
MULTIRATE METHODS FOR
HYPERBOLIC SYSTEMS -

NUMERICAL APPROXIMATION OF
FAST WAVES IN WEATHER FORECAST

MODELS

DISSERTATION
zur Erlangung des akademischen Grades

Doctor rerum naturalium
(Dr. rer. nat.)

vorgelegt
dem Bereich Mathematik und Naturwissenschaften

der Technischen Universität Dresden

von
Andreas Naumann

geboren am 30.01.1985 in Jena
Eingereicht am 5. September 2019
Verteidigt am 31. März 2020
Gutachter:

1. Prof. Dr. Axel Voigt

2. Prof. Dr. Jörg Wensch

3. Prof. Dr. Martin Arnold

Diese Dissertation wurde in der Zeit von Oktober 2013 bis Septem-
ber 2019 am Institut für Wissenschaftliches Rechnen angefertigt.

A B S T R A C T

The expected temperatures and rainfall in the next days to hours is one of the most im-
portant information nowadays. This knowledge is not only of general interest. Disciplines
like agriculture and forestry the knowledge of the rain is even more important for a time
span of weeks to plan the harvest or protect the plants [3]. Therefore, the possibility to
forecast the weather reliably and fast is very important nowadays.

The reliability of weather forecast, or more accurate the numerical weather forecast,
depends on several factors. One factor is the complexity of atmosphere models. Whereas
the first numerical experiments treat the atmosphere as dry ideal gas with one layer,
recent models incorporate the humidity, clouds, precipitation and radiation. But every
higher detail in the model come at higher costs for simulation. Hence the development of
finer grained models also require more advanced numerical methods to solve them.

The atmosphere models are in general a nonlinear hyperbolic set of partial differential
equations (PDEs). In particular the models consist of several waves, traveling with
different speeds with nearly no damping. Roughly speaking these varying velocities lead
to the multiscale nature of the atmosphere models and a suitable numerical method
should respect the different time scales.

The development and analysis of multirate methods for hyperbolic systems remains
a challenging problem. Examples for class of hyperbolic systems of PDEs range from
the scalar and linear advection equation, the wave equation to nonlinear systems like the
shallow water equations or the (inviscid) Euler equations, which are the basis for the
atmosphere models.

The hyperbolic PDEs often have an additive split structure, which in turn account
for the different time scales. We assume a suitable, often finite volume, discretization
in space. Hence we retain the additive splitting from the continuous problem in the
semi-discretized ordinary differential equation (ODE). Hence we develop a new numerical
method which accounts for the additive split structure and the multiscale nature.

The development of splitting methods is challenging in the analysis of the order
conditions and the stability criteria. In particular the interaction between the fast and
slow scales render the order conditions often complicated and unstructured. Furthermore
every multiscale approach combines the scales in a different way, which is why there is

2

no unified order condition theory. With these challenges in mind we derive the order
conditions in a classical way by differentiation of the numerical method. The splitting in
a fast and a slow right hand side leads to several combinations of elementary differentials.
And every differential has different non-standard coefficients, without any structure
between these combinations. This loss in structure renders the numerical solutions of the
order conditions quite complicated, and the analytical solutions are only possible in rare
cases.

We develop a new class of multirate methods, which is parameterized by the fast scale
solver. That new approach allows for a better generalization and simplifies several steps
by unification. Nevertheless this new type of generalization has the advantage to associate
the order conditions of the complete (macro scale) method with the structure of the
underlying (micro scale) integrator.

The second challenge is the analysis of the (linear) stability of multirate methods. We
also analyze the (linear) stability of the newly developed methods. Due to the splitting
structure there are many different model problems possible. We deduce a model problem
from a simplified system of hyperbolic PDEs. On top of these stability model problems
we will construct the new methodss. In analogy to the analysis of the order conditions,
we unify the construction of the stability functions and highlight the differences due to
the different fast scale integrators afterwards.

A good method does not only lead to low errors, but also has a large stability area.
Hence we optimize the method parameters with respect to the stability area. In our case,
the parameter set contains rational and real parameters. We circumvent the solution of a
mixed-integer optimization problem by considering only some rational parameters and
optimize for them independently. Nevertheless, we obtain several thousand sub problems.

Finally we consider two nonlinear benchmark problems. With these problems we
analyze the accuracy and stability again and compare the efficiency with two reference
multiscale methods.

Z U S A M M E N FA S S U N G

Die zu erwartenden Temperaturen und Regenmengen der folgenden Tage bis Stunden
sind heutzutage eine der wichtigsten Informationen. Diese Kenntnis ist nicht nur von
allgemeinem Interesse. Insbesondere Bereiche wie die Landwirtschaft und Forstwirtschaft
sind die zu erwartenden Regenmengen selbst über einen langen Zeitraum von Wochen

3

4

von besonderen Interesse um zum Beispiel die Ernte oder den Schutz von Pflanzen zu
planen [3]. Daher ist die Fähigkeit, das Wetter zuverlässig und schnell für ausreichend
lange Zeiträume vorher zu sagen, wesentlich.

Die Zuverlässigkeit der Wettervorhersage, oder genau genommen der numerischen
Wettervorhersage, hängt von mehreren Faktoren ab. Einer dieser Faktoren ist die De-
tailliertheit der Atmosphärenmodelle. Während die ersten numerischen Experimente die
Atmosphäre als eine Schicht trockenen idealen Gases betrachteten, beinhalten aktuel-
le Modelle die Feuchte, Wolken, Niederschlag und Strahlung. Mit jedem zusätzlichen
Detail steigt natürlich der Simulationsaufwand. Daher müssen parallel zur verbesserten
Modellierung auch die numerischen Verfahren erweitert werden.

Im allgemeinen sind die Atmosphärenmodelle Systeme nichtlinearer hyperbolischer
Differentialgleichungen (PDEs). Insbesondere beinhalten die Modelle Wellen unterschied-
licher Ausbreitungsgeschwindigkeit, welche nahezu nicht gedämpft werden. Diese un-
terschiedlichen Geschwindigkeiten sind die Grundlage für den Mehrskalencharakter der
Atmosphärenmodelle. Eine effektive numerische Methode muss daher die unterschiedlichen
Skalen adäquat behandeln.

Die Entwicklung und Analyse numerischer Mehrskalenverfahren zur Lösung von Syste-
men hyperbolischer Differentialgleichungen ist herausfordernd. Beispiele für hyperbolische
Systeme beginnen bei der einfachen skalaren linearen Advektionsgleichung, der Wellen-
gleichung und enden bei nichtlinearen Systemen wie den Flachwassergleichungen oder
den (reibungsfreien) Eulergleichungen. Letztere sind die Grundlage für alle Atmosphären-
modelle.

Viele hyperbolische PDEs besitzen eine additive Struktur, wobei die Aufteilung gerade
den Zeitskalen entsprechen. Wir gehen von einer angepassten Diskretisierung im Raum,
in der Regel eine Finite-Volumen Diskretisierung, aus. Diese Diskretisierung erhält die
additive Struktur des kontinuierlichen Problems in der (ortsdiskretisierten) gewöhnlichen
Differentialgleichung (ODE). Daher entwickeln wir eine neue numerische Methode zur
Lösung gewöhnlicher Differentialgleichungen, welche die additive Struktur und gleichzeitig
die zugehörigen Zeitskalen ausnutzt.

Die Analyse von Splittingverfahren ist herausfordernd sowohl in der Entwicklung der
Ordnungsbedingungen als auch der Stabilitätskriterien. Jeder Mehrskalenansatz kombiniert
die unterschiedlichen Zeitskalen auf unterschiedliche Art und Weise. Daher gibt es keine
einheitliche Ordnungs- und Stabilitätstheorie. Wir entwickeln die Ordnungsbedingungen
auf klassischem Wege, durch Differentiation der numerischen Lösung. Die Aufteilung
der rechten Seite in schnelle und langsame Terme führt auf zusätzliche Koeffizienten
und Kombinationen der elementaren Differentiale. Im Vergleich zu klassischen Verfahren

5

hat jedes elementare Differential unterschiedliche nicht-klassische Koeffizienten, ohne
erkennbare Struktur. Dieser Strukturverlust erschwert die numerische Lösung zusätzlich.
Analytische Lösungen gibt es nur in Sonderfällen.

Wir entwickeln und analysieren eine neue Klasse von Mehrskalen methoden, welche
mit den Integrator der schnellen Skale parametriert ist. Dieser neue Ansatz erlaubt die
Verallgemeinerung der Ausgangsmethode und vereinfacht etliche Schritte in der Herleitung
der Ordnungsbedinungen. Zusätzlich hat die Verallgemeinerung auch den Vorteil, die
Ordnungsbedingungen des Gesamtverfahrens und die Struktur des darunter liegenden
Lösers der schnellen Zeitskale zu assoziieren.

Wir untersuchen ebenfalls die lineare Stabilität der neuen Methoden. Aufgrund der
Aufteilung in langsame und schnelle Terme gibt es viele verschiedene Modellprobleme.
Wir leiten ein Modellproblem auf Basis eines vereinfachten hyperbolischer PDEs her. Auf
Basis dieses Stabilitsproblems konstruieren wir die neuen Methoden und untersuchen
ihre Effizienz anhand zweier nichtlineare Benchmarkprobleme. Analog zur Herleitung der
Ordnungsbedingungen vereinheitlichen wir die Konstruktion der Stabilitätsfunktionen
und heben im nachhinein die Unterschiede aufgrund des fast-scale integrators hervor.

Gute numerische Methoden führen nicht nur zu einem kleinen Fehler, sondern haben
auch ein großes Stabilitätsgebiet. Daher optimizieren wir die Methodenparameter im
Hinblick auf die Größe des Stabilitätsgebiets. Unsere neuen Methoden besitzen sowohl
reelle, als auch rationale Parameter. Die Lösung des gemischten ganzzahligen-reellen
Optimierungsproblem vereinfachen wir durch die Auswahl einzelner rationaler Parameter.
Dadurch erhalten wir allerdings einige tausend unabhängige Teilprobleme.

Zum Abschluss analysieren wir die Effizienz der neuen Methoden anhand zweier nichtli-
nearer Benchmarkprobleme und vergleichen die Genauigkeit und Stabilität mit Referenz-
verfahren.

A C K N O W L E D G M E N T S

First of all I acknowledge the support of my supervisor Jörg Wensch. In particular his
introductions and the time for lengthy discussions in this research area. Furthermore this
work would not have been done without the funding in the SFB Transregio 96. Many
thanks go to the whole institute of scientific computing for the good time and stimulating
inspiration. In particular Dr. Simon Praetorius had many hints and ideas for the software
and technical parts and Dr. Michael Nestler for his proof readings and comments.

Last, but not least, I want to thank my family for the support all the time.

6

C O N T E N T S

i introduction 11
i.1 Motivation 11
i.2 Multi scale additive and partitioned ODEs 13

iI multirate methods 20
iI.1 Multirate infinitesimal step methods 21
iI.2 Multirate finite step methods 30

iI.2.1 Unified notation of MFS methods 31
iI.2.2 Explicit Euler as fast scale integrator 32
iI.2.3 Forward-backward Euler as fast scale integrator 32
iI.2.4 Störmer-Verlet as fast-scale integrator 33

iI.3 Order conditions 34
iI.3.1 Extended notation and common symbols 35
iI.3.2 Derivatives of the numerical solution 37
iI.3.3 Common order conditions of MFS methods 46
iI.3.4 Explicit Euler as fast scale integrator 48
iI.3.5 Forward-backward Euler as fast scale integrator 50
iI.3.6 Störmer-Verlet as fast scale integrator 53

iI.4 Interpretation as GARK method 55
iI.5 Stability 59

iI.5.1 Model problem 60
iI.5.2 Stability function 62

iI.6 Method construction 68
iI.7 Stability optimization for methods of order two 70

iI.7.1 MFS2 methods 71
iI.7.2 Numerical experiments 72
iI.7.3 Conclusions 78

iII numerical experiments 79
iII.1 Method construction with linear problems 79

iII.1.1 First order fast scale integrators 79
iII.1.2 Second order fast scale integrator 87
iII.1.3 Conclusions 89

7

contents 8

iII.2 Bubbles and externally driven flows 90
iII.2.1 The force driven flow 90
iII.2.2 The cold bubble down burst experiment 94

iV conclusions and outlook 98
iV.1 Conclusions 98
iV.2 Outlook 99

Appendices 106
.1 Order conditions for Störmer-Verlet 107

a method parameters 110
a.1 explicit Euler 110
a.2 Forward-backward Euler 112
a.3 Störmer-Verlet 115

N O M E N C L AT U R E

L Diagonal matrix of total number of steps for every stage.

fyy ⟨F, F⟩ Second derivative of the slow tendencies with respect to all variables y applied
to F

fy ⟨F⟩ First derivative of the slow tendencies applied to F.

Ẑl̂ stacked vector of fast stages, see (II.3.3c) and (II.3.4b)

L̂ diagonal matrix of (rational) step factors

ei ith basis vector of dimension s+ 1

eN,k kth unit vector of dimension N, i.e. [eN,k]j = δkj for k, j ∈ [1,N].

F(y) right hand side, see equation (I.2.0)

f(y) slow part of the flux, see equation (I.2.0)

g(y) fast part of the flux, see equation (I.2.0)

I Identity matrix of dimension (s+ 1)× (s+ 1)

y(t) exact solution, see equation (I.2.0)

IVP initial value problem

MFS multirate finite steps

PDE partial differential equation

The sum with diagonal matrix valued indices has a block wise meaning, i.e.⎡⎣ L̂∑︂
l̂=I

g
(︁
Ẑl̂

)︁⎤⎦
j

=

L̂jj∑︂
l=1

ej ⊗ g(Zn,j,l) .

9

nomenclature 10

Hence the diagonal entries represent the summation steps, the row in the matrix
represents the stage. Then we compute the sum for every stage independently and
stack the results on over another.

We also use four different L-shaped symbols, which all relate to the step. The
symbol l̂ is a diagonal matrix, which contains the actual step for every stage. The
capital L shaped symbols represent the number of steps. They are related by

L = LL̂

where L is the common step factor, L̂ is a diagonal matrix containing the step
factors for every stage and L contains the total number of steps for every stage on
the diagonal.

The derivation of the order conditions requires a lot of symbols. Related symbols
have a common base symbol, but differ in shape or size, for example the L-shaped
and g-shaped symbols.

symbol dim description

L 0 common factor of number of steps
step related

l̂, L, L̂ (s+1)x(s+1) actual step, total number of steps, step ratios
α, γ, β, D (s+1)x(s+1) method parameters
R, Â (s+1)x(s+1) derived from

method
parameters

c,c̃, b, b̃ s+1

Qi(̂l) (s+1)x(s+1) matrix valued coefficient
coefficientQS

i (s+1)x(s+1) sum of Qi(̂l)

QI
i (s+1)x(s+1) Qi(̂l) independent of L̂

Gy
1 - sum of derivative depending on fy ⟨F⟩

derivatives
of g

Gl̂
1 - sum of derivative depending on step l̂

G2 - sum of second derivatives of g

I I N T R O D U C T I O N

i.1 motivation

The weather forecast is one of the most important tools in recent economies. The success in
disciplines like agriculture, forestry and aviation, depend heavily on the reliable knowledge
of expected rainfall and temperature in advance. Much more importantly are the expected
times and locations of weather extremes like hail, twister and thunderstorms. If these are
known in advance, the plants might be protected earlier or the time of harvest could be
chosen accordingly.

The detailed evolution of weather phenomena, and on a larger scale the climate, on
earth depends on the interaction between very many physical structures. In the simplest
model consider only the lowest atmosphere layer, namely the troposphere, as an inviscid
dry ideal gas. More advanced models also consider the interaction between the atmosphere,
oceans, volcanic activities, vegetation and many more processes [45].

The basic nature of the models are already visible in the simplified one layer atmosphere
model. In this model, we treat the air as an ideal gas in one dimension without friction.
Then we have conservation laws for the mass, momentum and total energy, i.e.

∂tρ =− (ρu)x

∂t(ρu) = −
(︁
ρu2 + P

)︁
x

∂tE =− (u(E+ P))x

E =ρe(T , ρ) +
1
2
ρu2 .

The variables ρ, u and P refer to density, velocity and pressure. These equations form
a system of nonlinear partial differential equations (PDE) of hyperbolic type. At this
point we have four unknowns but only three equations. Hence the full system is closed
with the equations of state P = ρRT and e(T , ρ) = cvT for an ideal polytropic gas and
the constant R is the ideal gas constant. This full PDE system is general known as the
Euler equations for a polytropic gas [30]. We get some deeper inside in the time scales by

11

i.1 motivation 12

computing the eigenvalues of the Jacobian of the right hand side. These eigenvalues are
(u,u+ cs,u− cs) [30, Sec 14.8], where cs =

√︂
cp

cv
RT is the speed of sound [9].

Hence the full system features two time scales. The slow scale belongs to the mean
velocity u and the fast one to the speed of sound cs. For dry air the speed of sound
cs ≈ 300m

s , whereas winds in Germany seldom approach 50 m
s .

Let us view these numbers in the context of weather forecast. The basis of atmosphere
model is the compressible nonhydrostatic Euler equations, but often extended by models
for clouds, humidity, precipitation and many more processes [41, 12, 51, 25, 8]. The
general aim of weather forecast is the prediction of temperature and winds on a time span
of several days and weeks. Hence a suitable numerical solver for atmospheric processes
should solve the (semi-discretized) systems on a macro time scale in the order of the wind
speeds, which is six to 10 times lower then the speed of sound.

Up to now we considered only a system of hyperbolic PDEs. But also parabolic PDEs
(and systems thereof) can contain multiple scales. The thermo-elastic models for machine
tools [14] connect two processes. One is the dissipation of heat in a solid, and the other
one is the distortion due the change in temperature. Let us focus on the first part. We
model the dissipation of heat inside the solid and the heat exchange between coupled
machine parts with the system of coupled heat equations, i.e.

ρiCpi∂tTi −∇ · λi∇Ti =Si
λini,j∇Ti =Q̇i,j on Γij

with the material parameters density ρi, heat capacity at constant pressure Cpi and heat
conduction λi. Additionally we have flux boundary conditions on the surfaces Γij. Every
machine part has its own temperature field Ti with inner thermal sources Si and boundary
sources Qij on the boundary Γij. The aforementioned boundary sources also serve as a
thermal connection between the machine tool parts. If two connected parts move relative
to each other, we obtain a time dependent source term [35]. In turn we have two time
scales. One time scale is given by the time the heat conduction requires to a reach steady
state. This time tcond ≈ d2ρiCpi

λi
is given by a characteristic diameter d of the machine

tool part and the material parameters. The other time scale is given by the relative
velocity u between the coupled components. This time we have a characteristic time
tmove ≈ a

u which depends on the characteristic moving distance. Whereas the movement
is quite fast, the heat conduction to a nearly stationary state takes a long time. Hence the
temperature fields in the vicinity of the moving surfaces will change considerably faster

i.2 multi scale additive and partitioned odes 13

then somewhere far away. A problem adapted method, which takes these dependencies
into account, can considerably speed up the numerical solution [36].

These two examples give an imagination where multi scale problems might arise. At
the same time they also belong to different mathematical problem classes. Whereas the
Euler equations form a hyperbolic system, the system of coupled heat equations belong
to the parabolic PDEs. Hence the solution of the latter system is in general smoother
and small errors during the numerical solution process will be damped. In contrast
the hyperbolic system does not damp anything and small errors might accumulate over
time. Therefore both systems require different multirate approaches. In the remaining
chapters we will concentrate on the hyperbolic system. In more detail we are interested
in the numerical solution of the PDE after discretization in space. Hence, we assume
that all space operators are discretized with a suitable method, like finite volumes, finite
differences or even finite elements. The resulting initial value problems (IVP) will also
contain the aforementioned time scales.

On top of these IVPs we will develop a class of multirate methods, which utilize the
additive and partitioned structure of the semi discretized ODEs.

i.2 multi scale additive and partitioned odes

In the previous motivation, we presented several models containing at least two time
scales. From a more general point of view, we started from a PDE with initial and
boundary conditions. In turn we obtain an IVP

ẏ =F(y) = f(y) + g(y) ∈ Rd (2.1a)

y(t0) =y0 (2.1b)

with an additive structure. The additive splitting of the right hand side in a slow and fast
functions f and g correspond to different operators in space and at the same time they
resemble the time scales. In the following chapters, we assume that the slow function f is
responsible for the long time behavior, whereas the function g is responsible for the short
time scales.

i.2 multi scale additive and partitioned odes 14

In several applications the model exhibits an additional structure in the states y.
Therefore we will also consider the so called partitioned additive split ODE

y =(yp,yq) (2.2a)

ẏp =fp(yp,yq) + gp(yp,yq) (2.2b)

ẏq =fq(yp,yq) + gq(yp,yq) (2.2c)

where we decomposed the vector y in two components yp ∈ Rd1 and yq ∈ Rd2 with
d1 + d2 = d. Note the general dependency of the fast tendency g on both components.
In particular the Euler equations from the prevalent section admit a partitioning in the
partitions (ρu) and (ρ, ρE). Hence in the general case, we have to extend the commonly
used partitioned methods symplectic Euler and Störmer-Verlet to this problem type.

There is an interesting survey on these particular partitioned methods by Hairer et al.
[18]. Both methods are strongly connected, because we can write the last one as a
composition of two steps of the former. Furthermore both methods remain explicit for
decoupled partitioned problems, where the right hand sides depend only on one, but not
both components. This property makes them especially efficient. Nevertheless there are
extensions to the implicit coupled problems, i.e. ẏp = fp(yp,yq). Depending if the “own”
component is used in an explicit or implicit way these extensions might lose the advantage
of explicit methods and require the solution of non linear systems in every fast step.

The numerical solution of partitioned and additive split problems with one step methods
is very well understood. In the case of partitioned problems, the P-trees [17] represent
the derivatives of the numerical (and analytical) solution. From these follow the order
conditions for partitioned one step methods in analogy to the famous B-trees for classical
problems. For additive split problems [24, 38] there are the N-trees [4]. Furthermore both
problem structures are very related [5]. A partitioned problem

ẏi =fi(y1, . . . ,yN) (2.3a)

consisting of N partitions can be cast into an additive split problem

U̇ =

N∑︂
k=1

Fk(U) (2.3b)

i.2 multi scale additive and partitioned odes 15

with N right hand side functions fk. Here we distinguish between the partitioned right
hand side and the additive right hand sides by super and subscripts respectively. Assume
we have the partitioned problem (2.3a). Then we construct the block vector

U =

N∑︂
k=1

eN,k ⊗ yk =

⎛⎜⎜⎜⎜⎝
y1

y2

...
yN

⎞⎟⎟⎟⎟⎠ (2.3c)

and obtain the (subscripted) additive functions

Fk(U) =eN,k ⊗ fk(U) =

⎛⎜⎜⎜⎜⎝
0

fk(U)
...
0

⎞⎟⎟⎟⎟⎠ . (2.3d)

This additive structure is also named coordinate partitioning by Sandu and Günther [38].
Instead if we start from an additive split problem (2.3b) we obtain the corresponding

partitioned problem by introducing auxiliary variables yi, such that

U =
∑︂
i

yi (2.3e)

and require the IVP

ẏi =fi
(︁
y1, . . . ,yN

)︁
= Fi

(︄∑︂
k

yk

)︄
(2.3f)

for every index i = 1, . . . ,N. We will use these connections when we compare the
derivation of order conditions with different methodologies in section II.4.

The problem (2.1) is merely an algebraic specialization to a general ODE ẏ = F(y). But
the splitting itself does not give any qualitative information about the solution. Hence we
go one step back and consider linear hyperbolic PDEs. From these PDEs we obtain the
physical meaning of slow and fast. A conservation law has the (flux) form

qt +∇ · f(q) =0 (2.4)

i.2 multi scale additive and partitioned odes 16

where the quantity q is conserved and the function f : R → Rn models the flux [30, 9, 53,
13]. Prominent (and by far not exhaustive) examples for these equations are

• conservation of mass using q = ρ. The flux function f(q) = u⃗ρ is the mass flux.
With a constant velocity u⃗ = Ue⃗x the equation reduces to the one dimensional
advection equation

qt +Uqx =0 . (2.5)

• conservation of momentum using q = ρu⃗. This time the conserved quantity q is
a vector and the flux function is f(ρu⃗) = ρu2 + P where P is the pressure and in
general a function of the density and temperature.

Despite the simplicity the advection equation (2.5) shows the an important property of
hyperbolic problems. The solution q(te, x) = q0(x − Ut) at time t = te is the initial
profile q0, shifted by Ute.

Let us now increase the complexity a little bit by considering vector valued problems of
size d in 1D, but keep the flux function f linear. In this case we obtain the conservative
system

qt +Aqx =0 (2.6)

where the matrix A ∈ Rd×d is diagonalizable with real eigenvalues λ1, . . . , λd [13]. Hence
there exist orthogonal transformations R, such that RA = ΛR. Let us therefore change
the variables by w = Rq. These transformed variables satisfy the PDE

wt +Λwx =0 ,

which is simply a decoupled system of advection equations with velocities λ1, . . . , λd. In
particular the largest in magnitude eigenvalue λ determines the maximal time step size of
an explicit time integrator.

The extension to nonlinear hyperbolic system is formally straight forward. A PDE of
the form (2.4) is hyperbolic if the Jacobian of f is diagonalizable with real eigenvalues. In
analogy to the linear case the eigenvalues are the velocities. But in the nonlinear case
these velocities depend on the state, which can lead to shocks, rarefaction waves and
other non smooth solutions structures [13].

i.2 multi scale additive and partitioned odes 17

Meteorological models exhibit several different wave types [2, 31, 10]. Let us consider
the two dimensional stratified isentropic Euler equations, i.e

∂tρ+ ∂x(ρu) + ∂z(ρw) =0 (2.7a)

∂tu+ u∂xu+w∂zu+
1
ρ
∂xP =0 (2.7b)

∂tw+ u∂xw+w∂zw+
1
ρ
∂zP =− g (2.7c)

∂tθ+ u∂xθ+w∂zθ =0 (2.7d)

with the gravitational constant g = 9.81 m
s2

. The potential temperature θ is defined

as θ = T
(︂

P
P0

)︂− R
cp with a reference pressure P0. Usually one uses P0 = 100hPa. This

temperature is constant in the absence of heat sources during an adiabatic processes. In
particular it does not change due to vertical pressure (and density) variations.

We model the atmosphere as an ideal gas, hence the pressure P = ρRT is linear in the
temperature T and the density ρ. From the definition of the potential temperature θ we
obtain the diagnostic equation

P =P0

(︃
Rρθ

P0

)︃Cp
Cv

for the pressure in relation to the density and the potential temperature. The momentum
equations depend on the pressure gradient scaled with the inverse density. To overcome
this relation we introduce the Exner pressure

π =

(︃
P

P0

)︃ R
Cp

, which relates to the (scaled) pressure gradient

1
ρ
∇P =Cpθ∇π .

i.2 multi scale additive and partitioned odes 18

Putting everything together we end up with the two dimensional inviscid Euler equations

∂tu+ u∂xu+w∂zu+ Cpθ∂xπ =0

∂tw+ u∂xw+w∂zw+ Cpθ∂zπ =− g

∂tθ+ u∂xθ+w∂zθ =0

∂tπ+ u∂xπ+w∂zπ+
R

Cv
π (∂xu+ ∂zw) =0

where the prognostic equation for the Exner pressure π follows from the mass balance,
the prognostic equation (2.7d) and the definition of π. Hence one can view the pressure
equation as a replacement for the density. These equations are easier to analyze.

