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ABSTRACT. This paper examines the consequences of including distributed delays in
an energy model. The stability behaviour of the resulting equilibrium for our dynamic
system is analysed, including models with Dirac, weak and strong kernels. Applying
the Hopf bifurcation theorem we determine conditions under which limit cycle motion
is born in such models. The results indicate that distributed delays have an ambivalent
impact on the dynamical behaviour of systems, either stabilizing or destabilizing them.

1. Introduction

Domar (1946) and Solow (1956) introduced the systematic study of the growth process,
where the accumulation of physical capital is seen as a key growth driver. This research
unveiled key structural characteristics that affect the long-term determination of labor
productivity: savings, population growth, technological change. In this regard, different
augmented versions of the Solow model were developed over the decades that include
among others the contribution of Mankiw et al. (1992) employing a physical and an
intangible capital (human capital), and the Solow-Jorgenson-Griliches residual model
(Jorgenson and Griliches 1967), framework used to address issues concerning intangibles
such as the contribution of intangible capital to output growth and how does the inclusion
of intangibles affect the allocation of output growth between capital formation and
multifactor productivity growth (Corrado et al. 2009).

On the other hand, the basic neoclassical growth concept abstracts from a potentially
important feature of the growth process: purchasing a piece of machinery at a specific
time and place makes little sense unless the equipment can be supplied with energy and
put to use. Indeed, it is of primary importance for the economy to be able to distribute
electricity across the economy.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Università degli Studi di Messina: Open Journals Messina

https://core.ac.uk/display/322590718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1478/AAPP.981A2
http://dx.doi.org/10.1478/18251242


A2-2 M. FERRARA ET AL.

Natural science experiments by Banavar et al. (1999, 2002) and West et al. (1997,
1999) developed the energy distribution network as a living organism to validate the
empirical results of biology recognized as. Kleiber’s Law. Dalgaard and Strulik (2011)
introduced this theory and were the first to integrate something as complicated as the
electricity distribution network into a macroeconomic framework. They claimed that
the application of biological organism-related concepts on man-made energy networks
is a true strategy for the following three reasons: the cardiovascular system functions
in the same manner as the electricity network, facilitating the transfer of nutrients and
power around the network; man-made and biological networks have different added
properties due to the development process over time, as processes refine their natural
selection in the case of a biological network as well as constant rework and updating of
human-made networks; physicists use empirical methods from biological organisms to
look for universal laws of scaling that affect human society. The relentless pressure to
move towards an optimum distribution system allows for certain characteristics to be
shared between biological and man-made networks. If the consumption per capita of
electricity is the equivalent of metabolism and capital per capita is equal to body mass, it
is assumed that the relationship between capital and electricity is concave and log linear.
Dalgaard and Strulik (2011) demonstrated that energy is accessible at geographically
dispersed locations through an economy’s self-organization. Further, they investigated
the relationship between capital per capita and energy per capita from the energy demand
viewpoint and claimed that energy demand is driven by the need for capital management,
maintenance and generation.

Bianca et al. (2013) modified the model by Dalgaard and Strulik (2011) with the
assumption that the energy conservation formula would be influenced by a time delay,
thereby characterizing the dynamics of the system by the following delay differential
equation,

.
k(t) =

ε

v
[k(t − τ)]a − µ

v
k(t − τ), (1)

where k denotes per capita capital, µ and v are the energy required to operate and maintain
the generic capital good, and the energy costs to create a new capital good, respectively,
a ∈ (0,1) and ε > 0 are real constants, and τ ≥ 0 represents a time delay. For τ = 0, Eq.
(1) reduces to a law of motion for capital which is structurally identical to that implied
by the Solow model (Solow 1956). Since it shares its technical properties, there exists
a unique stable steady-state k∗, where ka−1

∗ = µ/ε, to which the economy adjusts. For
τ > 0, by choosing time delay as a bifurcation parameter, Bianca et al. (2013) proved that
the model loses stability and a Hopf bifurcation occurs when time delay passes through
critical values. It is known that time delays in economic situations can be modeled in two
different ways: discrete time delays, ideal when a fixed time delay for the agents involved
is institutionally or socially defined, and continuously distributed time delays, appropriate
when the delay is uncertain or varying periods of delays are spread across the agents.
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In this paper, following Guerrini et al. (2019), we generalize the delay differential
equation model with a discrete delay, namely (1), adopting continuously distributed time
delays. Accordingly, the model may be written as follows

