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A GENERALIZATION OF TURAEV’S VIRTUAL STRING

COBRACKET AND SELF-INTERSECTIONS OF VIRTUAL STRINGS

PATRICIA CAHN

Abstract. Previously we defined an operation µ that generalizes Turaev’s cobracket
for loops on a surface. We showed that, in contrast to the cobracket, this operation
gives a formula for the minimum number of self-intersections of a loop in a given free
homotopy class. In this paper we consider the corresponding question for virtual strings,
and conjecture that µ gives a formula for the minimum number of self-intersection points
of a virtual string in a given virtual homotopy class. To support the conjecture, we show
that µ gives a bound on the minimal self-intersection number of a virtual string which is
stronger than a bound given by Turaev’s virtual string cobracket. We also use Turaev’s
based matrices to describe a large set of strings α such that µ gives a formula for the
minimal self-intersection number α. Finally, we construct an example that shows the
bound on the minimal self-intersection number given by µ is always at least as good as,
and sometimes stronger than, the bound ρ given by Turaev’s based matrix invariant.

1. Introduction

The goal of this paper is to estimate, and in many cases compute precisely, the minimum
number of double points of a flat virtual knot in a given virtual homotopy class. To do
this we define a generalization of Turaev’s Lie cobracket on the vector space generated
by homotopy classes of flat virtual knots. We then compare our estimates to estimates
given by Turaev’s Lie cobracket, and Turaev’s based matrix invariant. We conjecture that
our generalization of Turaev’s cobracket always computes the minimum number of double
points.

Notation and conventions. A virtual string, or flat virtual knot, is a combinatorial
generalization of a curve on a surface. Virtual knots were introduced by Kauffman [12].
In this paper we use Turaev’s terminology, and refer to flat virtual knots as virtual strings
[13]. We represent virtual strings with Gauss diagrams, following the conventions in [13].
The minimal self-intersection number of a virtual string α is the minimum number of ar-
rows of a string in the virtual homotopy class of α. We refer the reader to Section 2 for
precise definitions of virtual strings and their homotopy classes. For a (reduced) finite
linear combination L =

∑
i aiei in the free Z-module Z[S], where ai ∈ Z and ei ∈ S, we

put t(L) =
∑

i |ai| and call it the number of terms of L.
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2 PATRICIA CAHN

Turaev [13] defined a Lie cobracket ν on the free Z-module generated by the set of nontrivial
homotopy classes of virtual strings. We define an operation µ on the same Z-module.
Turaev’s cobracket factors through µ, so we view µ as a generalization of ν. Both operations
give lower bounds on the minimal self-intersection number of a virtual string α. Let [α]
denote the homotopy class of the virtual string α. Let m([α]) denote the minimal self-
intersection number of α. The bounds on m([α]) given by µ and ν are

(1.1) m([α]) ≥ t(µ([α]))/2 + n− 1,

and

(1.2) m([α]) ≥ t(ν([α]))/2 + n− 1,

where n ≥ 1 is the largest integer such that a representative β ∈ [α] with minimal self-
intersection in [α] can be realized as a curve B on a surface F , and 〈B〉 = 〈γ〉n for some
〈γ〉 in π1(F ). (Recall that a virtual string α is realized as a curve A on an oriented surface
F if the Gauss diagram of A is α.) These bounds follow easily from the definitions of µ
and ν; see Section 10.

The operation µ [3] and Turaev’s cobracket ν [14] were previously defined on the free Z-
module generated by the set of nontrivial free homotopy classes of loops on a surface. In
[3], we proved that, when formulated for curves on an orientable surface F , Inequality (1.1)
is an equality. In other words, we have

m(〈α〉) = t(µ(〈α〉))/2 + n− 1,

where m(〈α〉) denotes the minimum number of self-intersection points of a curve in the
free homotopy class 〈α〉, and n ≥ 1 is the largest integer such that 〈α〉 = 〈γ〉n for some
〈γ〉 ∈ π1(F ). On the other hand, Chas [6] showed that, when formulated for curves on
surfaces, Inequality (1.2) is not an equality in general.

We ask whether the above bounds are equalities in the virtual category. We suspect that
m([α]) = t(µ([α]))/2 + n− 1 is true in the virtual category for all classes [α]; Theorem 1.1
allows us to construct examples of classes [α] such that this equality holds. On the other
hand, there are strings such that m([α]) 6= t(ν([α]))/2 + n− 1 in the virtual category; see
Section 10 and Corollary 1.2.

Turaev’s primitive based matrices [13], which appear in the statement of Theorem 1.1, are
reviewed in Section 6. Self-complementary elements are defined in Subsection 8.5.

1.1. Theorem. Let α be a virtual string, whose based matrix T (α) is primitive and does not
contain a self-complementary element. Then m([α]) = t(µ([α]))/2. If T (α) is primitive and
does contain a self-complementary element, then either m([α]) = t(µ([α]))/2 or m([α]) =
t(µ([α]))/2 + 1 .

(Note that for the strings where m([α]) = t(µ([α]))/2, we must have n = 0, and for strings
where m([α]) = t(µ([α]))/2 + 1, we must have n = 0 or n = 1.)
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It follows from this result that, as is the case for curves on surfaces, the bound on the
minimal self-intersection number given by µ is stronger than the bound given by ν.

1.2. Corollary. The bound on m([α]) given by µ is stronger than the bound given by
Turaev’s cobracket ν. Namely, the number of terms of µ([α]) is greater than or equal to the
number of terms of ν[α], and there are virtual homotopy classes [α] such that this inequality
is strict.

Theorem 1.3 compares the bound on m([α]) given by µ to a lower bound ρ given by Turaev’s
based matrix invariant. The integer-valued invariant ρ is introduced in [13], and we discuss
it in Section 6. For now we just note that m([α]) ≥ ρ([α]). The quantity O is an even
integer that counts certain elements of the based matrix of α and is defined in Section
12.

1.3. Theorem. Let α be any virtual string. Then

m([α]) ≥ t(µ(α))/2 ≥ ρ([α])− 1 +O/2.

If the primitive based matrix associated to [α] does not contain a self-complementary ele-
ment, then

m([α]) ≥ t(µ(α))/2 ≥ ρ([α]) +O/2.

While we can only prove that t(µ([α]))/2 ≥ ρ([α])−1 in general, and hence that t(µ([α]))/2+
n− 1 ≥ ρ([α])− 1, we do not know of any examples where t(µ([α]))/2 +n− 1 = ρ([α])− 1,
and we suspect that t(µ([α]))/2 + n− 1 ≥ ρ([α]).

In fact, we construct a string α that shows that the bound given by µ is sometimes stronger
than the bound ρ([α]). The same string also illustrates that the bound given by µ is stronger
than the bound given by ν.

1.4. Main Example. The string α in Figure 1 satisfies the following inequality: t(µ([α]))/2 >
ρ([α]). More precisely, t(µ([α]))/2 = 5 and ρ([α]) = 4. It is also easy to check that
ν([α]) = 0, so t(µ([α]))/2 > t(ν([α]))/2, illustrating Corollary 1.2.

Remark: We do not focus on algorithmic methods of computing m([α]) in this paper. The
results of Ilyutko, Manturov, and Nikonov in [10] imply that an algorithm described in
[7] compues the minimal self-intersection number. We use these results to show that the
string in Example 1.4 has the desired properties.

2. Virtual Strings, Singular Virtual Strings, and Signed Singular Virtual
Strings

In this section, we recall Turaev’s definition of virtual strings and their homotopy classes,
and we use the notation found in [13]. We then define signed singular virtual strings and
their homotopy classes, which are closely related to the singular virtual strings studied by
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Figure 1. A string α such that the bound on m([α]) given by µ([α]) is
greater than ρ([α]).

Henrich [9]. Once we have these definitions, we will be able to define Turaev’s cobracket
and the operation µ. Turaev’s cobracket takes values in the free Z-module generated by
nontrivial homotopy classes of virtual strings, tensored with itself over Z. The operation µ
takes values in the free Z-module generated by homotopy classes of signed singular virtual
strings.

2.1. Definition (Turaev [13]). A virtual string α of rank m is an oriented copy of S1,
called the core circle of α, with m arrows (a, b) whose tail and head are attached to the
points a and b of S1, respectively. We require that the endpoints of the arrows be distinct.

The set of arrows of α is denoted arr(α).

2.2. Definition (Henrich, p. 5 [9]). A singular virtual string αd is a virtual string with a
choice of distinguished arrow d ∈ arr(α).

2.3. Definition. A signed singular virtual string αεd is a singular virutal string with a
distinguished arrow d, where the distinguished arrow is equipped with a sign ε ∈ {+,−}.

