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Probabilistic Systems – Featuring ProFeat⋆
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Faculty of Computer Science
Technische Universität Dresden

Dresden, Germany
{chrszon,dubslaff,klueppel,baier}@tcs.inf.tu-dresden.de

Abstract. Feature-based formalisms provide an elegant way to specify
families of systems that share a base functionality and differ in certain
features. They can also facilitate an all-in-one analysis, where all sys-
tems of the family are analyzed at once on a single family model in-
stead of one-by-one. This paper presents the basic concepts of the tool
ProFeat, which provides a guarded-command language for modeling
families of probabilistic systems and an automatic translation of family
models to the input language of the probabilistic model checker Prism.
This translational approach enables a family-based quantitative analysis
with Prism. Besides modeling families of systems that differ in system
parameters such as the number of identical processes or channel sizes,
ProFeat also provides special support for the modeling and analysis
of (probabilistic) product lines with dynamic feature switches, multi-
features and feature attributes. By means of several case studies we show
how ProFeat eases family-based modeling and compare the one-by-one
and all-in-one analysis approach.

1 Introduction

Feature orientation is a popular paradigm for the development of customizable
software systems (see, e.g., [29,3,7]). Formalisms with feature-oriented concepts
provide an elegant way to specify families of systems that can be seen as variants,
sharing some base functionality but differing in the combinations of features. The
most prominent application of feature-oriented formalisms are software product
lines [12]. Several techniques for the analysis of feature-oriented models and soft-
ware product lines using testing, type checking, static analysis, theorem proving
⋆ This is a post-peer-review, pre-copyedit version of an article published in Funda-

mental Approaches to Software Engineering, Lecture Notes in Computer Science,
vol 9633. The final authenticated version is available online at: https://doi.org/
10.1007/978-3-662-49665-7_17. The authors are supported by the DFG through
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tional Strategy), the Research Training Groups QuantLA (GRK 1763) and RoSI
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or model checking have been proposed and implemented in tools (see, e.g., [35]
for an overview). The focus of the paper is on a feature-oriented formalism for the
quantitative analysis of families of probabilistic systems modeled by discrete- or
continuous-time Markov chains or Markov decision processes (MDPs). For this
purpose, we introduce ProFeat, a feature-oriented extension of the input lan-
guage of the probabilistic model checker Prism [28] together with an automatic
translation of ProFeat models to pure (feature-less) Prism models. To specify
valid feature combinations, we rely on a feature-model formalism similar to the
Textual Variability Language (TVL) [8]. ProFeat also allows for (numerical)
feature attributes and multi-features [16,8,15].

ProFeat follows the approach of [21] for modeling product lines using the
parallel composition of (possibly interacting) feature modules and a feature con-
troller that synchronizes with the feature modules when dynamic switches of
the feature combinations occur. The dynamics of the feature controller and its
interactions with the feature modules are crucial to model dynamic product lines
[24,20,17,13]. Probabilistic dynamic product lines as presented in [21] allow, e.g.,
to model the frequencies of uncontrollable feature switches by stochastic distribu-
tions. The potential adaptations are then modeled by non-deterministic feature
switches. In ProFeat the operational behavior of the feature modules and the
feature controller are represented by an extension of Prism’s guarded command
language, supporting constraints for the feature combinations and synchroniza-
tion actions for the activation and deactivation of features. Thus, whereas [21]
uses MDP-like models for both the feature modules and the feature controller and
handcrafted translations of the feature-oriented concepts into Prism language,
the ProFeat framework provides an elegant way to specify the feature modules
and feature controller and automatically generates corresponding Prism code.

The quantitative analysis of ProFeat models in terms of the (maximal
or minimal) probabilities of path properties or expected costs can be carried
out using Prism or other probabilistic model checkers that support Prism’s
input language. Besides the translation of ProFeat models into Prism models,
our implementation also supports the analysis of product lines by providing
commands to trigger the Prism model-checking engines either for the family
model (“all-in-one”) or for each family member separately (“one-by-one”). The
one-by-one analysis can be carried out sequentially or in parallel.