.
k(t) =

ε

v

⎡⎣ t∫︂
−∞

g(t − r,S,m)k(r)dr

⎤⎦a

− µ

v

t∫︂
−∞

g(t − r,T,n)k(r)dr. (2)

The function g in (2) is a non-negative bounded function defined on [0,+∞) which reflects
the influence of the past states on the current dynamics and it is called the delay kernel.
Here, S,T are positive parameters associated with the average length of the continuous
delay and m,n ∈ {0,1} determine the shape of the weighting function. In line with
Cushing (1977), we consider the following types of gamma distribution for g,

g(t − r,ζ ,0) =
(︃

1
ζ

)︃
e−

1
ζ
(t−r) and g(t − r,ζ ,1) =

(︃
2
ζ

)︃2

(t − r)e−
2
ζ
(t−r)

,

where ζ = S,T, which are named weak delay kernel and strong delay kernel, respectively.
In the former case, weights are exponentially declining with the most weight being
given to the most recent output; in the latter one, zero weight is assigned to the most
recent output, rising to maximum weight at a point ζ time units in the past and declining
exponentially to zero thereafter. Notice that as ζ → 0, the function g tends to a Dirac
delta function, i.e. δ (t − r), so that one recovers the discrete delay case (1) (with τ = T ).
Therefore, Eq. (2), that we are interested in, is more general than Eq. (1). Since time delay
does not change the equilibria of the equation, Eq. (2) has exactly the same equilibrium
point of the standard Solow model (τ = 0) since time delay does not change the equilibria
of the equation. An analysis of the model (2), using a combination of the previous
expressions for g as well Dirac kernel, will be done via the so-called linear chain trick
technique (MacDonald 1978), which transforms the integrodifferential system (2) into an
equivalent system of ordinary or delay differential equations. In this context, the principal
role of delays is in destabilizing an otherwise stable economy and, depending upon a
combination of two delays, the delay can also stabilise the economy. Our results will
stress the importance of the theoretical modelling framework used as a device that may
dramatically change the findings of the model in (1). In this context, the principal role of
delay is in destabilizing an otherwise stable economy and the delay can, depending on the
combination of 2 delays, also stabilise the economy. For future research, we propose to
extend our model in a computational and experimental way, and generalize it to include
the intangible asset of human capital.
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2. Weak kernels

Let, m = 0 and n = 0. Eq. (2) rewrites as

.
k(t) =

ε

v

⎡⎣ t∫︂
−∞

(︃
1
S

)︃
e−

1
S (t−r)k(r)dr

⎤⎦a

− µ

v

t∫︂
−∞

(︃
1
T

)︃
e−

1
T (t−r)k(r)dr. (3)

For convenience, we define the new variables x(t) and y(t) by

x(t) =
t∫︂

−∞

(︃
1
S

)︃
e−

1
S (t−r)k(r)dr, y(t) =

t∫︂
−∞

(︃
1
T

)︃
e−

1
T (t−r)k(r)dr.

Applying the linear chain trick technique, Eq. (3) can be transformed into the following
third-dimensional system of ordinary differential equations⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

.
k(t) =

ε

v
[x(t)]a − µ

v
y(t),

ẋ(t) =
1
S
[k(t)− x(t)] ,

ẏ(t) =
1
T
[k(t)− y(t)] .

(4)

The local stability of the unique positive equilibrium point (k∗,x∗,y∗) of system (4), where
x∗ = y∗ = k∗ and k∗ is the steady-state of (1), is governed by the roots of the corresponding
characteristic equation for system (4). Linearizing this system at its equilibrium point we
obtain the characteristic equation

λ
3 +b1(S,T )λ 2 +b2(S,T )λ +b3(S,T ) = 0, (5)

where

b1(S,T ) =
S+T

ST
> 0, b2(S,T ) =

v+µ (S−aT )
ST

, b3(S,T ) =
(1−a)µ

vST
> 0.

