
Electronic Communications of the EASST
Volume 64 (2013)

Proceedings of the
XIII Spanish Conference on Programming

and Computer Languages
(PROLE 2013)

R-SQL: An SQL Database System with Extended Recursion1

Gabriel Aranda, Susana Nieva, Fernando Sáenz-Pérez and
Jaime Sánchez-Hernández

18 pages

Guest Editors: Clara Benac Earle, Laura Castro, Lars-Åke Fredlund
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

1 This work has been partially supported by the Spanish projects TIN2013-44742-C4-3-R (CAVI-ART), TIN2008-
06622-C03-01 (FAST-STAMP), S2009/TIC-1465 (PROMETIDOS), and GPD-UCM-A-910502.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/322595198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

R-SQL: An SQL Database System with Extended Recursion†

Gabriel Aranda1, Susana Nieva1, Fernando Sáenz-Pérez2 and
Jaime Sánchez-Hernández1

1 Dept. Sistemas Informáticos y Computación, UCM, Spain
2 Dept. Ingenierı́a del Software e Inteligencia Artificial, UCM, Spain

garanda@fdi.ucm.es, nieva@sip.ucm.es, fernan@sip.ucm.es, jaime@sip.ucm.es

Abstract:

The relational database language SQL:1999 standard supports recursion, but this
approach is limited to the linear case. Moreover, mutual recursion is not supported,
and negation cannot be combined with recursion. We designed the language R-SQL
to overcome these limitations in [ANSS13], improving termination properties in re-
cursive definitions. In addition we developed a proof of concept implementation of
an R-SQL system. In this paper we describe in detail an improved system enhanc-
ing performance. It can be integrated into existing RDBMS’s, extending them with
the aforementioned benefits of R-SQL. The system processes an R-SQL database
definition obtaining its extension in tables of an RDBMS (such as PostgreSQL and
DB2). It is implemented in SWI-Prolog and it produces a Python script that, upon
execution, computes the result of the R-SQL relations. We provide some perfor-
mance results showing the efficiency gains w.r.t. the previous version. We also
include a comparative analysis including some representative relational a deductive
systems.

Keywords: Databases, SQL, Recursion, Fixpoint Semantics

1 Introduction

Recursion is a powerful tool nowadays included in almost all programming systems. However,
for current implementations of the declarative programming language SQL, this tool is heavily
compromised or even not supported at all (MySQL, MS Access, . . .) Those systems including
recursion suffer from several drawbacks. Linearity is required, so that relation definitions with
calls to more than one recursive relation are not allowed. Mutual recursion, and query solving
involving an EXCEPT clause are not supported. In general, termination is manually controlled
by limiting the number of iterations instead of detecting that there are no further opportunities
to develop new tuples. Duplicate discarding is not supported and, so, queries that are actually
terminating are not detected as such.

Starburst [MP94] was the first non-commercial RDBMS to implement recursion whereas IBM
DB2 was the first commercial one. ANSI/ISO Standard SQL:1999 included for the first time

† This work has been partially supported by the Spanish projects TIN2013-44742-C4-3-R (CAVI-ART), TIN2008-
06622-C03-01 (FAST-STAMP), S2009/TIC-1465 (PROMETIDOS), and GPD-UCM-A-910502.

1 / 18 Volume 64 (2013)

mailto:garanda@fdi.ucm.es, nieva@sip.ucm.es, fernan@sip.ucm.es, jaime@sip.ucm.es

R-SQL: An SQL Database System with Extended Recursion

recursion in SQL. Today, we can find recursion in several systems: IBM DB2, Oracle, MS SQL
Server, HyperSQL and others with the aforementioned limitations.

In [ANSS13] we proposed a new approach, called R-SQL, aimed to overcome these limita-
tions and others, allowing in particular cycles in recursive definitions of graphs and mutually
recursive relation definitions. In order to combine recursion and negation, we applied ideas from
the deductive database field, such as stratified negation, based on the definition of a dependency
graph between the relations involved in the database [Ull89]. We developed a formal framework
following the original relational data model [Cod70], therefore avoiding both duplicates and nulls
(as encouraged by [Dat09]). We used a stratified fixpoint semantics and we presented an R-SQL
database system as a prototype implementing such formal framework. The system can be down-
loaded from https://gpd.sip.ucm.es/trac/gpd/wiki/GpdSystems/RSQL. In
this work, we describe in detail an improved version enhancing performance. The system
processes an R-SQL database definition obtaining its extension in tables of an RDBMS (such
as PostgreSQL and DB2). It is implemented in SWI-Prolog and it generates a Python script
that, upon execution, computes the result of the R-SQL relations. The improvements in effi-
ciency relies on a new stratification and a more elaborated version of the fixpoint calculation
algorithm that allows to avoid recomputations along iterations. The new system is available
at https://gpd.sip.ucm.es/trac/gpd/wiki/GpdSystems/RSQLplus. In addi-
tion, we experiment with some previously proposed optimizations [Ull89] to improve the perfor-
mance of the fixpoint computation.

Related academic approaches include DLV DB [TLLP08], LDL++ [AOT+03] (now abandoned
and replaced by DeALS, which does not refer to SQL queries up to now), and DES [SP13]. The
first one, resulting of a spin-off at Calabria University, is the closer to our work as it produces
SQL code to be executed in the external database with a semi-naı̈ve strategy, but lacks formal
support for its proposal, and it does not describe non-linear recursion. Last two ones also allow
connecting to external databases, but processing of recursive SQL queries are in-memory.

The paper is organized as follows: In Section 2 we recall the syntax and the meaning of R-SQL
database definitions. Section 3 describes the system, including the new form of stratification,
the fixpoint algorithm, and some performance measurements, showing the efficiency gains for
several optimizations. We also include a comparative analysis including some representative
relational and deductive systems. Conclusions and future work are summarized in Section 4.