The multiscale character gets best visible with the dispersion relation. Therefore we
linearize the system around an isothermally stratified state, i.e.

θ(t, x, z) =θ0 + θ1(t, x, z)

u(t, x, z) =U+ u1(t, x, z)

w(t, x, z) =w1(t, x, z)

π(t, x, z) =π0(z) + π1(t, x, z)

with background horizontal velocity U and vanishing zeroth order vertical velocity. Fur-
thermore we assume the hydrostatic balance

Cpθ0∂zπ0 =− g

at zeroth order. After that we obtain the quasi-linear system

∂tu1 +U∂xu1 =− Cpθ0∂xπ

∂tw1 +U∂xw1 =− Cpθ0∂zπ+ g
θ1

θ0

∂tθ1 +U∂xθ1 =−
N2θ0

g
w1

∂tπ1 +U∂xπ1 =−
Rπ0

Cv
(∂xu1 + ∂zw1) +w1

g

Cpθ0

in the small perturbations u1, w1, θ1 and π1 of the horizontal, vertical, potential tem-
perature and Exner pressure respectively. The constant N represents the Brunt-Väisälä
frequency, i.e. N2 = g

θ0
∂zθ0. We moved the terms responsible for the advection to the left

of the equation and the remaining terms to the right. To construct the dispersion relation,

i.2 multi scale additive and partitioned odes 19

we consider wave type solutions of the form (u1,w1, θ1,π1)e
kx+lz−ωt with frequency

ω and the horizontal and vertical wave numbers k and l. In isothermal processes, the
speed of sound cs =

√︂
CpRT
Cv

is constant and the linearized system exhibits the dispersion
relation

(ω−Uk)2 =
c2s
2

(︃
k2 + l2 +

N2 + S2

c2s

)︃
± c2s

2

[︄(︃
k2 + l2 +

N2 + S2

c2s

)︃2

− 4
N2k2

c2s

]︄ 1
2

,

with S = cs

[︂
1

2ρ0

dρ0
dz + 1

θ0

dθ0
dz

]︂
. Hence the dispersion relation is nonlinear in k and

l. In other words, we have different wave speeds for different wavelengths. A wave
with wavelengths (k, l), travels with velocity

(︂
ω(k,l)

k , ω(k,l)
l

)︂
in horizontal and vertical

direction, whereas the wave packages travels with velocity (∂kω(k, l),∂lω(k, l)). Hence
a wave package consisting of several wavelengths disperses with time. Furthermore we
also see that the wave velocities do not correspond to the characteristics due to the non
differentiated terms on the right.

II M U LT I R AT E M E T H O D S

There is a vast variety of numerical methods for multirate problems. Similar to the
classical ODE methods, multirate methods fall again in two classes, namely the multistep
and one step methods. A very early approach by Gear and Wells [11] bases on multistep
methods. Methods from this class make use of the underlying polynomial and can
interpolate and extrapolate with sufficient high accuracy.

The other method class are the one step methods. For stiff parabolic systems the special
sub class of linearly implicit Rosenbrock methods were extended to so called multirate
Rosenbrock methods (MROS) by Günther and Rentrop [15]. Again they used the slow-first
strategy. The basis for the extension is the extrapolation of the fast values and interpolation
of the slow values afterwards. Different extrapolation and interpolation strategies were
tested by Savcenco et al. [39], this time on a reaction diffusion equation. Quite recently
Kuhn [29] analyzed the stability interpolation approach by defining continuous extensions
of Rosenbrock methods. The multirate extension still bases on a component partitioning,
in this particular case even a coordinate partitioning. The additive structure of the
problems was not exploited, even so a component dependency.

The basis for the order conditions of the multirate Rosenbrock are the P-series by
Hairer [17]. Hence the local error, and therefore the order, for the multirate RK method
are known for a long time. The crucial and complicated part of these methods are the
stability conditions. Whereas classical RK methods can be analyzed with a scalar test
equation, see the famous contribution [6], a multirate method requires a system with at
least two components. Due to the multirate approach, the method treats every component
in a different way. Hence the stability function does not only depend on the eigenvalue of
every subsystem and the coupling blocks, but also on their eigenvectors. This fact was
explored by Skelboe and Andersen [42] in the context of waveform relaxation methods
with the backward Euler method.

The class of PEER method [37, 49] combines the multistep with one-step methods,
hence belong to the class of general linear methods. There are at least two extensions of
PEER methods to multirate problems. The last chapter in Kuhn [29] uses several sub
steps for the fast components. This approach is very sensitive to the interpolation methods
of the slower components. On the other hand Jebens et al. [23] exploit the additive

20

ii.1 multirate infinitesimal step methods 21

fast-slow structure. Whereas the former approach leads to simpler order conditions, the
latter one required additional conditions for the coupling between the fast and slow terms.
We extended these methods in two directions in 2017. First we added the coefficients γ
to reach order higher than two and second we specialized the method with the several
fast explicit Euler steps.

The remaining chapter concentrates on the class of one step methods, particularly the
multirate infinitesimal step (MIS) and the new multirate finite step (MFS) methods. We
exploit the additive and partitioned structure of the model problem (I.2.2) and derive the
order conditions up to order three. Afterwards we derive a test equation for the stability
analysis, which is related to the Euler equations from the introduction.

ii.1 multirate infinitesimal step methods

The multirate infinitesimal steps (MIS) methods were first introduced by [27]. The basis
of MIS methods are explicit RK methods. Whereas a RK method evaluates the fast and
the slow terms together, and at the same time points, the MIS approach introduces an
auxiliary ODE on the macro scale which accounts for the fast tendencies. Thus an MIS
method is given by [52]

Zn,i(0) =yn +
∑︂
j

αij(Yn,j − yn) (1.1a)

∂τZn,i =
1
h

∑︂
j

γij(Yn,j − yn) +
∑︂
j

βijf(Yn,j) +Diig(Zn,i(τ)) (1.1b)

Yn,i =Zn,i(h) (1.1c)

yn+1 =Yn,s+1 . (1.1d)

The coefficients and in particular the auxiliary IVP for Zn,i requires a deeper explanation.
For the beginning we neglect the coefficients α and γ. In this case the auxiliary IVP for the
Zn,i starts at the old value yn and fixes the slow tendencies at the previous stages, but de-
pends on the recent fast tendencies in the whole macro interval [tn, tn+h]. In the absence
of fast tendencies the ODE (1.1b) has the trivial solution Zn,i(h) = yn + h

∑︁
j βijf(Yn,j)

and one recovers the so called underlying RK method with Â = β. Last but not least we
scale the fast tendencies using the coefficient Dii. These coefficients allow for a different

ii.1 multirate infinitesimal step methods 22

RK, s=2

tn tn+h

f

g

yn=Y1 Y2 yn+1

MIS, s=2

tn tn+h

f

g

yn=Y1 yn+1Y2

MFS, s=2,L=3

tn tn+h

f

g

yn+1Y2yn=Y1

Figure 1: Flow diagrams for two stage RK, MIS and MFS methods from left to right. The
rectangle position represents the time point of the stage, whereas the colors green and
red correspond to the slow and fast evaluations.

interpretation. Let us scale the fast time τ by τ̂ =↦→ Diiτ in the stage i. Then the fast
scale ODE (1.1b) becomes

∂τ̂Ẑn,i =
1
Dii

∑︂
j

βijF(Yn,j) + g(Ẑn,i(τ̂))

in the absence of γ. The new stage value Yn,i = Ẑn,i(Diih) is then the result at τ̂ = Diih.
In that sense, the coefficients Dii can be seen as a scaling from macro to micro scale.

The coefficients α shift the initial value Zn,i(0) by a (slight) amount. In particular using
αij = δij+1 we recover the implicit-explicit method from Knoth and Wolke [27], which
starts at the previous stage. Furthermore the coefficients γ look similar to a first order
approximation to the sum of the fast and slow terms and for better stability properties.

The flow diagram in Figure 1 visualizes the aforementioned idea on a two stage method.
The circles at the time line represent the macro stage values Yn,i. We distinguish the slow
and fast evaluations with the colors red and green respectively. According to the previous
explanation, the red and green arrows correspond to the coefficients β and D respectively.
The black arrows between the circles next to the time line represent the γ terms. A
classical RK method evaluates the slow and the fast terms at the same time levels, hence
the red and green boxes are in the same column. The (original) MIS approach fixes the
slow values in the previous stage and solves an auxiliary IVP between the stages exactly.
Hence we evaluate, at least theoretically, the fast tendencies on the whole micro scale
interval [0,Diih]. The solution of the auxiliary IVP will be the value of the next stage,
hence the green vertical arrows.

The last flow diagram already shows the new extension to the MFS methods. Here we
discretize the continuous micro interval with a fast scale solver, hence we obtain additional
Zn,i values between the stages, which correspond to the filled circles. For an explicit fast

ii.1 multirate infinitesimal step methods 23

scale integrator the next fast step depends only on the previous g evaluation, hence the
additional green boxes and green arrows from upper left to lower right. These methods
will be introduced in the next section and analyzed in details throughout the remaining
chapters.

Let us review the construction of the order conditions for MIS methods. Using
infinitesimal steps means we require the exact solution of the auxiliary. Hence the order
conditions require to have the exact solution of the auxiliary variable Zn,i(τ,h)

⃓⃓
τ=H

and
treat Zn,i as a function in two variables. Then one derives an expansion of the numerical
solution at h = 0 and derives a recursion for the derivatives of the slow variables Y in
terms of the derivatives of the auxiliary variable Zn,i. The details for this process can be
found in [52].

the shifted auxiliary problem We are interested in the solution with a (real) fast
scale solver. Hence we have to consider the error due to the inexact solution of the fast
ODEs (1.1b). These perturbed solutions are then the new slow values and enter the ODE
(1.1b) for the remaining stages. These connections get clearer when we interpret the step
size and the slow stage values Yn as parameters and include them in the definition (1.1b).
At the same time we shift the IVP (1.1a)-(1.1b) for stage i by the scaled slow values, i.e.
by

∑︁
j αijYn,j, and obtain

Zn,i(0;h, Yn) =

⎛⎝1 −

i−1∑︂
j=1

αij

⎞⎠yn (1.2a)

∂τZn,i(τ;h, Yn) =Ri(Zn,i,h, Yn) (1.2b)

Ri(Zn,i,h, Yn) =
1
h

i−1∑︂
j=1

γij(Yn,j − yn) +

i−1∑︂
j=1

βijf(Yn,j)

+Diig

⎛⎝Zn,i(τ;h, Yn) +
i−1∑︂
j=1

αijYn,j

⎞⎠ (1.2c)

for every stage i = 1, . . . , s+ 1. Hence we recover the original MIS values

Zi(τ) =Zn,i(τ;h, Yn,1, . . . ,Yn,i−1) +

i−1∑︂
j=1

αijYn,j

ii.1 multirate infinitesimal step methods 24

by shifting the parameterized Z and use the exact slow stage values Yn as parameters.
For comparison later, we also write down the slow stages in terms of the shifted function
fast solution, i.e.

Yn =Zn(h;h, Yn) + αYn

=(I− α)−1Zn(h;h, Yn) . (1.3)

fast scale integrator - exact slow stages Now we apply the fast-scale in-
tegrator Φi on the shifted and parameterized ODE (1.2b). The subscript i allows for
different fast scale integrators in every stage. In particular we might compose a base
integrator Φ with different numbers of steps in every stage, i.e. Φi = Φ

Lii and step size
h
Lii

. If we use only exact stage values Yn we obtain the numerical solution after one step

Z̃n,i(h;h, Yn) :=

⎛⎝1 −

i−1∑︂
j=1

αij

⎞⎠yn + hΦi

(︁
Zn,i,0,h;h, Yn

)︁
in analogy to the notation of Henrici [21]. Please note the additional arguments which
correspond to the parameters of the parametrized auxiliary ODE (1.2b). If the fast scale
integrator Φ is of order p < q, then there exist constants di,k such that

Z̃n,i(h;h, Yn) =Zn,i(h;h, Yn) +
q∑︂

k=p+1

di,k(0;h, Yn)hk + O(hq+1) , (1.4)

where the coefficients di,k depend on the elementary differentials of the shifted ODE
(1.2b) and in turn on the parameters Yn. In particular recognize the first term as the
scaled and shifted solution of the MIS method. Also note that the variable h plays three
different roles in this equation. First it is the end time of the fast variable τ = h at
which we seek the solution Zn,i(τ;h, Yn). Second we solve the the IVP with only one
step and h is the step size of the fast scale integrator. Due to the error expansion it is
therefore also the polynomial variable. Third it is one of the ODE parameters, which is
the reason for the dependence of the error coefficient on the macro step size h. Therefore
we denote the error coefficients di,p+1 with three arguments. The first one corresponds to
the independent variable τ, whereas the second and third represents the parametrization
with h and Yn.

ii.1 multirate infinitesimal step methods 25

fast scale integrator - perturbed slow stages Let us now apply the fast
scale integrator Φ on the shifted IVP (1.2b), but this time with perturbed parameters
̃̂Y. Then the slow values are again the solution at τ = h and we obtain the following
recursion

̃̂Yn,1 =yn (1.5a)

̃̂Yn,2 =Zn,2

(︂
h; ̃̂Yn,1

)︂
+ α2,1

̃̂Yn,1 +

q∑︂
k=p+1

d2,k

(︂
0;h, ̃̂Yn,1

)︂
hk + O(hq+1) (1.5b)

̃̂Yn,3 =Zn,3

(︂
h; ̃̂Yn,1, ̃̂Yn,2

)︂
+

2∑︂
j=1

α3j
̃̂Yn,j +

q∑︂
k=p+1

d3,k

(︂
0;h, ̃̂Yn,1, ̃̂Yn,2

)︂
hk + O(hq+1)

...

̃̂Yn,i =Zn,i

(︂
h; ̃̂Yn,1, . . . , ̃̂Yn,i−1

)︂
+

i−1∑︂
j=1

αij
̃̂Yn,j +

q∑︂
k=p+1

d̂i,k(0)hk + O(hq+1) (1.5c)

in the slow stage values ̃̂Yn,i. We added the two operators̃and̂to distinguish between
the two error types. With the operator ̃ we denote only the numerical error due to
the fast scale integrator Φ. The operator̂corresponds to the additional error due to
the perturbation of the differential equation (1.2c). Hence the error coefficients di,k
also depend on the same perturbation. For a shorter notation we use the symbol d̂i,k
to account for the numerical error of the fast scale solver when solving the perturbed
auxiliary equation and we neglect the last parameters.

We also observe two exceptions from the rule. The first stage remains exact, without
any error because the complete method is explicit and the matrices α, β and γ are strict
lower triangular. Furthermore the balanced MIS methods also require β1 = D1 which
implies D11 = 0. The second exception is the second stage. Due to the exactness of
the first stage, the value Zn,2(h, ̃̂Yn,1) + α2,1yn is the same as the MIS value Zn,2 and
therefore the second stage ̃̂Yn,2 is only perturbed by the numerical integrator Φ. Hence
the error coefficients d2,k in (1.5b) are the same as in the equation (1.4). All remaining
stage values ̃̂Yn,i with i ⩾ 3 are the sum of a perturbed solution Z(h, ̃̂Yn) and the error
of the numerical solution of the ODE (1.2b) with perturbed parameters ̃̂Yn.

ii.1 multirate infinitesimal step methods 26

Similar to the slow MIS values Yn we collect all stages into one vector and rewrite the
vector of slow perturbed values

̃̂Yn = Zn

(︂
h;h, ̃̂Yn

)︂
+ α ̃̂Yn +

q∑︂
k=p+1

δ̂k(0)hk + O(hq+1)

= (I− α)−1

⎛⎝Zn

(︂
h;h, ̃̂Yn

)︂
+

q∑︂
k=p+1

δ̂k(0)hk

⎞⎠+ O(hq+1) (1.6)

in terms of the vector of the (shifted and perturbed) auxiliary solution Zn and the vector
of the numerical error coefficients (δ̂k)i = d̂i,k from the fast scale solver applied to the
perturbed ODE.

local error with perturbed slow stages The two equations (1.3) and (1.6)
give us the hint how we can split the local error

eTs+1
̃̂Yn − y(tn+1) =

MIS⏟ ⏞⏞ ⏟
eTs+1Yn − y(tn+1)+

local error of Φs+1⏟ ⏞⏞ ⏟
eTs+1(I− α)

q∑︂
k=p+1

δ̂k(0)hk

+ eTs+1(I− α)
−1
(︂
Zn

(︂
h;h, ̃̂Yn

)︂
− Zn(h;h, Yn)

)︂
⏞ ⏟⏟ ⏞

perturbed exact solution of (1.2b)

+O(hq+1)

(1.7)

of a s-stage MFS method in three parts. The first difference correspond to the MIS
error, the second to the numerical error of the fast scale integrator and the third term to
solution of the perturbed auxiliary ODE due to the perturbation of the slow stages.

Let us consider the third term. This product depends on the difference between the exact
solution of the perturbed ODE (1.2b) and the exact solution of the unperturbed ODE.
The following theorem from Hairer et al. [20, Theorem I.14.2] relates the perturbation of
parameters in an ODE to the solution. We specialize the theorem for our purposes and
keep the notation simpler.

Theorem 1. Let Zn,i(τ;h, Yn) be the solution of equation (1.2b) with exact parameters
Yn and consider the Jacobian

Ai(τ) =
∂Ri(Zn,i(τ;h, Yn), Yn)

∂Zn,i
= Dii

∂g

∂Zn,i
(Zn,i(τ;h, Yn)) .

ii.1 multirate infinitesimal step methods 27

Let Ri(τ, 0) be the resolvent of the equation Żn,i = AiZn,i. Then the solution Ẑn,i of
(1.2) with slightly perturbed parameters Ŷn is given by

Ẑn,i(τ) = Zn,i(τ;h, Yn) +
i−1∑︂
j=1

Sij(Ŷn,j − Yn,j) + o
(︁⃓⃓
Yn,j − Ŷn,j

⃓⃓)︁
(1.8a)

Sij :=

∫︂τ
0
Ri(τ, s)

∂Ri

∂Yn,j

(︁
Zn,i(s;h, Yn),h, Yn

)︁
ds (1.8b)

The proof can be found in the aforementioned source. The symbol Sij, defined in
equation (1.8b), represents the sensitivity of the exact solutions to small changes in the
slow values Yn and the stability of the fast part due to the resolvent Ri.

From the definition (1.2c) of Ri we obtain the partial derivative

∂Yn,jRi

⃓⃓
Zn,i(s),h,Yn

=
γij

h
+ βijfy(Yn,j) + αijDiigy

(︄
Zn,i(s) +

∑︂
k

αikYn,k

)︄
(1.8c)

with respect to Yn,j. After inserting in the integral and splitting, we obtain the approxi-
mation

Sij
⃓⃓
τ=h

≈

C1,i⏟ ⏞⏞ ⏟
Ri(h, ξ1)γij + h

C2,i⏟ ⏞⏞ ⏟
Ri(h, ξ2)βijfy(Yn,j)

+hDiiαijRi(h, ξ3)gy

(︄∑︂
k

αikYn,k + Zn,i(ξ3)

)︄
⏞ ⏟⏟ ⏞

C3,i

(1.8d)

with ξ1, ξ2 and ξ3 ∈ (0,h) from the intermediate value theorem as long as the Jacobian
of g is sufficiently smooth. Whereas the first two constants C1,i and C2,i depend only on
the resolvent and the intermediate position, the third constant C3,i also depends on the
exact values Yn and exact solution of Zn. For convenience we collect all values Ẑn,i(τ) in
one vector

Ẑn(τ) = Z(τ;h, Ŷn) (1.8e)

= Zn(τ;h, Yn) + [C1γ+ hC2βfy(Yn) + hC3Dα](Ŷn − Yn) (1.8f)

and place the constants C1,i, C2,i and C3,i on the diagonal of the matrices C1, C2 and
C3 respectively.

ii.1 multirate infinitesimal step methods 28

At this point we know how arbitrary, but small, perturbations Ŷn,j−Yn,j of the previous
stages j = 1, . . . , i− 1 perturb the new slow value Ŷn,i when using the exact integrator.
Now we have to extract the perturbations of the numerical integrator Φi. For that we
consider MIS methods of order q. Then we can neglect the error terms of order q+ 1 in
(1.6) and subtract the exact Yn, i.e.

̃̂Yn − Yn =(I− α)−1

(︄
Zn(h;h, ̃̂Yn) +

q∑︂
k=1

δ̂k(0)hk − Zn(h;h, Yn)

)︄
(1.9a)

and use equation (1.8f) with Ŷn replaced by ̃̂Yn to end up with

=(I− α)−1 [C1γ+ hC2βfy(Yn) + hC3Dα]
(︂

̃̂Yn − Yn

)︂
+(I− α)−1

q∑︂
k=1

δ̂k(0)hk .
(1.9b)

The last equation is linear in the difference ̃̂Y − Yn. We multiply I − α to the left and
subtract the first term to have the difference only on the left hand side, i.e.

(I− [α+ C1γ+ hC2βfy(Yn) + hC3Dα])
(︂

̃̂Yn − Yn

)︂
=

q∑︂
k=p+1

δ̂k(0)hk . (1.9c)

For a sufficiently small macro step size h the coefficients on the left hand side are near
I− α− γ, which is invertible. By virtue of the geometric series, and collecting by powers
of h, we end up with the perturbed slow stages

̃̂Y ≈ Yn + (I+ B0 + h(B1 + B0B1))

q∑︂
k=p+1

δ̂k(0)hk (1.10a)

where the matrices B0 and B1 are given by

B0 = α+ C1γ (1.10b)

B1 = C2βfy(Yn) + C3Dα . (1.10c)

Furthermore we neglected powers of h greater or equal than two in this expansion.
That last approximation (1.10a) is the key result for this section. It relates the

approximated slow values to the exact slow values obtained from the MIS method plus
some powers of the macro step size h. At the same time we arrived at two different error

ii.1 multirate infinitesimal step methods 29

coefficients B0 and B1. The first term B0 depends only on the coefficients α and γ and
through the coefficient C1 also indirectly on the fast tendencies through the resolvent
R. But it is independent in the slow tendencies f. In contrast the second term depends
on the slow and fast tendencies. Furthermore we remind the structure of the vector of
error coefficients δ̂k(0). As we see from the construction (1.5), the first errors are always
zero, because the first stage is always the old value yn. In turn the second entry contains
only the coefficients due to the numerical integrator Φ2. Starting from the third stage
the previous perturbations also propagate through the perturbed auxiliary ODE in the
error coefficients. From that point of view we interpret the coefficients B0 and B1 as the
sensitivity of the slow values ̃̂Y to the previous numerical solution errors and the perturbed
auxiliary ODE together. Let us summarize the consequence from formula (1.10a) in the

Theorem 2. Let the fast scale integrator Φ and the MIS method have the order p and
q respectively with p ⩽ q. Then there are no additional order conditions if p = q. In
particular, there are no MFS conditions for q = 1.

Proof. We multiply equation (1.10a) from the left with the unit vector eTs+1 and subtract
the exact solution y(tn + h), i.e.

eTs+1
̃̂Yn − y(tn + h) =

O(hq+1)due to MIS⏟ ⏞⏞ ⏟
eTs+1Yn+1 − y(tn + h)

+eTs+1

q+1∑︂
k=p+1

[︁
(I+ B0)δ̂k(0)hk + (B1 + B0B1)δ̂k(0)hk+1]︁ .

(1.11)

Let us consider the cases

• q = p: The sums contain only one term of order hp+1, which is also the order of
the first term. Hence there are no additional conditions.

• q = p + 1: The first sum with coefficient (I + B0)δ̂p+1(0) is the only additional
power of h. Hence, we have to match only the coefficients es+1(I+ B0)δ̂p+1 = 0.

• q = p+ 2: We have to match two additional conditions of the form

eTs+1(I+ B0)δ̂p+1(0) =0

eTs+1
[︁
(B1 + B0B1)δ̂p+2(0)

]︁
=0 .

ii.2 multirate finite step methods 30

At this point we know what happens, when we want to increase the order of the fast
scale integrator by one or two. But with the same arguments we get the additional MFS
order conditions for the adjoint method Φ∗

i . From the theorem Hairer et al. [20, Theorem
II.8.5] we see that the leading error coefficient has the same order, but the inverse sign.
Hence we finish with the

Theorem 3. The fast scale integrator Φ and the adjoint integrator Φ∗ have the same
multirate finite step (MFS) order conditions. In particular the explicit and the implicit
Euler method have the same MFS order conditions.

Proof. We change the signs of δ̂k in equation (1.11) and repeat the proof of theorem
2.

conclusions In this section we showed the how the global error of an arbitrary fast
scale integrator Φ change the order conditions of MIS methods. In particular low order
fast scale integrators lead to many additional order conditions due to the solution of the
perturbed auxiliary problem.

ii.2 multirate finite step methods

Let us introduce the details of the new MFS methods. As we roughly laid out in the
diagram 1 the MFS methods are MIS methods, which were extended by a numerical fast
scale integrator. In analogy to the derivation of theorem 2, we solve (1.1b) with a one
step method with Lii steps stage i. The theorem 2 shows, that the order conditions
depend on the local error of the fast scale integrator. Hence we analyze three one step
methods. In [34] we derived the order conditions for the explicit Euler method. This
time we generalized the derivation to account also for other fast scale solvers of one
step type. Let us now apply every one step method on the ODE (1.1b) with micro step
size h

Lii
and starting value Zn,i,l−1. Additionally we will define a unified fast function

gXl (Zn,i,l−1,Zn,i,l) for every fast scale integrator X and step l, hence the subscript l.

ii.2 multirate finite step methods 31

ii.2.1 Unified notation of MFS methods

Let us first introduce the MFS method utilizing the unified fast scale evaluation function
gXl with s stages, i.e.

Zn,i,0 =yn +
∑︂
j

αij(Yn,j − yn) (2.1a)

Zn,i,l =Zn,i,l−1 +
1
Lii

∑︂
j

γij(Yn,j − yn) +
h

Lii

∑︂
j

βijf(Yn,j)

+
h

Lii
Diig

X
l (Zn,i,l−1,Zn,i,l) , l = 1, . . . ,Lii

(2.1b)

Yn,i =Zn,i,Lii
i = 1 . . . s+ 1 (2.1c)

and the new coarse scale value at time tn+1, i.e.

yn+1 =Yn,s+1 . (2.1d)

Note that this unification not only unifies the usage of the fast scale integrators, but it also
unifies the partitioning strategies. This allows us to treat the partitioned methods and
the classical method in the same way. The step dependency with the subscript l accounts
for one step fast scale integrators with more than one stage. With the superscript X we
represent the fast scale integrator. We concentrate on the methods explicit Euler, Forward-
Backward Euler and Störmer-Verlet. Hence X is a placeholder for the abbreviations EE,
FB or SV respectively. The coefficients α, β, γ and D are the same as in the MIS context.