2.1. The underlying (singular) string of a (singular) curve. A curve on an oriented
surface F is a generic immersion A : S1 → F , where generic means that its self-intersection
points are transverse double points. Every curve on an oriented surface has an underlying
virtual string, which is also known as its Gauss diagram. This string u(A) is obtained as
follows. There is one arrow (a, b) corresponding to each self-intersection point p of A. The
tail a and head b are chosen so that the ordered pair of tangent vectors {A′(a), A′(b)} gives
a positive orientation of TpF . The string u(A) depends on the choice of orientation of F ;
changing the orientation of F would reverse the direction of each arrow in u(A).
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We say that the curve A realizes the string α if α is the underlying string of A, i.e.,
α = u(A). Conversely, every string α realizes some curve A on an oriented surface F , and
this can be done canonically; this construction can be found in [13, p. 2468].

Let Θ be a copy of S1 with an interval I = [0, 1] (called a chord) attached to S1 at its
endpoints. A singular curve on an oriented surface F is a map A : Θ → F such that A
maps the chord of Θ to a single point, and such that A|S1 is a curve on F . When we
draw A, we draw a thick dot on top of the self-intersection point of A whose preimage is
the chord of Θ, and we call this the distinguished self-intersection point of A. A singular
curve is a special case of a geometrical chord diagram, defined by Andersen, Mattes, and
Reshetikhin [2].

A signed singular curve on an oriented surface F is a singular curve A on F whose distin-
guished self-intersection point is equipped with a sign ε ∈ {+,−}.

The underlying (signed) singular virtual string u(A) of a (signed) singular curve A is the
underlying virtual string of A|S1 , whose distinguished arrow is the arrow corresponding
to the distinguished self-intersection point of A (and is equipped with the sign of the
distinguished self-intersection point of A if A is signed).

2.2. Homotopies of signed singular curves. Two curves on F are in the same free ho-
motopy class if and only if they are related by a sequence of flat Reidemeister moves.

We say two signed singular strings are homotopic if and only if they are related by flat
Reidemeister moves which do not involve the distinguished self-intersection point, along
with the moves in Figures 2 and 3.

Figure 2. Flat Reidemeister move for a signed singular curve. There is a
version of this move for each choice of orientation on the two arcs.

Figure 3. Flat Reidemeister move for a signed singular curve. There is a
version of this move for each choice of orientation on the three arcs.

Every signed singular curve A can be regarded as a map Ā : S1 ∨ S1 → F , such that the
two copies of S1 are ordered; i.e., labeled with a ‘1’ and a ‘2’. It is clear how to view A
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as a map from an unordered wedge of two circles to F , since if we collapse the chord of Θ
to a point, we get S1 ∨ S1. It remains to explain how to order the two copies of S1. Since
F is oriented and A is generic, we order the pair tangent vectors to A at the distinguished
self-intersection point p of A according to the orientation of F . This gives us an order on
the two outgoing branches of A at p. If the sign ε of p is + (respectively, −), we label
the loop starting on the first (respectively second) outgoing branch with a ‘1’, and the
loop starting on the second (respectively first) outgoing branch with a ‘2’. Let Āi ∈ π1(F )
denote the restriction of Ā to the loop labeled ‘i’, i = 1, 2.

Later, we will use the following proposition, whose proof is straightforward:

2.4. Proposition. Two signed singular curves A and B are homotopic as signed singular
curves if and only if Ā and B̄ are free homotopic as maps from an ordered wedge of circles
S1 ∨S1 to F ; i.e., if and only if there exists γ ∈ π1(F ) such that γĀiγ

−1 = B̄i for i = 1, 2.

2.3. The homotopy class of virtual string. By performing a flat Reidemeister move
on a curve, and recording the effect on its underlying virtual string, one can derive the
definition of a Reidemeister move for a virtual strings. This allows one to define a homotopy
of virtual strings.

Two strings are in the same virtual homotopy class if they can be related by a sequence of
the following moves and their inverses [13, p. 2459]. We use Turaev’s notation for consis-
tency.

Type 1: Given an arc ab of S1 containing no endpoints of α, add an arrow e = (a, b)
or an arrow e = (b, a).

Type 2: Let a and a′, and b and b′, be the endpoints of two disjoint arcs of S1, such
that neither arc contains an endpoint of an arrow of α. Add two arrows e = (a, b) and
e′ = (b′, a′) to α. There are four forms of this move depending on the order in which a and
a′ appear, and the order in which b and b′ appear, as one traverses S1 counterclockwise.
Note that the new arrows point in opposite directions in all forms of this move.

Type 3a: Let aa+, bb+, and cc+ be three disjoint arcs of S1, containing no endpoints
of α. Suppose also that (a+, b), (b+, c), and (c+, a) are arrows of α. Replace these arrows
with the arrows (a, b+), (b, c+), and (c, a+).

Type 3b: Let aa+, bb+, and cc+ be three disjoint arcs of S1, containing no endpoints
of α. Suppose also that (a, b), (a+, c) and (b+, c+) are three arrows of α. Replace these
arrows with the arrows (a+, b+), (a, c+), and (b, c). Turaev notes this move is not necessary
because it can be expressed as a composition of a Type 2 and Type 3a move.

The virtual homotopy class of α is denoted by [α].
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One can view a virtual string as a curve on a surface up to free homotopy and stable
homeomorphism [13] (the case for ordinary virtual knots appeared in [5]).

2.4. The homotopy class of a signed singular virtual string. Two singular virtual
strings are homotopic if they can be related by a sequence of Type 1-3 moves for virtual
strings, that do not affect the distinguished arrow, along with the following moves, and
their inverses:

Signed Singular Type 2: Let a and a′, and b and b′, be the endpoints of two disjoint
arcs of S1 that contain no endpoints of arrows of α. Suppose e = (a, b) and e′ = (b′, a′) are
arrows of α, and suppose furthermore that one of these is the distinguished arrow. This
move changes which of e and e′ is the distinguished arrow, and changes the sign of the
distinguished arrow. Note there are four forms of this move. Also note that no arrows are
removed (in contrast to the ordinary Type 2 move).

Signed Singular Type 3a and 3b: This is the same as the Type 3a or 3b move for ordinary
virtual strings, but where one of the three arrows, and the arrow which replaces it, is the
distinguished arrow, and the sign on the distinguished arrow is the same before and after
the move.

The virtual homotopy class of a signed singular string αεd is denoted [αεd].

If one forgets the signs on these moves, one recovers the moves for singular virtual strings
defined in [9].

It is easy to see that the underlying signed singular virtual strings of two homotopic signed
singular curves on F are virtually homotopic, and that the underlying virtual strings of
two homotopic curves on F are virtually homotopic.

2.5. Semi-trivial signed singular strings. We call a signed singular virtual string
semi-trivial if the endpoints a and b of the distinguished arrow form an arc ab or ba of
S1 containing no endpoints in its interior. We call a homotopy class of a signed singular
virtual string semi-trivial if it contains a semi-trivial signed singular string.

3. Turaev’s Cobracket for Virtual Strings

Let e = (a, b) be an arrow of the virtual string α. Let α1
e (respectively, α2

e) be the virtual
string obtained from α by deleting all arrows except those with tail and head in the interior
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of the oriented arc ab (respectively, ba). Let S0 be the set of nontrivial homotopy classes
of virtual strings. Turaev’s cobracket ν : Z[S0]→ Z[S0]⊗Z[S0] is a linear map, defined on
a single class by

ν([α]) =
∑

e∈arr(α)

[α1
e]⊗ [α2

e]− [α2
e]⊗ [α1

e],

where we set [β] = 0 if β is trivial. This map can be extended by linearity to all of Z[S0].
One can verify that this definition is independent of the choice of α ∈ [α]. Furthermore,
the operation ν is a Lie cobracket [13].

4. The Operation µ

Let SΘ
0 denote the set of homotopy classes of singular virtual strings which are not semi-

trivial. Set [β] = 0 if β is semi-trivial. We define

µ([α]) =
∑

e∈arr(α)

[α+
e ]− [α−e ].

We extend the definition of µ by linearity to obtain a map µ : Z[S0]→ Z[SΘ
0 ].

4.1. µ is well-defined. Suppose we compute µ before and after the Type 1 move. After
the move, the signed singular virtual strings which come from the new arrow will be semi-
trivial, so they do not contribute anything to the sum.

Figure 4 shows the four terms which one form of the Type 2 move contributes to µ. The
first and last terms cancel after an application of the signed singular Type 2 move, as do
the second and third terms. The arguments for the other forms of this move are similar.

Figure 4. The signed singular Type 2 move allows one to prove that µ is
invariant under the Type 2 move.