2 Introducing R-SQL

In this section, we present an overview of the language R-SQL, which is focused on the incor-
poration of recursive relation definitions. The idea is simple and effective: A relation is defined
with an assignment operation as a named query (view) that can contain a self reference, i.e., a
relation R can be defined as R sch := SELECT. . .FROM . . . R . . ., where sch is the relation schema.

2.1 The Definition Language of R-SQL

The formal syntax of R-SQL is defined by the grammar in Figure 1. In this grammar, produc-
tions start with lowercase letters whereas terminals start with uppercase (SQL terminal symbols

Proc. PROLE 2013 2 / 18

https://gpd.sip.ucm.es/trac/gpd/wiki/GpdSystems/RSQL
https://gpd.sip.ucm.es/trac/gpd/wiki/GpdSystems/RSQLplus

ECEASST

db ::= R sch := sel stm; . . . R sch := sel stm;

sch ::= (A T, ...,A T)

sel stm ::= SELECT exp, ...,exp [FROM R, ...,R [WHERE wcond]]
| sel stm UNION sel stm

| sel stm EXCEPT R

exp ::= C | R.A | exp opm exp | −exp

wcond ::= TRUE | FALSE | exp opc exp | NOT(wcond) | wcond [AND | OR] wcond

opm ::= + | − | / | ∗

opc ::= = | <> | < | > | >= | <=

R stands for relation names, A for attribute names, T for standard SQL types and C for
constants belonging to a valid SQL type.

Figure 1: A Grammar for the R-SQL Language

use small caps). As usual, optional statements are delimited by square brackets and alternative
sentences are separated by pipes.

The language R-SQL overcomes some limitations present in current RDBMS’s following
SQL:1999. These languages use NOT IN and EXCEPT clauses to deal with negation, and WITH

RECURSIVE to engage recursion. As it is pointed out in [GUW09], SQL:1999 does not allow an
arbitrary collection of mutually recursive relations to be written in the WITH RECURSIVE clause.

A bundle of R-SQL database examples can be found with the system distribution. Next, we
present some of them, to show the expressiveness of the definition language. Each of them is
intended to illustrate a concrete aspect of the language in a simple and concise way. Section 3
explores a larger and more natural example.

Mutual Recursion Although any mutual recursion can be converted to direct recursion by
inlining [KRP93], our proposal allows to explicitly define mutual recursive relations, which is
an advantage in terms of program readability and maintenance. For instance, the following R-
SQL database defines the relations even and odd, as the classical specification of even and odd
numbers up to a bound (100 in the example):

even(x float) := SELECT 0 UNION SELECT odd.x+1 FROM odd WHERE odd.x<100;

odd(x float) := SELECT even.x+1 FROM even WHERE even.x<100;

Nonlinear Recursion The standard SQL restricts the number of allowed recursive calls to be
only one. Here we show how to specify Fibonacci numbers in R-SQL1:

1 The relations fib1 and fib2 simply represent two aliases for fib, which are necessary because, for simplicity,
we have not introduced the usual syntax for renamings in the grammar of Figure 1.

3 / 18 Volume 64 (2013)

R-SQL: An SQL Database System with Extended Recursion

fib1(n float, f float) := SELECT fib.n, fib.f FROM fib;

fib2(n float, f float) := SELECT fib.n, fib.f FROM fib;

fib(n float, f float) := SELECT 0,1 UNION SELECT 1,1 UNION
SELECT fib1.n+1,fib1.f+fib2.f FROM fib1,fib2
WHERE fib1.n=fib2.n+1 AND fib1.n<10;

Duplicates and Termination Non termination is another problem that arises associated to re-
cursion when coupled with duplicates. For instance, the following standard SQL query (that
considers a finite relation t) makes current systems either to reject the query or to go into an
infinite loop (some systems allow to impose a maximum number of iterations as a simple termi-
nation condition, as DB2):

WITH RECURSIVE v(a) AS SELECT * FROM t UNION ALL SELECT * FROM v
SELECT * FROM v

Nevertheless, the fixpoint computation for the corresponding R-SQL relation:

v(a float) := SELECT * FROM t UNION SELECT * FROM v;

guarantees termination because duplicates are discarded2 and v does not grow unbounded.
The very same termination problem also happens in current RDBMS’s with the basic transitive
closure over graphs including cycles, but not in R-SQL which ensures termination for finite
graphs.

2.2 The meaning of an R-SQL database definition

In [ANSS13] we formalized an operational semantics for the language R-SQL based on stratified
negation and fixpoint theory, here we summarize the main ideas.

Stratification is based on the definition of a dependency graph DGdb for an R-SQL database
db that is a directed graph whose nodes are the relation names defined in db, and the edges,
that can be negatively labelled, are determined as follows. A relation definition of the form
R sch := sel stm in db produces edges in the graph from every relation name inside sel stm

to R. Those edges produced by the relation name that is just to the right of an EXCEPT are
negatively labelled.

If there are n relations defined in db, and we denote by RN the set of the relation names defined
in db, a stratification of db is a mapping str : RN→ {1, . . . ,n}, such that for every two relations
R1, R2 ∈ RN it satisfies:

• str(R1)≤ str(R2), if there is a path from R1 to R2 in DGdb,

• str(R1) < str(R2) if there is a path from R1 to R2 in DGdb with at least one negatively
labelled edge.

2 Note that UNION does not require ALL, as current RDBMS’s do.

Proc. PROLE 2013 4 / 18

ECEASST

An R-SQL database db is stratifiable if there exists a stratification for it. We denote by numStr
the maximum stratum of the elements of RN.