Besides static or dynamic product lines, ProFeat can also be used to specify
families of probabilistic systems with the same functionality, but different system
parameters. Examples for such system parameters that may constitute a family
of systems are initial values of discrete variables (and hence the set of starting
states), threshold values triggering a certain behavior or reset values, the sizes
of a buffer, a data package, an encryption key, the number of redundant compo-
nents, or of retries and the energy consumption for some send operation.1 In these
cases, ProFeat’s family-based modeling approach and support for the one-by-
one analysis offers a convenient way to perform analysis benchmarks which till

1 To ensure the finiteness of the family model (which is necessary to employ standard
model-checking techniques) the range of the parameters is required to be finite.
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now are usually done using handcrafted templates. To illustrate the capabilities
of ProFeat, we considered a series of examples and compared the performance
of all-in-one and one-by-one analyses using the three Prism engines Mtbdd,
Hybrid and Sparse. While the Mtbdd engine is fully symbolic and carries
out all computations using multi-terminal binary decision diagrams (MTBDD),
the numerical computations of the Sparse engine are carried out using sparse
matrices, and the Hybrid engine relies on an MTBDD-representation of the
model and a sparse representation of probability or expectation vectors. Our
experimental results indicate that there is no clear superiority of the all-in-one
analysis approach, no matter which of the three Prism engines is used. How-
ever, for well-known product line models, where the base functionality contains
most of the behaviors and features have comparably less behaviors, all-in-one
approaches are feasible (especially within the Mtbdd engine).

Related work. Various authors have presented model-checking techniques for
families of non-probabilistic systems. For the automatic detection of feature in-
teractions, Plath and Ryan [36] introduced a feature-oriented extension of the
input language of the model checker SMV and Apel et al. [5] presented the tool
SPLVerifier. FeatureIDE [40] is a tool set supporting all phases of the software-
product-line development with connections to the theorem prover KeY and the
model checker JPF-BDD. Gruler et al. [25] introduced a feature-based extension
of the process algebra CCS and presented model-checking algorithms to verify
requirements expressed in the µ-calculus. We are not aware of any implementa-
tion of this approach. Lauenroth et al. [34] deal with family models based on I/O
automata with may (“variable”) and must (“common”) transitions and a model
checker for a CTL-like temporal logic that has been adapted for reasoning about
the variability of product lines. Featured transition systems (FTS) are labeled
transition systems with annotations for the feature combinations of static prod-
uct lines [11] or a variant of dynamic product lines [13]. The SNIP tool [9,11,15]
relies on FTS specified using a feature-based extension of the modeling lan-
guage Promela and allows for checking FTS against LTL properties one-by-one
or using a symbolic all-in-one verification algorithm. Its re-engineered version
ProVeLines [14] provides several extensions, including verification techniques for
reachability properties with real-time constraints. For branching-time temporal-
logic specifications, [13,10] proposed a symbolic model-checking approach for
(adaptive) FTS. We are not aware of an implementation of the approach of [13].
In [10], an all-in-one analysis based on the feature-oriented extension of the SMV
input language by [36] has been proposed, which allows verifying static product
lines using the (non-probabilistic) symbolic model checker NuSMV. This exten-
sion of SMV follows the compositional feature-oriented software design paradigm
(as we do) but puts the emphasis on superimposition [30,2,1], rather than parallel
composition of feature behaviors [21].

None of the approaches mentioned above deals with probabilistic behaviors.
To the best of our knowledge, there is no other tool that provides support for
family-based probabilistic model checking of dynamic product lines. The ben-
efits of probabilistic model checking for the analysis of adaptive software has
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been already drawn by Filieri et al. [22]. The work on model-checking algo-
rithms for parametric Markov chains [18,27] and tool support in the model check-
ers Param [26] (which has been reimplemented and integrated in Prism) and
PROPhESY [19] is orthogonal. By computing rational functions for the proba-
bilities of reachability conditions or expected accumulated costs, these techniques
can be seen as an all-in-one analysis of families of probabilistic systems with the
same state space, but different transition probabilities. Ghezzi and Sharifloo [23]
and the recent work by Rodrigues et al. [37] illustrate the potential of para-
metric probabilistic model-checking techniques for the analysis of product lines.
The ProFeat language can handle probability parameters as well and translate
them to Prism code. However, there is no direct connection between ProFeat
and the parametric probabilistic model checkers as they do not support multiple
initial states. The recent work by Beek et al. [39] presents a framework for the
analysis of software product lines using statistical model checking. An approach
towards a family-based performance analysis of dynamic probabilistic product
lines arising from UML activity diagrams has been presented by [32].

Outline. Section 2 presents the main principles of the ProFeat language. De-
tails on the automatic generation of Prism code from ProFeat models as well
as explanations on ProFeat’s support for the all-in-one and one-by-one anal-
ysis will be given in Section 3. Section 4 reports on experimental studies. A
brief conclusion is provided in Section 5. The source code of ProFeat can be
obtained at https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/FASE16.