Lemma 1. The equilibrium point k∗ of (3) is locally asymptotically stable for 0 ≤ T < T∗
and unstable for T > T∗, where

T∗ =
v+

√︁
v2 +4aµS(v+µS)

2aµ
.

Proof. By the Routh-Hurwitz criteria, the equilibrium point is locally asymptotically
stable if and only if b1(S,T ) > 0, b3(S,T ) > 0 and b1(S,T )b2(S,T ) > b3(S,T ). Thus,
the stability condition is confirmed if b1(S,T )b2(S,T )> b3(S,T ). A direct calculation
yields aµT 2 − vT −S(v+µS)< 0. The statement follows solving this inequality. ■

We now return to the characteristic equation (5) and show the possibility of the birth
of a limit cycle at T = T∗ by applying the Hopf bifurcation theorem. According to this
theorem, we can establish the existence of a cyclic solution if the cubic characteristic
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equation has a pair of pure imaginary roots and the real parts of these roots change
signs with a bifurcation parameter. At the critical value T∗ one has b1(S,T∗)b2(S,T∗) =
b3(S,T∗), and the characteristic equation can be rewritten as

[λ +b1(S,T∗)]
[︁
λ

2 +b2(S,T∗)
]︁
= 0,

which has roots

λ1 =−b1(S,T∗)< 0, λ2,3 =±iω∗, with ω∗ =
√︁

b2(S,T∗).

Recalling that the equilibrium is locally asymptotically stable in absence of delays, if the
transversality condition

Re
(︃

dλ

dT

)︃
T=T∗

> 0

holds, then a Hopf bifurcation occurs at the equilibrium point when T passes through the
critical value T∗. Differentiating Eq. (5) with respect to T, and using (5), we have

dλ

dT
=

−b′1(S,T )λ
2 −b′2(S,T )λ

3λ 2 +2b1(S,T )λ +b2(S,T )
,

where

b′1(S,T ) =−v+µS
ST 2 , b′2(S,T ) =− (1−a)µ

vST 2 .

Since ω2
∗ = b2(S,T∗) and b1(S,T∗)b2(S,T∗) = b3(S,T∗), after some calculations, we get

Re
(︃

dλ

dT

)︃
T=T∗

=−b′1(S,T∗)b2(S,T∗)+b1(S,T∗)b′2(S,T∗)
2
[︁
b2(S,T∗)+b2

1(S,T∗)
]︁ .

Since the numerator in the above expression is equal to S[aµT 2
∗ +S(v+µS)]/v > 0, we

conclude that the crossing direction of characteristic root through the imaginary axis is
from right to left as T increases. Summarizing the above analysis, we have the following
result.

Theorem 1. Eq. (3) undergoes a Hopf bifurcation at its equilibrium point k∗ when
T = T∗.

3. Weak and strong kernels

Let m = 0 and n = 1. Eq. (2) becomes

.
k(t) =

ε

v

⎡⎣ t∫︂
−∞

(︃
1
S

)︃
e−

1
S (t−r)k(r)dr

⎤⎦a

− µ

v

t∫︂
−∞

(︃
2
T

)︃2

(t − r)e−
2
T (t−r)k(r)dr. (6)

Defining the new variables x(t),y(t) and z(t) by

x(t) =
t∫︂

−∞

(︃
1
S

)︃
e−

1
S (t−r)k(r)dr, y(t) =

t∫︂
−∞

(︃
2
T

)︃2

(t − r)e−
2
T (t−r)k(r)dr,
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and

z(t) =
t∫︂

−∞

(︃
2
T

)︃
e−

2
T (t−r)k(r)dr,

Eq. (6) is turned into the following fourth-dimensional system of ordinary differential
equations ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
k(t) =

ε

v
[x(t)]a − µ

v
y(t),

ẋ(t) =
1
S
[k(t)− x(t)] ,

ẏ(t) =
2
T
[z(t)− y(t)] ,

ż(t) =
2
T
[k(t)− z(t)] .