All fast scale evaluation function gXl have the useful property

gXl (a,a) =g(a) . (2.2a)

Then we can differentiate this equation in direction F(yn) at yn to obtain

∂1g
X
l ⟨F⟩+ ∂2g

X
l ⟨F⟩ =gy ⟨F⟩ (2.2b)

gyy ⟨F, F⟩ = ∂2
11g

X
l ⟨F, F⟩+ ∂2

22g
X
l ⟨F, F⟩+ 2∂12g

X
l ⟨F, F⟩ . (2.2c)

Also note that we neglected the argument yn. This symbolism will be explained in the
next section in detail. In particular the first relation plays an important role during the
derivation of the order condition.

ii.2 multirate finite step methods 32

ii.2.2 Explicit Euler as fast scale integrator

The explicit Euler is the simplest explicit RK method and of order one. The new fast
value Zn,i,l is given by

Zn,i,l =Zn,i,l−1 +
1
Lii

∑︂
j

γij(Yn,j − yn) +
h

Lii

∑︂
j

βijf(Yn,j) + h
Dii

Lii
g(Zn,i,l−1) .

Due to the explicit nature the fast tendencies depend only on the old step Zn,i,l−1. By
comparing the last equation with (2.1b), we directly read the unified fast function gEEl ,
i.e.

gEEl (Zn,i,l−1,Zn,i,l) = g(Zn,i,l−1) . (2.3a)

This unified fast scale evaluation function does not depend directly on the step l. Much
more importantly, the derivative with respect to the first argument reduces to the
derivative of the fast tendencies.

ii.2.3 Forward-backward Euler as fast scale integrator

This time we utilize the partitioning in the partitioned model problem I.2.2 by treating
the first equation for yp explicit and the second equation semi-implicit in terms of the
first component yp. Hence the new step

Z
p
n,i,l =Z

p
n,i,l−1 +

1
Lii

∑︂
j

γij(Y
p
n,j − y

p
n)

+
h

Lii

∑︂
j

βijf
p(Ypn,j, Y

q
n,j) + h

Dii

Lii
gp(Zp

n,i,l−1,Z
q
n,i,l−1)

Z
q
n,i,l =Z

q
n,i,l−1 +

1
Lii

∑︂
j

γij(Y
q
n,j − y

q
n)

+
h

Lii

∑︂
j

βijf
q(Ypn,j, Y

q
n,j) + h

Dii

Lii
gq(Zp

n,i,l,Z
q
n,i,l−1)

ii.2 multirate finite step methods 33

depends partially on the value Zn,i,l, but only in the second component. Due to the
partitioning, the fast unified fast scale function gFB

l is given by

gFB
l (a,b) = gFB

l ((ap,aq), (bp,bq)) =

[︄
gp(ap,aq)
gq(bp,aq)

]︄
, (2.3b)

where the arguments a and b correspond to the previous and next fast value respectively.
If we neglect the Zp component in gp and Zq component in gq, we recover the implicit
explicit scheme of Mesinger [32].

In contrast to the explicit Euler method, the derivative of gFB
l with respect to the first

argument is different from the derivative of the fast tendencies g. Nevertheless it fulfills
the relations (2.2b).

ii.2.4 Störmer-Verlet as fast-scale integrator

We interpret the method as two halve steps of (an implicit) forward-backward Euler with
exchanged roles. Both halve steps are adjoint to each other, therefore the method is of
order two. The odd steps l are then given by

Z
p
n,i,l =Z

p
n,i,l−1 +

1
2Lii

∑︂
j

γij(Y
p
n,j − y

p
n)

+
h

2Lii

∑︂
j

βijf
p
(︂
Y
p
n,j, Y

q
n,j

)︂
+ h

Dii

2Lii
gp
(︂
Z
p
n,i,l,Z

q
n,i,l−1

)︂
Z
q
n,i,l =Z

q
n,i,l−1 +

1
2Lii

∑︂
j

γij(Y
q
n,j − y

q
n)

+
h

2Lii

∑︂
j

βijf
q
(︂
Y
p
n,j, Y

q
n,j

)︂
+ h

Dii

2Lii
gq
(︂
Z
p
n,i,l,Z

q
n,i,l−1

)︂

ii.3 order conditions 34

and for even l

Z
q
n,i,l =Z

q
n,i,l−1 +

1
2Lii

∑︂
j

γij(Y
q
n,j − y

q
n)

+
h

2Lii

∑︂
j

βijf
q
(︂
Y
p
n,j, Y

q
n,j

)︂
+ h

Dii

2Lii
gq
(︂
Z
p
n,i,l−1,Z

q
n,i,l

)︂
Z
p
n,i,l =Z

p
n,i,l−1 +

1
2Lii

∑︂
j

γij(Y
p
n,j − y

p
n)

+
h

2Lii

∑︂
j

βijf
p
(︂
Y
p
n,j, Y

q
n,j

)︂
+ h

Dii

2Lii
gp
(︂
Z
p
n,i,l−1,Z

q
n,i,l

)︂
Note that we only exchange the time arguments of the fast function g, whereas all constant
parts remain the same. Due to the exchange of the roles and arguments, the unified fast
scale function gSVl is given by

gSV
l (a,b) = gSV

l ((ap,aq), (bp,bq)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎣gp(bp,aq)

gq(bp,aq)

⎤⎦ l odd⎡⎣gp(ap,bq)

gq(ap,bq)

⎤⎦ l even

(2.3c)

If we compare the equations for the new step, we see that only the Störmer-Verlet method
has a factor two in the denominator. We get rid of this factor by allowing only even
numbers of steps and merging the factor into Lii.

This time the fast scale evaluation function depends directly on the step l and derivatives
with respect to the first argument are again different from the fast scale function g. Hence
the derivation of the order conditions for this case are most lengthy.

ii.3 order conditions

In this section we derive the order conditions for a MFS method. In light of the MFS
basis, namely MIS and one step Runge-Kutta methods, we expect three sets of conditions.
All g-independent derivatives must belong to a classic order condition and all g-dependent
derivatives with step L independent coefficients must belong to a MIS condition. All
other conditions, depending on the step factor L, belong to the new MFS conditions and
depend on the fast scale integrator.

ii.3 order conditions 35

Every sub problem in the partitioned model problem (I.2.2) is vector valued. Hence
every stage solution is vector valued and we have to introduce the multivariate derivatives
for every component. To unify the notion of the derivatives, we first introduce an
extended notation and common symbol. After that we obtain considerably shorter
derivative expressions. The following section is the main part of this thesis and we derive
the derives of the numerical solution using a general notion for the fast scale integrator.
Despite the shortening with the simplified notation, we obtain lengthy coefficients and
quite unstructured combinations. Hence there is no "perfect" way for simplification.

The last three subsections the extract the order conditions from the derivatives and
specialize them for three fast scale integrators. We will particularly show how the splitting
influences the elementary differential coefficients and the effect on the number of order
conditions.

ii.3.1 Extended notation and common symbols

Before we start with the order conditions, we have to introduce several symbols. Please
note that the ODE (I.2.1) is vector valued with d components. This implies that already
the first derivative of the right hand side F is a matrix, hence tensor valued. Thus we
use the symbols Id and 1d for the identity matrix and the vector of ones in dimension d
respectively. Without subscript we assume the dimension s + 1. We use the notations
fy ⟨F⟩ and fyy ⟨F, F⟩ for the first and second derivatives. In fact the notation is a short
hand for the vector of sums

[fy ⟨F⟩]i =
d∑︂

k=1

∂kfi Fk

and

[fyy ⟨F, F⟩]i =
∑︂
k,l

∂2
k,lfi FkFl .

In general the notation⎡⎣fy, . . . ,y⏞ ⏟⏟ ⏞
k

⟨︁
A1, . . . ,Ak

⟩︁⎤⎦
i

=
∑︂
|α|=k

∂|α|fi
∂yα1∂yα2 . . .∂yαk

A1
α1
A2

α2
. . .Ak

αk

ii.3 order conditions 36

stand for the sum of kth derivatives of the ith f component applied on the vectors
A1, . . . ,Ak. So the vector notation of the component wise MFS method (2.1) is of tensor
structure and the corresponding product between the vector spaces Rs+1 and Rd is the
Kronecker product ⊗, see [46] for an overview on the properties and rules.

We stack the block wise application of the right-hand sides and the fast scale evalations
with the operator ·̂. For example the stacked slow evaluations at the stacked vector Y are

Ŷ ∈ R(s+1)d F̂(Ŷ) :=

s+1∑︂
i=1

ei ⊗ F(Yn,i) (3.1a)

where Yn,i ∈ Rd is a sub vector of Ŷ, i.e.

Ŷ =

s+1∑︂
i=1

ei ⊗ Yn,i . (3.1b)

One can also view Y as a stacked vector of Yi. The order conditions require the derivative
of the numerical solution and therefore the derivatives of the fast and slow tendencies. The
fast scale methods may exploit the splitting, which in turn leads to different derivatives
for each component. With the notation of the stacked evaluation, the notation of the
derivative fits smoothly in the block structure, i.e.

ĝy
⟨︁
F̂
⟩︁
=

s+1∑︂
i=1

ei ⊗ gy
⟨︁
F(Ŷn,i)

⟩︁
and the partial derivative of the stacked fast scale integrators at the steps l̂ are

∂1ĝl̂
⟨︁
F̂
⟩︁
=

s+1∑︂
i=1

ei ⊗ ∂1g
X
l̂ii

⟨F⟩ .

Note that we dropped the superscript X for the fast scale integrator type. That will be
reintroduced later, when we collect the derivatives of the fast functions g. We collect
the steps l for every stage on the main diagonal of the diagonal matrix l̂. In analogy we
define the diagonal matrix of the step ratios L̂ and the matrix of all steps

L = LL̂ (3.2a)

ii.3 order conditions 37

such that the fast scale integrator does Lii = LL̂ii steps in stage i. Let us define the
sum of several block vectors Bl, where l is a diagonal matrix. We can write and every Bl

in the form

Bl =

s+1∑︂
i=1

ei ⊗ Blii . (3.3a)

with sub vectors Blii . Then the sum of all Bl represents the stage wise sum of the block
vectors Bl, i.e.

l̂∑︂
l=I

Bl :=

s+1∑︂
i=1

l̂ii∑︂
l=1

ei ⊗ Blii .

The block vectors Ŷ and Ẑl̂ stack all (slow) stage values and fast values respectively, i.e.

Ŷ :=

s+1∑︂
i=1

ei ⊗ Yn,i (3.3b)

Ẑl̂ :=

s+1∑︂
i=1

ei ⊗ Zn,i,l̂ii . (3.3c)

Please note the dropped subsript n for the vectors. Every stage vector Y and Zl̂ remains
to exist only on one macro time interval [tn, tn + h].

ii.3.2 Derivatives of the numerical solution

With these changes in mind we obtain the vectorized MFS method

Ẑ0 = 1 ⊗ yn + α⊗ Id · (Y − 1 ⊗ yn) (3.4a)

Ẑl̂ = Zl̂−I + [L−1γ]⊗ Id · (Y − 1 ⊗ yn)

+h[L−1β]⊗ Id · f̂(Y) + h[L−1D]⊗ Id · ĝl̂(Ẑl̂−I, Ẑl̂)
(3.4b)

Y = ẐL (3.4c)

ii.3 order conditions 38

with vectorized auxiliary initial value Z0, the vectorized fast steps Zl̂ and the slow stages
Y. Now we sum up every all fast steps (3.4b), including the initial value (3.4a), up to l̂

Ẑl̂ = [I− α− l̂L−1γ]⊗ Id · 1 ⊗ yn + [α+ l̂L−1γ]⊗ Id · Y

+h[̂lL−1β]⊗ Id · f̂(Y) + h[L−1D]⊗ Id ·
l̂∑︂

j=I

ĝj(Ẑj−I, Ẑj)
(3.5)

and differentiate at h = 0. At this point we recognize the value in choosing diagonal
matrices as subscripts. With this particular, and unusual, choice we can reuse the same
symbol without any transition between vectors and matrices. The stage values coincide
with yn at h = 0, so we neglect the argument yn in the remaining section. Using the
Leibniz’s rule we get the three derivatives

Ẑ
(1)
l̂

=[α+ l̂L−1γ]⊗ Id · Y(1) + [̂lL−1β]⊗ Id · 1 ⊗ f+ [DL−1]⊗ Id ·
l̂∑︂

j=I

ĝj (3.6a)

=[α+ l̂L−1γ]⊗ Id · Y(1) + [̂lL−1]⊗ Id · ([β1]⊗ f+ [D1]⊗ g) (3.6b)

Ẑ
(2)
l̂

=[α+ l̂L−1γ]⊗ Id · Y(2) + 2[̂lL−1β]⊗ Id · f(Y)(1)

+ 2[DL−1]⊗ Id ·
l̂∑︂

j=I

ĝj(Zj−I,Zj)
(1)

(3.6c)

Ẑ
(3)
l̂

=[α+ l̂L−1γ]⊗ Id · Y(3) + 3[̂lL−1β]⊗ Id · f(Y)(2)

+ 3[DL−1]⊗ Id ·
l̂∑︂

j=I

ĝj(Ẑj−I, Ẑj)
(2) (3.6d)

of the fast stage vectors Zl̂ at every step l̂. We already summed up all fast steps in
equation (3.6a) and collected the result in (3.6b).

Now we analyze the derivatives of the fast steps Zl̂ at the last step l̂ = L. After that we
match the derivatives of the numerical solution with the derivatives of the exact solution.
A short view and insertion of l̂ = L in the equations (3.6) suggest a repeated occurrence
of I− α− γ, so we introduce the matrix

R−1 =I− α− γ . (3.7)

The remaining section consists of several derivatives applied to vectors or further derivatives
applied to vectors and so on. To keep an overview it helps to order the terms in a similar

ii.3 order conditions 39

way. Hence a rule of thumb will be the ordering from slow to fast in a successive way. For
example we prefer f+g over g+f and fy ⟨gy ⟨F⟩⟩+gy ⟨fy ⟨F⟩⟩ over gy ⟨fy ⟨F⟩⟩+fy ⟨gy ⟨F⟩⟩.

First derivative of the numerical solution and conditions for order one

Let us start with the first derivative (3.6b) at l̂ = L

Y(1) = Ẑ
(1)
L = [Rβ1]⊗ f+ [RD1]⊗ g (3.8a)

and define the matrix

Â :=Rβ . (3.8b)

The matrix Â relates the underlying method, i.e. g = 0, to the Butcher tableau of the
classical one step methods. The first s rows represent the Butcher tableau, whereas the
last row corresponds to the update coefficients b, i.e.

b := eTs+1Â .

As usual we define the (underlying) nodes

c =Â1

as row sums of the matrix Â. The classic order condition for order one is the vector
product

b · 1 = 1 . (3.9a)

Order one requires Y(1) = c ⊗ F and in turn equation (3.8a) implies the so called
compatibility condition

β1 =D1 (3.9b)

which guarantees that the last fast step Zn,i,Lii
must coincide with the corresponding

slow node ci. Please note that the first order conditions are independent of the step size
ratio. So we insert the derivative Y(1) in the first derivative of the l̂th fast step, i.e.

Ẑ
(1)
l̂

=
[︁
c̃+ l̂L−1(c− c̃)

]︁
⊗ F (3.10)

ii.3 order conditions 40

and define the short hand

c̃ = αc . (3.11)

We see a very simple first derivative of all fast scale steps with respect to the macro
step size. We will use equation (3.10) several times for the higher derivatives. Also note
the usage of the matrix valued subscript l̂ in the formula again, which emphasizes the
usefulness of the unusual notation.

Second derivative of the numerical solution

Let us proceed to the second derivative (3.6c). The first two summands are independent
of the fast terms, whereas the third one sums up the first derivatives of the unified fast
scale function. We expand the first derivative in the two partial derivatives

ĝj(Ẑj−I, Ẑj)
(1)

= ∂1ĝj

⟨︂
Ẑ
(1)
j−I

⟩︂
+ ∂2ĝj

⟨︂
Ẑ
(1)
j

⟩︂
(3.12a)

then insert (3.10) and use equation (2.2b)

= c̃⊗ gy ⟨F⟩+ [(j− I)L−1(c− c̃)]⊗ gy ⟨F⟩

+[L−1(c− c̃)]⊗ 1d · ∂2ĝj
⟨︁
F̂
⟩︁

.
(3.12b)

The summands consist of three terms, namely a step independent, a step dependent
coefficient of a step independent derivative and a step independent coefficient with the
step dependent derivative ∂2ĝj

⟨︁
F̂
⟩︁
.

We sum up the equation (3.12b) and left multiply by DL−1, i.e.

[DL−1]⊗ Id ·
l̂∑︂

j=I

ĝj(Ẑj−I, Ẑj)
(1)

= Q1(̂l)⊗ gy ⟨F⟩

+
[︁
DL−2(c− c̃)

]︁
⊗ 1d ·

l̂∑︂
j=I

∂2ĝj
⟨︁
F̂
⟩︁ (3.13a)

and define the coefficient matrix

Q1(̂l) = l̂DL−1
(︃
c̃+

1
2
(̂l− I)L−1(c− c̃)

)︃
(3.13b)

ii.3 order conditions 41

and its sum

QS
1 = L−1

L∑︂
l̂=I

Q1(̂l− I) (3.13c)

=
1
6
D
(︁
c+ 2c̃− 3L−1c+ 2L−2(c− c̃)

)︁
(3.13d)

for later use. Please note the splitting in a step dependent coefficient Q1(̂l) of a step
independent derivative and a step independent coefficient of a step dependent sum of the
derivative ∂2ĝj

⟨︁
F̂
⟩︁
.

Together with the relation (3.7) and (3.13a) we simplify the second derivative, i.e.

Y(2) = Ẑ
(2)
L = 2[Âc]⊗ fy ⟨F⟩+ 2 [RQ1(L)]⊗ gy ⟨F⟩+ 2κ[RL−1D(c− c̃)]⊗ gy ⟨F⟩ (3.14)

and introduce the shorthand gy ⟨F⟩ for the sum of partial derivatives in the last term.
The derivative ∂2ĝj ⟨F⟩ relates the fast scale integrator to the fast tendencies. Although
the derivative depends in an nearly arbitrary way on the integrator, the sum should obey
a linear relation as

L∑︂
j=I

∂2ĝj
⟨︁
F̂
⟩︁
= κ [L1]⊗ gy ⟨F⟩ (3.15a)

with a scalar coefficient κ. The symbol gy ⟨F⟩ represents the actual (summed) derivatives
and is not necessarily gy ⟨F⟩ nor ∂2ĝ1 ⟨F⟩. We will come back to the details, when we
discuss the fast scale integrators again. Later we will make use of some additional
polynomials. Hence we introduce the short hands

L∑︂
l̂=I

l̂−I∑︂
j=I

∂2ĝj
⟨︁
F̂
⟩︁
=: ĝ1s

y

⟨︁
F̂
⟩︁

(3.15b)

L∑︂
l̂=I

[(̂l− I)1]⊗ 1d · ∂2ĝl̂
⟨︁
F̂
⟩︁
=: ĝ1

y

⟨︁
F̂
⟩︁

(3.15c)

L∑︂
l̂=I

∂2ĝl̂
⟨︁
∂2ĝl̂

⟨︁
F̂
⟩︁⟩︁

=: ĝ0
y

⟨︁
F̂
⟩︁

(3.15d)

Let us inspect the equation (3.14) in more detail. Obviously it is the sum of three
elementary differentials. The first two derivatives are always part of the analytic solu-
tion in exactly this way. The third one depends on the fast scale integrator. Due to

ii.3 order conditions 42

the partitioning strategies, the partial derivatives with respect to the component mix
differently.

For a first order fast scale integrator we have to sum up the corresponding coefficients
and derivatives. Furthermore these coefficients occur in the third derivative. But for a
second order method we have a different scenario. Then the second derivative Z(2)

L must
match the second derivative of the exact solution of the (auxiliary) ODE. In this case, the
additional derivative ∂2ĝj

⟨︁
F̂
⟩︁

and the step dependency must vanish. Consequently the
number of third order conditions gets much smaller. Remind the theorem 2. It is exactly
the same consequence, but this time in terms of the fast functions instead of abstract
error coefficients. Now we evaluate the matrix polynomial Q1(L) in (3.14) and split the
coefficients for repeated later use, i.e.

Y(2) = 2[Âc]⊗ fy ⟨F⟩+
[︃
QI

2 −
1
L
Q2

]︃
⊗ gy ⟨F⟩+ 2κ

L
Q2 ⊗ gy ⟨F⟩ (3.16a)

Q2 = RDL̂−1(c− c̃) (3.16b)

QI
2 = RD(c+ c̃) . (3.16c)

Remind that the first derivative of the numerical solution, and more importantly the first
derivative of the fast steps Ẑ, are independent in the fast scale function. This time we are
in different situation, where we split the derivative in three parts. Both first summands
depend only on the elementary differentials of the exact solutions and the third summand
is the only one which depends on the derivatives of the fast scale function.

Third derivative of the numerical solution

The third derivative of the numerical solution

Y(3) = Ẑ
(3)
L =3Â⊗ Id · f(Y)(2) + 3[RDL−1]⊗ Id ·

L∑︂
j=I

ĝj(Ẑj−I, Ẑj)
(2) (3.17)

exhibits a similiar structure as the second derivative. First we have look at the derivatives
of f in (3.17). We easily get

Â⊗ Id · f(Y)(2) = [Âc2]⊗ fyy ⟨F, F⟩+ Â⊗ Id · f̂y
⟨︂
Y(2)

⟩︂
(3.18a)

ii.3 order conditions 43

and use equation (3.14) to split the derivative f(Y)(2)

= [Âc2]⊗ fyy ⟨F, F⟩+ 2[ÂÂc]⊗ fy ⟨fy ⟨F⟩⟩

+[ÂQI
2]⊗ fy ⟨gy ⟨F⟩⟩− F

(3.18b)

in four terms. These four summands belong to three groups. The first group consists of
derivatives containing only the slow function f and belong to the underlying method, the
second group contains slow and fast terms and has only step independent coefficients. In
contrast the last group

F =
1
L
[ÂQ2]⊗ fy ⟨gy ⟨F⟩⟩− 2κ

L
[ÂQ2]⊗ fy ⟨gy ⟨F⟩⟩ (3.18c)

contains the slow derivatives applied to fast terms with step dependent coefficients. If the
fast scale method is of order two, then the step dependent terms will vanish in equation
(3.14) and therefore, we would have F = 0. Otherwise, the expression F depends on the
number of steps L and unified fast function ĝj.

Now we proceed to the sum of the fast terms ĝl̂ in (3.17). This time it looks useful to
split the sum of second derivatives

L−1 ⊗ Id ·
L∑︂

l̂=I

ĝl̂(Ẑl̂−I, Ẑl̂)
(2)

= Gy
1 + L−1 ⊗ Id ·Gl̂

1 +G2 (3.19a)

in the three parts, namely

Gy
1 =L−1 ⊗ Id ·

L∑︂
l̂=I

ĝy

⟨︂
Ẑ
(2)
l̂−I

⟩︂
(3.19b)

Gl̂
1 =

L∑︂
l̂=I

∂2ĝl̂

⟨︂
Ẑ
(2)
l̂

− Ẑ
(2)
l̂−I

⟩︂
(3.19c)

G2 =L−1 ⊗ Id ·
L∑︂

l̂=I

∂2
11ĝl̂

⟨︂
Ẑ
(1)
l̂−I

, Ẑ(1)
l̂−I

⟩︂
+ ∂2

22ĝl̂

⟨︂
Ẑ
(1)
l̂

, Ẑ(1)
l̂

⟩︂
+ 2∂2

12ĝl̂

⟨︂
Ẑ
(1)
l̂−I

, Ẑ(1)
l̂

⟩︂
.

(3.19d)

The first two parts Gy
1 and Gl̂

1 represent the sums of first derivative of ĝj, hence the
subscript 1. The super scripts y and l̂ indicate the derivative types gy and ∂2ĝl̂. Note
that we have again a splitting in step independent derivative ĝy ⟨. . . ⟩ applied to the
step dependent argument Z(2)

l̂−I
and a step dependent fast function ĝl̂ applied to step

ii.3 order conditions 44

dependent second derivatives. Last but not least the last symbol G2 sums up all second
derivatives applied to first derivatives.

Now we expand the three expressions (3.19b), (3.19c) (3.19d) successively and collect
the coefficient of every derivative.

second derivatives of the fast steps Due to linearity it suffices to sum up
Z
(2)
l̂

L∑︂
l̂=I

Ẑ
(2)
l̂−I

=

[︃
Lα+

1
2
(L − I)γ

]︃
⊗ Id · Y(2) + [(L − I)βc]⊗ fy ⟨F⟩

+2[DL−1]⊗ Id ·
L∑︂

l̂=I

l̂−I∑︂
j=I

ĝj(Ẑj−I, Ẑj)
(1)

(3.20a)

and use equation (3.13a) to expand the last sum

= [LQ3]⊗ Id · Y(2) + [(L − I)βc]⊗ fy ⟨F⟩+ 2
L∑︂

l̂=I

Q1(̂l− I)⊗ gy ⟨F⟩

+2
[︁
DL−2(c− c̃)

]︁
⊗ 1d · ĝ1s

y

⟨︁
F̂
⟩︁

.

(3.20b)

Again we ordered the summands, such that the fast functions come after the slow ones.
After inserting Y(2) and collecting by derivatives

= [LQfy
3]⊗ fy ⟨F⟩+

[︃
L

(︃
Q3

(︃
QI

2 −
1
L
Q2

)︃
+ 2QS

1

)︃]︃
⊗ gy ⟨F⟩

+
2κ
L

[LQ3Q2]⊗ gy ⟨F⟩+ 2[DL−2(c− c̃)]⊗ 1d · ĝ1s
y

⟨︁
F̂
⟩︁ (3.20c)

we introduce the coefficients

Q3 = α+
1
2
(I− L−1)γ (3.20d)

Q
fy
3 =

(︁
I+ α+ L−1(α− I)

)︁
Âc (3.20e)

ii.3 order conditions 45

for the repeated use. We obtain Gy
1 by applying ĝy ⟨. . . ⟩ and left multiplying with L−1,

i.e.

Gy
1 = Qfy

3 ⊗ gy ⟨fy ⟨F⟩⟩+
[︃
Q3

(︃
QI

2 −
1
L
Q2

)︃
+ 2QS

1

]︃
⊗ gy ⟨gy ⟨F⟩⟩

+
2κ
L

[Q3Q2]⊗ gy ⟨gy ⟨F⟩⟩+ 2[DL−3(c− c̃)]⊗ 1d · ĝy
⟨︁
ĝ1s
y

⟨︁
F̂
⟩︁⟩︁

.
(3.21)

Again we ordered the derivatives from slow to fast and moved the fast scale integrator
dependent terms to the end.