Intuitively, a relation name preceded by an EXCEPT operator plays the role of a negated pred-
icate (relation) in the deductive database field. A stratification-based solving procedure ensures
that when a relation that contains an EXCEPT in its definition is going to be calculated, the mean-
ing of the inner negated relation has been completely evaluated, avoiding nonmonotonicity, as it
is widely studied in Datalog [Ull89].

We say that an interpretation I is the relationship between every relation name R and its in-
stance I(R). Interpretations are classified by strata; an interpretation belonging to a stratum i
gives meaning to the relations of strata less or equal to i. If I1, I2 are two interpretations of
stratum i, we say I1 is less or equal than I2 at stratum i, denoted by I1 vi I2, if the following
conditions are satisfied for every R ∈ RN:

• I1(R) = I2(R), if str(R)< i.

• I1(R)⊆ I2(R), if str(R) = i.

The meaning of every sel stm w.r.t. an interpretation I can be understood as the set of tu-
ples (in the current instance represented by I) associated to the corresponding equivalent RA-
expression, denoted by [sel stm]I . This RA-expression is defined as follows: 3

• [SELECT exp1, . . . ,expk FROM R1, . . . ,Rm WHERE wcond]I =
πexp1,...,expk

(σwcond(I(R1)× . . .× I(Rm)))

• [sel stm1 UNION sel stm2]
I = [sel stm1]

I ∪ [sel stm2]
I

• [sel stm EXCEPT R]I = [sel stm]I− I(R)

Example 1 Consider the definitions of the relations odd and even of Section 2. Let us assume a
concrete interpretation I such that I(even)= {(0),(2)} and I(odd)= /0. Hence, the interpretation
of the select statement that defines the relation odd w.r.t. I is:

[SELECT even.x+1 FROM even WHERE even.x< 100]I =
{(even.x+1)[a/even.x] | (a) ∈ I(even),(even.x< 100)[a/even.x] is satisfied }=
{(1),(3)}

The case of the relation even is analogous:

[SELECT 0 UNION SELECT odd.x+1 FROM odd WHERE odd.x< 100]I =

[SELECT 0]I ∪ [SELECT odd.x+1 FROM odd WHERE odd.x< 100]I =
{(0)} ∪{(odd.x+1)[a/odd.x] | (a) ∈ I(odd),(odd.x< 100)[a/odd.x] is satisfied}=
{(0)}

Notice that the interpretation Î defined by:

Î(even) = {(0),(2), . . . ,(100)} and Î(odd) = {(1),(3), . . . ,(99)}
3 Notice that arithmetic expressions are allowed as arguments in projection (π) and select (σ) operations.

5 / 18 Volume 64 (2013)

R-SQL: An SQL Database System with Extended Recursion

satisfies:

Î(even) = [SELECT 0 UNION SELECT odd.x+1 FROM odd WHERE odd.x< 100]Î

Î(odd) = [SELECT even.x+1 FROM even WHERE even.x< 100]Î

So, to give meaning to a database definition, we are interested in an interpretation, called f ix,
such that for every R ∈ RN, if sel stm is the definition of R, then f ix(R) = [sel stm] f ix. In
the previous example f ix will be Î. Since R can occur inside its definition, for every stratum i,
the appropriate interpretation f ixi that gives the complete meaning to each relation of stratum
i is the least fixpoint of a continuous operator. These fixpoint interpretations are sequentially
constructed from stratum 1 to numStr. f ix represents the fixpoint of the last stratum and provides
the semantics for the whole database.

For every i, 1 ≤ i ≤ numStr, we define the continuous operator Ti that transforms interpreta-
tions belonging to a stratum i as follows:

• Ti(I)(R) = I(R), if str(R)< i.

• Ti(I)(R) = [sel stm]I , if str(R) = i and R sch := sel stm is the definition of R in db.

• Ti(I)(R) = /0, if str(R)> i.

The operator T1 has a least fixpoint, which is
⊔

n≥0 T n
1 (/0), where /0(R) = /0 for every R ∈ RN.

We will denote
⊔

n≥0 T n
1 (/0) by f ix1, i.e., f ix1 represents the least fixpoint at stratum 1.

Consider now the sequence {T n
2 (f ix1)}n≥0 of interpretations of stratum 2, greater than f ix1.

Using the definition of Ti and the fact that f ix1(R) = /0 for every R such that str(R)≥ 2, it is easy
to prove, by induction on n≥ 0, that this sequence is a chain:

f ix1 v2 T2(f ix1)v2 T2(T2(f ix1))v2 . . .v2 T n
2 (f ix1), . . .

{T n
2 (f ix1)}n≥0 is a chain that has as least upper bound,

⊔
n≥0 T n

2 (f ix1), which is the least
fixpoint of T2 containing f ix1. We denote this interpretation by f ix2. By proceeding successively
in the same way it is possible to find f ixnumStr. In [ANSS13] we have proved that f ixnumStr is the
interpretation f ix we are looking for, that associates the set of tuples denoted by its definition to
every relation of the database .

3 The Improved R-SQL System

Here we present the R-SQL system, which is based on the fixpoint construction of the previous
section. We describe its structure, focusing on the improvements that increase the efficiency
of the previous prototype, presented in [ANSS13]. These enhances are essentially due to the
stratification described in Section 3.1 and in the factoring-out process incorporated in the fixpoint
algorithm presented in Section 3.2.

As we show in Figure 2, the system is loaded in SWI-Prolog to process an R-SQL database
definition. First, the system parses the input database, then it builds the dependency graph and
the stratification if it exists (it raises an error, otherwise); finally, it produces a Python script
that will create the SQL database in an RDBMS. After this process, the user can connect to

Proc. PROLE 2013 6 / 18

ECEASST

the RDBMS in order to query or modify the database. Although we are referring to Post-
greSQL in the concrete implementation https://gpd.sip.ucm.es/trac/gpd/wiki/
GpdSystems/RSQLplus, it can be straightforwardly applied to other systems.