Similarly the singular Type 3 move allows us to show that µ is invariant under the ordinary
Type 3 move.
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4.2. ν Factors through µ. Let S be the following “smoothing” map:

Given a signed singular virtual string α with distinguished arrow d = (t, h) and sign
ε = + (respectively ε = −), form the string S1(α) by deleting the distinguished arrow as
well as all arrows except those with head and tail in (th)◦ (respectively (ht)◦), and form
the string S2(α) by deleting the distinguished arrow as well as all arrows except those with
head and tail in (ht)◦ (respectively (th)◦). Let S(α) = S1(α) ⊗ S2(α), and extend S by
linearity to Z[SΘ

0 ]. Then
ν(β) = S ◦ µ(β).

Figure 5. Illustration of the smoothing map S(α) after realizing the signed
singular string α on a surface.

5. Bounds on the Minimal Self-Intersection Number Given by µ and ν

In this section we show why µ and ν give the bounds on m([α]) stated in the introduc-
tion.

5.1. Proposition. Let α be a virtual string. Then

m([α]) ≥ t(µ([α]))/2 + n− 1

and
m([α]) ≥ t(ν([α]))/2 + n− 1,

where n ≥ 1 is the largest integer such that, for some β ∈ [α] with minimal self-intersection,
β can be realized as a curve B on an orientable surface F with 〈B〉 = 〈γ〉n for some 〈γ〉 in
π1(F ).

Proof. Suppose that n ≥ 1 is the largest integer such that, for some β ∈ [α] with minimal
self-intersection, β can be realized as a curve B on a surface F with 〈B〉 = 〈γ〉n for some
〈γ〉 in π1(F ). We will prove that m([α]) ≥ t(µ([α]))/2 + n − 1; the argument for ν is
slightly simpler. Let g be a geodesic representative of 〈γ〉. If g is not generic (i.e., if it
has self-intersection points which are not double points), perturb g slightly to get a generic
loop g′ and put g = g′. Let h be the composition of the following maps: dn : S1 → A, the
degree n map of S1 to the annulus A such that the image of dn has n − 1 double points;
and ḡ : A → F , an immersion of the annulus into a thin neighborhood of the loop g. See
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Figure 6 for an illustration of this composition when n = 3. Hass and Scott [8, p. 10]
show this loop h has the fewest number of self intersection points of any loop in its free
homotopy class on F . Since β has minimal self-intersection in its virtual homotopy class,
the loop B on F realizing β has minimal self-intersection in its free homotopy class. So the
number of self intersection points of B is equal to the number of self intersection points
of h, and hence we may assume β is the underlying virtual string of h, i.e., we assume
B = h. The number of self intersection points of h is n2p+ n− 1, where p is the number
of self-intersection points of g.

Figure 6. The composition h = ḡ ◦ dn where n = 3 and g is a figure-8 in the plane.

Now we compute µ([α]) using the representative β = u(h). There are two terms of µ
for each self intersection point d of h. These two terms are +[β+

d ] and −[β−d ]. The signed

singular virtual strings β+
d and β−d are realized by the signed singular virtual curves h+

d and

h−d on F . Now suppose d is one of the n−1 self-intersection points of h that comes from the
map dn : S1 → A; these self-intersection points are labeled with a ‘2’ in Figure 6. Starting
on the inside of the annulus, we label these n− 1 points e1, . . . , en−1. It is straightforward
to check that the signed singular curve h+

ei is free homotopic to the singular virtual string

h−en−i
, and the singular curve h−ei is free homotopic to the singular virtual curve h+

en−i
, using

Proposition 2.4. Therefore their underlying signed singular virtual strings are virtually
homotopic. Thus the 2(n−1) terms corresponding to the self intersection points e1, . . . en−1

cancel. Now n2p ≥ t(µ([α]))/2, so m([α]) = n2p+ n− 1 ≥ t(µ([α]))/2 + n− 1.

�

6. Signed Singular Based Matrices

In this section, we introduce signed singular based matrices. These will be our main tools
in the proofs of Theorems 1.1 and 1.3. Signed singular based matrices are closely related
to Turaev’s based matrices [13] and Henrich’s singular based matrices [9].

6.1. Based matrices. First we recall Turaev’s definition of a based matrix. A based
matrix over an abelian group H is a triple (G, s, b) where G is a finite set, s ∈ G, and
b : G × G → H is a skew-symmetric map. That is, b(g, h) = −b(h, g) for all g, h ∈ G
and b(g, g) = 0 for all g ∈ G. Certain elements of G allow us to perform moves on based
matrices that are analogous to flat Reidemeister moves. These elements are:



A GENERALIZATION OF TURAEV’S VIRTUAL STRING COBRACKET 11

1) Annihilating elements: An element g ∈ G − {s} is annihilating if b(g, h) = 0 for all
h ∈ G.
2) Core elements: An element g ∈ G− {s} is core if b(g, h) = b(s, h) for all h ∈ G.
3) Complementary elements: Two elements g1, g2 ∈ G−{s} are complementary if b(g1, h)+
b(g2, h) = b(s, h) for all h ∈ G.

6.2. Signed singular based matrices. A signed singular based matrix is a quadruple
(G, s, d, b, ε) where (G, s, b) is a based matrix, d ∈ G− {s}, and ε ∈ {+,−}. In addition to
annihilating, core, and complementary elements, all of which are required to be elements
other than s and d, we also have the following:
1) Annihilating-like elements: The distinguished element d is annihilating-like if b(d, h) = 0
for all h ∈ G. Similarly, s is annihilating-like if b(s, h) = 0 for all h ∈ G.
2) Core-like elements: The distinguished element d is core-like if b(d, h) = b(s.h) for all
h ∈ G.

If one forgets the sign in the definitions above, one recovers Henrich’s singular based ma-
trices [9].

6.3. Elementary extensions of based matrices. Turaev defined the following moves,
called elementary extensions, on based matrices [13, p. 2483]:

M1 adds an annihilating element to (G, s, b): Given (G, s, b), form the based matrix (Ḡ, s, b̄)
where Ḡ = G t {g}, b̄ agrees with b on G×G, and b̄(g, h) = 0 for all h ∈ G.

M2 adds a core element to (G, s, b): Given (G, s, b), form the based matrix (Ḡ, s, b̄) where
Ḡ = g t {g}, b̄ agrees with b on G×G, and b̄(g, h) = b̄(s, h) for all h ∈ G.

M3 adds a pair of complementary elements to (G, s, b): Given (G, s, b), form the based ma-
trix (Ḡ, s, b̄), where Ḡ = Gt{g1, g2}, b̄ agrees with b on G, and b̄(g1, h) + b̄(g2, h) = b̄(s, h)
for all h ∈ G.

The inverses of these moves are called inverse extensions.

6.4. Elementary extensions of signed singular based matrices. For signed singular
based matrices, we define the following elementary extensions, plus an additional move
which changes which element is the distinguished element and changes the sign of the ma-
trix:

M ′′1 adds an annihilating element to (G, s, d, b, ε): Given (G, s, d, b, ε), form the signed
singular based matrix (Ḡ, s, d, b̄, ε) where Ḡ = G t {g}, b̄ agrees with b on G × G, and
b̄(g, h) = 0 for all h ∈ G.
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M ′′2 adds a core element to (G, s, d, b, ε): Given (G, s, d, b, ε), form the signed singular based
matrix (Ḡ, s, d, b̄, ε) where Ḡ = g t {g}, b̄ agrees with b on G×G, and b̄(g, h) = b̄(s, h) for
all h ∈ G.

M ′′3 adds a pair of complementary elements to (G, s, d, b, ε): Given (G, s, d, b, ε), form the
singular based matrix (Ḡ, s, d, b̄, ε), where Ḡ = G t {g1, g2}, b̄ agrees with b on G, and
b̄(g1, h) + b̄(g2, h) = b̄(s, h) for all h ∈ G.

N ′′ changes which element is the distinguished element, as well as the sign of the ma-
trix: Given (G, s, d, b, ε) such that g ∈ G and d are complementary, form the singular
based matrix (G, s, g, b,−ε).

By forgetting the signs on the matrices, one obtains the moves M ′i and N ′ for singular
based matrices in [9].

6.5. Homologous, primitive, and isomorphic matrices. Two based matrices are ho-
mologous if one can be obtained from the other by a finite number of the Mi moves and their
inverses [13]. Two signed singular based matrices are homologous if one can be obtained
from the other by a finite number of M ′′i moves, N ′′ moves, and their inverses.

A based matrix is primitive if it cannot be obtained from another based matrix by a
sequence of Mi moves [13]. A signed singular based matrix is primitive if it cannot be
obtained from another singular based matrix by applying an M ′′i move, possibly preceded
by an N ′′ move.