(7)

The characteristic equation for system (7) at the equilibrium point (k∗,x∗,y∗,z∗), where
x∗ = y∗ = z∗ = k∗, takes the form

λ
4 + c1(S,T )λ 3 + c2(S,T )λ 2 + c3(S,T )λ + c4(S,T ) = 0, (8)

where

c1(S,T ) =
4S+T

ST
> 0, c2(S,T ) =

4v(S+T )−aµT 2

vST 2 ,

c3(S,T ) =
4v+4µ (S−aT )

vST 2 , c4(S,T ) =
4(1−a)µ

vST 2 > 0.

Now, it is necessary to investigate the distribution of roots of Eq. (8) in order to determine
the stability of the equilibrium.

Lemma 2. The equilibrium point k∗ of (6) is locally asymptotically stable for a <
(v+Sµ)/(µT ) and

ϕ(T ) = c1(S,T )c2(S,T )c3(S,T )− c2
3(S,T )− c2

1(S,T )c4(S,T )> 0. (9)

Proof. Using the Routh-Hurwitz criteria, all roots of the polynomial in (8) are negative
or have negative real parts if and only if the following conditions hold: c1(S,T ) > 0,
c3(S,T ) > 0, c4(S,T ) > 0 and c1(S,T )c2(S,T )c3(S,T ) > c2

3(S,T ) + c2
1(S,T )c4(S,T ),

yielding the statement. ■

Remark 1. Condition (9) is equivalent to(︁
a2

µ
2)︁T 4 −

(︁
vµ +4avµ +Saµ

2)︁T 3 +4
(︁
S2aµ

2 −Svµ −2Savµ + v2)︁T 2

+4S
(︁
−S2

µ
2 −Svµ +4v2)︁T +16vS2 (µS+ v)> 0.
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Next, we select T as the bifurcation parameter and show possibility of the birth of
limit cycles when T = T∗. Let λ1,λ2,λ3 and λ4 be the roots of the characteristic equation
(8). Then, we have

λ1+λ2+λ3+λ4 =−c1(S,T ), λ1λ2+λ1λ3+λ1λ4+λ2λ3+λ2λ4+λ3λ4 = c2(S,T ),
(10)

λ1λ2λ3 +λ1λ3λ4 +λ2λ3λ4 +λ1λ2λ4 =−c3(S,T ), λ1λ2λ3λ4 = c4(S,T ). (11)

If there is T = T∗ such that ϕ(T∗) = 0, then by the Routh–Hurwitz criterion at least one
root, say λ1, has real part equal to zero. From the second equation of (11) it follows that
Imλ1 = ω1 ̸= 0, so that there is another root, say λ2, such that λ2 = λ̄ 1. Since ϕ(T ) is a
continuous function of its roots, λ1 and λ2 are complex conjugates in an open interval
including T∗. A a result, the equations.in(10) and (11) have the following form at T = T∗,

λ3 +λ4 = −c1(S,T∗), ω
2
1 +λ3λ4 = c2(S,T∗), (12)

ω
2
1 (λ3 +λ4) = −c3(S,T∗), ω

2
1 λ3λ4 = c4(S,T∗). (13)

If λ3 and λ4 are complex conjugates, from the first equation of (12) we derive that
2Reλ3 = −c1(S,T∗) < 0. If λ3 and λ4 are real, from the first and the second equation
of (12) and (13), respectively, we obtain that λ3 < 0 and λ4 < 0. According to the
Hopf bifurcation Theorem, it remains to verify the transversality condition. Finding the
derivative on both sides of (8).with respect to T , we have

dλ

dT
=−

c′1(S,T )λ
3 + c′2(S,T )λ

2 + c′3(S,T )λ + c′4(S,T )
4λ 3 +3c1(S,T )λ 2 +2c2(S,T )λ + c3(S,T )

, (14)

where

c′1(S,T ) =− 4
T 2 , c′2(S,T ) =−4(2S+T )

ST 3 ,

c′3(S,T ) =
4aµT −8(v+µS)

vST 3 , c′4(S,T ) =−8(1−a)µ
vST 3 .