The second sum Gl̂
1 represents the application of the fast scale integrator on every fast

step. Strictly speaking, we apply the first derivative of the fast scale integrator on the
difference of two fast steps. After using equation (3.12b) we point out that the difference

Ẑ
(2)
l̂

− Ẑ
(2)
l̂−I

= [L−1γ]⊗ Id · Y(2) + 2[L−1βc]⊗ fy ⟨F⟩+ 2[DL−1c̃]⊗ gy ⟨F⟩

+2
[︁
(̂l− I)L−1D(c− c̃)

]︁
⊗ gy ⟨F⟩+ 2[DL−2(c− c̃)]⊗ 1d · ∂2ĝl̂

⟨︁
F̂
⟩︁

(3.22a)

has two step dependent terms, once the coefficient and then the derivative. Due to the
step dependency we have to apply the step dependent derivative ∂2ĝl̂ ⟨. . . ⟩ first and sum
up afterwards to obtain the intermediate result

Gl̂
1 = κ[γ]⊗ Id · ĝy

⟨︂
Y(2)

⟩︂
+ 2κ[βc]⊗ gy ⟨fy ⟨F⟩⟩+ 2κ[Dc̃]⊗ gy ⟨gy ⟨F⟩⟩

+2[DL−2(c− c̃)]⊗ 1d ·
(︁
ĝ1
y

⟨︁
ĝy
⟨︁
F̂
⟩︁⟩︁

− ĝ0
y

⟨︁
F̂
⟩︁)︁

.
(3.22b)

After inserting the second derivative Y(2) and collecting by derivatives, we finish with the
sum

= 2κ[(I− α)Âc]⊗ gy ⟨fy ⟨F⟩⟩+ κ
[︃(︃
γ

(︃
QI

2 −
1
L
Q2

)︃
+ 2Dc̃

)︃]︃
⊗ gy ⟨gy ⟨F⟩⟩

+
2κ2

L
[γQ2]⊗ gy ⟨gy ⟨F⟩⟩+ 2[DL−2(c− c̃)]⊗ 1d ·

(︁
ĝ1
y

⟨︁
ĝy
⟨︁
F̂
⟩︁⟩︁

− ĝ0
y

⟨︁
F̂
⟩︁)︁

.
(3.22c)

All derivatives depend on the fast scale integrator. We order them in such a way, that the
first three derivatives and their coefficients are independent of the fast scale step, whereas
the last two depend on the steps.

second derivatives of the fast scale function ĝl̂ Last, but not least, we
analyze the second derivative expression G2. We already know the expression for Zj

(1)

ii.3 order conditions 46

and it does not depend on the fast scale evaluations. In analogy to the first derivative
gy ⟨F⟩ we use the relation (2.2c) and rewrite G2

G2 = Q4 ⊗ gyy ⟨F, F⟩+
L∑︂
l̂

Q5(̂l) · ∂2
22ĝl̂

⟨︁
F̂, F̂
⟩︁
+ 2

L∑︂
l̂

Q6(̂l) · ∂2
12ĝl̂

⟨︁
F̂, F̂
⟩︁

(3.23a)

as a linear combination of the exact derivative gyy ⟨F, F⟩ and the derivatives of the fast
scale evaluations with the coefficents

Q4 =
1
3
(c2 + cc̃+ c̃2) −

1
2
L−1(c2 − c̃2) +

1
6
L−2(c− c̃)2 (3.23b)

Q5(̂l) = 2L−2(c− c̃)c̃+ (2l̂− I)L−3(c− c̃)2 ⊗ 1d (3.23c)

Q6(̂l) = L−2(c− c̃)c̃+ (̂l− I)L−3(c− c̃)2 ⊗ 1d . (3.23d)

Again we moved the step independent coefficent, namely Q4 to the front. The two
remaining derivatives belong to fast scale integrator dependend derivatives with step
dependent coefficients.

ii.3.3 Common order conditions of MFS methods

At this time we have the second derivative (3.16a) at hand. The third derivative is a
linear combination of (3.18b), (3.18c) and (3.19). Therefore we can extract the classical
and MIS conditions by inspecting the coefficients of the derivatives.

The second derivative, given by equation (3.14), reveals the classical condition

b · c =1
2

(3.24)

together with the MIS condition

b̃ · (c+ c̃) =1 (3.25a)

b̃ :=eTs+1RD (3.25b)

ii.3 order conditions 47

for order two. From equation (3.18b) we easily read the remaining classical third order
conditions

b · c2 =
1
3

(3.26a)

b ·Ac =1
6

(3.26b)

and the MIS condition

b ·QI
2 =

1
3

. (3.26c)

We obtain the remaining MIS conditions from the sum of the fast terms in equation
(3.19). Keep in mind, that the coefficients from (3.19b), (3.19c) and (3.19d) have to
be left multiplied by 3b̃ due to (3.17). The MIS conditions are independent of the fast
scale solver. Hence we can neglect all derivatives containing the fast function ĝl̂ and
concentrate on gy ⟨fy ⟨F⟩⟩ and gy ⟨gy ⟨F⟩⟩. We collect their coefficients by powers of L
and inspect only the L free parts (i.e. the zeroth power). The coefficient of the derivative
gy ⟨fy ⟨F⟩⟩ is already ordered in this way. So we extract the MIS condition

b̃ · (I+ α)Âc = 1
3

. (3.27a)

We expand the coefficient of gy ⟨gy ⟨F⟩⟩

Q3

(︃
QI

2 −
1
L
Q2

)︃
+ 2QS

1 = Q0
7 +

1
L
Q1

7 +
1
L2Q

2
7 (3.27b)

in three parts according to the powers of L with the short hands

Q0
7 :=

(︃
α+

1
2
γ

)︃
QI

2 +
1
3
D(c+ 2c̃) (3.27c)

Q1
7 := − L̂−1

(︃
1
2
γQI

2 +Dc

)︃
−

(︃
α+

1
2
γ

)︃
Q2 (3.27d)

Q2
7 :=

2
3
L̂−2D(c− c̃) +

1
2
L̂−1γQ2 (3.27e)

and extract all L independent coefficients to get the MIS condition.

b̃ ·
(︃(︃
α+

1
2
γ

)︃
QI

2 +
1
3
D(c+ 2c̃)

)︃
=

1
3

. (3.27f)

ii.3 order conditions 48

1 b · 1 = 1 (3.9a) F β1 = D1 (3.9b) F

2 b · c = 1
2 (3.24) fy ⟨F⟩ b̃ · (c+ c̃) = 1 (3.25a) gy ⟨F⟩

3 b ·Ac = 1
6 (3.26b) fy ⟨fy ⟨F⟩⟩ b · RD(c+ c̃) = 1

3 (3.26c) fy ⟨gy ⟨F⟩⟩
3 b̃ · (I+ α)Âc = 1

3 (3.27a) gy ⟨fy ⟨F⟩⟩
3 b̃ · ((α+ 1

2γ)Q
I
2 +

1
3D(c+ 2c̃)) = 1

3 (3.27f) gy ⟨gy ⟨F⟩⟩
3 b · c2 = 1

3 (3.26a) fyy ⟨F, F⟩ b̃ · (c2 + cc̃+ c̃2) = 1 (3.27g) gyy ⟨F, F⟩
Table 1: Combined classical and MIS conditions up to order three.

The same procedure applied to the the second derivatives of g, i.e. equation (3.23a),
reveals the tenth MIS condition

b̃ ·
(︁
c2 + cc̃+ c̃2

)︁
= 1 . (3.27g)

At this point, we collected all classic and MIS order conditions up to order three in the
table 1. Furthermore, we have no additional MFS condition for order one, as predicted by
theorem 2. For order two, we get at most one additional MFS condition from equation
(3.18c). We obtain the MFS conditions for order three by inspecting the equations (3.21),
(3.22c) and (3.23a). For a given unified fast scale function gXj we obtain the MFS order
conditions for order two and three with the procedure:

1. Simplify the expressions (3.15) and insert into (3.18c), (3.21), (3.22c) and (3.23a).
After simplification, we obtain the coefficients for every derivative.

2. Inspect the coefficients for every derivative. We extract the step factors using
L = LL̂ and collect the terms by powers of L. To obtain an order independent of
the number of steps the coefficients of every power of L must vanish. Keep in mind
that the coefficients with outer most derivative of f or g have to be left multiplied
by b or b̃ respectively.

In the next subsections we insert the unified fast scale functions from the previous section
and derive their corresponding MFS order conditions.

ii.3.4 Explicit Euler as fast scale integrator

The function gEE
j does not depend on the step j, and is independent of the second

argument. Hence all expressions ĝ1
y

⟨︁
F̂
⟩︁
, ĝ0

y

⟨︁
F̂
⟩︁

, gy ⟨F⟩ and κ vanish. The same applies
to the second derivatives ∂2

22ĝj ⟨F, F⟩ and ∂2
12ĝj ⟨F, F⟩.

ii.3 order conditions 49

We expand the definition of Q2 and QI
2 from equation (3.16a) to obtain the second

derivative

Y(2) = 2[Âc]⊗ fy ⟨F⟩+ [RD((c+ c̃) − L−1(c− c̃))]⊗ gy ⟨F⟩ (3.28)

together with the MFS condition for order two. According to the procedure we continue
with the the equation (3.18c) for the slow-fast term

F =
1
L
[ÂQ2]⊗ fy ⟨gy ⟨F⟩⟩ (3.29a)

and the three fast terms (3.21), (3.22c) and (3.23a)

Gy
1 = Qfy

3 ⊗ gy ⟨fy ⟨F⟩⟩+

[︄
2∑︂

k=0

1
Lk
Qk

7

]︄
⊗ gy ⟨gy ⟨F⟩⟩ (3.29b)

Gl̂
1 = 0 (3.29c)

G2 = Q4 ⊗ gyy ⟨F, F⟩ (3.29d)

The four expressions in (3.29) contain four different derivatives. After summing up Gy
1

and Gl̂
1 we obtain the conditions

0 = b̃ · L̂−1(c− c̃) gy ⟨F⟩ (3.30a)

0 = b · RDL̂(c− c̃) fy ⟨gy ⟨F⟩⟩ (3.30b)

0 = b̃ · L̂−1(I− α)Âc gy ⟨fy ⟨F⟩⟩ (3.30c)

0 = b̃ ·
(︁
L̂−1γQI

2 + (2α+ γ)Q2 + L̂
−1Dc

)︁
gy ⟨gy ⟨F⟩⟩ (3.30d)

0 = b̃ ·
(︃

2
3
L̂−2D(c− c̃) +

1
2
L̂−1γQ2

)︃
gy ⟨gy ⟨F⟩⟩ (3.30e)

0 = b̃ · L̂−1 (︁c2 − c̃2)︁ gyy ⟨F, F⟩ (3.30f)

0 = b̃ · L̂−2(c− c̃)2 gyy ⟨F, F⟩ (3.30g)

These are all MFS conditions for order three with explicit Euler. We present the conditions
ordered by the derivatives and powers of L in the Table 2. To summarize, together with
the classic, the MIS and the seven MFS conditions, we have to fulfill 17 conditions. This
requires at least four stages.

ii.3 order conditions 50

zero −pow(L) derivative
b̃ · L̂−1(c− c̃) 1 gy ⟨F⟩
b · RDL̂−1(c− c̃) 1 fy ⟨gy ⟨F⟩⟩
b̃ · L̂−1 (I− α) Âc 1 gy ⟨fy ⟨F⟩⟩
b̃ ·
(︁1

2

(︁
L̂−1γRD(c+ c̃) + (2α+ γ)RDL̂−1(c− c̃)

)︁
+ L̂−1Dc

)︁
1 gy ⟨gy ⟨F⟩⟩

b̃ ·
(︁1

2 L̂
−1γRDL̂−1(c− c̃) + 2

3 L̂
−2D(c− c̃)

)︁
2 gy ⟨gy ⟨F⟩⟩

b̃ · L̂−1 (︁c̃2 − c2)︁ 1 gyy ⟨F, F⟩
b̃ · L̂−2 (c− c̃)2 2 gyy ⟨F, F⟩

Table 2: The MFS conditions for order two and order three with explicit Euler. The first column
contains the zero expression, the second the negative power of L and the last column
the corresponding derivative.

For completeness we plug in all results into the general formula for the third derivative
(3.17)

Y(3) = 3[Âc2]⊗ fyy ⟨F, F⟩+ 6[ÂÂc]⊗ fy ⟨fy ⟨F⟩⟩

+3[ÂRD(c+ c̃− L−1(c− c̃))]⊗ fy ⟨gy ⟨F⟩⟩

+3[RD(I+ α− L−1(I− α))Âc]⊗ gy ⟨fy ⟨F⟩⟩

+3
[︃
RD

(︃
α+

1
2
(I− L−1)γ

)︃
RD(c+ c̃− L−1(c− c̃))

+
1
3
RD2 (︁c+ 2c̃− 3L−1c+ 2L−2(c− c̃)

)︁]︃
⊗ gy ⟨gy ⟨F⟩⟩

+

[︃
RD

(︃
c2 + cc̃+ c̃2 +

3
2
L−1(c̃2 − c2) +

1
2
L−2(c− c̃)2

)︃]︃
⊗ gyy ⟨F, F⟩

(3.31)

The excessive length reflects the complicated interaction between the fast terms. If one
knows the numbers of fast steps and the step ratios, one can extract the order conditions
for the complete method. These conditions then correspond to the GARK methods.

According to theorem 3 the implicit Euler method has κ = 1 and gy ⟨F⟩ = gy ⟨F⟩. Then
one sees easily the sign change of the MFS part in the second derivative. Furthermore we
see the higher order terms from lemma 2 especially in the coefficients of the derivative
gy ⟨gy ⟨F⟩⟩.

ii.3.5 Forward-backward Euler as fast scale integrator

We have introduced the forward-backward Euler, also known as split-explicit Euler,
function gFB

j in 2.3b. The forward-backward Euler method computes the component p
explicit, and uses the result in the update of the second component. Hence the partial

ii.3 order conditions 51

zero −pow(L) derivative
b̃ · L̂−1(c− c̃) 1 gy ⟨F⟩
b · RDL̂−1(c− c̃) 1 fy ⟨gy ⟨F⟩⟩, fy

⟨︁
∂2g

FB
1 ⟨F⟩

⟩︁
b̃ · L̂−1 (I− α) Âc 1 gy ⟨fy ⟨F⟩⟩, ∂2g

FB
1 ⟨fy ⟨F⟩⟩

b̃ ·
[︃(︃
α+

1
2
γ

)︃
RDL̂−1(c− c̃)

+
1
2
L̂−1γRD(c+ c̃) + L̂−1Dc

]︃ 1 gy ⟨gy ⟨F⟩⟩

b̃ ·
[︁1

2 L̂
−1γRDL̂−1(c− c̃) + 2

3 L̂
−2D(c− c̃)

]︁
2 gy ⟨gy ⟨F⟩⟩

b̃ ·
(︁
L̂−1(I− α)RD(c+ c̃)

)︁
1 ∂2g

FB
1 ⟨gy ⟨F⟩⟩

b̃ ·
(︁
L̂−1γRDL̂−1(c− c̃) + L̂−2D(c− c̃)

)︁
2 ∂2g

FB
1 ⟨gy ⟨F⟩⟩,

gy
⟨︁
∂2g

FB
1 ⟨F⟩

⟩︁
,

∂2g
FB
1
⟨︁
∂2g

FB
1 ⟨F⟩

⟩︁
b̃ ·
(︁
(2α+ γ)RDL̂−1(c− c̃) + L̂−1D(c− c̃)

)︁
1 gy

⟨︁
∂2g

FB
1 ⟨F⟩

⟩︁
b̃ · L̂−1 (︁c̃2 − c2)︁ 1 gpp ⟨F, F⟩, gqq ⟨F, F⟩,
b̃ · L̂−2 (c− c̃)2 2 gpp ⟨F, F⟩, gpq ⟨F, F⟩,

gqq ⟨F, F⟩
Table 3: The conditions for order three with forward-backward Euler. The first column contains

the zero expression, the second the negative power of L and the last column the
corresponding derivative.

derivative ∂2g
FB
1 ⟨F⟩ does not vanish now and differs from the derivative gy ⟨F⟩. Again

gFB
j is independent of j so we select the first step.

gy ⟨F⟩ = ∂2g
FB
1 ⟨F⟩ (3.32a)

ĝ1
y

⟨︁
F̂
⟩︁
= ĝ1s

y

⟨︁
F̂
⟩︁
=

1
2
[L(L − I)1]⊗ ∂2g

FB
1 ⟨F⟩ (3.32b)

ĝ0
y

⟨︁
F̂
⟩︁
= [L1]⊗ ∂2g

FB
1
⟨︁
∂2g

FB
1 ⟨F⟩

⟩︁
(3.32c)

and κ = 1. This time the fast scale integrator depends on the old and new step. The
second derivatives

∂2
22ĝj ⟨F, F⟩ =1 ⊗ ∂2

22g1 ⟨F, F⟩ (3.32d)

∂2
12ĝj ⟨F, F⟩ =1 ⊗ ∂2

12g1 ⟨F, F⟩ (3.32e)

ii.3 order conditions 52

are independent of the step, but do not vanish anymore. We obtain the second derivative

Y(2) =2[Âc]⊗ fy ⟨F⟩+
[︃
QI

2 −
1
L
Q2

]︃
⊗ gy ⟨F⟩+ 2

L
Q2 ⊗ ∂2g

FB
1 ⟨F⟩ , (3.33)

which differs from the explicit Euler only in the additional derivative ∂2ĝ1 ⟨F⟩.
In particular the four expressions

F =
1
L
[ÂQ2]⊗ fy ⟨gy ⟨F⟩⟩− 2

L
[ÂQ2]⊗ fy

⟨︁
∂2g

FB
1 ⟨F⟩

⟩︁
(3.34a)

for the slow term and the two fast terms

Gy
1 =Qfy

3 ⊗ gy ⟨fy ⟨F⟩⟩+

[︄
2∑︂

k=0

1
Lk
Qk

7

]︄
⊗ gy ⟨gy ⟨F⟩⟩

+

[︃
L−1(L−1 − I)D(c− c̃) +

2
L
Q3Q2

]︃
⊗ gy

⟨︁
∂2g

FB
1 ⟨F⟩

⟩︁ (3.34b)

Gl̂
1 = 2

[︁
(I− α)Âc

]︁
⊗ ∂2g

X
1 ⟨fy ⟨F⟩⟩+ 2

[︃
1
L
γQ2 −DL−1(c− c̃)

]︃
⊗ ∂2g

FB
1
⟨︁
∂2g

FB
1 ⟨F⟩

⟩︁
+

[︃
γ

(︃
QI

2 −
1
L
Q2

)︃
+D(c+ c̃) − L−1D(c− c̃)

]︃
⊗ ∂2g

FB
1 ⟨gy ⟨F⟩⟩

(3.34c)

G2 = Q4 ⊗ gyy ⟨F, F⟩+QS
5 ⊗ ∂2

22g1 ⟨F, F⟩+QS
6 ⊗ ∂2

12g1 ⟨F, F⟩ (3.34d)

introduce the additional derivatives ∂2g
FB
1 ⟨F⟩ and ∂2

22g1 ⟨F, F⟩ again. The coefficients of
∂2

22g1 ⟨F, F⟩ and ∂2
12g1 ⟨F, F⟩, namely

QS
5 :=

L∑︂
l̂=I

Q5(̂l) = L−1(c2 − c̃2) and (3.35a)

QS
6 := 2

L∑︂
l̂=I

Q6(̂l) = L−1(c2 − c̃2) − L−2(c− c̃)2 (3.35b)

reflect the component partitioning. In particular if gp does not depend on yp and gq does
not depend in yq, the mixed derivative vanishes. But the both terms lead to conditions
which are already present in the derivative gyy ⟨F, F⟩ through the coefficient Q4.

This time, we have two ways to express the order conditions. We ignore the structure
of gFB and the derivatives. Then every coefficient of the additional derivative ∂2g

FB
1 ⟨. . . ⟩

and every coefficient of L must vanish. Hence we obtain the 10 MFS conditions in Table

ii.3 order conditions 53

3. Now we have 20 conditions in total, and therefore, we need at least four stages for
order three.

ii.3.6 Störmer-Verlet as fast scale integrator

The Störmer-Verlet function gSVj (2.3c) depends on the step j in a piece wise constant way.
It is constant for every odd and every even step j. The computation of the expressions
(3.15) leads to

gy ⟨F⟩ = gy ⟨F⟩ (3.36a)

ĝ1s
y

⟨︁
F̂
⟩︁
=

1
4
[︁
L21

]︁
⊗ gy ⟨F⟩− 1

2
[L1]⊗ ∂2g

SV
2 ⟨F⟩ (3.36b)

ĝ1
y

⟨︁
F̂
⟩︁
=

1
4
[︁
L21

]︁
⊗ gy ⟨F⟩− 1

2
[L1]⊗ ∂2g

SV
1 ⟨F⟩ (3.36c)

ĝ0
y

⟨︁
F̂
⟩︁
=

1
2
[L1]⊗

(︁
∂2g

SV
1
⟨︁
∂2g

SV
1 ⟨F⟩

⟩︁
+ ∂2g

SV
2
⟨︁
∂2g

SV
2 ⟨F⟩

⟩︁)︁
(3.36d)

and κ = 1
2 . The details make use of the odd and even splitting and can be found in

the appendix (.1). We see from equation (2.3c) that the mixed second derivatives of
gSVj vanish and the second derivative ∂2

22g1 ⟨F, F⟩ splits according to the component
partitioning. As expected from the theorem 2 the second derivative

Y(2) =2[Âc]⊗ fy ⟨F⟩+ [RD(c+ c̃)]⊗ gy ⟨F⟩ (3.37)

is independent of the fast step ratios and F = 0. We proceed with the procedure for the
third derivatives, i.e. we compute the expressions

Gy
1 = Qfy

3 ⊗ gy ⟨fy ⟨F⟩⟩− [DL−2(c− c̃)]⊗ gy
⟨︁
∂2g

SV
1 ⟨F⟩

⟩︁
+

[︃
Q3Q

I
2 + 2QS

1 +
1
2
L−1D(c− c̃)

]︃
⊗ gy ⟨gy ⟨F⟩⟩

(3.38a)

Gl̂
1 = [(I− α)Âc]⊗ gy ⟨fy ⟨F⟩⟩+ 1

2
[︁
γQI

2 +D(c+ c̃)
]︁
⊗ gy ⟨gy ⟨F⟩⟩

−[DL−1(c− c̃)]⊗
(︁
∂2g

SV
1 ⟨gy ⟨F⟩⟩+ ∂2g

SV
1
⟨︁
∂2g

SV
1 ⟨F⟩

⟩︁
+ ∂2g

SV
2
⟨︁
∂2g

SV
2 ⟨F⟩

⟩︁)︁
(3.38b)

G2 = Q4 ⊗ gyy ⟨F, F⟩+

1
2L∑︂
l̂=I

Q5(2l̂) · 1 ⊗ gpyy ⟨F, F⟩+Q5(2l̂− I) · 1 ⊗ gqyy ⟨F, F⟩ (3.38c)

ii.3 order conditions 54

=

[︃
Q4 +

1
2
L−1(c2 − c̃2)

]︃
⊗ gyy ⟨F, F⟩+ 1

2
[︁
L−2(c− c̃)2

]︁
⊗ (gpyy ⟨F, F⟩− gqyy ⟨F, F⟩)

(3.38d)

=

[︃
1
3
(c2 + cc̃+ c̃2) +

1
6
L−2(c− c̃)2

]︃
⊗ gyy ⟨F, F⟩

+
1
2
[︁
L−2(c− c̃)2

]︁
⊗ (gpyy ⟨F, F⟩− gqyy ⟨F, F⟩)

(3.38e)

This time the expressions Gy
1 and Gl̂

1 contain common derivatives. So we sum them up
and collect the coefficients by powers of L:

• The fast slow term gy ⟨fy ⟨F⟩⟩:

Q
fy
3 + L−1(I− α)Âc =(I− α)Âc (3.39a)

• The elementary differential gy ⟨gy ⟨F⟩⟩:

Q3Q
I
2 + 2QS

1 +
1
2
L−1D(c− c̃) +

1
2
L−1 (︁γQI

2 +D(c+ c̃)
)︁

(3.39b)

=

(︃
α+

1
2
γ

)︃
QI

2 +
1
6
D(c+ 2c̃) +

2
3
L−2D(c− c̃) (3.39c)

• For the mixed derivatives we have to remind the splitting (3.19). In particular we
have to left multiply Gl̂

1 with L−1 before summing up. Then all mixed derivatives
have the same coefficient L−2D(c − c̃). The linear combination of elementary
differentials consist of many combinations of partial derivatives of odd and even
steps and derivatives of the fast function g. We exploit the equation ∂2g

SV
1 ⟨F⟩+

∂2g
SV
2 ⟨F⟩ = gy ⟨F⟩ to simplify the required elementary differentials, i.e.

3∂2g
SV
1
⟨︁
∂2g

SV
1 ⟨F⟩

⟩︁
+ ∂2g

SV
1
⟨︁
∂2g

SV
2 ⟨F⟩

⟩︁
+ ∂2g

SV
2
⟨︁
∂2g

SV
1 ⟨F⟩

⟩︁
+ ∂2g

SV
2
⟨︁
∂2g

SV
2 ⟨F⟩

⟩︁
(3.40)

= 2∂2g
SV
1
⟨︁
∂2g

SV
1 ⟨F⟩

⟩︁
+ gy ⟨gy ⟨F⟩⟩ . (3.41)

For the detailed computation we refer to the appendix .1.

Now we have only quadratic step terms and two MFS conditions. The Table 4 collects
the conditions together with their derivatives. As predicted by theorem 2 we have only
the quadratic conditions

ii.4 interpretation as gark method 55

zero neg power of L derivative
b̃ · L̂−2D(c− c̃) 2 gy ⟨gy ⟨F⟩⟩ ,∂2g

SV
1
⟨︁
∂2g

SV
2 ⟨F⟩

⟩︁
b̃ · L̂−2(c− c̃)2 2 gyy ⟨F, F⟩

Table 4: The conditions for order three with Störmer-Verlet. The first column contains the zero
expression, the second the negative power of L and the last column the corresponding
derivatives

ii.4 interpretation as gark method

In the previous sections we introduced the MIS and MFS methods for multirate problems
(I.2.1). Clearly there are several other approaches to solve multirate problems and
in particular overcome the stability restrictions. The group Günther and Sandu [16]
specialized their very general approach of the generalized additive Runge-Kutta (GARK)
methods [38] to a multirate formulation with exactly one fast and slow function. Hence
we review their order conditions and interpret the MFS methods as a GARK instead of a
multirate GARK (mGARK). Let us first apply a two stage GARK [38, eq. 2.3] method
on the model problem (I.2.1)

Y
{1}
i =yn + h

s{1}∑︂
j=1

A
{1,1}
i,j f

(︂
Y
{1}
j

)︂
+

s{2}∑︂
j=1

A
{1,2}
i,j g

(︂
Y
{2}
j

)︂
(4.1a)

Y
{2}
i =yn + h

s{1}∑︂
j=1

A
{2,1}
i,j f

(︂
Y
{1}
j

)︂
+

s{2}∑︂
j=1

A
{2,2}
i,j g

(︂
Y
{2}
j

)︂
(4.1b)

yn+1 =yn + h

s{1}∑︂
i=1

b
{1}
i f

(︂
Y
{1}
i

)︂
+ h

s{2}∑︂
i=1

b
{2}
i g

(︂
Y
{2}
j

)︂
(4.1c)

This formulation allows exactly two stage vectors. Hence, we merge all fast variables Zi,l

into the block vector

Y{2} =

s+1∑︂
i=1

ei ⊗ Y{gi} , (4.2)

where every block Y{gi} ∈ RLii relates to the fast values by Y{gi}
l = Zi,l. In other words,

the block i has length Lii. These entries include the initial value Zi,0. Furthermore
the coefficients A{i,j} for i, j = 1, 2 get an internal structure from the block vectors. In

ii.4 interpretation as gark method 56

A{1,1} A{1,2,1} A{1,2,2} A{1,2,3}

A{2,1,1} A{2,2,1,1}

A{2,1,2} A{2,2,2,1} A{2,2,2,2}

A{2,1,3} A{2,2,3,1} A{2,2,3,2} A{2,2,3,3}

b{1} b{2,1} b{2,2} b{2,3}

Table 5: Structure of a three stage MFS method, when viewed as a GARK method. The sub
matrices A{1,2,j} connect the fast evaluations Zi,l to the slow variables, whereas their
transposed counter parts A{2,1,j} relate the slow evaluations to the fast variables. In an
analogous manner the fast variables are connected to each other by the centered blocks
A{2,2,i,j}. These centered blocks form a lower triangular structure, which resembles the
inherent explicitness of the MFS method.

analogy to the block vector structure of Y{2}, we also introduce sub matrices for the
GARK matrices regarding the fast steps, i.e.