Two based matrices (G, s, b) and (G′, s′, b′) are isomorphic if there is a bijection φ : G→ G′

such that φ(s) = s′, and φ(b(g, h)) = b′(φ(g), φ(h)) for all g, h ∈ G. Two signed singular
based matrices (G, s, d, b, ε) and (G′, s′, d′, b′, ε) are isomorphic if there is a bijection φ :
G → G′ such that φ(s) = s′, φ(d) = d′, ε = ε′, and φ(b(g, h)) = b′(φ(g), φ(h)) for all
g, h ∈ G.

By forgetting signs, one recovers the definitions of homologous, primitive, and isomorphic
singular based matrices in [9].

7. Associating a Matrix to a Virtual String

We will recall how to associate a based matrix to a virtual string [13], and define a method of
associating a signed singular based matrix to a signed singular virtual string. By forgetting
signs, one recovers the definitions of [9].
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7.1. Associating a based matrix to a virtual string. Turaev gives a combinatorial
formula for the based matrix of a virtual string [13].

The based matrix T (α) = (G, s, b) of the string α is given as follows: Put G = {s}∪arr(α).
Suppose e = (a, b) and f = (c, d) are arrows of α. We say f links e positively if c lies in
the arc ab and d lies in the arc ba. We say f links e negatively if c lies in the arc ba and d
lies in the arc ab. Otherwise, e and f are unlinked. (See Figure 7.) Let

Figure 7. In both figures e is the horizontal arrow and f is the vertical
arrow. On the right, f links e positively. On the left, f links e negatively.

n(e) = #{f ∈ arr(α)|f links e positively} −#{f ∈ arr(α)|f links e negatively}.

Then put b(e, s) = n(e). (This defines the first row and column of the matrix.) Now let
(ab)◦ denote the interior of the arc ab, and for two arcs ab and cd, and let

ab · cd = #{(t, h) ∈ arr(α)|t ∈ (ab)◦ and h ∈ (cd)◦}

−#{(t, h) ∈ arr(α)|t ∈ (cd)◦ and h ∈ (ab)◦}.
Set σ = 0 if e and f are unlinked, set σ = 1 if f links e positively, and set σ = −1 if f
links e negatively. Then put b(e, f) = ab · cd+ σ.

7.2. Associating a signed singular matrix to a signed singular string. Let αεd be a
signed singular virtual string, with underlying virtual string α, distinguished arrow d and
sign ε. The signed singular based matrix T (αεd) associated to αεd is (G, s, d, b, ε), where
T (α) = (G, s, b). When writing T (αεd) in matrix form, we will display the row and column
corresponding to d in bold, and display the sign ε to the upper right of the matrix.

7.3. Example. We compute the based matrix of the virtual stringM in Figure 1. Columns
one through six correspond to s,A,B,C,D, and E respectively. We will compute two
entries explicitly: b(A, s) = n(A) = 2, so the matrix entry a21 = 2. For an entry not in
the first row or column, we use the formula b(e, f) = ab · cd + σ to get a25 = b(A,D) =
2− 1 + 0 = 1. Notice that C is annihilating. Gibson [7] computes this based matrix, but it
seems we have opposite sign conventions, so his matrix is the transpose of ours. Below, we
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display the entire matrix T (M), as well as the signed singular matrix of the signed singular
string M+

C :

T (M) =


0 −2 −1 0 1 2
2 0 0 0 1 3
1 0 0 0 0 1
0 0 0 0 0 0
−1 −1 0 0 0 0
−2 −3 −1 0 0 0

 , and T (M+
C ) =


0 −2 −1 0 1 2
2 0 0 0 1 3
1 0 0 0 0 1
0 0 0 0 0 0
−1 −1 0 0 0 0
−2 −3 −1 0 0 0



+

.

8. Primitive Signed Singular Based Matrices Yield Invariants of Signed
Singular Strings

8.1. The homology class of a (signed singular) based matrix is an invariant of
(signed singular) strings. In this section we find analogues of Turaev’s results for based
matrices and Henrich’s results for singular based matrices:

8.1. Proposition (Turaev, p. 2487). Homotopic virtual strings have homologous based
matrices.

8.2. Proposition (Henrich, p. 22). Homotopic singular virtual strings have homologous
singular based matrices.

8.3. Proposition. Homotopic signed singular strings have homologous signed singular
based matrices.

Proof. We need to check that applying the ordinary Type 1-3 moves and the signed singular
Type 2 and 3 moves to a signed singular virtual string does not change the homology class
of the corresponding signed singular based matrix. For the ordinary Type 1-3 moves,
the proof is identical to Henrich’s or Turaev’s proof. Applying a Type 1 move changes
the corresponding matrix by adding a core or annihilating element; i.e., by applying the
elementary extension M ′′1 or M ′′2 , depending on the direction of the arrow. Applying the
Type 2 move adds a pair of complementary elements to the corresponding matrix; i.e., we
apply the elementary extension M ′′3 . One can check that the ordinary and signed singular
Type 3 moves do not change the corresponding matrix or its sign. Finally, the signed
singular Type 2 move changes the matrix by the move N ′′; i.e., one must change the sign
of the matrix, and swap the distinguished element with an element complementary to
it. �

8.4. Proposition. If the based matrix T (α) is primitive, then the signed singular based
matrix T (αεd) is primitive.

Proof. Clear. �
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8.2. The unique primitive representative of a homology class and Turaev’s in-
variant ρ. Our main tool for deciding when terms of µ cancel is an analogue of the
following theorem of Turaev [13]:

8.5. Theorem (Turaev). There is a unique primitive based matrix in each homology class,
up to an isomorphism.

Turaev’s theorem has two important applications which we will use throughout this paper.
First, it gives rise to an invariant of virtual strings. To see why, recall that by Proposition
8.1, homotopic strings α and β have homologous based matrices T (α) and T (β). Each
can be reduced to a primitive matrix using inverse elementary extensions. Therefore if
we apply as many inverse extensions as possible to these two matrices, we get the same
matrix. Turaev denotes the unique primitive matrix associated to the homotopy class of α
by T•([α]), which we may abbreviate to T•(α).

The second application of this theorem is that it gives a lower bound on the minimal self-
intersection number. Namely, put ρ([α]) = |T•(α)|−1. Then it is clear that m([α]) ≥ ρ([α]).
(This is the invariant ρ mentioned in the introduction.)

8.3. Example. The unique primitive matrix associated to the homotopy class of the string
M in Figure 1 is

T•([M ]) =


0 −2 −1 1 2
2 0 0 1 3
1 0 0 0 1
−1 −1 0 0 0
−2 −3 −1 0 0

 .

We obtained this matrix from T (M) by deleting the center row and column, which corre-
sponded to the annihilating element C. Thus ρ([M ]) = 5 − 1 = 4. Later we will see that
m([M ]) = 5, so the bound m([α]) ≥ ρ([α]) is not an equality in this case. We will also
see that half the number of terms of µ([M ]) is in fact 5, so the bound given by µ is an
equality.

8.4. There is not always a unique primitive matrix in the homology class of
a signed singular based matrix. Now we seek an analogue of Theorem 8.5 for signed
singular based matrices. There is not a unique primitive representative in the homology
class of a signed singular matrix, but there are at most two primitive representatives in
each class, and furthermore, if there are two such representatives, we can describe how
they are related.

8.5. The composite moves D′′12, D′′21, and D′′33. We will prove that two primitive,
homologous, signed singular based matrices either differ by an N ′′ move, or by certain
composite moves which we call D′′12, D′′21, and D′′33. The first two are just signed versions
of moves in [9]. However the move D′′33 does not appear in the unsigned case.
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Let D′′12 denote the composition (M ′′1 )−1◦N ′′◦(M ′′2 ) in the case where the N ′′ move interacts
with both the extension and the inverse extension. That is, first M ′′2 adds a core element c.
In order for N ′′ to affect this element, it must exchange the current distinguished element
d with c. This requires d and c to be complementary, so d must be annihilating. Then
(M ′′1 )−1 removes this annihilating element. The net effect of D′′12 is that it replaces an
annihilating-like distinguished element with a core-like distinguished element and changes
the sign of the matrix.

Similarly, we let D′′21 denote the composition (M ′′2 )−1 ◦N ′′ ◦ (M ′′1 ) in the case where the N ′′

move interacts with both the extension and the inverse extension. The net effect of D′′21

is that it replaces a core-like distinguished element with an annihilating-like distinguished
element and changes the sign of the matrix.

Before introducing the final move, we need the following definition:

8.6. Definition. An element g ∈ G of the based matrix (G, s, b) is self-complementary if
2b(g, h) = b(s, h) for all h ∈ G.