Figure 2: R-SQL System Structure.

Next we present a database for flights to illustrate the process and also will be the working
example for the rest of the section. As usual, the information about direct flights can be composed
of the city of origin, the city of destination, and the length of the flight. Cities (Lisbon, Madrid,
Paris, London, New York) will be represented with constants (lis, mad, par, lon, ny, resp.).
The relation reachable consists of all the possible trips between the cities of the database,
maybe concatenating more than one flight. The relation travel is analogous but also gives
time information about alternative trips.

flight(frm varchar(10), to varchar(10), time float) :=
SELECT ’lis’,’mad’,1.0 UNION SELECT ’mad’,’par’,1.5 UNION
SELECT ’par’,’lon’,2.0 UNION SELECT ’lon’,’ny’,7.0 UNION
SELECT ’par’,’ny’,8.0;

reachable(frm varchar(10), to varchar(10)) :=
SELECT flight.frm, flight.to FROM flight UNION

SELECT reachable.frm, flight.to
FROM reachable,flight WHERE reachable.to = flight.frm;

travel(frm varchar(10), to varchar(10), time float) :=
SELECT flight.frm, flight.to, flight.time FROM flight UNION
SELECT flight.frm, travel.to, flight.time+travel.time

FROM flight, travel WHERE flight.to = travel.frm;

Both reachable and travel represent transitive closures of the relation flight. Notice
that if flight has a cycle, then the relation travel that includes times for each trip is infinite,
while reachable is not. As pointed before, reachable can be finitely computed in our
system. But, as travel would produce an infinite set of different tuples, some computation
limitation would have to be imposed (as the maximum time for a travel, for example). How-
ever, this is not a drawback of our approach, but an issue due to using infinite relations (built

7 / 18 Volume 64 (2013)

https://gpd.sip.ucm.es/trac/gpd/wiki/GpdSystems/RSQLplus
https://gpd.sip.ucm.es/trac/gpd/wiki/GpdSystems/RSQLplus

R-SQL: An SQL Database System with Extended Recursion

Figure 3: DGdb of the working example.

with arithmetic expressions). The relation madAirport contains travels departing or arriving
in Madrid, while avoidMad contains the possible travels that neither begin, nor end in Madrid.

madAirport(frm varchar(10), to varchar(10)) :=
SELECT reachable.frm, reachable.to FROM reachable
WHERE (reachable.frm = ’mad’ OR reachable.to = ’mad’);

avoidMad(frm varchar(10), to varchar(10)) :=
SELECT reachable.frm, reachable.to FROM reachable EXCEPT madAirport;

This definition includes negation together with recursive relations. This combination can not
be expressed in SQL:1999 as it is shown in [FMMP96]. The dependency graph of this database
is depicted in Figure 3, where negatively labelled edges are annotated with ¬.

3.1 Stratification

Given a database and its dependency graph, there can be a number of different stratifications for
it. For instance, for the dependency graph of Figure 4 a possible stratification can assign stratum
1 to the relations {a,b,c,d,e} and stratum 2 to {f,g}.

For the graph of Figure 4, intuitively it is easy to see that only b and c must belong to the same
stratum due to the mutual dependency between them. The next algorithm minimizes the number
of relations in each stratum, which allows to enhance the efficiency of the fixpoint computation
as shown in Section 3.2.

• Compute the strongly connected components C from DGdb. Negative labels are not rel-
evant initially, but once the components are evaluated, it must be checked if there exists
some cycle with a negatively labeled edge. In such a case, db is not stratifiable and the
computation stops. For the example of Figure 4 the components are {a}, {f}, {g}, {b,c},
{d} and {e}.

¬
a

cb

e

d

gf

Figure 4: Dependency Graph Example

Proc. PROLE 2013 8 / 18

ECEASST

• Collapse each strongly connected component obtaining a new graph with a node for each
component, C, and with an edge from C to C′ if and only if C contains a relation R and C′

contains a relation R′, such that there is an edge from R to R′ in DGdb. In our example, the
component {b,c} can be collapsed to the node bc, and the rest to its single element. The
new graph has the edges {a→ bc,bc→ d,bc→ e,a→ f,f→ g}.

• Obtain a topological sorting for the resulting graph. In our example we can get the sorting
a< f< g< bc< e< d.

• Uncollapse the nodes of such a sorting for obtaining a topological sorting for the strongly
connected components, and enumerate them in ascending order. In our example, we get
{a}< {f}< {g}< {b,c}< {e}< {d}.

Then, the expected stratification str(a) = 1; str(f) = 2; str(g) = 3; str(b) = str(c) =
4; str(e) = 5; str(d) = 6 is obtained.

The concrete implementation of this algorithm in R-SQL uses the library ugraphs of SWI-
Prolog and the module scc implemented by Markus Triska, accessible from http://www.
logic.at/prolog/scc.pl. For the dependency graph of Figure 3, R-SQL assigns stratum
1 to flight, 2 to travel, 3 to reachable, 4 to madAirport, and 5 to avoidMad.

3.2 The Computation of the Database Fixpoint

Next, we present the algorithm for generating the SQL database corresponding to the fixpoint
of an R-SQL database definition db. This algorithm is shown in Figure 5. It produces the SQL
statements (CREATE and INSERT) needed to build such a database.