A{1,2} =

s+1∑︂
j=1

eTj ⊗A{1,2,j} (4.3a)

A{2,1} =

s+1∑︂
i=1

ei ⊗A{2,1,i} (4.3b)

A{2,2} =

s+1∑︂
j=1

[︁
ei · eTj

]︁
⊗A{2,2,i,j} . (4.3c)

The vectors b{1} and b{2,j} are given by the last rows of their corresponding A-block, i.e.

b{1} =eTs+1A
{1,1} (4.3d)

b{2,j} =eTLjj,Ljj
·A{1,2,j} . (4.3e)

The Table 5 visualizes the connection between these sub matrices. Every sub matrix
A{1,2,j} is in fact a row with Ljj columns, and in analogy every sub matrix A{2,1,j} is
a column consisting of Ljj rows. The “fast sub matrices” A{2,2,i,j} ∈ RLii×Ljj represent
the coupling between the fast steps Zi,l. We will derive their origin below. The lower
triangular structure of the matrix A{2,2} resembles the explicit nature of the MFS method.
In the GARK terminology the fast method is given by the coefficients A{2,2}. In our
case the coefficients couple (nearly) all fast stages together and we completely loose the
simple structure of the explicit fast method. Hence the notion of “fast method” is different
between the MFS and GARK context.

ii.4 interpretation as gark method 57

Due the complicated connection between the stages in the GARK framework, we
concentrate on the explicit Euler as fast scale integrator and derive the GARK coefficients
for this particular case. Hence we use gl(a,b) = a in the system (3.4)

Zl =1 ⊗ yn + (α+ lL−1γ)⊗ Id · (Y − 1 ⊗ yn) + h[lL−1β]⊗ Id · f̂(Y)

+h[DL−1]⊗ Id ·
l∑︂

k=I

ĝ(Zk−I)
(4.4a)

for all diagonal matrices l = I . . .L and the initial value

Z0 =1 ⊗ yn + α⊗ Id · (Y − 1yn) . (4.4b)

The slow values Yn are the last fast ones, i.e.

Yn = ZL =1 ⊗ yn + (α+ γ)⊗ Id · (Yn − 1 ⊗ yn) + hβ⊗ Id · f̂(Yn)

+h[DL−1]⊗ Id ·
L∑︂

k=I

ĝ(Zk−I) .
(4.4c)

If we compare the equations (4.4c) with (4.1a), we recognize the missing α and γ terms
in the GARK formulation. Hence, we remember the definition R = (I − α − γ)−1 and
solve for the difference Yn − 1s ⊗ yn to rewrite the slow solutions

Yn =1 ⊗ yn + hÂ⊗ Id · f̂ (Yn) + h[RDL−1]⊗ Id ·
L∑︂

l=I

ĝ(Zl) (4.4d)

in terms of the previous slow solutions and the fast values Zl from the MFS formulation.
In analogy we get rid of the α and γ terms in the fast system (4.4a)

Zl =1 ⊗ yn + h
[︁
(lL−1 + (I− lL−1)α)Â

]︁
⊗ Id · f̂(Yn)

+h
[︁
(α+ lL−1γ)RL−1D

]︁
⊗ Id ·

L∑︂
k=I

ĝ(Zk−I) + h[DL−1]⊗ Id ·
l∑︂

k=I

ĝ(Zk−I) .
(4.4e)

The two equations (4.4d) and (4.4e) show the coupling structure and give an impression
how the GARK sub matrices A{i,j,µ,ν} will look like. Equation (4.4d) relates the fast
stages to the slow ones. A direct comparison directly gives the coefficients A{1,1} = Â and
b{1} = eTs+1Â in terms of the underlying coefficients Â and b. The remaining three sub
matrices are ways more cumbersome.

ii.4 interpretation as gark method 58

To ease the notation and get rid of the Kronecker product, we consider every single
stage of the GARK vectors Y{1} and Y{2} in this order. The slow GARK values are the
same as the slow values in the MFS context. Hence we obtain

Y
{1}
i =yn + h

∑︂
j

Âijf
(︂
Y
{s}
j

)︂
+ h

i−1∑︂
j

A
{1,2,j}
i

Ljj∑︂
l=1

g
(︂
Y
{gj}

l−1

)︂
(4.5a)

in stage i and read the fast to slow sub row

A
{1,2,j}
i =1T

Ljj
·
[︁
RDL−1]︁

ij
. (4.5b)

The fast sub vectors Y{gi} collect all the fast sub steps Zi,l in one vector. Hence we obtain

Y
{gi}
l =yn + h

∑︂
j

A
{2,1,j}
lj f

(︂
Y
{1}
j

)︂
+ h

∑︂
j

A{2,2,i,j}
Ljj∑︂
k=1

g
(︂
Y
{gj}

k−1

)︂

+h
Dii

Lii

l∑︂
k=1

g
(︂
Y
{gi}
k−1

)︂ (4.6a)

for l = 0 . . .Lii − 1 with the slow to fast coupling coefficients

A
{2,1,fi}
lj =

{︃[︃
l

Lii
+

(︃
1 −

l

Lii

)︃
α

]︃
Â

}︃
ij

(4.6b)

and the fast to fast coupling coefficients

A{2,2,i,j} =

Ljj∑︂
l=1

eLii,l ⊗ 1T
Ljj

·
[︁
(α+ γ)RDL−1]︁

ij
(4.6c)

for j < i. The diagonal blocks are given by the strict lower triangular matrix

A{2,2,i,i} =
Dii

Lii

j=Lii,k<j∑︂
j,k=1

eLii,je
T
Lii,k . (4.6d)

Please note that the case l = 0 already contains the initial value Zi,0, so we need no
special treatment. The fast-fast coupling coefficients A{2,2,i,j} for i ̸= j do not exist
directly in the MFS method. These fast-fast coupling coefficients stem from the α and γ

ii.5 stability 59

terms, which incorporate the previous slow stages into the fast evaluations. In turn the
new fast stages depend on all previous fast values. From that point of view, they show
how a slow coupling amounts to a coupling of fast terms in another framework. Hence
again the notion of fast and slow methods differ greatly between the GARK and the MFS
framework.

ii.5 stability

In general, the convergence of numerical methods for differential equations require consis-
tency and stability. In the previous section we derived the consistency conditions up to
order three. Hence we continue and analyze the stability of a MFS method.

The usual tool for the (linear) stability analysis of one step methods is Dahlquist’s [6]
test problem

ẏ =λy

with λ ∈ C and initial value y(0) = y0. A numerical method is stable when the solution
after one step remains bounded. The application of a Runge-Kutta method with step
size h on the test equation leads to a stability polynomial R(hλ) defined by y1 = R(hλ)y0

[44, 20].
This concept of stability has to be extended to multirate and splitting methods. The

extension to the additively split right hand side is straight forward. We simply split
the coefficient λ = ν+ µ in two parts. The first part models the slow process, whereas
the second one accounts for the fast processes. The important, and often complicated,
challenge is the selection of useful coefficients ν and µ. We select the coefficients according
to a hyperbolic model problem.

ii.5 stability 60

ii.5.1 Model problem

Our starting point is the solution of the compressible Euler equations in one dimension,
as already indicated in the motivation. After linearization we end up with the equations
of linear acoustics. Hence for the stability we consider the 1D problem

∂tu+U∂xu =− cs∂xπ (5.1a)

∂tπ+U∂xπ =− cs∂xu (5.1b)

in an infinite domain. The unknowns are the Exner pressure π(t, x) [9] and the velocity
u(t, x). The coefficients are the background velocity U and the speed of sound cs ≫ U.
We discretize the PDE (5.1) on a staggered grid with grid size ∆x. Furthermore we
discretize the advection and sound terms with different stencils al and sl respectively, i.e.

U∂xu(t, xj) ≈
U

∆x

∑︂
l

alu(t, xj+l) (5.2a)

cs∂xu(t, xj) ≈
cs

∆x

∑︂
l

slu(t, xj+l) . (5.2b)

For example the third order upwinding from Hundsdorfer et al. [22]

∂xu(t, x)
⃓⃓
x=xj

≈ 1
6∆x

(︁
−u(t, xj−2) − 6u(t, xj−1) + 3u(t, xj) + 2u(t, xj+2)

)︁
(5.3a)

has the coefficients a1 = 1
3 , a0 = 1

2 , a−1 = −1 and a−2 = −1
6 . For the sound term we

use the second order symmetric stencil

∂xu(t, x)
⃓⃓
x=xj

≈ 1
∆x

(u(t, xj+1/2) − u(t, xj−1/2)) (5.3b)

with the coefficients sl+1/2 = −sl−1/2 = 1.
On this grid we consider a one dimensional wave of the form

u(t, x) =uk(t)eikπ
x
∆x (5.4a)

π(t, x) =πk(t)eikπ
x
∆x . (5.4b)

ii.5 stability 61

with complex valued coefficients uk(t) and πk(t) and real wave number k on the staggered
mesh. Due to the discretization with the upwind and symmetric stencils we rewrite the
stencils

U∂xu(t, xj) =
U

∆x
uk(t)z

j
k

(︃
2z3k + 3z2k − zk − 1

6z2k

)︃
=
U

∆x
uk(t)a(zk)z

j
k (5.5a)

cs∂xu(t, xj) =
cs

∆x
uk(t)z

j
k

(︃
√
zk −

1
√
zk

)︃
=
cs

∆x
uk(t)s(zk)z

j
k (5.5b)

in the grid nodes xj = j∆x and introduce zk = eikπ. Hence it suffices to consider all wave
numbers k ∈ [0, 1]. Also note the approximation of the advection and sound terms with
the functions

a(z) =
2z3 + 3z2 − z− 1

6z2
(5.6a)

s(z) =
√
z−

1√
z

. (5.6b)

Hence we end up with the stability model problem

u̇k(t) +
U

∆x
a(zk)uk(t) = −

cs

∆x
s(zk)πk(t) (5.7a)

π̇k(t) +
U

∆x
a(zk)πk(t) = −

cs

∆x
s(zk)uk(t) . (5.7b)

This is a homogeneous ODE system with constant coefficients. Thus we rewrite (5.7)

̇(︄
uk

πk

)︄
=A(zk)

(︄
uk

πk

)︄
(5.8a)

with the coefficient matrix

A(zk) = −
1
∆x

(︄
Ua(zk) css(zk)

css(zk) Ua(zk)

)︄
. (5.8b)

In turn we additive split the matrix in slow and fast parts

=−
U

∆x
a(zk)I2 −

cs

∆x
s(zk)J2 (5.8c)

ii.5 stability 62

and define the matrix

J2 =

(︄
0 1
1 0

)︄
. (5.8d)

Note the vanishing diagonal entries in the fast part. The coefficient matrix A(zk) is
symmetric with two distinct eigenvalues λ1/2 = − 1

∆x(Ua(zk)± css(zk)). This eigenvalue
splitting serves for the scalar stability model problem, i.e.

ẏ1,2 =−
U

∆x
a(zk)⏞ ⏟⏟ ⏞
ν

y1,2 ∓
cs

∆x
s(zk)⏞ ⏟⏟ ⏞
µ

y1,2 (5.9)

for every k ∈ [0, 1]. The subscripts 1 and 2 correspond to the positive and negative
eigenvalue respectively.

ii.5.2 Stability function

In analogy to the stability analysis of classical Runge-Kutta methods we apply the method
on our model problem (5.9). For the classical fast scale integrators explicit Euler it suffices
to consider the scalar model problem. Instead for partitioned methods we have to consider
the system (5.8). Our starting point is the ODE system (1.1b) for Z(τ). After inserting
the linear model problem (5.8), the IVP (1.1b) becomes linear with analytic solution

Sk :=Cscs(zk) (5.10a)

Z(H) = exp(SkD⊗ J2) · Z0 +Φ1(SkD⊗ J2) ·
(︁
[γ− Caa(zk)β]⊗ I2 · Yn − [γ1]⊗ yn

)︁
(5.10b)

For simplification we introduce the CFL numbers Ca and Cs with respect to advection
and speed of sound respectively, i.e.

Ca :=h
U

∆x
(5.10c)

Cs :=h
cs

∆x
. (5.10d)

ii.5 stability 63

The equation (5.10b) assumes an exact solution of the fast tendencies, in particular the
exact evaluation of the matrix exponential exp(SkD⊗ J2) and the related matrix function

Φ1(z) = z
−1(exp(z) − 1).

The new class of MFS methods have the MIS methods as basis, but use a fast scale
integrator, which has to approximate the matrix exponential and the function Φ1(z). In
other words we can start from the analytic solution and replace the matrix exponential
and the matrix function Φ1 by their approximations ΦM

0 and ΦM
1 respectively. Every

stage will use a different number of fast scale steps, therefore we use the stacked notion
from the order conditions Φ̂M

0 and Φ̂M
1 also for the matrix functions.

With this idea in mind we use the definition (1.1c) of Yn

Wk = I⊗ I2 − Φ̂M
0 (Sk) · α⊗ I2 − Φ̂M

1 (Sk) · [γ− Caa(zk)β]⊗ I2 (5.11a)

Vk = Φ̂M
0 (Sk) · [I− α]⊗ I2 − Φ̂M

1 (Sk) · γ⊗ I2 (5.11b)

Yn =W−1
k · Vk · 1 ⊗ yn (5.11c)

The solution at the new time step tn+1, i.e.

yn+1 = Rk · yn (5.12a)

Rk := eTs+1 ⊗ 12 ·W−1
k Vk · 1 ⊗ I2 , (5.12b)

is a linear function in yn with a complicated coefficient. These coefficients depend on
the macro step size h and the fast and slow CFL numbers Cs and Ca respectively. For a
shorter notation we neglect the dependency of Wk on the discretization of the advective
terms and the sound terms, a(zk) and s(zk), but denote the dependency on the wave
number in the subscript. But remind that the coefficient Vk depends on the discretization
of the sound terms s(zk) only. Now we have everything at hand for

Definition 1 (Stability). A multirate finite step method is stable for the pair (Cs,Ca) if

R(Cs,Ca) ⩽1 (5.13a)

R(Cs,Ca) := max
k∈[0,1]

Rk (Cs,Ca) (5.13b)

Rk(Cs,Ca) := ∥Rk∥ (5.13c)

With the definition of Wk and Vk it suffices to find the function ΦM
0 for the fast scale

integrator M. The MIS methods use (theoretically) the exact solution. Thus we have

ii.5 stability 64

ΦMIS
0 (Sk) = exp(Sk) and an approximation of the matrix exponential for all other fast

scale integrators. This approximation will be obtained by applying the integrator on the
model problem (5.8) with vanishing slow part and arbitrary initial state Zn.

Explicit Euler as fast scale integrator

The Explicit Euler method is a classical method with the simple relation

Zlii+1 =[I2 − Css(zk)DiiJ2]Zlii , (5.14a)

for one step. We concatenate all stages into one vector and write the stacked function

Φ̂EE
0 (Sk) =

(︁
I⊗ I2 − Sk[L̂−1D]⊗ J2

)︁L̂ . (5.14b)

Forward-Backward Euler as fast scale integrator

The Forward-Backward Euler (2.3b) does a forward step for the first component and an
implicit step in the second component. Hence we make use of the partitioning matrix

P =

(︄
0 1
0 0

)︄

to select the first component, or the second component with PT . When we apply this
scheme to the fast scale model problem with initial value Zlii and macro step size h, we
obtain

Zlii+1 =
(︁
I2 + SkDiiP

T
)︁−1

(I2 − SkDiiP)⏞ ⏟⏟ ⏞
κ(Sk,P)

Zlii (5.15a)

for the first step. In turn after Lii steps and starting from the initial value Z0ii , we have

ZLii
=κ

(︃
Sk
Lii

,P
)︃Lii

Z0ii (5.15b)

and the corresponding stacked functions are

κ̂(Sk,P) =I⊗ I2 − Sk
[︁
L−1D

]︁
⊗ J2 + S2

k

[︁
L−2D2]︁⊗ [PTP] (5.15c)

Φ̂FB
0 (Sk) =κ̂(Sk,P)L . (5.15d)

ii.5 stability 65

Störmer-Verlet as fast scale integrator

The Störmer-Verlet method can be written as two halve steps of the Forward-Backward
Euler scheme with exchanging roles of components. Therefore the single step

Zlii+1 =κ

(︃
1
2
Sk,P

)︃
· κ
(︃

1
2
Sk,PT

)︃
Zlii

is given by the product of two κ functions from equation (5.15a), where the two factors
use both the halved fast scale factor Sk but use different partition matrices. In analogy
to the Forward-Backward Euler method, we obtain after Lii steps the relation

ZLii
=

[︃
κ

(︃
Sk
Lii

,P
)︃
· κ
(︃
Sk
Lii

,PT
)︃]︃Lii

2

Z0ii

and we remind, that we merged the even and odd steps in the matrix L. Now we have to
stack all the stages together. Hence we multiply out

κ

(︃
Sk
Lii

,P
)︃
· κ
(︃
Sk
Lii

,PT
)︃

=

(︃
I2 −

Sk
Lii
DiiJ2 +

S2
k

L2
ii

D2
iiP

TP

)︃
·
(︃
I2 −

Sk
Lii
DiiJ2 +

S2
k

L2
ii

D2
iiPP

T

)︃
=

(︄
2
(︃
SkDii

Lii

)︃2

+ 1

)︄
I2 − 2

SkDii

Lii
J2 − 2

(︃
SkDii

Lii

)︃3

PT

and put the blocks together into

ΦSV
0 (Sk) =

[︂(︂
2S2

k

(︁
L−1D

)︁2
+ I
)︂
⊗ I2 − 2SkL−1D⊗ J2 − 2S3

k

(︁
L−1D

)︁3 ⊗ PT]︂L . (5.16)

The stability triangle

The stability function R(Ca,Cs) depends on the two real parameters, namely the advective
and speed of sound CFL numbers Ca and Cs respectively. We are interested in methods
which are stable for wind speeds below 1

6 of the speed of sound. In terms of the stability
function, we construct a triangle by the intersection of the stability area boundary with
the two lines Ca = 0 and Ca = 1

6Cs, see Figure 2. The position C6
s is the first intersection

of the line Cs = 6Ca with the stability area boundary. In analogy the value C0
s is the first

intersection of the line Ca = 0 with the boundary. In equations these definitions read

C6
s =min

{︃
Cs > 0

⃓⃓⃓⃓
R

(︃
Cs,

1
6
Cs

)︃
= 1

}︃
(5.17a)

C0
s =min {Cs > 0|R (Cs, 0) = 1} . (5.17b)

ii.5 stability 66

0 1 2 3 4 5
Cs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C a

C0
s

C6
s

Astab

R(Cs, Ca) = 1
Cs = 6Ca

Figure 2: The blue line represents the contour of the stability area for a MFSSV method. The
green area depicts the stability triangle and the area Astab. In particular we show the
definition of the two meaning of the values C0

s and C6
s on the contour line.

For the definition of the stability triangle Astab we define the value

C∗
s := min

(︁
C0
s,C

6
s

)︁
. (5.17c)

The stability triangle Astab is defined by the origin and the two points (C∗
s, 0) and(︁

C∗
s,

1
6C

∗
s

)︁
, see the dark green area in the Figure 2. This triangle is completely defined by

the value C∗
s and it is has the size

|Astab| =
1
12
C∗
s . (5.18)

Let us review the stability function (5.13c). The advective CFL number Ca enters the
stability function only in the matrix Wk, whereas the CFL number with respect to the
speed of sound Cs occurs only indirectly through the matrix functions Φ̂0 and Φ̂1. These
matrix functions not only have a block structure, but in fact are block diagonal matrices.
Therefore the computation of the powers of (s+ 1)× 2 matrices reduces to s+ 1 powers
of 2 × 2 matrices.

Afterwards these block diagonal matrices has to be combined in to the matrices Wk

and Vk. From a computational (and implementation) point of view it is more efficient,
and easier, to apply the method on the matrix valued test problem once with initial value
(1, 0) and once with (0, 1). The results form the columns of the amplification matrix Rk.

ii.5 stability 67

1.00 0.50 0.25 0.00 0.25 0.50 1.00

2

1

0

1

2 z
caa(z)
caa(z) + css(z)
css(z)

Figure 3: The gray line represents the unit circle and the blue and orange lines the stencils a(z)
and s(z) respectively. For a interpretation as (5.1) we use U = 1 and cs = 6ca in the
black line. We clearly see that the explicit Euler method for the whole system and in
particular for the fast system is never stable.

The explicit Euler method allows a further simplification. In equation (5.9) we gave
the eigenvalues of the coefficient matrix. The stability function for the explicit Euler
integrator reduces therefore two scalar problems with the aforementioned coefficients.

Our aim are methods with large stability areas. Clearly, this area depends highly on
the model problem. The aforementioned advection problem is of hyperbolic type and
has therefore no damping. Furthermore the second order central stencil leads to only
pure imaginary eigenvalues as we see in Figure 3. One way to stabilize the scheme is
the introduction of a diffusion term with relatively small coefficient, see [40]. Hence the
1D-advection 5.1 changes to

∂tu+U∂xu =− cs∂xπ+ ν∂2
xu

∂tπ+U∂xπ =− cs∂xu

with a small time step (and grid width) dependent coefficient ν = α
(∆x)2

τ . Common
values for α ∈ {0.025, 0.05}. Whereas the damping increases the stability area, it also
leads an additional error compared to the original problem without damping.

ii.6 method construction 68

Integrator class MIS MFS total
s
2 (3s− 1) smin

3 4
EE 4 5 7 16 12 22 4
FB 4 5 10 19 12 22 4
SV 4 5 2 11 12 22 3

Table 6: Number of order conditions for order three and the fast scale integrators explicit Euler
(EE), forward-backward Euler (FB) and Störmer-Verlet (SV). We excluded the compati-
bility condition 3.9b. The last three columns show the number of real parameters and
the deduced the minimal number of stages smin.

ii.6 method construction

In the previous section we derived the order conditions and defined the stability of the
MFS methods. The order conditions consist of three categories, namely the classical
(underlying) order conditions, the MIS conditions and the new finite step conditions.
Whereas the first two conditions are the same for every fast scale integrator, the last
set depends on the integrator in size and structure, see Table 6. The first order MIS
condition (3.9b) is trivially fulfilled by choosing

Dii =
∑︂
j

βij . (6.1)

The remaining conditions must be fulfilled by the real parameters Âij, αij, γij and the
rational parameters L̂ii. The matrices Â, α and γ are strictly lower triangular and we
set the first column to zero. Hence we have s

2 (3s− 1) real parameters plus the s rational
parameters L̂. The last column in Table 6 shows the smallest number of stages such that
the number of parameters is larger than the number of conditions. There are enough
parameters with three stages only for the second order fast scale integrator. The two first
order integrators require at least four stages.

Our aim are MFS methods with a large stability triangle as defined in the previous
section. But the stability area and the size highly depends on the method parameters α,
β and γ and the numbers of fast steps in every stage. For a numerical integrator this
area also depends on the step factor L, which does not influence the order conditions. We
are heading for methods with a large stability area. In practice it is hard to optimize the
whole stability contour line. Furthermore the strongest step size bound stems from the
sound terms. Therefore we relax to find the coefficients for the largest stability triangle
area as defined in (5.18).

ii.6 method construction 69

The order conditions are nonlinear, but at least polynomial in the coefficients α, γ
and β. The number of parameters and the number of conditions is of intermediate size.
Nevertheless it was not possible to find symbolic solutions due to high memory usage of
the software package Maple c⃝[7]. Therefore we use a three stage numerical process to
find optimal parameters. In details our strategy consists of the following steps:

1. First we write the order conditions as a minimization problem. We keep the step
factors L̂ii fixed in the minimization. In other words we try to find an optimal
method for a given set of step ratios. The cost functional is

W(p) =
1
2

#cond∑︂
i=1

condi(p)
2 (6.2)

and the parameters p are the real coefficients α, γ, β. The function condi represents
the error in the order condition i. For example the classical condition b · 1 = 1 is
represented by cond1(p) = b · 1 − 1. We constrain the parameters to a useful range
p ∈ [−105, 105]. We start this first stage with a suitable MIS method from Knoth
and Wensch [26], depending on the number of stages. These methods fulfill initially
the classical and the MIS conditions and have a sufficiently large stability area for
exact integration.

2. Construct the set

Linitial :=

{︄
L̂

⃓⃓⃓⃓
⃓12 ∑︂

i

|condi|
2 ⩽ 10−15 & AStab ⩾ 0.3

}︄
, (6.3)

of all step factor combinations, which fulfill the order conditions numerically and
have a sufficient large stability area as defined in (5.18).

3. Optimize the method parameters α, β, γ for every L̂ ∈ Linitial by minimizing the
negative stability area, i.e.

−Astab →min (6.4a)

constrained by the order conditions

|conditi| ⩽10−13 i ∈ classical (6.4b)

|conditi| ⩽10−10 i ∈ other . (6.4c)

ii.7 stability optimization for methods of order two 70

We set a sharper bound on the classical order conditions because numerical experi-
ments showed, that these seem to influence the accuracy most drastic. From these
solutions, we form the set

Lopti :=

{︄
L̂

⃓⃓⃓⃓
⃓12 ∑︂

i

|conditi|2 ⩽ 10−15 & A ⩾ 0.75

}︄
, (6.5)

which selects only these solutions with a larger stability area then the reference
method.

We solve the order conditions only numerically using the interior point optimization.
Hence the solution depends severely on the initial values. With the selection of a
sufficiently optimized MIS method as initial values, we can expect better stability areas
later. Furthermore the initial values also fulfill already the classical and MIS order
conditions. Our selection criteria in the second step ensures two properties. First, we
select only parameters, which fulfill all order conditions up to

√︂
2
N10−7 where N is the

number of order conditions. The second criterion ensures a not too small stability area
compared to the reference method RK3.