2 Modeling Families of Systems: The ProFeat Language

A ProFeat model might represent a family of randomized protocols or other
probabilistic systems that can be modeled by finite-state Markovian models,
such as discrete- or continuous-time Markov chains (DTMCs, or CTMCs, re-
spectively) or Markov decision processes (MDPs). Therefore, the model consists
of two parts: the declaration of the family, and a compact feature-oriented rep-
resentation of the operational behavior of all family members. Inspired by the
application of feature-oriented formalisms for software product lines, a family
member is specified by some combination of features, each either active or inac-
tive. The language constructs for the declaration of feature models, i.e., the valid
feature combinations, are inspired by the Textual Variability Language (TVL) [8].
For the definition of the operational behaviors, we adopt the guarded-command
input language of the model checker Prism [28] and extend it by feature-specific
concepts presented in [21]. Guards in commands of a Prism module can contain
constraints for feature combinations. To model dynamic product lines, dynamic
feature switches may occur by interactions with a feature controller, which is
represented by a separate Prism module with synchronization actions for ac-
tivating and deactivating features. Apart from feature models, other families
of probabilistic systems that differ, e.g., in the number of processes, the queue
size or other system parameters can easily be modeled. For instance, existing
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parametrized Prism models are usually checked within Prism’s experiment en-
vironment in a one-by-one fashion. Within ProFeat only minor modifications
are necessary to represent the whole family of systems that differ in the system
parameters.

We illustrate the modeling approach of ProFeat using a simple producer-
consumer model. The system consists of a single producer that enqueues jobs
with probabilistic workload sizes into a FIFO buffer handed to one or more
workers. One worker can only process one package at a time and the duration of
the processing is determined by the work-package size. Varying the buffer size,
the number of workers, the processing speed of individual workers or the load
caused by the producer yields different variants, i.e., families of systems.

2.1 Feature Modeling

A product line comprises a set of feature combinations, which are defined through
a feature model. For the producer-consumer product line, the following figure

1 root feature
2 a l l of Producer , Buf fer , Workers , optional Fast ;
3 constraint active ( Fast)=>active (Worker [ 0 ] )& active (Worker [ 1 ] ) ;
4 constraint Worker [ 0 ] . speed + Worker [ 1 ] . speed < 7 ;
5 endfeature
6

7 feature Workers
8 some of Worker [ 3 ] ;
9 endfeature

10

11 feature Worker
12 speed : [ 1 . . 5 ] ;
13 endfeature

System

Fast Producer Workers Buffer

Worker0 Worker1 Worker2

depicts a feature diagram, the standard formalism to define feature models in the
software-engineering domain, and a part of its declaration in ProFeat. Similar
to feature diagrams, where each feature is represented by a rectangular node,
ProFeat uses textual feature-blocks to declare features and also has a tree-like
structure. The root feature (denoted by System in the diagram) is a special
feature, representing the base functionality on which the product line is built
upon. Each feature can be decomposed into one or more sub-features. Here, the
System is decomposed into four sub-features. An all of decomposition indicates
that all sub-features are required in every feature combination whenever their
parent feature is active. As used by the Workers feature, the some of operator
implies that at least one of the sub-features has to be active if the parent is ac-
tive. In addition to the one of operator (which requires exactly one sub-feature),
the decomposition can also be given by a cardinality. Optional features are pre-
ceded by the optional keyword, indicating that the feature may or may not be
part of a valid feature combination, regardless of the decomposition operator.
ProFeat has built-in support for multi-features [15], i.e., features that can ap-
pear more than once in a feature combination. The number of instances is given
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in brackets behind the feature name. In the producer-consumer example, the
Workers feature is decomposed into three distinct copies of the Worker feature.
It is important to note that the decomposition operator ranges over the feature
instances. Thus, the some operator could be replaced by cardinality [1..3] in
the above listing. Multi-features can be marked optional as well. Then, each in-
dividual copy of the multi-feature is an optional feature. Besides multi-features,
the ProFeat language supports non-Boolean features in the form of numeric
feature attributes [8]. In the example shown above, the Worker has the attribute
speed which can take any integer value from 1 to 5. Access to feature attributes
is possible regardless of whether the corresponding feature is active or not. The
combination of multi-features and feature attributes enables a compact repre-
sentation of complex product lines.

The introduction of multi-features necessitates the distinction between fea-
tures and feature instances. In ProFeat, each feature instance is uniquely iden-
tified by its fully qualified name. Sub-feature instances as well as feature at-
tributes are addressed using the familiar dot-notation. Instances of multi-features
are referred to by an array-like syntax. For example, the fully qualified name of
the second worker’s speed attribute is root.Workers.Worker[1].speed. As long
as the qualified name is unambiguous, the prefix can be omitted. For instance,
the name Worker[1].speed is valid as well.