Let D′′33 denote the following special case of the composition (M ′′3 )−1 ◦ N ′′ ◦ M ′′3 : Sup-
pose the distinguished element d is self-complementary, the move M ′′3 adds a pair of self-
complementary elements, and N ′′ switches the distinguished element with one of these two
new elements. Then the (M ′′)−1

3 move removes the old distinguished element and the non-
distinguished self-complementary element added by the M ′′3 move. The net effect of D′′33

is that it switches the sign of a matrix whose distinguished element is self-complementary.
The move D′′33 is equivalent to an isomorphism for unsigned matrices.

It is helpful to note the following:

8.7. Proposition. A core or annihilating element is self-complementary if and only if s is
annihilating-like (in which case core and annihilating elements are the same).

Proof. If 2b(c, h) = b(s, h) for all h ∈ G and b(c, h) = b(s, h), then b(s, h) = 0. If
2b(c, h) = b(s, h) for all h ∈ G and b(c, h) = 0, then b(s, h) = 0. The reverse direc-
tion is similar. �

We will use an analogue of the following theorem to understand when certain terms of µ
can cancel.

8.8. Theorem (Henrich, p. 19). Two homologous primitive (unsigned) singular based
matrices differ either by an isomorphism or by a composition of an isomorphism with a
single D′12, D′21, or N ′ move.
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8.6. Sign switches. We will need to understand whether the isomorphisms in the state-
ment of Henrich’s theorem can change the sign of a signed singular based matrix. Define
an operation S(T ) which switches the sign of a signed singular based matrix. That is,
if T = (G, s, d, b, ε), then S(T ) = (G, s, d, b,−ε). Note that S is an isomorphism of the
underlying singular based matrices, but S is not an isomorphism of signed singular based
matrices. In general T and S(T ) need not be homologous.

Remark: It follows immediately from Theorem 8.8 that two signed singular primitive based
matrices differ by an isomorphism, a composition of an isomorphism with a single D′′12, D′′21,
or N ′′ move, or a composition of one of those moves with a move that changes the sign
ε of the matrix. This is because an isomorphism of unsigned based matrices is either an
isomorphism of signed based matrices, or is equivalent to a composition of an isomorphism
with a sign-switching move. But in general, applying a sign switch to a signed based
matrix might not produce a matrix homologous to the original matrix. This is why we
need to prove a version of Theorem 8.8 for signed matrices, rather than use Theorem 8.8
directly.

8.9. Theorem. Two homologous primitive signed singular based matrices differ by an iso-
morphism, or by a composition of an isomorphism with a single D′′12, D′′21, D′′33, or N ′′

move.

Before giving the rather technical proof of Theorem 8.9, which we postpone until the next
section, we give an example.

As in the case of ordinary based matrices, we let T•(α) denote a primitive matrix in the class
of T (α). If there is more than one such matrix, the choice of matrix will be specified.

8.7. Example illustrating Theorem 8.9. Let us consider a signed singular string whose
underlying ordinary string is the string M in Figure 1. Let M+

A be the signed singular string
with distinguished arrow A and sign +. First we compute the signed singular based matrix
associated to M+

A :

T (M+
A ) =


0 −2 −1 0 1 2
2 0 0 0 1 3
1 0 0 0 0 1
0 0 0 0 0 0
−1 −1 0 0 0 0
−2 −3 −1 0 0 0



+

.
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Note that this signed singular matrix is not primitive. A primitive representative of its
homology class is:

T•(M
+
A ) =


0 −2 −1 1 2
2 0 0 1 3
1 0 0 0 1
−1 −1 0 0 0
−2 −3 −1 0 0


+

.

This matrix happens to be the unique primitive representative of its homology class.
Indeed, by Theorem 8.9, any other primitive signed singular matrix homologous to this
matrix (which is not isomorphic to it) would differ from this one by a D′′12, D′′21, N ′′, or
D′′33 move. But in order to apply these moves, the distinguished element must be either
core, annihilating, part of a complementary pair, or self-complementary, and it is easy to
check that this is not the case.

On the other hand, the matrix T (M+
C ) computed in Example 7.3 is primitive (unlike

T (M+
A )), and is not the unique primitive matrix in its class because its distinguished ele-

ment is annihilating. The other primitive matrix in the class of T (M+
C ) isD′′12(T (M+

C )).

8.8. The primitive matrix in a signed singular homology class is sometimes
unique. This example illustrates that there is sometimes a unique primitive matrix in
the homology class of a signed singular matrix. We summarize this in Corollary 8.10 of
Theorem 8.9 below.

Let α be a virtual string. There may be more than one possible sequence of inverse
extensions which reduces the based matrix T (α) to the primitive based matrix T•(α). We
fix one such sequence R, and we let P (R) be the set of arrows of α which are not removed
by the reduction R. The set P (R) forms a primitive submatrix of T (α), and we can identify
its elements with those of T•(α).

8.10. Corollary. For any fixed reduction R of T (α), and any e ∈ P (R), one can construct
a primitive signed singular based matrix T•(α

ε
e) in the homology class of T (αεe) by using

T (α) as the underlying ordinary based matrix, with distinguished element e and sign ε.
Furthermore, if e is not a self-complementary element of P (R), then T•(α

ε
e) is the unique

primitive signed singular based matrix in its homology class.

Proof. Form the matrix T (αεe). Since e ∈ P (R), no move in R removes e. Thus we can ap-
ply the entire sequence of moves R to T (αεe) to obtain a matrix we call T•(α

ε
e). The signed

singular based matrix T•(α
ε
e) has underlying ordinary based matrix T (α), distinguished

element e, and sign ε. By Proposition 8.4, this signed singular based matrix is primitive.
Because e ∈ P (R), e is not core, annihilating, or part of a complementary pair. Thus one
cannot apply the moves D′′12, D′′21, or N ′′ to T•(α

ε
e). Hence if e is not a self-complementary

element of P (R), then T•(α
ε
e) is the unique primitive matrix in its homology class. �
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9. Proof of Theorem 8.9

We will follow Henrich’s proof of Theorem 8.8. Let (P, s, d, b, ε) and (P ′, s′, d′, b′, ε′) be two
homologous primitive signed singular based matrices. We will show that the sequence of
M ′′i , (M ′′)−1

i , and N ′′ moves relating two primitive singular based matrices can be replaced
by a sequence of moves of the form A◦B◦I ◦C, where A is a composition of extensions and
N ′′ moves, B is a single D′′ij or N ′′ move, I is an isomorphism, and C is a composition of

inverse extensions and N ′′ moves. Since one cannot apply inverse extensions to a primitive
matrix or obtain a primitive matrix by applying extensions to another matrix, the sequence
must be of the form B ◦ I, and the theorem follows.

As in Henrich’s proof, we will show:

• The D′′ij moves commute with inverse extensions and extensions,

• A sequence of D′′ij and N ′′ moves can be replaced with a sequence containing at

most one D′′ij or N ′′ move (and possibly an isomorphism), and

• A sequence of extensions, inverse extensions, and N ′′ moves can be rewritten so
that all inverse extensions occur before all extensions.

These three claims allow us to put our sequence in the form A ◦ B ◦ I ◦ C above. To see
why, consider the leftmost D′′ij move (if such a move exists). By the first bullet above, we
slide this move past extensions and inverse extensions until it is adjacent to a sequence
of N ′′ and D′′ij moves. Now by the second bullet, replace this sequence of our leftmost

D′′ij move and other D′′ij and N ′′ moves by a sequence containing a single D′′ij or N ′′

move. Now find the new leftmost D′′ij move, and repeat this process. In the end we will

have a sequence of extensions, inverse extensions, and N ′′ moves possibly followed by a
D′′ij move. By the third bullet, we can reorder this sequence so that it is of the form:

(M ′′i and N ′′ moves)◦ ((M ′′)−1
i and N ′′ moves)◦ (possibly a single D′′ij move). If there is a

D′′ij move at the end, we can move it between the inverse and ordinary extensions by sliding

it past inverse extensions, and whenever it becomes adjacent to an N ′′ move, replace the
result by a sequence containing a single N ′′ move or D′′ij move as necessary.

Our first step is to show that the D′′ij moves commute with inverse extensions and exten-

sions. For D′′12 and D′′21, the proof is the same as Henrich’s, so we only consider D′′33. But
this is clear because D′′33 just changes the sign of the matrix when the distinguished element
is self-complementary, and a sign switch certainly commutes with inverse extensions and
extensions.