Since ω∗ = c3(S,T∗)/c1(S,T∗), it follows from (14) that(︃
dλ

dT

)︃
T=T∗

=

[c′1(S,T∗)c3(S,T∗)− c1(S,T∗)c′3(S,T∗)] iω∗+ c′2(S,T∗)c3(S,T∗)− c1(S,T∗)c′4(S,T∗)
2{[c1(S,T∗)c2(S,T∗)−2c3(S,T∗)] iω∗− c1(S,T∗)c3(S,T∗)}

(15)
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Multiplying both numerator and denominator of (15) by the conjugate of the denominator,
and recalling that ϕ(T∗) = 0, i.e. c∗2

3 = c∗1c∗2c∗3 − c∗2
1 c∗4, after a long calculation we get

Re
(︃

dλ

dT

)︃
T=T∗

=− c1(S,T∗)ϕ ′(T∗)

2
{︂

c3
1(S,T∗)c3(S,T∗)+ [c1(S,T∗)c2(S,T∗)−2c3(S,T∗)]

2
}︂ .

As T increases, a positive (resp. negative) sign of (15) implies crossing of the imaginary
axis from left to right (resp. from right to left). Thus, we have the following result.

Theorem 2. Assume that a < (v+Sµ)/(µT ) and ϕ(T )> 0, where ϕ(T ) is defined as
in (9). If there exists T = T∗ such that ϕ(T∗) = 0 and ϕ ′(T∗)< 0, then a Hopf bifurcation
occurs at the equilibrium point k∗ of (6) as T passes through T∗.

4. Weak and Dirac kernels

Let m = 0 and T → 0. Eq. (2) takes the form

.
k(t) =

ε

v

⎡⎣ t∫︂
−∞

(︃
1
S

)︃
e−

1
S (t−r)k(r)dr

⎤⎦a

− µ

v
k(t −T ). (16)

Setting

x(t) =
t∫︂

−∞

(︃
1
S

)︃
e−

1
S (t−r)k(r)dr,

Eq. (16) takes the form of a second-dimensional system of delay differential equations⎧⎪⎨⎪⎩
.
k(t) =

ε

v
[x(t)]a − µ

v
k(t −T ),

ẋ(t) =
1
S
[k(t)− x(t)] .

(17)

The associated characteristic equation of the linearization of (17) at the equilibrium point
(k∗,x∗), where x∗ = k∗, is

λ
2 +

1
S

λ − aµ

vS
+
(︂

µ

vS
+

µ

v
λ

)︂
e−λT = 0. (18)

Lemma 3. Let T = 0. The equilibrium point k∗of (16) is locally asymptotically stable.

Proof. In absence of delay, (18) reduces to

λ
2 +

(︃
1
S
+

µ

v

)︃
λ +

(1−a)µ
vS

= 0.

The conclusion is a straightforward matter being the coefficients both positive. ■

For the case T > 0, we determine parameter values for which (18) may have pure
complex roots. We seek ω > 0 such that λ = iω satisfies (17). Substituting into (17),
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STABILITY AND HOPF BIFURCATION ANALYSIS OF . . . A2-9

recalling that e−iωT = cos(ωT )− sin(ωT ) , and equating real and imaginary parts, we
find that ω must simultaneously satisfy⎧⎪⎨⎪⎩

ω2 +
aµ

vS
=

µ

vS
cos(ωT )+

µ

v
ω sin(ωT ) ,

1
S

ω =
µ

vS
sin(ωT )− µ

v
ω cos(ωT ) .

(19)

Recalling that sin2 (ωT )+ cos2 (ωT ) = 1, squaring both sides of the equations in (19),
adding and rearranging gives

ω
4 −

(︃
µ2S2 −2aµvS− v2

v2S2

)︃
ω

2 − (1−a2)µ2

v2S2 = 0.