1 for all R ∈ RNdb do
2 CREATE TABLE R sch;
3 end for
4 i := 1
5 while i≤ numStr do
6 for all R ∈ RNi do
7 INSERT INTO R out(sel stmR);
8 end for
9 repeat

10 size := rel size(RNi)
11 for all R ∈ RNi do
12 INSERT INTO R in(sel stmR) EXCEPT SELECT * FROM R;
13 end for
14 until size = rel size(RNi)
15 i := i+1
16 end while

Figure 5: Algorithm to Compute the Fixpoint

9 / 18 Volume 64 (2013)

http://www.logic.at/prolog/scc.pl
http://www.logic.at/prolog/scc.pl

R-SQL: An SQL Database System with Extended Recursion

The algorithm considers a concrete stratification for the database where numStr denotes the
number of strata and NRi the set of relations of stratum i. First of all, a table is created for each
relation R sch := sel stmR of the database (lines 1-3). Then, the external while at line 5
computes successively the fixpoints f ix1, f ix2, . . . , f ixnumStr. Following the semantics, each f ixi

is calculated for every relation of NRi, by iterating the fixpoint operators Ti, i.e., the internal
repeat (lines 9-14) at iteration n computes T n

i (f ixi−1). The loop is iterated while some tuple is
added to the tables of the current stratum; the variable size is used to check this condition.

This algorithm enhances the introduced in [ANSS13] by reducing the work in the iterations of
the repeat, i.e., simplifying the operations done for filling the tables, so improving the efficiency.
The idea is that the iteration of the operator Ti is only needed for recursive relations, and even
more precisely, only for the recursive fragment of the select statements defining those relations.
With this aim we have defined the functions in and out to split each sel stm into, respectively,
the (recursive) fragment that must be used in the INSERT statements inside the loop, and the frag-
ment that can be processed before the loop, as the base case of the recursive definition. Then, the
for at lines 6-8 processes the out fragments, and the INSERT’s at lines 11-13 only process the in
fragments. The in and out fragments of a sel stm can be easily determined using the stratum
of its components because the stratification defined in the Section 3.1 is such that if a relation R
in stratum i depends on another relation R′, then the stratum of R′ is lower than i, so it must be
previously computed, or it is exactly i (if they are mutually recursive) and both relations must
be computed simultaneously. Therefore, if for instance R := sel stm1 UNION sel stm2,
str(R) = i, and str(sel stm1) < i, then sel stm1 will be part of the out fragment, and the
corresponding tuples can be inserted before the loop, because the involved relations are already
computed in the computation of a previous stratum. Functions in and out can be easily defined
using the stratification as follows:

If str(sel stm)< i then we have:

• in(sel stm) = /0 and out(sel stm) = sel stm.

If str(sel stm) = i then, the functions are defined by recursion on the structure of sel stm:

• sel stm ≡ SELECT exp ... exp FROM R ... R WHERE wcond
in(sel stm) = sel stm and out(sel stm) = /0

• sel stm ≡ sel stm1 UNION sel stm2

– If str(sel stm1) = str(sel stm2) = i then:
in(sel stm) = in(sel stm1) UNION in(sel stm2) and
out(sel stm) = out(sel stm1) UNION out(sel stm2)

– If str(sel stm1) = i and str(sel stm2)< i then:
in(sel stm)= in(sel stm1) and out(sel stm)= out(sel stm1) UNION sel stm2

– If str(sel stm1)< i and str(sel stm2) = i then:
in(sel stm) = in(sel stm2) and out(sel stm) = sel stm1 UNION out(sel stm2)

• sel stm ≡ sel stm1 EXCEPT sel stm2
in(sel stm) = in(sel stm1) EXCEPT sel stm2 and
out(sel stm) = out(sel stm1) EXCEPT sel stm2

Proc. PROLE 2013 10 / 18

ECEASST

The concrete implementation of the algorithm of Figure 5 can be done in a number of ways.
We have chosen Python as the host language mainly because it is multiplatform and provides
easy connections with different database systems such as PostgreSQL, DB2, MySQL, or even
via ODBC, which allows connectivity to almost any RDBMS. The additional features required
for the host language are basic: Loops, assignment and simple arithmetic.

Below, we show the Python code generated for the working example of flights. It uses the
Python library psycopg2 (available at http://initd.org/psycopg/) which allows to
connect to an RDBMS and then submit SQL queries as:

cursor.execute("<query>")

where <query> is any valid SQL query. The generated code expands all the loops of the
algorithm of Figure 5, except the repeat at lines 9-14. As Python does not provide a repeat (or
do-while) loop construction, we implement it as a while True sentence with the corresponding
break for stopping it when the condition holds. We will show it in the code generated for stratum
2. Moreover, we also implement a Python function relSize(<list of relations>)
that returns the number of tuples of the relations specified in its argument.

The for at lines 1-3 is expanded as:
cursor.execute("CREATE table flight

(frm varchar(10), to varchar(10), time float);")
cursor.execute("CREATE table travel

(frm varchar(10), to varchar(10), time float);")

and so on for the rest of relations. Now, we detail some parts of the code generated stratum by
stratum. For stratum 1 the in fragment is empty and we have:

Code generated for Stratum 1
cursor.execute("INSERT INTO flight

(SELECT ’lis’,’mad’,1 UNION SELECT ’mad’,’par’,1.5 UNION
SELECT ’par’,’lon’,2 UNION SELECT ’lon’,’ny’,7 UNION
SELECT ’par’,’ny’,8) EXCEPT
SELECT * FROM flight;")

Stratum 2 contains the relation travel whose definition can be splitted into two parts with the
functions in and out.
Code generated for Stratum 2
out fragment
cursor.execute("INSERT INTO travel (SELECT * FROM flight);")

in fragment
while True:

cursor.execute("INSERT INTO travel
(SELECT flight.frm,travel.to,flight.time+travel.time
FROM flight,travel WHERE flight.to = travel.frm)
EXCEPT SELECT * FROM travel;")

newSize = relSize(["travel"])

if (newSize != size):
size = newSize

else:
break

11 / 18 Volume 64 (2013)

http://initd.org/psycopg/

R-SQL: An SQL Database System with Extended Recursion

The tuples added for travel at each iteration of this code are shown in the next Table:

Set of added tuples
out fragment {(lon,ny,7.0),(par,lon,2.0),(par,ny,8.0),

(mad,par,1.5),(lis,mad,1.0)}
in fragment: iteration 1 {(lis,par,2.5),(par,ny,9.0),(mad,ny,9.5),(mad,lon,3.5)}
in fragment: iteration 2 {(lis,ny,10.5),(lis,lon,4.5),(mad,ny,10.5)}
in fragment: iteration 3 {(lis,lon,4.5),(mad,ny,10.5),(lis,ny,11.5)}

Analogously, the system produces the Python code for strata 3 and 4, which correspond to
reachable and madAirport, respectively. Finally, in the last stratum the avoidMad rela-
tion is computed (there is no in fragment in this case):

Code generated for Stratum 5
out fragment
cursor.execute("INSERT INTO avoidMad

(SELECT travel.frm,travel.to FROM travel
EXCEPT SELECT * FROM madAirport)");

This completes the fixpoint for the working example database. The values for flight,
madAirport and avoidMad tables are illustrated in the graph in Figure 6. Direct flights
are represented in blue color and labeled with their corresponding time. Paths for madAirport
relation are represented in red color and path for avoidMad relation are represented in black
color.

Once the R-SQL database definition has been processed, the tables obtained are available as a
database instance in PostgreSQL. Then, the user can formulate queries that will be solved using
those tables (without performing any further fixpoint computation).

3.3 Performance

This section analyzes the system performance. First, we focus on the improvement of factoring
out SQL fragments (as already explained in Section 3.2). And, second, we develop a field analy-
sis by targeting the system to different current state-of-the art relational systems, introducing the

Figure 6: Graphical representation of resulting values of the working example.

Proc. PROLE 2013 12 / 18

ECEASST

benefits of a semi-naı̈ve differential optimization [Ull85] for linear recursive queries. Numbers
for tables in this section are expressed in milliseconds and represent the average of a number of
runs, where the maximum and minimum have been elided.

3.3.1 Factoring-Out Improvement

As introduced, any DBMS allowing Python access can be used to implement our proposal. This
section develops the connection to IBM DB2 as a target system for analyzing the performance.
We consider the benchmark reachable that implements the transitive closure of the relation
flight, as introduced in Section 3. To build a parametric relation, we consider links in flights
as the tuples {(1,2),(2,3), . . . ,(n,n+1)}, where n+1 is the number of nodes in the graph and
the type of the fields have been changed to integer. Table 1 shows the results for instances of
this benchmark with a number of tuples ranging from 100 to 350 (first column). Second column
lists the number of tuples generated in the result set. Third and fourth columns show the elapsed
running time for solving the query in R-SQL with no factoring-out improvement (No FOI) and
with this improvement enabled (With FOI), respectively. Fifth column (Speed-up) shows the
speed-up due to FOI as a percentage. The last column (Difference) shows the absolute time
difference between both timings. Benchmarks have been run on an Intel Core2 Quad CPU at
2.4GHz and 3GB RAM, running Windows XP 32bit SP3, and IBM DB2 Express Edition 10.1.0
database server with a default configuration.

Tuples Result Tuples No FOI With FOI Speed-up Difference
100 5,050 1,135 1,050 8.1% 85
150 11,325 4,438 3,428 29.4% 1,010
200 20,100 10,048 8,172 23.0% 1,876
250 31,375 19,001 16,041 18.5% 2,960
300 45,150 32,710 28,381 15.3% 4,329
350 61,425 50,085 44,175 13.4% 5,910

Table 1: Factoring-Out Improvement (FOI)

From this experiment we confirm the expected results for factoring the fragment select *
from flight out of the recursive clause and the repeat loop. Indeed, even for a single SQL
fragment as this, speed-ups of up to almost 30% are reached. However, as long as the tuples do
increase in the instances, the speed-up decrease because the main computation effort corresponds
to the repeat loop because of the EXCEPT operator.

Next section deals with other optimizations and comparison with other relational and deduc-
tive systems.

3.3.2 Analysis of Systems

This section considers different current state-of-the-art relational systems which include recur-
sive queries: PostgreSQL 9.3, Oracle 11g, and DB2 10.1, all of them with a default configura-
tion. We compare R-SQL when solving the previous benchmark with these systems and show the

13 / 18 Volume 64 (2013)

R-SQL: An SQL Database System with Extended Recursion

importance of introducing the semi-naı̈ve differential optimization [Ull85]. To make the compar-
ison fairest with the RDBMS’s, which do not discard duplicates, we omit the operator EXCEPT

to behave similarly to the optimized R-SQL systems. Also, we include the last published ver-
sion of DLV DB in this comparison as a deductive system which is able to project its solving to
these external databases when computing a transitive closure. Another related deductive system
is LDL++, but unfortunately it is not included in this comparison since it has been replaced by
the system DeALS whose binaries and/or sources are not available yet.