Next we show that any sequence of D′′ij and N ′′ moves can be replaced by a single D′′ij
or N ′′ move, or an isomorphism. Henrich shows that this is true for compositions of
D′′12, D′′21 and N ′′. So we consider the compositions D′′33 ◦ N ′′, N ′′ ◦ D′′33, D′′33 ◦ D′′ij , and

D′′ij ◦ D′′33. If the composition D′′33 ◦ N ′′ occurs, then the distinguished element must be
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self-complementary, implying that N ′′ is equivalent to a sign switch composed with an
isomorphism. Therefore the composition D′′33 ◦ N ′′ is an isomorphism. This holds for
N ′′ ◦ D′′33 as well. The composition D′′33 ◦ D′′33 is also an isomorphism. The compositions
D′′33 ◦D′′12, D′′33 ◦D′′21, D′′12 ◦D′′33, and D′′21 ◦D′′33 can only occur if the core or annihilating-
like distinguished element is also self-complementary. Suppose that a core element d is
self-complementary. Then b(d, h) + b(d, h) = b(s, h) for all h ∈ G, but b(d, h) = b(s, h),
so b(d, h) = 0. Therefore s is annihilating-like. Similarly, if an annihilating element is
self-complementry, s is annihilating like. If s is annihilating like, the moves D′′12, D′′21, and
D′′33 are all sign switches, so the composition of any two of them is an isomorphism.

Finally we must show that a sequence containing extensions, inverse extensions, and N ′′

moves, but no D′′ij moves, can be rewritten so that inverse extensions occur before exten-

sions. Turaev [13] showed that sequences containing only extensions and inverse extensions
can be rewritten so that inverse extensions occur before extensions. Like Henrich, we must
consider sequences of the form (M ′′j )−1 ◦N ′′ ◦M ′′i which are not equivalent to D′′ij moves or
isomorphisms. In her case, such a sequence could be equivalent to an isomorphism, but in
our case, this cannot happen because all of these sequences change the sign of the matrix
exactly once. In each case, we only need to consider the case where the N ′′ move interacts
with both the extension and inverse extension, because if it does not, then the N ′′ move
commutes with at least one of those moves, and then Turaev’s results imply the sequence
can be rewritten in the desired form.

Case 1: i=j=1. Henrich shows that this is equivalent to D′′12 = D′′21, where s is
annihilating-like.
Case 2: i=j=2. This is also equivalent to D′′12 = D′′21, where s is annihilating-like.
Case 3: i=1, j=2. This is D′′21.
Case 4: i=2, j=1. This is D′′12.
Case 5: i=1, j=3. Henrich shows this is equivalent to (M ′′2 )−1 ◦N ′′.
Case 6: i=2, j=3. This is equivalent to (M ′′1 )−1 ◦N ′′.
Case 7: i=3, j=1. Henrich shows this is equivalent to M ′′1 ◦D′′12.
Case 8: i=3, j=2. This is equivalent to M ′′2 ◦D′′21.
Case 9: i=3, j=3. This is the case which differs from that of Henrich. First M ′′3 adds a
pair of complementary elements c1 and c2. The distinguished element d must be comple-
mentary to one of these in order to apply N ′′. So suppose d and c1 are complementary, so
that d and c2 are the same with respect to b. Then N ′′ makes c1 the new distinguished
element. At the final stage, when we apply (M ′′3 )−1, we have two options. The first is that
d (and also both ci) is self-complementary, so that (M ′′3 )−1 removes d and c2. In this case,
the composition is a D′′33 move. (Henrich did not need to consider this case because it is an
isomorphism of unsigned matrices). The other possibility is that (M ′′3 )−1 only removes one
of d or c2. Since b agrees on these elements, it does not matter which is removed. Henrich
shows that in this case, the composition is equivalent to an N ′′ move. �
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10. Cases when the operation µ gives a formula for the minimal
self-intersection number, and the proof that µ gives a stronger bound

on m([α]) than Turaev’s cobracket ν

In this section, we prove Theorem 1.1 and Corollary 1.2. Recall that Theorem 1.1 describes
cases when the operation µ gives a formula for the minimal self-intersection number. Corol-
lary 1.2 states that the bound on the minimal self-intersection number given by µ is stronger
than the bound given by Turaev’s cobracket ν.

We are interested in describing strings α such that m([α]) = t(µ([α]))/2 + n − 1, where
n ≥ 1 is the largest integer such that a minimal representative β of [α] can be realized as
a curve B on an oriented surface F , and 〈B〉 = 〈γ〉n ∈ π1(F ). Recall that by Proposition
5.1, we always have m([α]) ≥ t(µ([α]))/2 + n− 1.

Theorem 1.1 gives examples of strings α such that m([α]) = t(µ(α))/2. Hence for these
strings, n = 1.

10.1. Proposition. Suppose the term [αεe] of µ is semi-trivial. Then the distinguished
element of any primitive matrix in the homology class of T (αεe) is core or annihilating.

Proof. If [αεe] is semi-trivial, then there exists some signed singular string τ δd in its class
such that one of the arcs bounded by the endpoints a and b of d contains no endpoints
on its interior. If we form the matrix T (τ δd ), the distinguished element will be core or

annihilating. When the matrix T (τ δd ) is reduced to a primitive matrix, the distinguished
element can only change during an N ′′ move, so the distinguished element of the primitive
matrix will be core or annihilating. �

1.1 Theorem. Let α be a virtual string, whose based matrix T (α) is primitive and does not
contain a self-complementary element. Then m([α]) = t(µ([α]))/2. If T (α) is primitive and
does contain a self-complementary element, then either m([α]) = t(µ([α]))/2 or m([α]) =
t(µ([α]))/2 + 1 .

Proof. By Proposition 10.1, and the fact that T (α) is primitive, no term of µ is semitrivial.
Hence every term is nonzero. Since T (α) is primitive (i.e., T (α) = T•(α)), every e in T (α)
is an element of P (R), where R is an empty sequence of moves (see Corollary 8.10 for the
definition of P (R)).

First we suppose e is not self-complementary. We will show that the term [α+
e ] cannot

cancel with any other term −[α−f ] of µ (and then , by symmetry, −[α−e ] cannot cancel with

[α+
f ]). Suppose that these terms cancel. Then the signed singular based matrices T (α+

e ) and

T (α−f ) are homologous by Proposition 8.3. By Corollary 8.10, there is a unique primitive

matrix T•(α
+
e ) in the homology class of T (α+

e ), which is just the signed singular matrix
with T (α) as the underlying based matrix, distinguished element e and sign +. Similarly,
if f is not self-complementary, we can find the unique primitive matrix T•(α

−
f ) in the
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homology class of T (α−f ) by using T (α) as the underlying based matrix, with distinguished

element f and sign −. The matrices T•(α
+
e ) and T•(α

−
f ) have opposite signs, so they are

not isomorphic. If f is not self-complementary, then we have reached a contradiction, so
these terms cannot cancel. If f is self-complementary, the terms still cannot cancel. By
Theorem 8.9, and because e is not self-complementary and f is, the matrices T•(α

−
f ) and

T•(α
+
e ) are not related by the moves N ′′ or D′′ij .

So the only way that two terms [α+
e ] and −[α−f ] can cancel is if both e and f are self-

complementary. There is at most one self-complementary element in T (α), so e = f , and
[α+
e ] might cancel with −[α−e ], reducing the total number of terms by 2. �

10.1. Examples of classes α such that µ gives a formula for m([α]). The purpose
of Theorem 1.1 is to find examples of classes such that m([α]) = t(µ(α))/2 + n− 1, in the
case where n = 1. We now show that such classes exist.

Consider the string αp,q defined in [13, p. 2464]. This string is a copy of S1 oriented
counterclockwise, with p vertical arrows pointing upward and q horizontal arrows pointing
from right to left, so that the copy of S1 can be partitioned into four disjoint arcs containing
the heads of the vertical arrows, the heads of the horizontal arrows, the tails of the vertical
arrows, and the tails of the horizontal arrows, respectively.

Turaev finds a formula for the based matrix T (αp,q) (part of the formula is given in the
next paragraph), and shows that if p, q ≥ 1 and one of p or q is at least 2, then this matrix
is primitive [13, pp. 2464, 2471]. We will use this formula to check that T ([αp,q]) does not
contain a self-complementary element. It will follow that for p, q ≥ 1 and one of p or q ≥ 2,
we have m([αp,q]) = t(µ([αp,q]))/2 = p+ q.

Now we check that T (αp,q) does not contain a self-complementary element. Label the
vertical arrows e1, . . . , ep from left to right, and label the horizontal arrows ep+1, . . . ep+q
from bottom to top. Then b(ei, s) = q for i = 1, . . . , p and b(ep+j , s) = −p for j =
1, . . . , q. Also, b vanishes on any pair of vertical arrows and b vanishes on any pair of
horizontal arrows. We do not need to compute the rest of the matrix. Suppose c is a self-
complementary element of T (αp,q). Then 2b(g, c) = b(g, s) for all arrows g of αp,q. Suppose
c is horizontal. Then choose some other horizontal arrow h 6= c. We have 2b(h, c) = 0, but
b(h, s) = −p 6= 0. Hence c cannot be horizontal. Similarly it is easy to check c cannot be
vertical. Thus T (αp,q) does not contain a self-complementary element, so by Theorem 1.1,
we have m([αp,q]) = t(µ([αp,q]))/2 = p+ q.