A feature block may also contain cross-tree constraints over feature in-
stances and feature attributes. In our example, the first constraint given in the
root feature expresses that the first two Worker instances must be active when-
ever the Fast feature is active. The second constraint limits the accumulated
speed of the first two workers. A constraint can be preceded by the initial
keyword, which only affects the initial set of valid feature combinations. Obvi-
ously, this distinction is only relevant for dynamic product lines.

Behavior of Features. In a ProFeat model, the declarative feature model
is strictly separated from the operational behavior of features. A feature may

1 feature Worker
2 speed : [ 1 . . 5 ] ;
3 block dequeue [ id ] ;
4 modules Worker_impl ;
5 endfeature
6

7 module Worker_impl
8 t : [ 0 . . max_work_size ] i n i t 0 ;
9 [ working [ id ] ] t>0 −>

10 ( t ’=max(0 , t−speed ) ) ;
11 [ dequeue [ id ] ] t=0 −>
12 ( t ’= Buf f e r . c e l l [ 0 ] ) ;
13 endmodule

be “implemented” by one or more
feature modules, which are listed af-
ter the modules keyword inside the
feature block. In our running ex-
ample, the Worker feature is imple-
mented by the Worker_impl module.
The listing on the left shows the fea-
ture module and the extended feature
declaration of the Worker feature. For
the definition of feature modules, we
use an extension of Prism’s guarded
command language. Besides Boolean
or integer variables defined in feature

modules as in Prism, ProFeat supports (one dimensional) arrays. A set
of commands defines the behavior of the feature module, having the form
guard → stochastic-update. If the guard evaluates to true, the module can transi-
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tion (with some probability) into a successor state defined through the updates of
the variables. Consider the following command of the producer feature module.

[ enqueue ] ! b u f f e r_ f u l l −> 0 . 1 : ( s i z e ’=2) + 0 . 9 : ( s i z e ’=1) ;

Here, the producer enqueues a work package of size 2 with a probability 0.1 if
the buffer is not full. The guard expression may reference the local variables of
other feature modules. Furthermore, the built-in active function can be used
in guards, evaluating to true if applied to a feature which is currently active.

Another means for communication besides shared variables is synchronization
between feature modules. A command can be labeled with an action that is
placed between the square brackets preceding the guard. If two or more modules
share an action, they are forced to take the labeled transitions simultaneously.
However, if any of those modules cannot take the transition (because its guard
is not fulfilled), then the action is blocked, so that none of the modules can take
the transition. In our running example, a worker synchronizes with the feature
module implementing the FIFO buffer over the dequeue action to obtain a new
work package (line 11). In ProFeat, action labels can be indexed using an
array-like syntax. In case of multi-features, the implicit id parameter evaluates
to the index of the feature instance. Thus, there exist three distinct dequeue
actions in our model. By default, feature modules of inactive features do not
block actions. Thus, with regard to synchronization, deactivating a feature has
the same effect as removing it entirely from the model. This is useful if the
model is fully synchronous, i.e., if there is a global action that synchronizes
over all transitions. However, in some cases it is crucial that an inactive feature
hinders active features to synchronize with its actions. In the producer-consumer
example, an inactive worker should not take a work package out of the queue
(line 11). Therefore, its dequeue action is modeled as blocking using the block
keyword inside the feature module (line 3).

Specification of Costs and Rewards. As in Prism, states and transitions
in ProFeat can be augmented with costs and rewards. This allows reasoning

1 feature Worker
2 speed : [ 1 . . 5 ] ;
3 rewards " energy "
4 [ working [ id ] ]
5 true : pow(2 , speed ) ;
6 endrewards
7 endfeature

about quantitative measures, such
as energy consumption, performance
and throughput. Costs and rewards
are defined as a part of feature dec-
larations using the keyword rewards.
In the listing on the left, the energy
consumption of a worker is specified
depending on its processing speed.