RDBMS System 100 200 300 400 500
Native SQL 161 187 240 360 713

R-SQL 500 3,198 12,406 39,802 71,922
PostgreSQL Diff-R-SQL 208 459 1,073 2,271 4,115

TDiff-R-SQL 260 578 1,323 2,745 5,693
DLV DB 703 1,651 4,458 8,047 13,120

Native SQL 604 1,781 5,765 13,349 26,297
R-SQL 880 3,802 12,057 27,989 56,641

Oracle Diff-R-SQL 708 1,437 3,224 6,240 11,469
TDiff-R-SQL 646 995 1,708 2,453 3,422

DLV DB 6,875 12,849 18,912 30,583 42,146
Native SQL 677 1,016 1,323 2,052 3,099

R-SQL 1,271 5,797 97,052 129,917 150,104
DB2 Diff-R-SQL 698 932 2,672 2,859 3,213

TDiff-R-SQL 646 1,000 1,578 4,021 9,021
DLV DB 6,339 12,666 53,552 57,349 100,391

Table 2: Analysis of Systems

The results for different instances of the benchmark are given in Table 2. Numbers are now
arranged with the parameter n ranging in the horizontal axis, and rows include the considered
RDBMS (first column), the system connected to this relational database (second column), and
then (in the next five columns), the wall time for solving each instance (from 100 up to 500 tuples
in the relation flight, which delivers from 5,050 up to 125,250 tuples in the result set of the
query benchmark). Below the headings, lines are arranged in major rows, each one referring to
a concrete RDBMS. And, for each RDBMS (PostgreSQL, Oracle, DB2)4, five minor rows are
listed, which refer to each system. The first minor row Native SQL refers to the corresponding
RDBMS, which is used to compare how the rest of the systems behave w.r.t. a native execution
of the benchmark, i.e., resorting to the recursive query specification for the transitive closure
that each RDBMS provides. For instance, DB2 uses the following syntax (where rec is the
temporary recursive relation which is built to fill the relation reachable):

INSERT INTO reachable
WITH rec(frm,to) AS

4 Incidentally, MySQL does not support recursive queries at all.

Proc. PROLE 2013 14 / 18

ECEASST

(SELECT * FROM flight
UNION ALL
SELECT flight.frm, rec.to FROM flight,rec
WHERE flight.to = rec.frm)

SELECT * FROM rec;

The next minor row R-SQL refers to the implementation we have presented in Section 3. Minor
row labeled with Diff-R-SQL presents the results for R-SQL with the semi-naı̈ve differential
optimization enabled as explained in [Ull85]. Roughly, for a linear query, this optimization
refers to use in each iteration only the results that have been generated in the previous iteration
to build new tuples. To implement this, we have resorted to add a new integer column (it in the
benchmark) holding the iteration in which a given tuple has been generated. For instance, the
next query is executed for each iteration IT (this is substituted by the actual iteration number
along iterations):

INSERT INTO reachable
SELECT flight.frm, reachable.to, IT
FROM flight, reachable
WHERE flight.to = reachable.frm AND

reachable.it = IT-1;

Next, the row labeled with TDiff-R-SQL refers to an alternative implementation of the semi-
naı̈ve differential optimization, which consists on storing all the tuples generated in a given
iteration in a temporary table. Then, the join at each iteration is computed between flight and
this temporary table, therefore avoiding to scan the growing relation reachable looking for
the tuples with a given iteration number value in the extra field. In fact, two temporary tables are
needed: One for accessing the tuples generated in the previous iteration, and another one to store
the new tuples. Next, there is a sketch of the SQL statements submitted in each iteration to DB2,
where reachable temp1 is intended to hold the tuples generated in the previous iteration,
and reachable temp2 is for the current one (temporary tables are preceded by SESSION.):

INSERT INTO SESSION.reachable_temp2
SELECT flight.ori, SESSION.reachable_temp1.des
FROM flight, SESSION.reachable_temp1
WHERE flight.des = SESSION.reachable_temp1.ori;

...
INSERT INTO reachable SELECT * FROM SESSION.reachable_temp1;
DELETE FROM SESSION.reachable_temp1;
INSERT INTO SESSION.reachable_temp1

SELECT * FROM SESSION.reachable_temp2;
DELETE FROM SESSION.reachable_temp2;

The first SQL sentence loads into reachable temp2 the results just computed for the cur-
rent iteration. Next sentences simply load on reachable the results from the previous iteration,
and transfer the results just available in reachable temp2 to reachable temp1 in order
for them to be available for the next iteration. reachable temp2 is finally flushed to be ready
for the next iteration as well.

Using temporary tables should reveal an advantage as neither log records nor lock management
are needed. They are computed in-memory as much as possible; only when they do not fit into
RAM, memory space quota is requested for them.

15 / 18 Volume 64 (2013)

R-SQL: An SQL Database System with Extended Recursion

Finally, the row labeled with DLV DB stands for this deductive system, which uses the same
ODBC bridge to access those relational systems.

Looking at the numbers, it is noticeable that the best performance is achieved by the native
SQL execution in PostgreSQL for all the considered instances (n ∈ {100,200, . . . ,500}) of the
benchmark. Also, the worst performance corresponds to R-SQL without optimizations (and
including the operator EXCEPT), which is also clear as the join and the difference must be pro-
cessed in each iteration for all the tuples, including those that definitely will not be involved in
generating a new one. The semi-naı̈ve differential optimization (which also avoids the operator
EXCEPT) alleviates this enormously, with a huge factor of 150,104/3,213 = 46.7×, when com-
paring R-SQL vs. Diff-R-SQL for DB2. DLV DB is the next system in the performance ranking,
behaving better than R-SQL but worse than the rest. Depending on the RDBMS, the next best
system can be either Diff-R-SQL or TDiff-R-SQL: The first one performs better than the second
for PostgreSQL and the other way round for Oracle and DB2. Noticeably, both perform better
than Native SQL for Oracle, and Diff-R-SQL behaves roughly similar to DB2. These numbers
highlight how similar techniques are differently managed by the different RDBMS’s. For ex-
ample, whereas for Oracle the use of temporary tables is of paramount importance for lowering
the solving time, its effect is the contrary for DB2. We have also tested table functions, which
provide a way to implement parametric views. However, they do not provide better performance
than the already illustrated optimizations (and Oracle faces the mutating table problem when
using them to insert tuples in the same source table).