1.2 Corollary. The bound on m([α]) given by µ is stronger than the bound given by
Turaev’s cobracket ν. Namely, the number of terms of µ([α]) is greater than or equal to the
number of terms of ν[α], and there are virtual homotopy classes [α] such that this inequality
is strict.
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Proof. By Subsection 4.2, we have ν = S ◦ µ. It follows that t(µ([α])) ≥ t(ν([α])). It
is easy to check that ν([αp,q]) = 0 for any p, q. On the other hand, we just saw that
m([αp,q]) = t(µ([αp,q]))/2 = p+ q. Hence t(µ([αp,q])) > t(ν([αp,q])).

�

11. An example showing the bound on m([α]) given by µ is sometimes
stronger than the bound ρ.

In this section we prove that the string M in Figure 1 satisfies m([M ]) = | arr(M)| = 5.
Then we show that m([M ]) = t(µ([M ]))/2 = 5, while ρ([M ]) = 4.

11.1. Irreducible and minimal strings. We call a string α crossing-reducible if there is
a string α′ such that α and α′ are related by a (possibly empty) sequence of Type 3 moves,
and if a crossing-reducing Type 1 or Type 2 move can be applied to α′. A string which
is not crossing-reducible is called crossing-irreducible. A string α is crossing-minimal if
m([α]) = | arr(α)|.

The notation (F, α) denotes an orientable surface F with a curve α on it. Recall that any
virtual string α can be realized as a curve, which we also call α, on a surface F . There
is a canonical realization of α on a surface, which can be obtained by gluing disks to the
boundary components of the surface described in [13, p. 2468] (see also [4]). Roughly
speaking, one collapses each arrow of α to a point to get a framed 4-valent graph, glues
disks to each vertex, and then attaches bands between those disks along each edge in such a
way that the resulting surface is orientable. This canonical surface is the surface of smallest
genus realizing α. We say two pairs (F, α) and (F ′, α′) are virtually homotopic if the virtual
strings realized by α and α′ on F and F ′ respectively are virtually homotopic.

We call a pair (F, α) genus-reducible if there is a string α′ homotopic to α on F , and a
nontrivial simple closed curve γ ⊂ F − Im(α′). If one cuts along γ and glues disks to the
resulting boundary components, the genus of the resulting surface is less than the genus of
F ; this process is called destabilization of F along γ. A pair which is not genus-reducible is
called genus-irreducible. We call a pair (F, α) genus-minimal if F is the surface of smallest
genus on which a representative of the virtual class [α] can be realized.

11.2. The string M is crossing-irreducible. Gibson showed, with the aid of a com-
puter, that the string M in Figure 1 is crossing-irreducible [7, p. 17, Table 6]. (Gibson
refers to this string by its nanoword ABCADBECDE : bbbbb).

11.3. The string M is crossing-minimal. Kadokami stated that two crossing-irreducible
strings are related by a (possibly empty) sequence of Type 3 moves [11, Theorem 3.8]. It
would follow from that statement that crossing-irreducible strings are crossing-minimal.
Kadokami proved this statement for flat virtual links, but Gibson unfortunately found a
counterexample in the case where there is more than one component [7, p. 18]. However,
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the statement is true for virtual strings; it follows from the work of Ilyutko, Manturov and
Nikonov [10] as well as the work of Hass and Scott [8], and we will show this below. Then
since Gibson showed M is crossing-irreducible, Kadokami’s statement will imply that the
string M is crossing-minimal.

We now explain why Kadokami’s statement follows from [10] and [8].

The results of Ilyutko, Manturov and Nikonov that we use are Theorem 3.2 and Corollary
3.1 in [10]. We state Theorem 3.2 in two ways. The first statement (Theorem 11.1 below) is
the same as the statement given in their work, but with our terminology and notation.

11.1. Theorem (Ilyutko, Manturov, Nikonov). Let (F, α) and (F ′, α′) be two virtually
homotopic genus-minimal pairs. Then there is a homeomorphism φ : F → F ′ such that
φ(α) is homotopic to α′ on F ′.

They actually prove the following stronger statement, Theorem 11.2, during their proof of
Theorem 3.2 in [10].

11.2. Theorem (Ilyutko, Manturov, Nikonov). Let (F, α) and (F ′, α′) be two virtually
homotopic genus-irreducible pairs. Then there is a homeomorphism φ : F → F ′ such that
φ(α) is homotopic to α′ on F ′.

Ilyutko, Manturov and Nikonov then deduce the following corollary using the results of
Hass and Scott. We do not use this corollary, but state it here because it is similar to
Kadokami’s statement.

11.3. Corollary (Ilyutko, Manturov, Nikonov). Let α and α′ be two virtually homotopic
crossing-minimal strings. Then there is a (possibly empty) sequence of Type 3 moves taking
α to α′.

11.4. Corollary (Kadokami’s Statement). Let α and α′ be two virtually homotopic crossing-
irreducible strings. Then there is a (possibly empty) sequence of Type 3 moves taking α to
α′.

Proof of Corollary 11.4. Suppose α and α′ are crossing-irreducible. Realize α and α′ on
their canonical surfaces F and F ′. Hass and Scott [8] showed that any curve on a surface
can be homotoped to a curve with minimal self-intersection without increasing the number
of self-intersection points of the curve at any time during the homotopy, and in particular,
two homotopic curves with minimal self-intersection are realted by Type 3 moves on the
surface. This implies that α and α′ have minimal self-intersection in their free homotopy
classes on F and F ′ respectively. Using the result of Hass and Scott, along with the fact
that F and F ′ are the canonical surfaces for α and α′, it is straightforward to check that the
pairs (F, α) and (F ′, α′) are genus-irreducible; this argument is similar to an argument in
the proof of Theorem 11.1. Hence by Theorem 11.2 there is a homeomorphism φ : F → F ′

such that φ(α) is homotopic to α′ on F ′. Since φ(α) and α′ are crossing-irreducible as
virtual strings, they must both have the fewest number of self-intersection points of any
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curve in their free homotopy class on F ′. Therefore either φ(α) and α′ are related by a
regular isotopy, or there is a sequence of Type 3 moves taking φ(α) to α′ on F ′. Hence α
and α′ are related by a (possibly empty) sequence of Type 3 moves. �

Now that we have established Corollary 11.4, we know that M is crossing-minimal.

11.4. The proof that m([M ]) = 5 = t(µ([M ]))/2. In Lemma 11.5, we will show that
since M is crossing-minimal, no term of µ([M ]) is semi-trivial. Now in order to show that
t(µ([M ]))/2 = 5, we just need to show that no two terms of µ([M ]) cancel with each other.
The signed singular matrices T (M+

A ), T (M+
B ), T (M+

D ), T (M+
E ), T (M−A ), T (M−B ), T (M−D ),

and T (M−E ) become primitive after the annihlating element C is removed. The resulting
primitive matrices are the unique primitive matrices in their homology classes, and they
are all distinct. The matrices T (M+

C ) and T (M−C ) are primitive, and are different than
those mentioned above because they contain 6 elements rather than 5. They are also not
homologous to each other because they do not differ by a D′′12, D′′21, D′′33 or N ′′ move.
Hence the five signed singular homology classes corresponding to the five positive terms of
µ([M ]) are different from the five signed singular homology classes corresponding to the
five negative terms of µ([M ]), so no two terms of µ([M ]) cancel.

In the proof of Lemma 11.5, it will be useful to view singular virtual strings as flat singular
virtual knot diagrams in the plane, up to the virtual diagram moves in [9]. These moves
are flat versions of the usual virtual Reidemeister moves in [12], plus the moves in Figures
2 and 3 (ignoring signs) and the move in Figure 8.

Figure 8. A move for planar diagrams of singular virtual strings with one
of several possible choices of orientation on the branches.

11.5. Lemma. Suppose α is a virtual string such that | arr(α)| = m([α]). Then none of
the singular strings αe, e ∈ arr(α), are semi-trivial.

Proof. Let α be a virtual string such that | arr(α)| = m([α]), and suppose αe is semi-trivial
for some e ∈ arr(α). Then αe is homotopic to a singular string τf where f = (a, b) and
either the arc ab or the arc ba contains no endpoints of arrows of τ .

We will see that we can smooth α at the crossing corresponding to the arrow e in such a way
that the resulting virtual string α′ is in the same virtual homotopy class as α. This string
has one less crossing than α, contradicting the assumption that | arr(α)| = m([α]).
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Figure 9. Smoothing a crossing of α with and against the orientation of α.