Let us first consider methods of order two. Most of the MFS conditions arise from the
step from order two to three. So for order two we have to consider only two classical, two
MIS conditions and one MFS condition.

ii.7 stability optimization for methods of order two

The previous sections introduced the MFS methods, their order conditions and derived
the stability function on top of the hyperbolic advection problem. We have seen that the
methods for order three require many complicated conditions. Additionally the order
condition depend on the real valued coefficients and integer valued step factors. In case
of the numerical fast scale integrators, the stability function also depends on the number
of steps, whereas the use of the exact solution does not has this dependency.

The derivation also showed, that the order conditions for order two are much simpler.
In this case we solve the order conditions analytically. This analytic solution allows us to
concentrate on the stability function. We derive two hypothesis for parameters with large
stability areas and check them numerically.

ii.7 stability optimization for methods of order two 71

ii.7.1 MFS2 methods

In this section we construct the methods of order two with two stages. Hence we
parametrize the classical parameters Â with the node c2 and solve the classic order
conditions with

Â =

⎛⎜⎝ 0 0 0
c2 0 0

2c2−1
2c2

1
2c2

0

⎞⎟⎠ . (7.1)

The matrices γ and α have the only two parameters γ32 and α32 respectively. At the
same time there are only two remaining conditions for MIS and MFS, namely (3.25a) and
(3.30a). We write the solution of both equations, i.e.

α32 =
c2 − 1

c2 ((1 + ρ3)c2 − 1)
(7.4d)

γ32 =−
(c2 − 1)2 + c22ρ3

c2(c2(1 + ρ3) − 2)(c2(1 + ρ3) − 1)
, (7.4e)

in terms of the step ratio ρ3 = L̂33
L̂22

and the node c2. This solution splits in three branches

in terms of the node c2, i.e. c2 ∈
(︂
0, 1

1+ρ3

)︂
, c2 ∈

(︂
1

1+ρ3
, 2

1+ρ3

)︂
and c2 ∈

(︂
2

1+ρ3
,∞)︂.

From a practical point of view we can savely reduce the last interval to
(︂

2
1+ρ3

, 9
5

)︂
.

The fast scale integrator solves the auxiliary ODE (1.1b) in every stage on the interval
[0,h]. By scaling the stage local time interval with Dii on every stage i, we see that the
effective local integration interval is hDii. Hence the first hypothesis is, that we expect
the lowest error of the fast scale integrator at minimal coefficients Dii. So we have to
minimize the maximum of D22 and D33. Luckily the coefficients are given by the simple
equations

D22 =c2 (7.2a)

D33 =
c2(1 + ρ3) − 1
c2(1 + ρ3) − 2

. (7.2b)

ii.7 stability optimization for methods of order two 72

Both parameters are functions of the node c2. Whereas the parameter D22 is monotonous
increasing, the parameter D33 decreases. Therefore we expect the smallest maximal
amplification at the intersections D22 = D33, i.e.

cI2 =
ρ3 + 3 ±

√︁
ρ2

3 + 2ρ3 + 5
2(ρ3 + 1)

. (7.3)

On the other hand we allow different step sizes in every stage. So we expect different
numerical errors in every stage even with the same coefficient Dii on the same macro step
size h. The same argument applies to the stability of the fast scale integrator in every
stage. The stability of a one step method depends on the product of the step size and the
norm of the Jacobian of the right hand side. The auxiliary ODE amplifies the fast scale
evaluations g with the coefficient Dii. Therefore as second hypothesis we consider the
minimum of the maximum between D22 and D33

ρ3
. Due to the monotonicity we find this

minimum at D22 = ρ3D33, which amounts to the node

cF2 =
3ρ3 + 1 ±

√︁
5ρ2

3 + 2ρ3 + 1
2ρ3(ρ3 + 1)

. (7.4)

ii.7.2 Numerical experiments

Let us now check the two hypotheses numerically. The stability triangle is bounded by
the two lines

{︁(︁1
6Cs,Cs

)︁
|Cs ∈ R

}︁
and {(0,Cs)|Cs ∈ R}, hence we analyze the hypotheses

on both lines separately.

Stability on the line Ca = 0

Along the line {(Ca,Cs)|Ca = 0} the slow tendencies in the auxiliary ODE (1.1b) vanish.
Therefore the stability of the full MFS scheme depends only on the stability function of
the underlying fast scale integrator. The plots in Figure 4 depict values C0

s using the fast
scale integrators exact, explicit Euler, forward-backward Euler and Störmer-Verlet from
top left to bottom right. Please note the semi logarithmic scale for the exact integrator,
whereas all other fast scale integrators use two linear axes. We denote the optimal nodes
cI2 and cF2 with a point and a star respectively. Clearly the exact integrator leads to the
largest intersections C0

s and the nodes cI2 perfectly match the maxima locations. Also
note the non-smooth dependency, but this might be an effect due to the bisection method
used to find the value C0

s. From that plot there is no unique optimal step ratio for the
exact integrator. But for every ratio seems to exist a node, such that the method is stable

ii.7 stability optimization for methods of order two 73

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
c2

0

100

101

102

C
0 s

2
3 + 1 < c2

3=1
3=2
3=3
3=4
3=8

D22 = D33

3D22 = D33

(a) exact

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
c2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
0 s

2
3 + 1 < c2

3=1
3=2
3=3
3=4
3=8

D22 = D33

3D22 = D33

(b) explicit Euler

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
c2

0.0

0.5

1.0

1.5

2.0

2.5

C
0 s

2
3 + 1 < c2

3=1
3=2
3=3
3=4
3=8

D22 = D33

3D22 = D33

(c) forward-backward Euler

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
c2

0.0

0.5

1.0

1.5

2.0

2.5

C
0 s

2
3 + 1 < c2

3=1
3=2
3=3
3=4
3=8

D22 = D33

3D22 = D33

(d) Störmer Verlet

Figure 4: The values C0
s with respect to the node c2. The markers point and star denote the

two hypothetical points cI2 and cF2 respectively. All numerical integrators used the step
factor L = 2.

for speed of sound CFL numbers larger than 100. In contrast the numerical integrators
have always by magnitudes smaller C0

s values. The maxima are sometimes quite sharp
and next to jump. Furthermore the predicted optimal values cI2 and cF2 do not have any
clear relation to the maximal nodes. Note that the plot 4b, which uses the explicit Euler,
has an increasing intersection point with increasing step ratio ρ3. This indicates a high,
possibly infinite step ratio for the last stage.

The more accurate, and more importantly stable, fast scale integrators FB-Euler and
Störmer-Verlet are depicted in the bottom left and right plots in Figure 4 respectively.
This time we have bounded intersections C0

s, and very surprisingly, the largest maximum
for both stable methods is smaller than for the unstable explicit Euler in plot 4b. Both
integrators lead to optimal nodes c2 somewhere in the middle between the nodes cF2 and

ii.7 stability optimization for methods of order two 74

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
c2

10 10

10 7

10 4

10 1

102

105

108

1011

1014

C
6 s

select k=1,2,3,4,8
0<c2< 1

3 + 1
1

3 + 1 < c2 < 2
3 + 1

2
3 + 1 < c2

3=1
3=2
3=3
3=4
3=8

(a) All branches for the node c2 with different line
styles

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
c2

0

100

101

102

C
6 s

2
3 + 1 < c2

3=1
3=2
3=3
3=4
3=8

D22 = D33

3D22 = D33

(b) Only the branch 2
ρ2+1 < c2, which leads to the

largest lengths.

Figure 5: Both plots show the length C6
s with respect to the node c2 for MFS2 methods with

exact integration. The colors represent the factors, whereas the line styles correspond
to the branches. So we easily see the small lengths for the first two branches. We
highlight the third branch with the same line style in the right plot. Additionally we
show the nodes cI2 and cF2 as dot and star respectively.

cI2. More interestingly the plots indicate an optimal step ratio ρ3 = 3, in contrast to the
explicit Euler and exact integration.

Both plots together indicate a rule for the step factor L in combination with the optimal
method parameters. If we minimize the coefficients Dii, then we have to choose the
common factor L such that the fast scale integrator is always stable. Furthermore we can
achieve a larger stability area with larger step factors. If we minimize Dii

L̂ii
we can choose a

smaller factor L and use an unstable fast scale integrator. But we have a stability bound
regardless of the accuracy, and stability, of the fast scale integrator.

Stability on the line Cs = 6Ca

The previous discussion concentrated on only one point of the stability triangle, namely
the bottom intersection C0

s. But the length of the bottom line also depends on the
intersection of the line Cs = 6Ca with the stability area boundary R(Cs,Ca) = 1. This
time there is no simple relation of the method parameters to the accuracy of the fast
scale integrator. Hence we apply the previous procedure with the same step size ratios on
the length of the bottom side.

Let us first check the lengths of the bottom side with exact integration. The previous
discussion neglected the other branches for c2. This time we include the corresponding
lengths for completeness in the plot 5a. The line styles dotted, dashed and straight

ii.7 stability optimization for methods of order two 75

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
c2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
6 s

2
3 + 1 < c2

3=1
3=2
3=3
3=4
3=8

D22 = D33

3D22 = D33

(a) explicit Euler

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
c2

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

C
6 s

2
3 + 1 < c2

3=1
3=2
3=3
3=4
3=8

D22 = D33

3D22 = D33

(b) forward-backward Euler

Figure 6: The length C6
s of the bottom line with explicit Euler (left) and forward-backward Euler

(right) integration using the step factor L = 2. Additionally we show the nodes cI2 and
cF2 as points and stars respectively.

correspond to the branches, whereas the colors represent the step factors ρ3. The dotted
and dashed lines are hard distinguishable and always below 10−12. In contrast the third
branch with solid lines show a high dependence on the node and the step factor ρ3.
Therefore we neglect all other nodes.

The solid lines in plot 5b correspond to the same lines in the plot 5a but with a linear
C0
s axis this time. Every line shows clear maximal values at different heights. A second

look reveals a maximal stability area for ρ3 = 3 with c2 ≈ 1.16. The parameter ρ3 scales
the step size in the last integration step compared to the second step. So with a higher
numbers of steps in the last stage we would solve the last auxiliary more accurate. It is
therefore surprising to see a decreasing stability area with increasing step ratio. This
behavior stems exclusively from the MFS order conditions, which connect the step ratios
to the remaining coefficients. Otherwise the step ratios do not influence the complete
method with exact integration. From that point of view, the Figure 5 shows the best
areas one can expect from a MFS2 method.

In analogy to the C0
s analysis before, the plot 5b shows also the optimal nodes cI2 and

cF2 using points and stars respectively. Again the colors correspond to the step factors ρ3.
In contrast to the analysis for the intersection positions C0

s this time there is no direct
relation between the optimal nodes and the maximal lengths visible.

Using the the first order numerical integrators explicit Euler and forward-backward
Euler we obtain the left and right plot in Figure 6 respectively. Whereas the left plot 6a
shows a good agreement of the points with some extrema, we see the stars next to the

ii.7 stability optimization for methods of order two 76

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
cs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

c a

3 = 2
3 = 3
3 = 4
3 = 8

rk2

(a) exact solution

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
cs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

c a

3
2
3
4
8

L=2 10 100

(b) explicit Euler

Figure 7: Stability contour lines of the MFS2 methods using the optimal values for the node c2
from plot 5b. The black line shows the top boundary Cs = 6Ca. the colors green, red,
blue and orange, correspond to the step ratios ρ3. In the right plot we also add three
step factors L and distinct them using the line styles 2, 10 and 100.

extrema in the right plot 6b. Hence there is again no clear relation between the claimed
optimal nodes and the real behavior. Although the forward-backward Euler is stable for
all nodes c2, we do not see a much larger stability area compared to the unstable explicit
Euler method. This result is in accordance with the maximal intersection points C0

s.

Stability contours with optimal parameters

After studying the qualitative behavior of the stability areas through their intersection
points C0

s and C6
s we proceed to their contours lines in Figure 7. The left plot 7a shows

the contours using exact integration with the optimal node c2 and the same step ratios,
but neglect ρ3 = 1, as in the previous discussions. Using ρ3 = 1 corresponds to a method
with the same number of steps in each stage, and at the same time, shows the smallest
stability areas in all experiments. As reference we also add the method RK2 from Wicker
and Skamarock [54], which based on the forward-backward Euler, in purple. But for
comparison we replaced the forward-backward Euler by the exact solution. The straight
black line represents the ratio between the speed of the winds and the speed of sounds,
i.e. Cs = 6Ca. The colors green, red blue and orange correspond to the step ratios two,
three, four and eight respectively. In accordance with the previous discussion we see
the smallest stability area with ρ3 = 8. The base of stability triangle for ρ3 = 2 is only
slightly larger than for ρ3 = 4 with C0

s ≈ 2.19 and C6
s ≈ 1.99.

ii.7 stability optimization for methods of order two 77

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
cs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

c a

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
cs

3
2
3
4
8

L=2 10 100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
cs

Figure 8: Stability area of the MFS2 methods using the optimal values for the node cs from
the left Figure 6 with exact integration (left) and explicit Euler (center) and forward-
backward Euler (right). In the centered Figure we interpreted the method RK2 as a
MIS method and used the explicit Euler method with factor L = 100. The left one uses
the exact solution for the linear problem.

Let us have look at the right Figure 7. These line correspond to the stability area
contour using the same (optimal) node c2 and the same step ratios ρ3 as in the left Figure.
But this time we use the explicit Euler method as fast scale integrator. Therefore the
solutions depend also on the step factor L. The different step factors two, 10 and 100
correspond to the line styles straight, dashed and dotted respectively. For reference we
use again the RK2 method, but now with the explicit Euler with L = 100 as the fast scale
integrator. On the first view, the stability areas are sufficiently smaller than with the
exact solution. Even with 100 steps the contour is far away from the optimal solution in
the left Figure. From this result we can conclude that the optimization with the exact
solutions leads to methods, which are very sensitive to the number of steps. Even in the
case of the MFS conditions, which already take the step ratios into account.

But what happens if we optimize the method parameters the other way around? This
strategy corresponds to the optimal nodes in plot 6a. Now we can also use the numerical
method, which should lead to the largest areas, or again the exact solution as a measure for
the largest possible stability area with these parameters. In Figure 8 we depict the contour
lines for this case. Again the left plot uses the exact solution and the centered one the
explicit Euler method as fast scale integrator. Additionally we use the forward-backward
Euler method for the right plot. The same applies also to the reference base method RK2.
This time the stability areas using the exact integration are far smaller and the largest
area is not the original one with ratio ρ3 = 3, but the previously smallest one with ρ3 = 8.

ii.7 stability optimization for methods of order two 78

The right plot then shows the stability areas using forward-backward Euler, which
belong to the optimization using L = 2. First we concentrate on the straight lines. The
green, red and blue intersect together with the black line near Cs ≈ 1.33. Only the
orange line has the intersection position near Cs ≈ 1.45 and leads therefore to the largest
stability triangle. A close look also shows that the intersections at Ca = 0 are larger
for the red and blue lines corresponding to ρ3 = 3 and ρ3 = 4. Do not get confused by
the first Figures, showing that ρ3 = 8 has the largest intersection at Ca = 0. They were
optimal at again different nodes c2.

This confusion alone already shows the discrepancy in different heuristics for optimal
MFS (and MIS) methods. Whereas the exact integration strikes out the fast scale step
size, it leads in general to smaller stability areas with the explicit Euler method. Or
in other words the corresponding methods require many steps to obtain a sufficiently
large stability area. But at least the behavior is somewhat predictable in the sense that
more steps lead to a larger area. On the other hand, the optimization with the numerical
method at hand leads in general to methods with useful stability areas for exactly this one
step size. But then there is no clear behavior with respect to the step factor L. Increasing
the step factor, hence use more steps, resolve the fast scale more exactly, might lead to a
less stable method.

ii.7.3 Conclusions

The previous section discussed the parameter dependency for the stability areas. We
solved the MFS conditions analytically and obtained a one-parameter family of solutions.
But even in that simplified case leads to a complicated dependency of the stability area
on the free parameter. Due to this complicated dependency, we checked two heuristic
hypotheses. The numerical experiments then showed, that these heuristics predict the
parameter next to the optimal node for the exact integrator. In case of the numerical
ones, the predictions are worse. From an optimization point of view, it would be valuable
to find good heuristics, which predict good parameters and can be extended to more
stages.

III N U M E R I C A L E X P E R I M E N T S

This chapter presents the numerical experiments. First we construct MFSEE, MFSFB and
MFSSV methods of order three and optimize their stability area according the procedure in
section II.6. All optimizations where done with the interior point optimization implemented
in the software package IPOPT by Wächter and Biegler [48] in version 3.11.9. As described
in the section II.6 we maximize the stability triangle size subject to the order conditions.
To speed up this process, we generate an optimized code for the order conditions and
their derivatives using Maple c⃝[7].

The benchmark problems are ordered from simple to more advanced. Hence the first
benchmark is the advection problem II.5.1 with an initial pulse. This problem is linear
and serves for a rough hint on the obtainable order and stability. The last two benchmark
problems are nonlinear in the slow tendencies. These benchmark problems therefore serve
as hints for the applicability on more advanced real world models of the atmosphere.

iii.1 method construction with linear problems

iii.1.1 First order fast scale integrators

We consider the first scale integrators explicit Euler and forward-backward Euler. Whereas
the first method leads to 16 order conditions, the second requires already 19 conditions.
Hence we will consider only methods with s = 4 stages in this paragraph. Keep in mind
that we already fulfill the compatibility condition II.3.9b by construction. As described
in the section II.6, we use a three stage process. Our initial MIS method is MIS4 from
Table 4 in Knoth and Wensch [26]. Our analysis on second order methods in section
II.7 already showed an unstructured dependency of the stability on the step factors L̂ii.
Hence we study all methods with the step factors 1 ⩽ L̂ii ⩽ 10.

79

iii.1 method construction with linear problems 80

10 24 10 21 10 18 10 15 10 12 10 9 10 6

objective

0.0

0.2

0.4

0.6

0.8

1.0

ar
ea

explEuler
linear exact

(a) explicit Euler

10 24 10 21 10 18 10 15 10 12 10 9 10 6

objective

0.0

0.2

0.4

0.6

0.8

1.0

ar
ea

FB Euler
linear exact

(b) forward-backward Euler

Figure 1: The stability triangle area with respect to order condition error after step one. The
left and right plot correspond to the order conditions MFSEE and MFSFB respectively.
Both Figures mark the numerical integrator with a circle and the exact one with a
diamond. The numerical solvers used the common step factor L = 2. Every point
corresponds to a step size ratio. Points in the bright and dark shaded area fulfill the
selection criteria for the sets Linitial and Lopti respectively.

Optimal parameters with first order integrators, stage I

Let us first consider the conditions MFSEE. Then we obtain the objectives and areas in
the left plot 1a. We distinct the explicit Euler with L = 2 and the (linear) exact solver
with the circles and diamonds respectively. All points in the bright shaded rectangle
correspond to the set Linitial. The stability triangle area is strongly influenced by the
accuracy, and stability, of the fast scale integrator. Whereas the diamond markers even
reach an area of 0.9, the circles seldom approach an area of 0.4. But we aim at a numerical
method with inexact integration, hence the exact integration serves more as a hint for
the largest possible areas.

Furthermore we also recognize that there are many step ratios, which lead to a large
minimal sum (II.6.2). This indicates that there are many fast scale step ratios which do
not satisfy the whole set of order conditions. In particular we did not find a solution for
the ratio L̂ii = 1 for i = 1, . . . , s+ 1. Hence we have to use different numbers of steps in
every stage.

The right plot 1b depicts the areas and objectives again, but this time for the order
conditions MFSFB. Once again there are many markers to the right of the shaded area.
This indicates that there are much more step ratios, for which the order conditions do not
posses a solution. Similar to the left Figure using the explicit Euler, obtain larger stability
areas with the exact integrator. But this time the differences are not that pronounced.

iii.1 method construction with linear problems 81

10 24 10 21 10 18 10 15 10 12 10 9 10 6

objective

0.0

0.5

1.0

1.5

2.0

2.5

ar
ea

explEuler
linear exact

(a) explicit Euler

10 24 10 21 10 18 10 15 10 12 10 9 10 6

objective

0.0

0.5

1.0

1.5

2.0

2.5

ar
ea

FB Euler
linear exact

(b) forward-backward Euler

Figure 2: The stability triangle area with respect to order condition error after optimization
step three. The markers and axis correspond to the Figure 1. We also see, that many
optimization procedures did not converge or even left the constraint set. As a helper
for the eye we colored four points, which refer to selected best methods. The top filled
marker leads to the highest area, whereas the left filled one corresponds to the lowest
condition error.

The figures also differ from a qualitative view. Whereas in the left, most markers are
below the shaded areas, in the right we see most markers in the right halve of the plot.
Translated to the axis, this indicates a strong requirement at least for a stable fast scale
integrator. But the stable method leads to a higher number of (and more complicated)
order conditions. In turn, we obtained slightly larger stability triangles. But have in most
times there is no good solution to the order conditions with small residuals. But these
are only rough initial parameters.

Optimal parameters with first order integrators, stage II

Hence we proceed to optimize this parameter subset with respect to the stability triangle
area. We minimize the negative stability triangle area and constrain the parameters by
the order conditions. After the optimization procedure, we consider only these parameters,
which have a larger stability area as the reference method RK3, but fulfill the order
conditions at least as good as the initial parameters. The left Figure 2a depicts these
results for the MFSEE methods. Again we computed the stability areas with the numerical
solver (circles) and exact solutions to the underlying linear fast scale problem (diamonds).
This time, four step sequences remain in the numerical case and 18 when using the exact
solution. For the remaining step sequences, the optimizer left the constraint set, or failed
to optimize the area. In most bad cases we see both effects together.

iii.1 method construction with linear problems 82

Φ

exact (1,2,1,10) (3,1,7,2) (8,1,10,8) (7,2,3,8)

numerical (5,4,1,8) (3,3,1,10) (2,7,2,10) (6,2,3,10)

MFSEE MFSFB

Table 1: Step factors for the optimal methods derived from the Figures 2.

0 1 2 3 4 5
cs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

c a

linear exact
1
2
4
10
100

(a) parameters optimized with exact integrator

0 1 2 3 4
cs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

c a

explEuler
1
2
4
10
100

(b) parameters optimized with explicit Euler

Figure 3: Contours of the stability areas of the MFSEE method with the step sequences from
Table 1 after optimization with exact and numerical integration respectively. The colors
correspond to the step factors L, whereas the markers correspond to the plot 2a. We
see, that this optimization strategy leads to methods with large stability areas for many
fast steps. But for a small factor, the stability area is ways too small.

After the optimization we select the best methods. Ideally the best method would
be found in the upper left corner in both Figures 2. In reality we select and mark two
special points from each Figure. We obtain the first marker by selecting all points at the
highest area and select the one with the smallest condition error. This marker is then fill
in the upper halve, because it is on top of the other solutions. For the second one, we
turn around this process and select the solutions with lowest condition errors first and
then these with highest area. This marker will be halve filled in the right. We have two
integrators types and two order conditions, hence we repeat that process twice in the left
and twice in the plot 2b. That procedure leads to the eight methods, four MFSEE and
four MFSFB, with the optimal step factors given in the Table 1.

Step factor dependency of optimized MFSEE methods

Let us inspect the dependence of the stability areas on the step factor L in the Figure 3 for
the order conditions MFSEE. The markers correspond to the left plot 2a. In the left plot

iii.1 method construction with linear problems 83

3a we consider the parameters obtained from exact integration and in the right plot 3b
the parameters from numerical integration with the explicit Euler with step factor L = 2.
Each color corresponds to a step factor from in set [1, 2, 4, 10, 100]. The factors 1, 2 and 4
are useful for a fast and efficient method, whereas the factor L = 100 resembles nearly
exact integration. In the left plot 3a we see an increasing stability triangle area from
L = 1 to L = 100. This observation is in concordance with the convergence to the exact
solution. It also shows, that we require step factors above L = 10 to obtain a sufficiently
large stability area. From that point of view, these methods require ways too many fast
scale evaluations and get computational too expensive.

The right plot 3b looks quite different. The intersections C0
s, defined by II.5.17a increase

only from L = 1 to L = 2, but decrease for larger factors. Hence we see more or less
a convergence to small stability area. This behavior stems from the optimization with
L = 2. We take the numerical error, and in this case also the instability, of the fast scale
integrator into account and minimize it. If we now increase the numbers of steps, we
change the errors in every stage, and the complete method gets unstable.

Please note that we obtained a larger area compared to the reference method with
both approaches. But these experiments merely indicate, that even an unstable fast scale
integrator can lead to a MFS, and MIS, method with a sufficiently large stability area
and low number of fast scale evaluations.

Step factor dependency of optimized MFSFB methods

Now we consider the forward-backward Euler method and the corresponding MFS order
conditions MFSFB. Hence we select the four halve filled markers in the right plot 2b. The
corresponding step factors L̂ are given in the last two columns of Table 1. Again we plot
the contours of the stability areas from the exact and the numerical integration in the
left and right Figure 4 respectively. Let us concentrate on the left plot 4a first.

This time the contour lines have many wiggles for small step factors L < 10. Hence, we
hardly see the increasing values for C0

s with respect to L. This result is more visible in
Figure 5. For many steps the node C0

s, i.e. the stability boundary at Ca = 0, gets larger,
but the area remains bounded by the intersection on the line Cs = 6Ca. Furthermore we
also see the shift between the exact and the numerically optimized parameters. Whereas
the fast exact integration might lead to larger nodes C6

s, it also requires the larger step
factors. In contrast the optimized parameters with the numerical integrator lead to similar
nodes at smaller factors.

iii.1 method construction with linear problems 84

0 1 2 3 4 5 6
cs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

c a

exact
1
2
4
10
100

(a) parameters optimized with exact integration

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
cs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

c a

imex
1
2
4
10
100

(b) parameters optimized with forward-backward in-
tegrator

Figure 4: Stability areas of a MFSFB method with the step sequences after optimization with
exact and numerical integration respectively. The colors correspond to the step factors
L, whereas the markers correspond to the markers in the plot 2b. We see, that the
optimization strategy with the exact integrator leads to methods with large stability
areas for many fast steps. In contrast to the explicit Euler experiment, the optimization
with the numerical integrator and fixed step factor led to better methods then the use
of the exact integrator.

In contrast to the explicit Euler, we see the straight lines for every step factor. This
implies, that these methods are stable and they damp some waves inside the stability area.
The other line styles, corresponding to contours slightly above one, are seldom visible.
Hence these bounds are quite sharp. The only exception is the case with 100 steps, where
the contour lines for slightly larger stability function get visible. That indicates a slower
increasing stability function outside the stable area compared to the other step factors.

A deeper look also shows a difference between the selected step sequences by comparing
the top filled with the left filled markers. Whereas the left ones are always below ca = 1.5,
and therefore below the violet contour lines, the top filled markers are above the reference
contour lines and reach even ca = 2.0. These top filled markers correspond to the
solutions with best (largest) stability triangle area, but often with a larger error in the
order conditions. Hence we can assume, that the optimization with respect to the area
also increases the stability along the line cs = 0. But on the other hand we might expect
larger error constants. In the context of the discretized advection equation, the larger
stability with respect to ca means that we can, for slow winds, also reduce the step size
restriction with respect to the slower transport.