Feature Controller. In a ProFeat model, the feature combination is not nec-
essarily static, but may also change over time. The feature controller is a special
module that defines the rules for the dynamic activation and deactivation of
features, whose declaration we exemplify within our producer-consumer model:

controller
[ ] b u f f e r_ f u l l & ! active (Worker [ 2 ] ) −> activate (Worker [ 2 ] ) ;
[ ] buf fer_low & active (Worker [ 2 ] ) −> deactivate (Worker [ 2 ] ) ;
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endcontroller

Essentially, a controller is a module, which can modify feature combinations
using the activate and deactivate updates. In the controller shown above,
the third worker is activated to speed up processing whenever the buffer is full.
Once the buffer is nearly empty, the worker is deactivated. The definition of a
feature controller is optional. If no controller is given, the defined product line is
assumed to be static. Feature modules can synchronize with the controller over
the activate and deactivate actions, which enables them to react or even
block the activation or deactivation of their corresponding feature. For instance,
by adding the following line to the Worker_impl module, the deactivation of the
worker is blocked as long as it is still processing a work package:

[ deactivate ] t=0 −> true ;

Templates and Metaprogramming. ProFeat also provides constructs com-
monly found in template engines but not included in Prism’s input language.
Commands can be generated at translation time by using for loops. Further-
more, feature blocks as well as feature modules can be parametrized, which,
in turn, allows for parametrization of guards, probabilities and costs/rewards.
These feature and module templates are instantiated by referencing them in a
decomposition or using the modules keyword, respectively. Consider the follow-
ing excerpt of the feature module implementing the FIFO buffer:

1 module f i f o ( capac i ty )
2 c e l l : array [ 0 . . capac i ty −1] of [ −1 . . max_work_size ] i n i t −1;
3 for w in [ 0 . . 2 ]
4 [ dequeue [w ] ] c e l l [ 0 ] != −1 −>
5 ( c e l l [ capac i ty −1]’=−1) &
6 for i in [ 0 . . capac i ty −2] ( c e l l [ i ] ’= c e l l [ i +1]) endfor ;
7 endfor
8 . . .
9 endmodule

The module is parametrized over the capacity of the buffer (line 1). The for
loop stretching from line 3 to 7 generates a dequeue labeled command for each
worker. The inner loop (lines 6) shifts the buffer entries to remove the first
element from the buffer.

2.2 Parametrization

While ProFeat provides special support for feature-oriented modeling, families
can also be formed by ranging over system parameters. In our running example,

1 family
2 bu f f e r_s i z e : [ 1 . . 8 ] ;
3 i n i t i a l constraint
4 bu f f e r_s i z e != 5 ;
5 endfamily

such a parameter might be the FIFO buffer
size. Parameters are declared in a family
block, as shown on the left. Similar to fea-
ture attributes, system parameters can be
constrained as well. Furthermore, a family
declaration can be combined with a feature
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model, resulting in a family that is both defined by system parameters and all
valid initial feature combinations. To declare subsets of valid feature combina-
tions as initial ones, ProFeat provides the initial constraint keyword (see
line 3 of the listing). Valid feature combinations not fulfilling the listed con-
straints are still possible during runtime by dynamic feature switches.

System parameters can be used anywhere in the model description, including
guards, probabilities and costs/rewards. In contrast to feature attributes, system
parameters are constant for each instance of a family. This has an important
consequence: parameters can be used to specify the range of variables, the size
of arrays, the range of for loops and even the number of multi-feature instances.
Thus, system parameters can directly influence the structure of the system.

3 Implementation

We have implemented a software tool2 that translates a ProFeat model into the
input language of the model checker Prism. This translation-based approach en-
ables the use of existing machinery for the verification and quantitative analysis
of ProFeat models. The ProFeat tool furthermore supports the translation
of queries into Prism’s properties file format. Thus, queries can be formulated
in the extended syntax of ProFeat and allow reasoning about feature-specific
properties. In this section, we provide a semantics for the ProFeat language and
highlight notable steps of the translation process. The compositional modeling
framework for probabilistic dynamic product lines by [21] provides a translation
of feature modules under a feature controller into the input language of Prism,
naturally mapping feature composition to the parallel composition of Prism.
Thus, the semantics of the behavioral model of ProFeat is defined in terms of
the Prism language semantics. The semantics of ProFeat’s feature modeling
formalism is given by the semantics of TVL [8] extended with multi-features as
described in [15].

3.1 Translation of Feature-specific Constructs

In ProFeat, the access to the feature combination is provided through the use of
the active function and the activate and deactivate updates of the feature
controller. We encode feature combinations by a set of integer variables with
range [0..1], which simplifies the handling of feature cardinalities (compared
to a Boolean encoding). Instead of creating one variable per feature instance,
the tool generates one variable per atomic set to reduce the number of variables:
An atomic set is a set of features that can be treated as a unit as they never
appear separately in a feature combination [38]. Given this representation, the
translation of the active function is simple: The call to active is replaced
by a check testing whether the atomic-set variable evaluates to 1. Analogously,

2 For the Haskell source code of the tool, we refer to https://wwwtcs.inf.
tu-dresden.de/ALGI/PUB/FASE16
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the activate and deactivate updates assign a 0 or a 1 to the corresponding
variable, respectively. However, the feature controller cannot change the feature
combination arbitrarily: As an update has to yield a valid feature combination,
the translation has to add a guard to commands containing atomic-set variable
updates. This guard is synthesized from the feature model and evaluates to false
if the transition described by the command would result in an invalid feature
combination.