Now we construct α′ and show why it is homotopic to α. First smooth α at its distinguished
crossing e against the orientation of α (see Figure 9). This is the virtual string α′, though
we have not yet specified its orientation. The string α′ is homotopic to the string τ , where
τ is the ordinary string underlying the singular string τf . The homotopy from α′ to τ is
given by using the sequence of moves for singular strings taking αe to τf , but where the
moves involving the distinguished crossing in Figures 3, 2, and 8 are replaced with moves
in Figures 10, 12, and 11 respectively, followed by a single Type 1 move, which adds the
arrow f . We pick an orientation of α′ so that this resulting virtual string is the string τ .
Now α′ is homotopic to τ , and τ is homotopic to α, so α′ must be homotopic to α. �

Figure 10. Type 3 moves with center crossing smoothed.

Figure 11. Virtual Type 3 moves with center crossing smoothed.
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Figure 12. Virtual Type 2 move with center crossing smoothed.

12. Comparing the bound given by µ to the bound ρ

In this section we prove Theorem 1.3. Unlike Theorem 1.1, which only considers virtual
classes that contain a representative α whose based matrix is primitive, Theorem 1.3 de-
scribes the bound on m([α]) given by µ for an arbitrary class [α], and compares this bound
to ρ.

1.3 Theorem. Let α be any virtual string. Then

m([α]) ≥ t(µ([α]))/2 ≥ ρ([α])− 1 +O/2.

If the primitive based matrix associated to [α] does not contain a self-complementary ele-
ment, then

m([α]) ≥ t(µ([α]))/2 ≥ ρ([α]) +O/2.

12.1. Definitions of O, ordinary elements, positive and negative terms, and the
standard primitive matrix. . We call a term ε[αεe] in the sum µ([α]) positive if its
coefficient ε is positive and negative if its coefficient ε is negative. If a term is semi-trivial,
we put ε = 0 and do not consider the term to be positive or negative. Note that the
coefficient can be different from the sign of a primitive matrix in the homology class of
T (αεe).

We call a core or annihilating element e ∈ G−{s} of a based matrix T = (G, s, b) ordinary
if s is not annihilating-like in T (or equivalently, if the element e is not self complementary,
by Proposition 8.7). If a signed singular homology class contains a primitive matrix with
an ordinary core or annihilating distinguished element, then there are exactly two prim-
itive matrices in its homology class which differ by a D′′12 or D′′21 move, by Theorem 8.9.
Since these moves change the sign of the matrix, there is a unique primitive matrix in the
homology class of T (αεe) with a given sign ε. We call this choice of primitive matrix the
standard choice.
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Let C (respectively, A) be the total number of positive terms +[α+
e ] such that the distin-

guished element in the standard primitive matrix in the homology class of T (α+
e ) is an

ordinary core (respectively, annihilating) element. Now put O = |C −A|.

12.2. Proof of Theorem 1.3. First we prove the following lemma. The notation P (R)
was introduced in Subsection 8.8.

12.1. Lemma. Let e ∈ P (R) for some fixed reduction R of T (α), and assume e is not self-
complementary. Suppose that there exists f /∈ P (R) so that the (unique) primitive signed
singular based matrix corresponding to [α+

e ] is isomorphic to the (unique) primitive signed
singular based matrix corresponding to [α−f ]. Then there exists some f ′ /∈ P (R) such that

f ′ 6= f and the primitive signed singular based matrix corresponding to [α+
f ′ ] is isomorphic

to those corresponding to [α+
e ] and [α−f ].

Proof. Suppose e and f satisfy the hypotheses in the statement of Lemma 12.1. Form the
matrices T (α+

e ) and T (α−f ). These matrices have T (α) as their underlying nonsingular

based matrix. R is a sequence of inverse extensions which can be applied to T (α), so the
extensions in this sequence can be applied to T (α+

e ) and T (α−f ) as long as they do not

remove the distinguished element. So begin reducing T (α+
e ) and T (α−f ) according to the

moves in R until this is no longer possible, i.e., until just before a move in R would remove
the distinguished element. Since e ∈ P (R), the reduction R will reduce T (α+

e ) completely,
giving us a primitive matrix. Since f /∈ P (R), the reduction R of T (α−f ) will at some

point require the removal of f , so we stop the reduction. Let Mf be the signed singular
based matrix at this stage. At this point, the distinguished element f is core, annihilating,
or part of a complementary pair. Notice that f cannot be core or annihilating, because
we are assuming that the primitive matrix obtained by reducing T (α−f ) is isomorphic to

that obtained by reducing T (α+
e ); if at some point during the reduction f becomes core or

annihilating, then the distinguished element in the primitive matrix must also be core or
annihilating, and that is impossible. So f is part of at least one complementary pair. The
reduction R is about to remove f with some specific choice of element f ′ complementary
to f .

Now consider the term [α+
f ′ ]. Form its matrix T (α+

f ′). Begin reducing T (α+
f ′) according

to the sequence R of inverse extensions. At some point, R removes f ′, but we already
know this happens at the same point when R removes f , i.e., they are removed together
as part of a complementary pair. So at this point, we can apply an N ′′ move to switch the
distinguished element from f ′ to f . After we apply N ′′ we obtain the matrix Mf . Thus we

have partial reductions of the matrices T (α−f ) and T (α+
f ′) such that at some stage in the

reduction, the matrices are identical. Thus the primitive signed singular based matrices in
the homology classes of T (α−f ) and T (α+

f ′) are isomorphic.
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�

Proof of Theorem 1.3. We break the proof into two steps.

In the first step, we prove:

The number of terms of µ([α]) is at least 2ρ(α) − 2. If no element of P (R) is self-
complementary for some fixed reduction R of T (α), then the number of terms of µ([α])
is at least 2ρ([α]).

Proof of Step 1: We will show that the arrows e ∈ P (R) which are not self-complementary
in T•(α) each contribute two terms to µ([α]) that do not cancel with any other terms. By
Proposition 10.1, if e ∈ P (R), then the terms [α+

e ] and −[α−e ] are not semi-trivial.

To prove the theorem, we will partition the terms of µ into sets such that two terms of
µ are in the same set if and only if they have same primitive signed singular matrix, and
count the number of positive and negative terms in each set.

We first consider all of the positive terms of µ of the form [α+
e ] where e ∈ P (R) is not self-

complementary. Let I+
1 , I

+
2 , . . . , I

+
n be sets containing these terms, such that two terms are

in the same set if and only if they have isomorphic primitive signed singular based matrices.
(Recall that the primitive matrix is unique when e ∈ P (R) and is not self-complementary
by Corollary 8.10). Similarly let I−1 , I

−
2 , . . . , I

−
m be sets containing the negative terms −[α−e ]

where e ∈ P (R) is not self-complementary, such that two terms are in the same set if and
only if they have isomorphic primitive signed singular based matrices. By Corollary 8.10,
the terms [α+

e ] and −[α−f ] corresponding to non-self-complementary elements e, f ∈ P (R)

cannot cancel with other such terms. This implies that the sets I+
k are disjoint from the

sets I−k .

Now we assign the terms ε[αεf ] for all f /∈ P (R) to the sets I±k as follows: Consider a prim-

itive signed singular matrix Pf homologous to T (αεf ). If Pf is isomorphic to the primitive

matrix of the term δ[αδe] in some Iδk , then add ε[αεf ] to Iδk . By Lemma 12.1, if Pf is iso-

morphic to the primitive matrix of some term δ[αδe], then there is some unique f ′ /∈ P (R)
determined by R such that Pf is also isomorphic to the primitive matrix of a term −ε[α−εf ′ ].
So both ε[αεf ] and −ε[α−εf ′ ] are in the set Iδk , and one is a positive term while the other is a
negative term.

Now each Iδk contains an equal number of positive and negative terms corresponding to ar-

rows not in P (R), as well as a certain number nδk of terms corresponding to arrows in P (R).

This means that there are at least nδk terms in Iδk which do not cancel with any other terms
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of µ. Note that the sum of all the nδk is either 2ρ(α) if there are no self-complementary
elements in P (R) or 2ρ(α) − 2 if there is a self-complementary element in P (R), which
concludes the proof of Step 1.

Step 2: We prove the following statement :

The number of terms of µ([α]) is at least 2ρ(α) − 2 + O. If the primitive matrix T (α)
does not contain any self-complementary elements, then the number of terms is at least
2ρ(α) +O.

Proof of Step 2: The number of positive and negative terms with ordinary core (respec-
tively, annihilating) distinguished elements in their standard primitive matrices are equal.
A positive (respectively, negative) term with an ordinary core distinguished element in
its standard primitive matrix can only cancel with a negative (respectively, positive) term
with an ordinary annihilating distinguished element in its standard primitive matrix. Even
if all terms satisfying the condition in the previous sentence cancel with each other, there
will still be |C −A| such terms leftover that do not cancel with any terms of µ. �
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