This equation in ω2 has a unique positive root, say ω0, where

ω
2
0 =

(︁
µ2S2 −2aµvS− v2

)︁2
+ v2S2

√︂
(µ2S2 −2aµvS− v2)2 +4(1−a2)µ2v2S2

2v4S4 . (20)

Solving for cos(ωT ) and sin(ωT ) in (19) yields

cos(ωT ) =
a

1+S2ω2 > 0, sin(ωT ) =
vS2ω3 +(v+aµS)ω

µ(1+S2ω2)
> 0. (21)

Therefore, from (21) we see that

Tj =
1

ω0

[︃
cos−1

(︃
a

1+S2ω2
0

)︃
+2 jπ

]︃
, j = 0,1,2, ... (22)

are the critical values of T for which the characteristic equation (18) has purely imaginary
roots λ =±iω0.

Let λ (T ) = u(T )+ iω(T ) be the root of (18) such that u(Tj) = 0 and ω(Tj) = ω0. By
differentiating (18) implicitly with respect to T , we get[︂

2vSλ + v+µSe−λT −µ (1+Sλ )Te−λT
]︂ dλ

dT
= µ (1+Sλ )λe−λT . (23)

Hence, we have (︃
dλ

dT

)︃−1

=
(2Sλ +1)veλT +µS

µ(1+Sλ )λ
− T

λ
.

Then,

sign

[︄
d (Reλ )

dT

⃓⃓⃓⃓
T=Tj

]︄
= sign

⎡⎣Re
(︃

dλ

dT

)︃−1
⃓⃓⃓⃓
⃓
T=Tj

⎤⎦ ,

= sign
[︃√︂

(µ2S2 −2aµvS− v2)2 +4(1−a2)µ2v2S2

]︃
> 0.

We summarise the foregoing discussion in the form of the following theorem.
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A2-10 M. FERRARA ET AL.

Theorem 3. Let T0 be defined as in (20). The equilibrium point k∗ of (16) is locally
asymptotically stable when 0 < T ≤ T0 and unstable when T > T0. A Hopf bifurcation
occurs at the equilibrium when T = T0.

5. Strong and weak kernels

Let m = 1 and n = 0. Eq. (2) is now governed by the following equation

.
k(t) =

ε

v

⎡⎣ t∫︂
−∞

(︃
2
S

)︃2

(t − r)e−
2
S (t−r)k(r)dr

⎤⎦a

− µ

v

t∫︂
−∞

(︃
1
T

)︃
e−

1
T (t−r)k(r)dr. (24)

Setting x(t),y(t) and z(t) by

x(t) =
t∫︂

−∞

(︃
2
S

)︃2

(t − r)e−
2
S (t−r)k(r)dr, y(t) =

t∫︂
−∞

(︃
2
S

)︃
e−

2
S (t−r)k(r)dr

and

z(t) =
t∫︂

−∞

(︃
1
T

)︃
e−

1
T (t−r)k(r)dr.

Eq. (24) rewrites as a fourth-dimensional system of ordinary differential equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
k(t) =

ε

v
[x(t)]a − µ

v
z(t),

ẋ(t) =
2
S
[y(t)− x(t)] ,

ẏ(t) =
2
S
[k(t)− y(t)] ,

ż(t) =
1
T
[k(t)− z(t)] .

(25)

In order to examine local dynamics of the above system in the neighborhood of the steady
state (k∗,x∗,y∗,z∗), where x∗ = y∗ = z∗ = k∗, we consider its linearized version and get
the following characteristic equation

λ
4 + p1(S,T )λ 3 + p2(S,T )λ 2 + p3(S,T )λ + p4(S,T ) = 0 (26)

where

p1(S,T ) =
S+4T

ST
> 0, p2(S,T ) =

S2µ +4vS+4v
S2T v

> 0,

p3(S,T ) =
4v+4µ (S−aT )

vS2T
, p4(S,T ) =

4(1−a)µ
vS2T

> 0.

Stability of (25) can be examined by finding the locations of the eigenvalues of Eq. (26).
Comparing Eq. (26) with Eq. (8) reveals the similarities among them, and, consequently,
analytical methodologies are similar. To avoid unnecessary repetition, the analysis of
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(26) is simplified. Using first the Routh–Hurwitz criterion and then the Hopf bifurcation
Theorem we arrive at the following results.