Another aspect of the translation concerns the synchronization between the
feature controller and the feature modules in case of feature activation and de-
activation. Implicitly, an activatef action and a deactivatef action is created for
each feature instance f . In Prism, commands can only be labeled with a single
action. However, an update may activate or deactivate multiple feature instances
at once, thus requiring multiple action labels per command for synchronization.
To circumvent this restriction of the Prism language, the set of action labels is
merged into a single action label. This solution requires special care in the trans-
lation of feature modules. Let us assume a command C labeled with the action
activatef . Then, we collect the action labels of all feature-controller commands
that activate the feature instance f . Finally, we create a copy of the command
C for each collected action label. This translation realizes the intended synchro-
nization between the feature controller and the feature modules, even in the case
of multiple simultaneous feature activations and deactivations.

Lastly, the translation must ensure that feature modules of inactive features
do not block actions, i.e., deactivating a feature should have the same effect as
removing the corresponding feature modules from the model. To achieve this
behavior, we take the following approach. Suppose the feature module M imple-
ments the feature instance f . Then, for each command in M that has the form
[α] guard → update, a command [α] ¬active(f) → true is generated. Thus, if
the feature instance f is not active, the translated module does not block the
action α. However, this command is not generated if the user explicitly requests
the blocking of action α by using the block keyword in the feature declaration.

3.2 All-in-One and One-by-One Translation

Essentially, there are two different approaches for the analysis of a family of
systems described by some ProFeat model: The one-by-one and the all-in-one
approach. Within a one-by-one approach, each member of the family is analyzed
separately. Differently, within an all-in-one approach, the whole family is encoded
into a single Prism model and analyzed in a single run. The result of the all-in-
one analysis is then interpreted for each member of the family, providing results
as the members would have been analyzed separately. An all-in-one approach
can potentially exploit the similarities between the family instances and speed
up the analysis, but may require additional memory. However, a big advantage of
the one-by-one approach is that it can be easily parallelized. As we illustrate in
our case studies (see Section 4), it depends on the model as well as the time and
memory constraints which approach is appropriate. For this reason, ProFeat
supports both, an all-in-one and a one-by-one translation of the family model.
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Switching from one analysis approach to the other requires no adjustments to
the model.

In case of one-by-one translation, ProFeat generates a Prism model for
every instance of the family. That is, for each valid valuation of the system
parameters and for each initial feature combination, the system parameters are
replaced by constants. If no family block is given, then one model for each valid
initial feature combination is generated. The all-in-one translation generates a
single Prism model with multiple initial states, one for each instance of the
family. However, there is a technical difficulty in the translation into an all-in-
one model: Array sizes, numbers of multi-features and variable bounds can be
defined in terms of system parameters. Hence, these parameters might depend on
the initial state and thus are not known at translation time. Therefore, ProFeat
instantiates these parametrized structures with their maximal size.

4 Experimental Studies

As ProFeat follows a translational approach, all-in-one and one-in-one analy-
ses can be carried out using the same model-checking tool Prism, allowing for
a conceptual comparison of both approaches. Besides a sequential one-by-one
analysis as usually performed within product-line verification (see, e.g., [4]), we
also provide results for analyzing the models generated by the one-by-one trans-
lation in parallel. Clearly, under the quite unrealistic assumption that lots of
CPU cores (which allow for parallelization) and enough memory is provided,
a parallel execution is likely to outperform an all-in-one approach. For our ex-
periments we used a Linux machine with two 8-core Intel Xeon E5-2680 CPUs
running at 2.7 GHz and equipped with 384 GBytes of RAM, hyper-threading
enabled. Thus, we restricted ourselves to an execution of 32 analyses in parallel.

4.1 The Producer-Consumer Example

In the base model of the producer-consumer example, as considered already
in previous sections, the controller can activate or deactivate workers in the
workers pool, increase or decrease the size of the buffer, and increase or decrease
the processing speed of individual workers. For realizing fairness among regular
actions and controller actions, we introduced an additional progress module.
When considering expected costs, the goal will be to finish a certain number of
jobs. For this we enriched the model with a counter. In this section, we consider
three variants of the base model and corresponding analysis queries:

Best Buffer. A static product line which parametrizes over the buffer size.
Here, we ask for the buffer size for which minimal expected storage costs
arise until a certain number of jobs are processed.