This Figure also reveals a draw back of the optimization strategy, or in more details, of
the stability triangle definition using the two points. The orange line with the top filled

iii.1 method construction with linear problems 85

100 101 102 103

L

0

1

2

3

4

5

6

C
0 s

100 101 102 103

L

0

1

2

3

4

5

6

C
6 s

Figure 5: The position C0
s and C6

s using the four different optimal step sequences for MFSFB with
respect to the step factor L.

markers would have the intersection points C6
s ≈ 6.2 and C0

s ≈ 4.8. But the stability
triangle ends near the bend at cs ≈ 4.

Let us consider the right plot in Figure 4, where we optimized with the numerical
integrator with step factor L = 2. This time, we also see a convergence with respect to L,
which is in contrast to the experiment with the explicit Euler before. But once again, we
get hit by the wiggles near ca = 0, hence the stability triangle for the top filled markers
would be smaller then the reference triangle. But the contours with left filled markers,
representing a smaller condition error, lead to a similar area and we can hope for slightly
lower errors with the corresponding method and a step factor L ⩾ 2.

Accuracy analysis - linear problem

Now we select the MFS methods with the best stability areas for step factors below 10,
i.e. the top filled circle for MFSEE and the left filled circle for MFSFB. We apply these
methods on the space discretized linear advection problem II.5.1 with a fixed mesh and
initial value. Due to the linearity we compute the exact solution on this mesh at the end
time using the matrix exponential function [1]. This solution serves as the reference for the
time error. We fix the step sequences and very the macro step size h and the step factors L.
This problem is the base for the stability analysis. Hence we check with these experiments
not only the numerical error in maximum norm, but also the stability. The left and right
Figure 6 depict the results using the explicit Euler and the forward-backward Euler as
fast scale integrators respectively. For a reference we also apply the starting method MIS4
and the reference method RK3 with the same fast scale integrator. From the left Figure
we immediately recognize two regions, methods in the top part, and the lower errors. The

iii.1 method construction with linear problems 86

2 3 2 2 2 1 20 21 22 23

h
cfl

10 6

10 5

10 4

10 3

10 2

10 1

er
r

L
1
2
4

MFSEE MFSFB MFSSV RK3 MIS4

2 3 2 2 2 1 20 21 22 23

h
cfl

10 6

10 5

10 4

10 3

10 2

10 1

100

er
r

L
1
2
4

MFSEE MFSFB MFSSV RK3 MIS4

Figure 6: Compare the maximum error for linear acoustics at te of MFSEE and MFSFB methods
by using the fast scale integrators explicit Euler (left) and forward-backward Euler
(right). The colors correspond to the step factor L and the markers represent the
methods. As a helper for the eye we add the third order line in black.

methods in the top, with the higher errors, are the MIS4 and RK3. These methods not
only have a high error, they also do not behave like order three. But at least, they are
stable. In contrast we see the MFS methods far below the aforementioned ones, leading
to at least 100 times lower maximum errors. Furthermore these methods behave as order
three, independent of the step factor L, as predicted by the order conditions.

The right Figure looks a bit different. This time both non-MFS methods, also have
lower errors and behave like order two. A deeper look also reveals the expected order
three for the MFSFB method, and as the order conditions suggest, independent of the
step factor L. But, in contrast to the expected selection, we see a lower bound on the
error. This observation stems from the numerically solved order conditions. But up to
this bound, the method behaves like order three.

But we also see, that the MFS method MFSEE, when used with the forward-backward
Euler as fast scale integrator, reaches only order two, too. Remember that the MFSFB

conditions consisted of three sub sets, namely the classical, the MIS and the MFS
conditions. Furthermore the derivation of the MFS conditions led to parasitic derivatives
of the form ∂2g

X
1 ⟨gy ⟨F⟩⟩. These additional conditions arose due to the splitting of the

forward-backward Euler method and are not fulfilled by the MFSEE method. Hence these
methods have a step factor dependent order when the fast scale integrator is a first order
splitting method.

iii.1 method construction with linear problems 87

10 610 910 1210 1510 1810 2110 2410 2710 3010 33

objective

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

A s
ta

b

Störmer-Verlet
linear exact

10 610 910 1210 1510 1810 2110 2410 2710 3010 33

objective

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

A s
ta

b

Störmer-Verlet
linear exact

Figure 7: The area with respect to the order condition objective (II.6.2) with the initial method
(left) and after optimization (right). This time we obtain 126 useful step ratios. In
analogy to the first order methods the circle represents the numerical integrator and
the diamond the exact solution.

iii.1.2 Second order fast scale integrator

The construction of MFSSV methods follows basically the same strategy as for the first
order methods. We only change the initial method from MIS4 to MIS3A [52], because
three stages suffice in this case. After that we fix all step size ratios and compute a
preliminary coefficient set.

Optimization with second order integrator

Then we compute the stability areas (II.5.18) using the Störmer-Verlet method and the
exact solution, see left Figure 7. Again many initial solutions lead to a vanishing stability
triangle. But this time we have already 126 useful optimization candidates using the
numerical and the exact integration. Furthermore already the initial methods lead to
seemingly large areas, even larger the the reference method RK3. After optimization we
obtain the areas and objectives in the right Figure 7. This time the optimization is not as
effective as with the first order integrators. Furthermore in most times the optimization
routine left the constraints and led to too large errors in the order conditions. And sadly
we got even with the exact integration smaller stability areas as prior optimization. This
behavior is a result of the two stage optimization. The first optimization stage starts from
the initial parameters of the left Figure 7, but often leaves the constraint set, the second
step mainly remains in the constraint set, but looses the better stability area. Hence we

iii.1 method construction with linear problems 88

0 1 2 3 4 5 6
Cs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

C a

L=1
L=2
L=4
L=10
L=100
RK3

(a) parameters optimized exact integrator

0 1 2 3 4 5 6
Cs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

C a

L=1
L=2
L=4
L=10
L=100
RK3

(b) parameters optimized with Störmer-Verlet

Figure 8: Stability areas for the MFSSV methods in Table 2.

Φ

exact (1,1,3) (1,1,7)

numerical (3,3,10) (1,1,5)

MFSSV

Table 2: Step factors for the optimal methods derived from the left Figure 7. We list the method
parameters in the Tables I.9, I.10, I.11 and I.12 in the appendix.

neglect the optimization results and choose the methods obtained from the initial method,
see Table 2.

Optimized stability areas

In Figure 8 we depict the stability area contour lines for the four methods in Table 2.
The left Figure shows the contours with the best parameters for the exact stability areas,
whereas the contours in the right Figure correspond to the numerical integrator. At the
first sight both Figures are very similar. In particular the the left filled markers are both
on nearly the same lines. That behavior is expected because the ratios are nearly the
same and the coefficients too. Furthermore we obtain already with small step factors
L = 2 and L = 4 very similar stability triangle sizes. Hence this time we are already fine
with initial coefficients and can choose the coefficients, which lead to the largest stability
triangle for exact integration. This result is in contrast to the first order integrators and
a clear consequence of the smaller number of order conditions.

iii.1 method construction with linear problems 89

2 3 2 2 2 1 20 21 22 23

h
cfl

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

er
r

L
1
2
4

MFSEE MFSFB MFSSV RK3 MIS4

Figure 9: The errors using Störmer-Verlet as fast scale integrator for all MFS methods. The line
styles with circled markers distinguish between the MFS methods.

Accuracy analysis - linear problem

Again we apply the MFSSV method on the linear advection problem and depict the errors
with the Störmer-Verlet as fast scale integrator in Figure 9. The advantage in accuracy
compared to both reference methods and the other MFS methods is clearly visible.

iii.1.3 Conclusions

This section discussed the construction of MFS methods of order three with different
fast scale integrators. As already the derivation of the order conditions showed, the first
order fast scale integrators lead to many more conditions, compared to the second order
fast scale integrator. Our aim are order three methods with a large stability triangle.
The stability function is already an optimization problem, which finds the maximum
amplification along a halve circle. This increases the complexity and numerical effort
further.

This increase in number of parameters, and order condition complexity, for the MFSEE

and MFSFB conditions required a multistage numerical optimization procedure. Due
to the local nature of optimization algorithms, we required good starting parameters.
The different parameter sets, namely rational parameters for the step factors and real

iii.2 bubbles and externally driven flows 90

parameters for the method coefficients, form a mixed optimization problem. Instead of
a mixed integer-real optimization we fixed the rational parameters and solved around
10.000 independent optimization problems for every feasible step factor combination.

Nevertheless finding third order methods with the first order integrator remained hard.
But we found an improved method with larger stability area for the step factor L = 2
and the step factors in Table 1.

Using a second order fast scale integrator led to the set of order conditions MFSSV ,
with leads less order conditions compared to the first order integrator. Hence we used
a method with less stages and therefore got a smaller parameter set. In turn we were
able to optimize the parameters with a one stage procedure and obtained the optimal
step factors in Table 2. Again the methods have a larger stability area compared to the
reference method.

After the stability analysis we also analyzed the accuracy on the (discretized) linear
advection equation. In that regard, all newly constructed methods are more accurate by
magnitudes.

iii.2 bubbles and externally driven flows

The previous section discussed the advantages and disadvantages of the MFS methods
with the linear advection problem. Now we to proceed to two nonlinear problems. Hence
from every MFS method the parameter set with the largest stability area and neglect the
markers for them.

iii.2.1 The force driven flow

Let us consider the benchmark problem from Durran and Blossey [10]. The PDE

∂tu+ u∂xu+w∂zu+ ∂zψ−
u0(z) − ū(z, t)

τ
=− ∂xP (2.1a)

∂tw+ u∂xw+w∂zw− ∂xψ− b =− ∂zP (2.1b)

∂tb+ u∂xb+w∂zb =N2w (2.1c)

∂tP + u∂xP +w∂zP =− c2s (∂xu+ ∂zw) (2.1d)

iii.2 bubbles and externally driven flows 91

Parameter Value Parameter Value
ω [1/s] 0.005 ∆x [m] 250
Lx [km] 10.0 ∆z [m] 50
Lz [km] 2.5 td [s] 3000
Ψ0 [m

2

s] 80.0 K [1/s] 4.69× 10−4

width [km] 300
height [km] 10
N [1/s] 0.02
cs [ms] 350

Table 3: Physical (left) and numerical (right) parameters for the corrected non-hydrostatic test
case. The forth hyper diffusion coefficient K has numerical character because it serves a
stabilization term.

describes a stratified shear flow, accelerated by a non-divergent forcing term

ψ(t, x, z) =Ψ0
πx

Lx
sin(ωt) exp

[︄
−

(︃
πx

Lx

)︃2

−

(︃
πz

Lz

)︃2
]︄

.

The domain is a 300 km wide and 10 km height rectangle. At the bottom and top
boundary, i.e. z = −5 km and z = 5 km we assume a rigid wall. The left and right
boundaries are periodic. We discretize the PDE with finite differences on a staggered
mesh with the stencils given by Durran and Blossey [10]. The remaining physical and
numerical parameters are listed the Table 3. The experiment is non hydro static because
the time scale of the forcing ∇×Ψ is in the same range as the scale of the gravity N2. We
will keep the space discretization fixed and analyze the convergence with respect to the
buoyancy errors at the end time td. As a reference solution we solve the space discretized
system with the explicit RK4 and a step size h = 5× 10−3 s. The top Figure 10 depicts
the horizontal velocity contours at the end time and the gray scaled contour lines of the
forcing term ψ. These results are qualitatively comparable to the solutions in [50].

Error in buoyancy

We apply the reference methods RK3 and MIS4 and the new MFS methods MFSEE,
MFSFB and MFSSV with all three fast scale integrators on this benchmark problem. The
left and right Figure 11 depict the errors for all combinations.

Due to the vast number of combination we obtain a quite full graph with many details
and therefore we split the diagram in two and use a common legend. The top legend
explains the markers, which correspond to the outer methods. With the two quadrangle
markers, namely square and diamond, distinguish the MFS methods which base on first

iii.2 bubbles and externally driven flows 92

40 20 0 20 40 60 80 100
x (km)

5.0

2.5

0.0

2.5

5.0

y
(k

m
)

 3
 6

 9

12

15

12

18

Figure 10: Contour lines of the horizontal reference velocities computed with RK4 and h =
5× 10−3 s.

1/4 1/2 1 2 4 8 16 32
CFLcs

10−9

10−8

10−7

10−6

10−5

10−4

10−3

er
r ∞

1/4 1/2 1 2 4 8 16 32
CFLcs

L
1
2
4

EE FB SV

MFSEE

MFSFB

MFS3sv

RK3
MIS4

Figure 11: The maximal buoyancy error for the non-hydrostatic driven flow experiment. Again
the colors represent the step factors, whereas the markers correspond to the outer
methods. We distinct the fast scale solvers explicit Euler, forward-backward Euler
and Störmer-verlet by the marker fill styles left, right and full respectively. These fill
styles can be remembered as first order explicit, first order (semi)-implicit and second
order mixed.

order integrators, namely MFSEE and MFSFB. For the MFSSV , which bases on the second
order integrator Störmer-Verlet, we use the circle. For the references methods RK3 and
MIS4 we triangles with top and bottom pointing corners respectively. The second legend
at the bottom describes the fill styles and colors. We use the fill style to describe the fast
scale integrator. A halve-left filled marker corresponds to the explicit Euler method, the
halve-right filled marker to the forward-backward Euler and a completely filled marker
represents the second order Störmer-Verlet method. This fill style resembles the time
dependency and (halved) order within a fast step. The explicit method is of order one
and uses only the old value, which is left in time, the semi-implicit forward backward
Euler is also of order one and has an implicit part. In contrast the Störmer-Verlet method

iii.2 bubbles and externally driven flows 93

is of order two and uses therefore a full marker. In the left Figure we show only the
errors of the first order methods and in the left one only the second order method. But
both Figures use the same error axis and the same scale for the CFLCS axis. Hence a
seemingly full marker in the left Figure does not show a second order integrator, but the
two first order methods lead to the same errors.

The colors red, green and blue in turn represent the different step factors L analogous
to the previous sections. Hence lines with the same circle or quadrangle marker and same
fill style should be parallel, because the order of MFS methods is independent of the step
factor.

Let us first inspect the left Figure. On the first sight we see all three colors with the
halve-filled triangles in the left center above all blue lines. Hence the reference methods
using first order integrators are very inaccurate with small step factors. The slope of
these lines is near one, hence the methods reduce to order one. A deeper look in this
area also reveals the halve filled circles, which represent to the MFSSV methods with
three stages. These lines also have a slope of one. This clearly shows the necessity of the
additional order conditions in the Tables II.2 and II.3. Below these lines we see the halve
filled quadrangles and the diamonds, which look filled. This shows us that both first order
fast integrators lead to nearly the same errors in case of MFSFB, independent of the step
scale factor L. But we see also a drawback of the numerical solution process described
earlier. The halve filled squares lead to an step size independent error for a too small step
size. This indicates a poor solution of the order conditions. Furthermore we see also the
effect of the optimization with a fixed step factor. We find left most halve filled square
near cflcs ≈ 4 colored in green. Even with more steps, the method gets unstable. The
very same is true for the right filled square, it has only one point near cflcs ≈ 1

2 .
In contrast the diamonds exhibit order three up to an absolution error near 1.0× 10−9,

also independent of the step factor L as predicted by the order conditions. And at the
same time the accuracy and stability is less effected by the step factor then the MFSEE

method. This results shows more a lack in the optimization, because the MFSEE order
conditions are a subset of the MFSFB order conditions. Also note the markers at larger
CFL numbers for the reference methods. Hence in terms of accuracy the MFS methods
are better by several magnitudes and lead to a predictable order. But in terms of stability
it is the other way around.

The right Figure uses the same global methods as the left one, but only the second
order fast scale integrator Störmer-Verlet. Hence we see only the fully filled markers.
This time we have two groups of triangles. The triangles with top corner are always, and
for every color, above the other lines. Hence the reference method RK3 is again worse

iii.2 bubbles and externally driven flows 94

im terms of accuracy, but reaches order two instead of order one before. Furthermore
the lines with triangle marker with bottom corner, which represent the MIS4 method,
have slope three, indicating the expected order three, independent of the step factor. The
same applies to the MFSSV and MFSFB method. In contrast again, the MFSEE method
is only stable for a very small step size.

Conclusions

The nonlinear benchmark example showed the effect of the fast scale integrator on the
accuracy of complete method. The new MFS schemes behave as order three for all fast
scale integrators and independent in the step factor. This is on contrast to the reference
methods RK3 and MIS4, which reduce the order with the first order fast scale integrators
for smaller step sizes and too small step factors. Despite the good behavior in the linear
model problem and the slightly larger stability areas, the MFSEE methods are unstable
in a wide range of macro step sizes.

Using the second order fast scale integrator leads to order three methods in all cases.
Furthermore the MFS are again more accurate than the reference method RK3, but
require smaller time steps due to the stability constraints.

iii.2.2 The cold bubble down burst experiment

In 1993 the group Straka et al. [43] introduced the so called cold bubble down blast
experiment. In this benchmark we solve the (inviscid) compressible Euler equations

∂tρ =− ∂x(ρu) − ∂z(ρw) (2.2a)

∂t(ρu) + u∂x(ρu) +w∂z(ρu) = − ∂xP (2.2b)

∂t(ρw) + u∂x(ρw) +w∂z(ρw) = − ∂zP − ρg (2.2c)

∂t(ρθ) + u∂x(ρθ) +w∂z(ρθ) =0 (2.2d)

in terms of the potential temperature θ = T
(︂

P
P0

)︂− R
Cp . The physical parameters ideal

gas constant R = 287 J
kgK and the specific heat at constant pressure Cp = 1004 J

kgK

correspond to the ideal gas law [28]. The reference pressure P0 = 10× 105 Pa corresponds
nearly to the standard pressure near ground. Note that we neglected the diffusion, hence
the system constitutes a pure hyperbolic PDE without any damping. A PDE requires
at least a domain. We choose a 18.4 km wide and 10 km height rectangle, see Figure 12.

iii.2 bubbles and externally driven flows 95

x [km]

z [km]

0 36

6.4

Figure 12: Domain and boundary for the cold
bubble down blast benchmark. The
orange line represents a rigid bound-
ary, i.e. u = w = 0 with zero nor-
mal pressure gradient. The blue
lines represent the periodic bound-
ary.

5 10 15 20 25 30 35
x (km)

1

2

3

4

5

6

z (
km

)

Figure 13: Initial potential temperature for the
cold bubble down blast benchmark.
We placed a 15K colder elliptic bub-
ble, centered at (3 km,18 km.

Initially we place a 15K colder bubble in the center of the domain. After te = 900 s we
obtain a nearly symmetric solution, see the lowest Figure in 14. These solutions only
show the lower halve contours. More importantly we have very similar solutions as [43].

Stability of MFS methods

Whereas the previous section analyzed the accuracy of the numerical methods, this time
we concentrate in the stability. Hence we solve the benchmark problem up to the end
time td = 900 s and check if the method remains stable. The three Tables 4 summarize
the required numbers of macro steps without divergence damping. Hence we require much
more steps, then Knoth and Wensch [26] in their experiments for RK3. Each (sub) table
corresponds to the fast scale integrator, whereas the columns represent the corresponding
outer methods with varying step factors L ∈ {1, 2, 4}. The first table uses the explicit
Euler as fast scale integrator. This time the explicit Euler method leads to a stable
complete method using the order conditions MFSEE. But this comes clearly from the
optimization procedure. But it is interesting to see, that we need five times more steps
for RK3, which is better then the stability analysis predicted. Furthermore we see that
we obtained the smallest number of macro steps for the step factor L = 2, which stems
clearly from the optimization with this step factor. Furthermore the MFSFB is also more
stable than the MIS4 and RK3 method and, more importantly seems to be even more
stable than MFSEE. Again the ratios between MIS4 and MFSFB are unexpected high. In
this sense we also see a small benefit of the MFSSV conditions II.4. These methods also
requires more macro steps then MFSEE and MFSFB, but less then MIS4 and RK3.

In the second Table we use the forward-backward Euler method as fast scale integrator.
This time the RK3 methods is clearly better then in the previous experiment. Furthermore

iii.2 bubbles and externally driven flows 96

0.0

1.0

2.0

3.0

z (
km

)

Time=0 s

0.0

1.0

2.0

3.0

z (
km

)

Time=450 s

5 10 15 20 25 30 35
x (km)

0.0

1.0

2.0

3.0

z (
km

)

Time=900 s

Figure 14: The solutions of the cold bubble down blast experiment computet with RK3, L=1
and the forward-backward Euler as fast scale integrator. From top to bottom we see
contours of the initial values, and the solutions at t = 450s and t = 900s.

the MFSEE gets worse than before. Although the MFSFB, which order conditions belongs
to this fast scale integrator, benefits from higher step factors, the benefit seems to stop at
L = 4. It outperforms MIS4 by a factor of nearly two for L = 2 and L = 4. The benefit
compared to RK3 is negligible. Again the MFSSV is better then MFSEE and MFSFB.
Furthermore it is interesting to see that this method also outperforms MIS4 by a factor
of two and uses only three stages instead of four. But the method uses more step within
one stage, hence it is twice efficient. Compare to the previous Table, we clearly see the
benefit of the stable fast scale integrator.

The last Table uses the second order integrator Störmer-Verlet. This time the MFSSV

method performs best for all step factors L and MFSEE performs worst. We see the
largest benefit for the smallest step factor L = 1 in particular compared to MIS4. With
larger factors the benefit decreases. We also see a ways smaller dependency on the step
factor for all methods. Only the MIS4 method requires three times more macro steps
for L = 1 compare to L = 2. But for the higher factor, the required macro steps remains
stable.

Conclusions

Let us summarize the stability results. On the one hand we see the benefit of the stable
and higher order fast scale integrator. This is true for the pure MIS methods and the MFS
methods. But we also see that one can obtain usefull MFS methods using the first order
methods, where the MIS methods perform worse. The results for the explicit Euler are
worst, even with the MFS conditions. This might be related to the unstable integrator,
but the stability analysis on the linear problem looked more promising. Hence it is not
completely clear if the drawback stems from the low accuracy, or the missing stability

iii.2 bubbles and externally driven flows 97

explicit Euler
L MFSEE MFSFB MFSSV MIS4 RK3
1 1,933 1,860 5,507 11,199 10,200
2 1,532 1,398 4,172 4,533 6,240
4 2,016 1,153 3,393 4,533 4,728

forward-backward Euler
L MFSEE MFSFB MFSSV MIS4 RK3
1 3,062 2,759 1,000 3,385 1,331
2 2,845 1,139 829 1,992 1,258
4 2,805 1,045 807 1,992 1,241

Störmer-Verlet
L MFSEE MFSFB MFSSV MIS4 RK3
1 2,372 1,082 953 2,656 1,282
2 2,431 1,065 819 847 1,249
4 2,537 1,060 713 847 1,237

Table 4: Number of macro steps required for stable integration of the cold bubble down blast
problem without diffusion and without divergence damping.

properties. If the instability would dominate the stability of the complete method, we
would expect sufficiently lower stable number of steps using the forward-backward Euler.
But this is not the case. Also the additional order conditions make this conclusion a little
bit more vague, because switching to the stable first order method also require more order
conditions, as discussed earlier.

IV C O N C L U S I O N S A N D O U T LO O K

iv.1 conclusions

The construction of suitable multirate methods for multi scale problems is an ongoing
challenge. One method class are the multirate infinitesimal steps methods, which are
based on the exact resolution of the shortest time scale. In practice one has to resolve this
scale numerically too, hence the order conditions of MIS are only true for an infinite (or
many) steps. We extended these methods by a class of scalable fast scale integrator, where
we scale the number of steps. This extensions leads to the multirate finite step methods.
In particular we constructed the order conditions such, that the order is independent
in the (local) step size scaling. These order conditions, and in particular the additional
MFS conditions for the factor independence, are the theoretical basis for the method
construction.

The derivation of the order conditions revealed nearly no structure in the method
coefficients. Furthermore these order conditions also depend on the partitioning structure
of the fast scale integrator. Using a first order partitioned method nearly doubles the
number of conditions, which reduces the positive effect of increased stability. Due to the
higher number of conditions, one has to increase the number of stages, which in turn
reduces the overall efficiency. In this regard we also showed the benefit of the second
order fast scale integrator. This method not only requires less order conditions, but the
increasing accuracy seems to increase the possible stability area even with a lower number
of stages.

We also analyzed the stability of this new method class. The basis for the stability
analysis are the advection equation for linear acoustics in an infinite domain. We derived
the parameterized linear ODE (II.5.8), with the two parameters Cs and Ca, which
represent the CFL number with respect to the speed of sound and background velocity,
respectively. We apply the MFS method on this linear ODE and derive the corresponding
stability functions (II.5.13c). It turns out, that these functions are the maxima of norms
of a matrix function in terms of the two parameters Ca and Cs. Hence already the
stability function is an optimization problem and computational expensive. The methods

98

iv.2 outlook 99

are stable in a subset of the (Ca,Cs) space, where the stability functions are bounded
from above by one. These subsets have an arbitrary structure. For a feasible optimization
we defined the stability triangle within this stable subset.

A good MFS method then requires parameters with a large stability triangle area, and
must fulfill the order conditions at the same time. Furthermore the method parameters
are the union of two sets, namely the real method coefficients and the rational step ratios.
We see, that this optimization process has a complicated cost function and nonlinear
constraints. Numerical optimization algorithms depend highly on the initial values, hence
we implemented a multistage optimization process and fixed the rational parameters.
This approach led to many independent optimization problems, in our case around 10.000
problems. Many sub problems did converge to a solution, which solves the order conditions
and had a sufficiently large stability area. From the remaining solutions, we selected
the best methods according to two different criteria and analyzed their accuracy and
sensitivity with respect to the step factor. In the linear case, these newly constructed
methods had a sufficiently large stability area and are by magnitudes more accurate than
reference method without the additional (MFS) order conditions.

The analysis on the nonlinear benchmark problems also showed the main benefit of these
methods. Despite their slightly slower stable macro step size, they lead to magnitudes
lower errors within the stable macro step sizes. As expected, this behavior depends highly
on the underlying fast scale integrator. Whereas the use of the second order fast scale
integrator led to a large improvement, with a smaller sensitivity in the micro step size
factor L, first order integrators are more sensitive to the micro step size scaling factor.

iv.2 outlook

The main result are the order conditions, such that the order is independent in the step
scaling factor L. To achieve that, we introduce a step ratio between the stages. This
approach renders the coefficient optimization with respect to the stability triangle as a
mixed optimization problem with real and rational parameters. At the current stage we
fixed the ratios and optimized the real parameters with fixed integers. Hence we do not
know if there are better ratios, we did not try yet and a mixed integer-real optimization
method could reveal better methods with larger stability areas.

Also the optimization with fixed ratios depends heavily on the initial parameters. In
this work we started from a good MIS method and hope to keep the good stability
properties. But the additional MFS conditions are such hard that even the optimization

iv.2 outlook 100

with an exact integrator looses the good stability areas of the initial method. Hence we
can expect even better parameters with other optimization strategies. In particular a
good heuristic for some coefficients could improve the stability optimization drastically.