All in all, in the best case we are able to beat an RDBMS by a factor of 26,297/3,422 =
7.7×, and in the worst case (but considering the best optimization) we are beaten by a factor
of 4,115/713 = 5.8×. To better understand this slowdown, we must consider that the R-SQL
system runs an interpreted script (Python) and in each iteration, one or several SQL statements
are sent to the RDBMS via the ODBC bridge. SQL statements sent in this way must be compiled
by the RDBMS for each iteration, so that it becomes a significant burden on the system, together
with the communication cost due to the bridge. Therefore, using a compiled language supporting
prepared SQL statements should be a point worth to explore for performance gains.

4 Conclusions

R-SQL has been designed to compute the meaning of a database definition and then to query this
database. Notice that the modification of a relation of the database in the underlying RDBMS
can cause inconsistencies since the tables are not recomputed. For instance, after processing the
database for flights, if the user adds or deletes a tuple for the relation flight, then the relation
travel will become inconsistent according to its R-SQL definition. But this is the very same
behavior of RDBMS’s when dealing with materialized views. A future direction in order to fully
integrate R-SQL into an RDBMS is to have the possibility of restoring the consistence of the
database (using triggers for instance), as well as to define additional (possibly recursive) views.
This restoring involves the recomputation of the database fixpoint. But, using the dependency
graph, it is easy to determine the subset of relations that must be calculated, instead of computing
the whole fixpoint for the database. Moreover, those relations may not need to be recomputed
from scratch. In addition, it is straightforward to modify the algorithm introduced in Section

Proc. PROLE 2013 16 / 18

ECEASST

3.2 to get a lazy evaluation of such relations, performing iterations only when new values are
demanded.

As shown in Section 3.3.2, the semi-naı̈ve differential optimization [Ull89] for linear recur-
sive queries has a notable impact on performance. Nonetheless, our system can be further ex-
tended for non linear recursive queries and with enhancements as in [ZCF+97, BR87], as DLV
[TLLP08] does. Implementing all these optimizations are left for future work.

Although our proposal is encouraging as results reveal, efficiency can also be improved by
indexing (e.g., tries [SW12] and BDD’s [WACL05]) temporary relations during fixpoint compu-
tations. To seamlessly integrate this into an RDBMS, we can profit from the fourth-generation
languages (e.g., SQL PL in IBM DB2 and PL/SQL in Oracle) and completely integrate query
solving and view maintenance into the RDBMS. This way, prepared SQL statements are avail-
able in a compiled setting, which should also improve performance. We are currently extending
the R-SQL system with the enhancements aforementioned and more features as hypothetical
definitions and aggregates.

Bibliography

[ANSS13] G. Aranda-López, S. Nieva, F. Sáenz-Pérez, J. Sánchez-Hernández. Formalizing a
Broader Recursion Coverage in SQL. In Symposium on Practical Aspects of Declar-
ative Languages (PADL’13). LNCS 7752, pp. 93 – 108. 2013.

[AOT+03] F. Arni, K. Ong, S. Tsur, H. Wang, C. Zaniolo. The Deductive Database System
LDL++. TPLP 3(1):61–94, 2003.

[BR87] I. Balbin, K. Ramamohanarao. A Generalization of the Differential Approach to
Recursive Query Evaluation. J. Log. Program. 4(3):259–262, 1987.

[Cod70] E. Codd. A Relational Model for Large Shared Databanks. Communications of the
ACM 13(6):377–390, June 1970.

[Dat09] C. J. Date. SQL and relational theory: how to write accurate SQL code. O’Reilly,
Sebastopol, CA, 2009.

[FMMP96] S. J. Finkelstein, N. Mattos, I. S. Mumick, H. Pirahesh. Expressing Recursive
Queries in SQL. Technical report, ISO, 1996.

[GUW09] H. Garcia-Molina, J. D. Ullman, J. Widom. Database systems - the complete book
(2. ed.). Pearson Education, 2009.

[KRP93] O. Kaser, C. R. Ramakrishnan, S. Pawagi. On the conversion of indirect to direct
recursion. ACM Lett. Program. Lang. Syst. 2(1-4):151–164, Mar. 1993.

[MP94] I. S. Mumick, H. Pirahesh. Implementation of magic-sets in a relational database
system. SIGMOD Rec. 23:103–114, May 1994.

[SP13] F. Sáenz-Pérez. Towards Bridging the Expressiveness Gap Between Relational
and Deductive Databases. In XIII Jornadas sobre Programación y Lenguajes,
PROLE2013 (SISTEDES). September 2013.

17 / 18 Volume 64 (2013)

R-SQL: An SQL Database System with Extended Recursion

[SW12] T. Swift, D. S. Warren. XSB: Extending Prolog with Tabled Logic Programming.
TPLP 12(1-2):157–187, 2012.

[TLLP08] G. Terracina, N. Leone, V. Lio, C. Panetta. Experimenting with recursive queries in
database and logic programming systems. TPLP 8(2):129–165, 2008.

[Ull85] J. D. Ullman. Implementation of Logical Query Languages for Databases. ACM
Trans. Database Syst. 10(3):289–321, 1985.

[Ull89] J. Ullman. Principles of Database and Knowledge-Base Systems Vols. I (Classical
Database Systems) and II (The New Technologies). Computer Science Press, 1989.

[WACL05] J. Whaley, D. Avots, M. Carbin, M. S. Lam. Using Datalog with binary decision
diagrams for program analysis. In In Proceedings of Programming Languages and
Systems: Third Asian Symposium. 2005.

[ZCF+97] C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass, V. S. Subrahmanian, R. Zicari.
Advanced Database Systems. Morgan Kaufmann Publishers Inc., 1997.

Proc. PROLE 2013 18 / 18

	Introduction
	Introducing R-SQL
	 The Definition Language of R-SQL
	The meaning of an R-SQL database definition

	The Improved R-SQL System
	Stratification
	The Computation of the Database Fixpoint
	Performance
	Factoring-Out Improvement
	Analysis of Systems

	Conclusions