Best Worker. This family parametrizes over all possible combinations of work-
ers. Within this family model, we ask for the combination of workers where
the minimal expected energy is required to finish a given number of jobs.
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Distributions. Here, we consider different workload distributions as parame-
ter space of the model. The goal is to compute the distribution where the
expected energy required to finish a certain number of jobs is minimal.

Figure 1a shows the number of MTBDD nodes for representing the three model
variants depending on the family parameter. Within all variants, the number
of nodes in the all-in-one model is significantly smaller that the sum of the
MTBDD nodes for the separate models, indicating shared behaviors between
the family members. We evaluated the quantitative queries stated above using
both, the Mtbdd and the Sparse engine of Prism. In general, the Sparse
engine turned out to perform slightly better than the Mtbdd engine, especially
within expectation queries. The results are illustrated in Figure 1b–d.
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Fig. 1. Number of MTBDD nodes for the producer-consumer models (a), Analysis
times of the variants best buffer (b), best worker (c) and distributions (d)

In some cases, where the number of instances is exponential in the family
parameter (cf. Figure 1c – Best Worker), the all-in-one analysis approach out-
performs the one-by-one approach and can even keep up with the parallel com-
putation. In other cases (cf. Figure 1b – Best Buffer), the all-in-one approach
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was only superior up to a system size of 14. For the third model variant (cf.
Figure 1d – Distributions), the all-in-one and one-by-one approaches asymptot-
ically displayed similar performance. Overall, there is a no clear trend on which
approach is favorable, the one-by-one or the all-in-one analysis.

4.2 Feature-Aware Case Studies

The development of ProFeat has been first and foremost motivated by several
studies from the domain of feature-oriented systems such as product lines, where
all-in-one analysis approaches turned out to outperform the traditional one-
by-one analysis approach. In this section, we demonstrate how (probabilistic)
versions of classical product lines can be modeled and analyzed with ProFeat.

Body Sensor Network Product Line. A Body Sensor Network (BSN) sys-
tem is a network of connected sensors sending measurements to a central entity
which evaluates the data and identifies health critical situations. In [37], a BSN
product line with features for several sensors has been introduced. The approach
presented in [37] follows the ideas by [23] towards parameterized DTMC mod-
els: For each feature, a Boolean parameter f is 1 if the feature is active and 0
otherwise. A factor p is multiplied to the probability of every transition, where
p=f in case the feature enables the transition and p = 1−f otherwise. Para-
metric model checkers are then used to compute a single formula which for each
feature combination evaluates to the probability of reaching a successful con-
figuration, i.e., the reliability of the BSN. The authors of [37] report that the
parametric approach using Param can be seven times faster, a novel symbolic
bounded-search approach can be eleven times faster, and a handcrafted (model
dependent) compositional parametric approach can even be 100 times faster
than a Prism-based one-by-one analysis. For obtaining the results, three differ-
ent model-checking tools have been used. Furthermore, special tailored scripts
were required to perform the one-by-one analysis and to evaluate the formulas
returned by the parametric model checkers. With ProFeat the feature model
of the BSN product line can be directly incorporated into the parametric model
specified by [37], as ProFeat’s representation of features as Boolean param-
eters is compatible with the approach by [23]. Thus, ProFeat allows for an
all-in-one approach on the same model as of [37] and simplifies the comparison
to one-by-one analysis also concerning different model-checking engines such as
the explicit or symbolic engines of Prism.

In the first line of Table 1, we show the results of our experiments for com-
puting the same reliability probability as in [37]. The all-in-one approach turns
out to be ≈100 times faster than the one-by-one approach, independent of the
chosen engine. Hence, ProFeat directly enables a speed up of the analysis time
in the same magnitude as handcrafted decomposition optimizations by [37].