Theorem 4. Let ψ(T ) = p1(S,T )p2(S,T )p3(S,T )− p2
3(S,T )− p2

1(S,T )p4(S,T ).
1) The equilibrium point k∗ of (24) is locally asymptotically stable if 0 < a <

(v+µS)/(µT ) and ψ(T )> 0.
2) If a < (v+ Sµ)/(µT ), ψ(T ) > 0 and there exists T = T∗ such that ψ(T∗) = 0

and ψ ′(T∗)< 0, then the equilibrium point bifurcates to a limit cycle through a
Hopf bifurcation at T∗.

6. Dirac and weak kernels

Let S → 0 and n = 0. Eq. (2) turns to be

.
k(t) =

ε

v
[k(t −S)]a − µ

v

t∫︂
−∞

(︃
1
T

)︃
e−

1
T (t−r)k(r)dr. (27)

Introducing the variable

x(t) =
t∫︂

−∞

(︃
1
T

)︃
e−

1
S (t−r)k(r)dr

allows (27) to be changed into the following two-dimensional system of delay differential
equations ⎧⎪⎨⎪⎩

.
k(t) =

ε

v
[k(t −S)]a − µ

v
x(t),

ẋ(t) =
1
T
[k(t)− x(t)] .

A straightforward calculation yields the following characteristic equation

λ
2 +

1
T

λ +
µ

vT
− aµ

v

(︃
1
T
+λ

)︃
e−λS = 0. (28)

Lemma 4. Let S = 0. The equilibrium point k∗ of (27) is locally asymptotically stable if
0 ≤ T < v/(aµ) and unstable if T ≥ v/(aµ).

Proof. When S = 0, (28) reduces to

λ
2 +

(︃
1
T
− aµ

v

)︃
λ +

(1−a)µ
vT

= 0.

Hence, we have the statement noticing that all the coefficients of this equation are positive
when T < v/(aµ). ■

Now, let us take S > 0. We shall investigate the roots of the transcendental equation.
(28) that lie in the left half of the complex plane. Suppose that λ = iω, ω > 0, is a root
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of (28) for some S. Substituting this root into (28) and separating the real and imaginary
parts implies

ω2 − µ

vT
=−aµ

vT
cos(ωS)− aµ

v
ω sin(ωS) ,

ω

T
=−aµ

vT
sin(ωS)+

aµ

v
ω cos(ωS) .

(29)

Adding squares of these equations we obtain the following equation in ω2,

ω
4 +

(︃
1

T 2 − 2µ

vT
− a2µ2

v2

)︃
ω

2 +
(1−a2)µ2

v2T 2 = 0. (30)

Proposition 1. Let

T2 =
v
(︂
−1+

√
1−a2 +

√
2
√︁

1−
√

1−a2
)︂

a2µ
. (31)

Then Eq. (28) has a pair of pure imaginary roots λ = iω±, with 0 < ω− < ω+, for
T2 < T < v/(aµ), where

ω
2
± =

T 2a2µ2 +2T vµ − v2 ±
√︁

a4µ4T 4 +4a2vµ3T 3 +2a2v2µ2T 2 −4v3µT + v4

2T 2v2 .

(32)

Proof. We start noticing that the constant term of (30) is positive. Therefore, solving for
potential positive roots of (30) using the quadratic formula leads to the existence of two
positive roots

ω
2
± =−1

2

(︃
1

T 2 − 2µ

vT
− a2µ2

v2

)︃
± 1

2

√︄(︃
1

T 2 − 2µ

vT
− a2µ2

v2

)︃2

− 4(1−a2)µ2

v2T 2

under the conditions
1

T 2 − 2µ

vT
− a2µ2

v2 < 0,

and

∆ =

(︃
1

T 2 − 2µ

vT
− a2µ2

v2

)︃2

− 4(1−a2)µ2

v2T 2 > 0.

