, USA fulp@ wfu.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Karen Kafadar	University of Colorado, USA karen.kafadar@cudenver.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
David Larson	Texas A\&M University, USA larson@math.tamu.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu	Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor
Sheila Newbery, Senior Production Editor
Cover design: ©2008 Alex Scorpan
See inside back cover or http://msp.berkeley.edu/involve for submission instructions.
The subscription price for 2012 is US $\$ 105 /$ year for the electronic version, and $\$ 145 /$ year ($+\$ 35$ shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\mathrm{TM}}$ from Mathematical Sciences Publishers.
PUBLISHED BY
mathematical sciences publishers
http://msp.org/
A NON-PROFIT CORPORATION
Typeset in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$

involve 2012 vol. 5 no. 1

Elliptic curves, eta-quotients and hypergeometric functions 1David Pathakjee, Zef RosnBrick and Eugene Yoong
Trapping light rays aperiodically with mirrors 9
Zachary Mitchell, Gregory Simon and Xueying Zhao
A generalization of modular forms 15
adam Haque
Induced subgraphs of Johnson graphs 25
Ramin Naimi and Jeffrey Shaw
Multiscale adaptively weighted least squares finite element methods for 39 convection-dominated PDEs
Bridget Kraynik, Yifei Sun and Chad R. Westphal
Diameter, girth and cut vertices of the graph of equivalence classes of zero-divisors 51
Blake Allen, Erin Martin, Eric New and Dane Skabelund
Total positivity of a shuffle matrix 61
Audra McMillan
Betti numbers of order-preserving graph homomorphisms 67
Lauren Guerra and Steven Klee
Permutation notations for the exceptional Weyl group F_{4} 81
Patricia Cahn, Ruth Haas, Aloysius G. Helminck, Juan Li and Jeremy Schwartz
Progress towards counting D_{5} quintic fields 91
Eric Larson and Larry Rolen
On supersingular elliptic curves and hypergeometric functions 99
Keenan Monks

[^0]: MSC2010: 20G15, 20G20, 22E15, 22E46, 43A85.
 Keywords: Weyl groups, Coxeter groups, one-line notation, permutations.
 This work was partially supported by NSF grant DMS-0532140 and NSA grant H98230-06-1-0098. Haas was partially supported by NSF grant DMS-0721661, and Helminck by NSF grant DMS0532140.