Elevator Product Line. A classical (non-probabilistic) product line considers
an elevator system, introduced by [36] for checking feature interactions. It has
been then considered in several case studies issuing family-based product-line
verification (see, e.g., [4,15]). An elevator system is modeled by a cabin which
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can transport persons to floors of a building. The persons first have to push
a button at the floor and then in the cabin for calling the elevator and defin-
ing a direction where to ride, respectively. In its basic version [36], the product
line comprises 32 products built by five features, not changeable after deploy-
ment. We extend this product line in various aspects. First, we resolve some
non-deterministic choices by probabilities when appropriate, e.g., modeling the
request rate of a person and introducing a probability of failure. Second, we add
a service feature, which enables to call technical staff repairing the elevator or
change feature combinations. As a consequence, our elevator system is a dynamic
product line where features can be changed during runtime. Third, we modeled
dynamic feature changes as non-deterministic choices in the feature controller.
This yields an MDP model for which a strategy-synthesis problem can be consid-
ered: Compute best- and worst-case strategies on how to activate or deactivate
features to reach certain goals [21]. We deal with a simple instance of the eleva-
tor which can transport one person and where at most two persons act in the
system. Our product lines have 64 feature combinations each, parametrized over
the number of floors (2-4) in the building. We finally consider the family of the
three product lines, containing 192 single instances of the elevator system. We
asked for the minimal probability that if the cabin is on the ground floor and the
top floor is requested, the probability to serve the top floor within the next three
steps is greater than 0.99. Our analysis results are depicted in Table 1, where
especially for larger instances the Mtbdd all-in-one analysis outperforms other
approaches and engines. Notice that the number of MTBDD nodes of the family
model containing all three elevator product lines (cf. the row above the double
rule) is greater than the sum of nodes of the family models for each product line.
Possibly, other MTBDD variable orderings, e.g., provided by methods presented
in [31], could yield smaller model representations and faster all-in-one analyses.

4.3 Benchmark Suite Examples

We used ProFeat also to model and analyze some examples taken from the
Prism benchmark suite [33] and the probabilistic locking protocol PWCS [6] to
investigate whether also standard parametrized models can profit from an all-
in-one analysis. In the PWCS model, we consider two family parameters: The
number of writers that intend to access a shared object (1) and the number of
replicas for a given object (2). When providing ProFeat code for the examples
based on the existing models, the scripting and parameterization of ProFeat
yield a more compact model representation and required only mild modifications.
Each row in the lower part of Table 1 stands for the evaluation of a query, which
cover minimal and maximal expected values as well as probabilities for bounded
and unbounded reachability. The Hybrid engine of Prism does not yet support
the computation of expectations. A reduction of the MTBDD size was only
achieved for the self-stabilization protocol. In all other cases, the size of the
family model was in the order of the sum of the separate models. The one-by-
one approaches outperform the all-in-one approaches in almost all cases, even
for the self-stabilization protocol.
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Table 1. Analysis times (in seconds) of feature and benchmark suite models

Model MTBDD nodes Mtbdd Hybrid Sparse
family separate all 1by1 par all 1by1 par all 1by1 par

BSN 5 651 111 507 1 129 25 1 128 25 1 128 25

Elevator (2 floors) 42 254 1 329 204 1 65 7 2 49 7 1 45 7
Elevator (3 floors) 151 274 4 924 349 4 223 11 98 2 531 96 7 286 18
Elevator (4 floors) 420 448 13 519 274 15 910 32 2 601 54 262 1 952 56 2 008 83

Elevator (2-4 floors) 779 569 19 772 827 29 1 199 49 5 089 56 843 2 052 74 2 339 106

CSMA 633 997 634 076 timeout not supported 1 236 1 251 1 220
(2–4 processes) “ “ timeout 3 660 3 577 3 384 1 078 1 013 954

Stabilization 4 340 10 662 2 036 1 643 932 251 37 22 129 33 20
(3–21 processes) “ “ ≪ 1 1 2 not supported 122 24 15

“ “ timeout not supported 2 629 476 269
“ “ 13 10 7 12 10 6 12 10 7
“ “ 13 10 7 13 10 7 13 10 6

Philosophers (3–12) 82 995 82 689 9 056 6 212 3 945 9 722 5 949 4 009 out of memory

PWCS (3 replicas, 134 236 134 190 49 26 15 232 165 130 314 271 220
1–9 writers) “ “ 6 564 2 247 960 not supported 5 473 1 544 1 230

PWCS (3 writers, 955 505 958 033 752 2 279 1 628 968 348 306 738 2 209 1 265
1–7 replicas) “ “ timeout not supported 1 221 3 857 2 735

5 Conclusions

We presented the language ProFeat for family-based modeling and analysis
of probabilistic systems. To the best of our knowledge, ProFeat is the first
modeling language for probabilistic dynamic product lines with tool support for
an all-in-one and one-by-one analysis without employing templates, scripting or
different model descriptions. Whereas for experiments on product-line inspired
case studies an all-in-one approach turns out to be usually faster than a one-by-
one approach, this cannot be generalized to arbitrary families, e.g., when only
a few common behaviors exist within the family members. There are various
directions for further work, e.g., establishing an all-in-many approach clustering
families and thus mixing both approaches. Symmetry reductions on the model
could also speed up an all-in-one analysis, especially within multi-features.
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