We can expect another improvement by fixing the step factor and derive the corre-
sponding order conditions. This can be done with the already derived conditions by
collecting the derivatives and summing up their coefficients. The advantage of the MFS
over the GARK methods is the known component partitioning for partitioned fast scale
integrators. In this case we loose independence, but should gain additional degrees of
freedom which could help increasing the stability areas.

B I B L I O G R A P H Y

[1] Awad H Al-Mohy and Nicholas J Higham. A new scaling and squaring algorithm for
the matrix exponential. SIAM Journal on Matrix Analysis and Applications, 31(3):
970–989, 2009.

[2] David G Andrews. An introduction to atmospheric physics. Cambridge University
Press, 2010.

[3] Josef Apfelbeck, T Krimly, and M Huigen. Managemententscheidungen im pflanzen-
bau in abhängigkeit von klima-/wettereinflüssen. Schriften der Gesellschaft für
Wirtschafts-und Sozialwissenschaften des Landbaus eV Band 45, page 433, 2010.

[4] A. L. Araujo, A. Murua, and J. M. Sanz-Serna. Symplectic methods based on
decompositions. SIAM Journal on Numerical Analysis, 34(5):1926–1947, 1997. ISSN
00361429.

[5] Uri M. Ascher, Steven J. Ruuth, and Raymond J. Spiteri. Implicit-explicit runge-
kutta methods for time-dependent partial differential equations. Applied Numerical
Mathematics, 25(2):151 – 167, 1997. ISSN 0168-9274. doi: https://doi.org/10.1016/
S0168-9274(97)00056-1. Special Issue on Time Integration.

[6] Germund G. Dahlquist. A special stability problem for linear multistep methods.
BIT Numerical Mathematics, 3(1):27–43, Mar 1963. ISSN 1572-9125. doi: 10.1007/
BF01963532.

[7] Maplesoft, division of Waterloo Maple Inc. Maple, 2017.

[8] Günther Doms and M Baldauf. A description of the nonhydrostatic regional cosmo
model. part i: Dynamics and numerics. Deutscher Wetterdienst, Offenbach, 2011.

[9] Dale R. Durran. Numerical methods for wave equations in geophysical fluid dynamics
/. Springer„ New York ; , Berlin ; , Heidelberg [u.a.] :, 1999. ISBN 0387983767.

[10] Dale R Durran and Peter N Blossey. Implicit–explicit multistep methods for fast-
wave–slow-wave problems. Monthly Weather Review, 140(4):1307–1325, 2012.

101

bibliography 102

[11] Charles William Gear and DR Wells. Multirate linear multistep methods. BIT
Numerical Mathematics, 24(4):484–502, 1984. doi: https://doi.org/10.1007/
BF01934907.

[12] Adrian E Gill. Atmosphere. Ocean dynamics, 30:662, 1982.

[13] Pierre-Arnaud Godlewski, Edwige Raviart. Numerical approximation of hyperbolic
systems of conservation laws, 1996.

[14] Knut Großmann et al. THERMO-ENERGETIC DESIGN OF MACHINE TOOLS.
Springer, 2016.

[15] Michael Günther and Peter Rentrop. Multirate row methods and latency of electric
circuits. Applied Numerical Mathematics, 13(1-3):83–102, 1993.

[16] Michael Günther and Adrian Sandu. Multirate generalized additive runge kutta
methods. Numerische Mathematik, 133(3):497–524, 2016.

[17] Ernst Hairer. Order conditions for numerical methods for partitioned ordinary
differential equations. Numerische Mathematik, 36(4):431–445, 1981.

[18] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical inte-
gration illustrated by the Störmer-Verlet method. Acta Numerica, 12:399–450, may
2003. doi: 10.1017/s0962492902000144.

[19] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical
integration : structure-preserving algorithms for ordinary differential equations /.
Springer„ Berlin ; , Heidelberg [u.a.] :, 2. ed. edition, 2006. ISBN 3540306633.

[20] Ernst Hairer, S.P. Nørsett, and G. Wanner. Solving ordinary differential equations.
1, Nonstiff problems /. Springer„ Berlin ; , Heidelberg [u.a.] :, 2., rev. ed., 1. softcover
printing edition, 2009. ISBN 9783642051630.

[21] Peter Henrici. Discrete variable methods in ordinary differential equations /. Wiley„
New York, NY [u.a.] :, c 1962. ISBN 0471372242.

[22] W Hundsdorfer, B Koren, JG Verwer, et al. A positive finite-difference advection
scheme. Journal of computational physics, 117(1):35–46, 1995.

[23] Stefan Jebens, Oswald Knoth, and Rüdiger Weiner. Explicit two-step peer methods
for the compressible euler equations. Monthly Weather Review, 137(7):2380–2392,
2009.

bibliography 103

[24] Christopher A. Kennedy and Mark H. Carpenter. Additive runge–kutta schemes for
convection–diffusion–reaction equations. Applied Numerical Mathematics, 44(1):139
– 181, 2003. ISSN 0168-9274. doi: https://doi.org/10.1016/S0168-9274(02)00138-1.

[25] JT Kiehl, JJ Hack, GB Bonan, BA Boville, DL Williamson, and PJ Rasch. The
national center for atmospheric research community climate model: Ccm3. Journal
of Climate, 11(6):1131–1149, 1998.

[26] Oswald Knoth and Joerg Wensch. Generalized split-explicit runge–kutta methods
for the compressible euler equations. Monthly Weather Review, 142(5):2067–2081,
2014. doi: 10.1175/MWR-D-13-00068.1.

[27] Oswald Knoth and Ralf Wolke. Implicit-explicit runge-kutta methods for computing
atmospheric reactive flows. Applied Numerical Mathematics, 28(2):327 – 341, 1998.
ISSN 0168-9274. doi: http://dx.doi.org/10.1016/S0168-9274(98)00051-8.

[28] Dilip Kondepudi. Introduction to modern thermodynamics. Wiley, Chichester, 2008.
ISBN 9780470015995.

[29] Karen Kuhn. Stability and applications of higher-order multirate Rosenbrock and
Peer methods. PhD thesis, Darmstadt, 2014.

[30] Randall J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge
Univ. Press, Cambridge [u.a.], repr. edition, 2005. ISBN 0521009243.

[31] John Marshall, R Alan Plumb, et al. Atmosphere, ocean, and climate dynamics.
Elsevier Academic Press, 2008.

[32] Fedor Mesinger. Forward-backward scheme, and its use in a limited area model.
Contrib. Atmos. Phys, 50(1977):200–210, 1977.

[33] Andreas Naumann and Jörg Wensch. Multirate finite step methods with varying
step sizes. PAMM, 17(1):851–852, 2017. doi: 10.1002/pamm.201710393.

[34] Andreas Naumann and Jörg Wensch. Multirate finite step methods. Numerical
Algorithms, 2019.

[35] Andreas Naumann, Norman Lang, Marian Partzsch, Michael Beitelschmidt, Peter
Benner, Axel Voigt, and Jörg Wensch. Computation of thermo-elastic deformations
on machine tools a study of numerical methods. Production Engineering, 10(3):
253–263, Jun 2016. ISSN 1863-7353. doi: 10.1007/s11740-016-0674-7.

bibliography 104

[36] Andreas Naumann, Daniel Ruprecht, and Joerg Wensch. Toward transient finite ele-
ment simulation of thermal deformation of machine tools in real-time. Computational
Mechanics, Jan 2018. ISSN 1432-0924. doi: 10.1007/s00466-018-1540-6.

[37] Helmut Podhaisky, Rüdiger Weiner, and Bernhard A Schmitt. Rosenbrock-type
‘peer’two-step methods. Applied numerical mathematics, 53(2-4):409–420, 2005.

[38] Adrian Sandu and Michael Günther. A generalized-structure approach to additive
runge–kutta methods. SIAM Journal on Numerical Analysis, 53(1):17–42, 2015.

[39] Valeriu Savcenco, W Hundsdorfer, and JG Verwer. A multirate time stepping strategy
for stiff ordinary differential equations. BIT Numerical Mathematics, 47(1):137–155,
2007.

[40] William C. Skamarock and Joseph B. Klemp. The stability of time-split numerical
methods for the hydrostatic and the nonhydrostatic elastic equations. Monthly
Weather Review, 120(9):2109–2127, 1992. doi: 10.1175/1520-0493(1992)120<2109:
TSOTSN>2.0.CO;2.

[41] William C Skamarock, Joseph B Klemp, Jimy Dudhia, David O Gill, Dale M Barker,
Wei Wang, and Jordan G Powers. A description of the advanced research wrf version
2. Technical report, DTIC Document, 2005.

[42] Stig Skelboe and Per Ulfkjaer Andersen. Stability properties of backward euler
multirate formulas. SIAM journal on scientific and statistical computing, 10(5):
1000–1009, 1989.

[43] J. M. Straka, Robert B. Wilhelmson, Louis J. Wicker, John R. Anderson, and
Kelvin K. Droegemeier. Numerical solutions of a non-linear density current: A
benchmark solution and comparisons. International Journal for Numerical Methods
in Fluids, 17(1):1–22, 1993. doi: 10.1002/fld.1650170103.

[44] K. Strehmel and R. Weiner. Numerik gewöhnlicher Differentialgleichungen. Teubner
Studienbücher. B.G. Teubner, 1995. ISBN 9783519020974.

[45] Geoffrey Vallis. Geophysical fluid dynamics: Whence, whither and why? Proceedings.
Mathematical, physical, and engineering sciences / the Royal Society, 472:20160140,
08 2016. doi: 10.1098/rspa.2016.0140.

[46] Charles F Van Loan. The ubiquitous kronecker product. Journal of computational
and applied mathematics, 123(1):85–100, 2000.

bibliography 105

[47] Loup Verlet. Computer "experiments" on classical fluids. i. thermodynamical
properties of lennard-jones molecules. Phys. Rev., 159:98–103, Jul 1967. doi:
10.1103/PhysRev.159.98.

[48] Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical
programming, 106(1):25–57, 2006.

[49] Rüdiger Weiner, Katja Biermann, Bernhard A Schmitt, and Helmut Podhaisky.
Explicit two-step peer methods. Computers & Mathematics with Applications, 55
(4):609–619, 2008.

[50] Hilary Weller, Sarah-Jane Lock, and Nigel Wood. Runge–kutta imex schemes
for the horizontally explicit/vertically implicit (hevi) solution of wave equations.
Journal of Computational Physics, 252:365 – 381, 2013. ISSN 0021-9991. doi:
https://doi.org/10.1016/j.jcp.2013.06.025.

[51] Neil C. Wells, Neil Wells. The atmosphere and ocean a physical introduction. Wiley-
Blackwell, Chichester, West Sussex [u.a.], 3. ed. edition, 2012. ISBN 0470694688.

[52] Jörg Wensch, Oswald Knoth, and Alexander Galant. Multirate infinitesimal step
methods for atmospheric flow simulation. BIT Numerical Mathematics, 49(2):449–
473, 2009.

[53] Gerald Beresford Whitham. Linear and nonlinear waves, volume 42. John Wiley &
Sons, 2011.

[54] Louis J Wicker and William C Skamarock. A time-splitting scheme for the elastic
equations incorporating second-order runge-kutta time differencing. Monthly Weather
Review, 126(7):1992–1999, 1998.

Appendices

106

.1 order conditions for störmer-verlet 107

.1 order conditions for störmer-verlet

The Störmer-Verlet method [47, 19] leads to the fast scale function (II.2.3c). This
function switches between odd and even steps. Due to the switching the relations for
the intermediate expressions (II.3.15) are quite lengthy. Nevertheless we derive them in
details by considering the stage i and stack the results one over the other afterwards.

All expressions involve the partial derivative of the fast scale function with respect to
the second argument at yn = (yp,yq). Hence we first denote them for the odd and even
steps, i.e.

∂2g
SV
1 ⟨F⟩ =

[︄
g
p
p 0
g
q
p 0

]︄
·

[︄
Fp

Fq

]︄

∂2g
SV
2 ⟨F⟩ =

[︄
0 g

p
p

0 g
q
p

]︄
·

[︄
Fp

Fq

]︄

,and conclude

∂2g
SV
1 ⟨F⟩+ ∂2g

SV
2 ⟨F⟩ = gy ⟨F⟩ .

We assumed an even number of total fast steps in every stage, hence the sum of all odd
and all even steps is

Lii∑︂
j=1

∂2g
SV
j ⟨F⟩ = Lii

2
gy ⟨F⟩ .

After stacking all stages together, we end up with equation (II.3.36a).
The equations (II.3.36) are the sums of derivatives of gj. so we have to split the steps

in an odd and an even set. We assume an even number of steps in every stage, such that
Lii = 2Mii. Let us start with the double sum. First we split the outer index in the odd
and even set, i.e.

Lii∑︂
l=1

l−1∑︂
j=1

∂2g
SV
j ⟨F⟩ =

Mii∑︂
l=1

S2l + S2l−1 .

.1 order conditions for störmer-verlet 108

We simplify the inner sums, i.e.

S2l =

2l−1∑︂
j=1

∂2g
SV
j ⟨F⟩

=

2l∑︂
j=1

∂2g
SV
j ⟨F⟩− ∂2g

SV
2l ⟨F⟩

= l
(︁
∂2g

SV
1 ⟨F⟩+ ∂2g

SV
2 ⟨F⟩

)︁
− ∂2g

SV
2 ⟨F⟩

S2l−1 =

2l−2∑︂
j=1

∂2g
SV
j ⟨F⟩ = (l− 1)

(︁
∂2g

SV
1 ⟨F⟩+ ∂2g

SV
2 ⟨F⟩

)︁
,

and then sum them up to Mii, i.e.

Mii∑︂
l=1

S2l + S2l−1 =M2
iigy ⟨F⟩−Mii∂2g

SV
2 ⟨F⟩ .

After stacking the stages one over the other, we obtain (II.3.36b). The next sum is quite
straight forward. We consider the definition for stage i and split the sum in odd and even
summands, i.e.

2Mii∑︂
l=1

(l− 1)∂2g
SV
l ⟨F⟩ =

Mii∑︂
l=1

(2l− 2)∂2g
SV
2l−1 ⟨F⟩+ (2l− 1)∂2g

SV
2l ⟨F⟩

=Mii(Mii − 1)∂2g
SV
1 ⟨F⟩+M2

ii∂2g
SV
2 ⟨F⟩

and collect the quadratic factor Mii to end up with

=M2
iigy ⟨F⟩−Mii∂2g

SV
1 ⟨F⟩ .

Again after stacking the last equations for every i, we end up with (II.3.36c). We simplify
the sum (II.3.15d)

2Mii∑︂
l=1

∂2g
SV
l

⟨︁
∂2g

SV
l ⟨F⟩

⟩︁
=Mii

(︁
∂2g

SV
1
⟨︁
∂2g

SV
1 ⟨F⟩

⟩︁
+ ∂2g

SV
2
⟨︁
∂2g

SV
2 ⟨F⟩

⟩︁)︁
by using the splitting in odd and even steps. The first order expressions for Gl̂

1 in equation
(II.3.22c) contain the difference between (II.3.36b) and (II.3.36c). All other expressions
depend on the elementary differential gy ⟨gy ⟨F⟩⟩, which is definitely part of the exact

.1 order conditions for störmer-verlet 109

solution. Hence we improve the readability expressing the elementary differentials in
(II.3.38a) and (II.3.38b) in terms of gy ⟨gy ⟨F⟩⟩, ∂2g

SV
1
⟨︁
∂2g

SV
1 ⟨F⟩

⟩︁
, ∂2g

SV
1
⟨︁
∂2g

SV
2 ⟨F⟩

⟩︁
and ∂2g

SV
2
⟨︁
∂2g

SV
1 ⟨F⟩

⟩︁
. We obtain the relation by comparing the coefficients. In details

we start from

α1∂2g
SV
1
⟨︁
∂2g

SV
1 ⟨F⟩

⟩︁
+ α2∂2g

SV
1
⟨︁
∂2g

SV
2 ⟨F⟩

⟩︁
+ α3∂2g

SV
2
⟨︁
∂2g

SV
1 ⟨F⟩

⟩︁
+ α4∂2g

SV
2
⟨︁
∂2g

SV
2 ⟨F⟩

⟩︁
= β1gy ⟨gy ⟨F⟩⟩+ β2∂2g

SV
1
⟨︁
∂2g

SV
1 ⟨F⟩

⟩︁
+ β3∂2g

SV
1
⟨︁
∂2g

SV
2 ⟨F⟩

⟩︁
+ α4∂2g

SV
2
⟨︁
∂2g

SV
1 ⟨F⟩

⟩︁
and use the relation gy ⟨F⟩ = ∂2g

SV
1 ⟨F⟩+ ∂2g

SV
2 ⟨F⟩ for the coefficient β1 to obtain

α1 = β1 + β2

α2 = β1 + β3

α3 = β1 + β4

α4 = β1

In matrix notation we have simply

α =

⎡⎢⎢⎢⎢⎣
1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0

⎤⎥⎥⎥⎥⎦β .

A M E T H O D PA R A M E T E R S

This section lists the method parameters for all MFS methods. The matrices are all lower
diagonal, hence we neglect the zeros in the left upper part.

a.1 explicit euler

α

0.0
0.0
0.0 1.35696769425831998
0.0 1.31327225291199001 0.15436408818894601
0.0 0.94002051579741697 2.40650377463183007 -0.22682715992841601

γ

0.0
0.0
0.0 -1.50597264576960010
0.0 -0.29105924742822997 2.66524779827178993
0.0 0.51081132452772005 1.51206007860341995 -0.49061910502352202

β

0.0
0.29527044916201600
0.09274719960944830 0.02330752755939680

-1.23764131908762587 0.60825426472370259 0.87314944369011205
-1.87549345659334765 0.25644691678441212 1.84108741247911345 0.60440783018237298

D 0.0 0.29527044916201600 0.11605472716884510 0.24376238932618877 0.82644870285255090
L̂ 0.0 1 2 1 10

Table 1: Method MFSEE

110

a.1 explicit euler 111

α

0.0
0.0
0.0 0.50770259025695397
0.0 2.55223309427528999 -1.65135794011186010
0.0 3.87474984894440011 -3.99414336027856010 1.85975338216983999

γ

0.0
0.0
0.0 0.32334505037659700
0.0 -0.55635130119042298 -0.62587068636613297
0.0 -0.08466733133229019 0.13001064532144399 0.08026651515378780

β

0.0
0.76618205998077205

-0.20036432380799540 0.28264534472436298
-1.12743602960268197 0.86540890326544295 0.57828277805431405
-0.31375318945274439 2.78849404571018544 -2.97297028984825262 0.96898021409557400

D 0.0 0.76618205998077205 0.08228102091636758 0.31625565171707504 0.47075078050476249
L̂ 0.0 3 1 7 2

Table 2: Method MFSEE

α

0.0
0.0
0.0 4.31110086549293037
0.0 2.03887934463184983 0.18283213875151999
0.0 -3.57019119861879020 0.62377956461540895 3.28845610569607993

γ

0.0
0.0
0.0 -3.75518412156469994
0.0 -0.54200982473967996 -0.27768290338766999
0.0 0.14400670861812601 -1.17417247867254004 0.17365047480579099

β

0.0
0.33821700145988498

-0.96644387071343174 1.26764591039591989
-0.32316583760744994 0.38387608104649351 0.10544534615568200
0.14819976923544154 -0.49493613670258257 -0.26164760195873832 0.86909731048365502

D 0.0 0.33821700145988498 0.30120203968248815 0.16615558959472559 0.26071334105777566
L̂ 0.0 5 4 1 8

a.2 forward-backward euler 112

Table 3: Method MFSEE

α

0.0
0.0
0.0 6.01844137906912025
0.0 3.17597064336269996 0.09336837926704129
0.0 -6.28804318447577959 0.97378971866153796 2.67750480930958989

γ

0.0
0.0
0.0 -4.87354639128365008
0.0 -0.90410482493547795 -0.20040253425053900
0.0 1.79206300070526003 -1.18359459330093997 0.26666040684843101

β

0.0
0.20110677029919699

-2.16115518922650640 2.61980129463846012
-0.42811244508738638 0.55029042527596195 0.10414733294970401
0.17553602312553196 -0.50196922398821875 -0.16981343878052868 0.75054797533720397

D 0.0 0.20110677029919699 0.45864610541195372 0.22632531313827958 0.25430133569398850
L̂ 0.0 3 3 1 10

Table 4: Method MFSEE

a.2 forward-backward euler

α

0.0
0.0
0.0 2.20416741941249983
0.0 1.00572652778042992 0.01646952103695340
0.0 -2.63467977694915989 0.86288667305979805 3.56252042428050997

γ

0.0
0.0
0.0 -0.47347843609023499
0.0 -0.03775918607238830 -0.63741046760519304
0.0 1.91282645226976999 -0.34378232657069602 -1.90780710073839010

a.2 forward-backward euler 113

β

0.0
0.33563055714402601

-0.19135909591037864 0.35027167374789397
0.21856435977363553 0.06724424325829589 0.19840693398699299

-0.25822536323777184 -0.74577471527137007 0.20754059015047582 1.07600328442156989

D 0.0 0.33563055714402601 0.15891257783751533 0.48421553701892445 0.27954379606290392
L̂ 0.0 8 1 10 8

Table 5: Method MFSFB

α

0.0
0.0
0.0 0.67775513851723901
0.0 0.44587916963996699 5.21847269717312034
0.0 -2.31815504482795998 8.13924973148414921 -0.00150457635340375

γ

0.0
0.0
0.0 -0.38403561650966100
0.0 -1.82090162190679994 1.27985638569056004
0.0 -0.13713181371771799 1.65592185004063008 -0.78877583252057204

β

0.0
0.31325711303701798
0.03876661715627612 0.08153525550394110

-0.28399005534444532 2.46599925886028881 -1.88332839239454009
-1.19051220434454241 0.75991881319136512 0.91038209549308524 0.19568520526672201

D 0.0 0.31325711303701798 0.12030187266021722 0.29868081112130351 0.67547390960663001
L̂ 0.0 7 2 3 8

Table 6: Method MFSFB

a.2 forward-backward euler 114

α

0.0
0.0
0.0 1.17444488150848003
0.0 2.69878148531170003 1.94605538371321996
0.0 1.13184100699080004 4.38816638810659043 -0.40015001962543800

γ

0.0
0.0
0.0 -1.27657495230496010
0.0 -1.18350663238632992 0.35970717629800703
0.0 0.86440691616758403 0.47261604339382501 -0.77177502608269799

β

0.0
0.23304407466776300

-0.05189559186747517 0.34939210987684399
-0.85760242669516740 1.90021547542302427 -0.86525003268156597
-1.08677261700370331 1.34590992990005653 0.11718852033074945 0.18935360450091199

D 0.0 0.23304407466776300 0.29749651800936883 0.17736301604629090 0.56567943772801466
L̂ 0.0 2 7 2 10

Table 7: Method MFSFB

α

0.0
0.0
0.0 0.73027817627567204
0.0 1.75577347374625004 2.73820353488819013
0.0 -1.49594622671587008 6.61583487708920970 -0.08003714588242260

γ

0.0
0.0
0.0 -0.52794155976831803
0.0 -2.83666854991050021 2.81426142230629983
0.0 -0.02084408206216050 1.04058444444464993 -0.68059790500408801

β

0.0
0.32950301692732997
0.04692028559841566 0.12703802173876499

-0.11432570532779690 2.57849216636630540 -2.20666957928834018
-0.70056660468301701 1.19288959448501530 -0.07425488455789164 0.18059006751548701

D 0.0 0.32950301692732997 0.17395830733718065 0.25749688175016816 0.59865817275959365
L̂ 0.0 6 2 3 10

a.3 störmer-verlet 115

Table 8: Method MFSFB

a.3 störmer-verlet

α

0.0
0.0
0.0 -0.03029477970719350
0.0 0.87286903313859499 -0.13999909406739400

γ

0.0
0.0
0.0 -0.04682174633143820
0.0 0.39249640242767397 -0.30530727510842998

β

0.0
0.36857320894108703
0.16645240321361443 0.48740994062999599

-0.11493004258019834 -0.00068690321206655 0.92774923204120197

D 0.0 0.36857320894108703 0.65386234384361042 0.81213228624893707
L̂ 0.0 1 1 3

Table 9: Method MFSSV

α

0.0
0.0
0.0 -0.00452160744751265
0.0 0.96872582564320897 -0.11318188120983200

γ

0.0
0.0
0.0 -0.00651389358391874
0.0 0.21516297929229700 -0.16116556194080900

β

0.0
0.35366175982409598
0.15594096566386567 0.44982644533336702

-0.05551644691924718 -0.24570840380583514 1.04764866016143010

D 0.0 0.35366175982409598 0.60576741099723264 0.74642380943634778
L̂ 0.0 1 1 7

Table 10: Method MFSSV

a.3 störmer-verlet 116

α

0.0
0.0
0.0 -0.01982229423679270
0.0 0.91181799607547098 -0.16537826893277899

γ

0.0
0.0
0.0 -0.03306869176963770
0.0 0.38493359646965097 -0.30178074201521898

β

0.0
0.37065791406424298
0.19450485163725856 0.42969164749570998

-0.08744931713093868 -0.15721149367630635 1.04645018828632996

D 0.0 0.37065791406424298 0.62419649913296849 0.80178937747908496
L̂ 0.0 3 3 10

Table 11: Method MFSSV

α

0.0
0.0
0.0 -0.00917893490079230
0.0 0.95376284755833596 -0.12390549442314799

γ

0.0
0.0
0.0 -0.01349580471993010
0.0 0.25315887578639801 -0.19130014656538100

β

0.0
0.35713737894325998
0.16006262097610371 0.45358119081342402

-0.06752674521576796 -0.20150368779205943 1.02886502881738995

D 0.0 0.35713737894325998 0.61364381178952776 0.75983459580956259
L̂ 0.0 1 1 5

Table 12: Method MFSSV

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Motivation
	Multi scale additive and partitioned ODEs

	Multirate methods
	Multirate infinitesimal step methods
	Multirate finite step methods
	Unified notation of MFS methods
	Explicit Euler as fast scale integrator
	Forward-backward Euler as fast scale integrator
	Störmer-Verlet as fast-scale integrator

	Order conditions
	Extended notation and common symbols
	Derivatives of the numerical solution
	Common order conditions of MFS methods
	Explicit Euler as fast scale integrator
	Forward-backward Euler as fast scale integrator
	Störmer-Verlet as fast scale integrator

	Interpretation as GARK method
	Stability
	Model problem
	Stability function

	Method construction
	Stability optimization for methods of order two
	MFS2 methods
	Numerical experiments
	Conclusions

	Numerical experiments
	Method construction with linear problems
	First order fast scale integrators
	Second order fast scale integrator
	Conclusions

	Bubbles and externally driven flows
	The force driven flow
	The cold bubble down burst experiment

	Conclusions and outlook
	Conclusions
	Outlook

	Appendices
	Order conditions for Störmer-Verlet

	Method parameters
	explicit Euler
	Forward-backward Euler
	Störmer-Verlet