The former condition gives

a2
µ

2T 2 +2µvT − v2 > 0,

whose solution is given by

T >
v
(︂
−1+

√
1+a2

)︂
a2µ

= T1.
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The latter condition is instead verified when

∆> 0 ⇐⇒ 1
T 2 −

2µ

vT
− a2µ2

v2 <−2
√

1−a2µ

vT
⇐⇒ a2

µ
2T 2+2µv

(︂
1−

√︁
1−a2

)︂
T −v2 > 0,

leading to T > T2. This together with the fact that T1 < T2 < v/(aµ) completes the
proof. ■

To find the corresponding critical values S±j of S where the pure imaginary roots iω±
exist, we solve (29) for sin(ωS) and cos(ωS) , and get

sin(ωS) =
ω
(︁
−v+µT − vT 2ω2

)︁
aµ (1+T 2ω2)

, cos(ωS) =
1

a(1+T 2ω2)
> 0.

By (32) one has

sin(ωS) =−
ω

(︂
v2 +a2µ2T 2 ±

√︁
a4µ4T 4 +4a2vµ3T 3 +2a2v2µ2T 2 −4v3µT + v4

)︂
4avµ (1+T 2ω2)

It is now immediate that sin(ω+S)< 0. On the other hand,

sign [sin(ω−S)]= sign
[︂
−v2 −a2

µ
2T 2 +

√︁
a4µ4T 4 +4a2vµ3T 3 +2a2v2µ2T 2 −4v3µT + v4

]︂
.

A direct calculation shows this sign to be also negative as T < v/(aµ). Hence, S±j
( j = 0,1,2, ...) are defined by

S±j =
1

ω±

{︃
2π − cos−1

[︃
1

a(1+T 2ω±)

]︃
+2 jπ

}︃
.

Next, we check the validity of the transversality result. Differentiating (28) with respect
to S, we have{︃

2vλ +
1
T
−aµ

[︃
1−S

(︃
1
T
+λ

)︃]︃
e−λS

}︃
dλ

dS
=−aµλ

(︃
λ +

1
T

)︃
e−λS. (33)

Then, using (28), it follows that

(︃
dλ

dS

)︃−1

=−
aµ − v

(︃
2λ +

1
T

)︃
eλS

aµλ

(︃
λ +

1
T

)︃ − S
λ
.

Therefore,

sign

[︄
d(Reλ )

dS

⃓⃓⃓⃓
S=S±j

]︄
= sign

⎡⎣Re
(︃

dλ

dS

)︃−1
⃓⃓⃓⃓
⃓
S=S±j

⎤⎦ ,

= sign
[︂
±
√︁

a4µ4T 4 +4a2vµ3T 3 +2a2v2µ2T 2 −4v3µT + v4
]︂
.
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Hence the sign is positive for ω+ and negative for ω−. This implies that all the roots that
cross the imaginary axis at iω+ (resp. iω−) cross from left to right (resp. from right to
left) as S increases. It remains to prove that λ = iω± are simple roots for (28). Suppose
λ = iω+ (similarly for iω−) is repeated, then from (33) one must have

−aµiω+

(︃
iω++

1
T

)︃[︂
cos

(︂
ω+S±j

)︂
− isin

(︂
ω+S±j

)︂]︂
= 0.

which clearly implies a contradiction. Thus, the conditions for a Hopf bifurcation are
met and the Hopf bifurcation theorem holds. The above analysis is now summarized as
follows.

Theorem 5. Let T2 be define as in (31).
1) Let 0 ≤ T ≤ T2. The equilibrium point k∗ of (27) is locally asymptotically stable

for all S.
2) Let T2 < T < v/(aµ). Stability switches occur as the time delay S increases from

zero to the positive infinity, with the occurrence of a Hopf bifurcation at each
switch. If

3) Let T ≥ v/(aµ). The equilibrium point k∗ of (27) is unstable for all S.

7. Concluding Remarks

We have considered different modelling approaches to study an energy model for
sustainable economic growth when time delay is replaced by way of distributed delays.
The system is modeled by gamma distributed delays, which includes the differential
equations model with a discrete delay and the ordinary differential equations model as
special cases. Employing the Routh-Hurwitz criterion and the results on distribution
of the zeros of transcendental functions, we get a set of conditions to determine the
stability of the equilibrium point and the existence of Hopf bifurcations. The choice of
continuously distributed lag over a fixed time interval also yield the complex behaviour
of emerging stability loss and gain which may repeat alternatively.
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