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Abstract 

In today’s industry, the sustainable use of raw materials and the development of new green 

technology in mass production, with the aim of saving resources, energy and production costs, 

is a significant challenge. Deep drawing as a widely used industrial sheet metal forming 

process for the production of automotive parts belongs to one of the most energy-efficient 

production techniques. However, one disadvantage of deep drawing regarding the realisation 

of green technology is the use of lubricants in this process. Therefore, a novel approach for 

modifying the conventional deep drawing process to achieve a lubricant-free deep drawing 

process is introduced within this thesis. 

In order to decrease the amount of frictional force for a given friction coefficient, the integral 

of the contact pressure over the contact area has to be reduced. To achieve that, the flange 

area of the tool is macro-structured, which has only line contacts. To avoid the wrinkling, the 

geometrical moment of inertia of the sheet should be increased by the alternating bending 

mechanism of the material in the flange area through immersing the blankholder slightly into 

the drawing die. 

Therefore, the developed process can, besides the reduction of the contact area and the 

blankholder force, also increase the resistance of the sheet metal against wrinkling. 

Furthermore, through adjusting the immersion depth, it is possible to control the material flow 

and enlarge the process window. The induced alternating bending to stabilise the sheet metal 

against wrinkling during deep drawing with macro-structured tools generates an additional 

force in the drawing direction. The created non-frictional restraining force can be used 

positively to compensate the springback behaviour of the workpiece. 
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I. SYMBOLS AND ABBREVIATIONS 

Symbol Unit Meaning 

a mm Length of rectangular element in buckling analysis 

a - Material constant  

A0 mm2 Cross sectional area of the drawn part 

A0 mm2 Original area of the sheet metal before forming  

A80 % Elongation at fracture 

A1 mm2 Increased area after stretch drawing 

Aa mm2 Apparent contact area 

Ai mm2 Partial contact area in macro-structured tool 

Ar mm2 Real contact area 

b mm Width of rectangular element in buckling analysis 

b mm Flange width 

CR - Crack factor  

E GPa YOUNG modulus 

E0 GPa Plastic buckling modulus  

EB Nm Bending energy into a half sine wave segment in the wrinkled flange 

Eb Nm Bending energy  

Ef Nm Frictional energy  

Eid Nm Ideal forming energy 

EL Nm Energy due to the lateral loading of the surface in the wrinkled flange 

Et Nm Energy due to the tangential compressive forces in the wrinkled flange 

f - Modified friction factor 

F1 kN Pulling force 

F2 kN Back tension force 

Fb kN Bending force 

Fbc kN Bottom crack force 

FBH kN Blankholder force 

Ff kN Friction force  

Ffd kN Friction force in die edge radius  

Fff kN Friction force in flange area 

Fid kN Ideal forming force  

FN kN  Normal force 

Ftot kN Total punch force  

h mm Punch displacement / drawing depth  

I kg m2 Moment of inertia  

k MPa Shear yield stress 
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l mm Length of a half sine wave segment 

m - Friction factor 

m - Characteristic strain constant  

m - Number of half sine waves in tangential direction in the buckled mode     

Mb Nm Bending moment due to tangential stresses over the sheet thickness  

𝑀b
eb Nm Required elastic bending moment to close the split ring 

𝑀b
res Nm Bending moment because of residual stress in the intact ring 

n - 
Flattering factor for the intermediate transition from the COULOMB to 

the shear friction model 

n - Number of half sine waves in radial direction in the buckled mode     

n - Strain hardening coefficient 

P MPa Surface pressure 

P - Slope of the stress–strain curve at a given value of strain 

Pi MPa Partial surface pressure in macro-structured tool  

PTotal MPa Total surface pressure in macro-structured tool  

q mm2 Flange surface 

r mm Radius of an arbitrary point in flange area  

�̅� - Mean vertical anisotropy 

r0 mm Blank initial radius  

r1 mm Mean radius of cut out ring 

r2 mm Mean radius of cut out and split ring 

ra mm Blank current outer radius  

Ra μm Arithmetical mean deviation of surface roughness 

rb mm Bending radius  

ri mm Inner radius of the die   

ri
* mm Inner radius of the flange 

RC mm Corner radius 

RM mm Die edge radius  

Rm MPa Ultimate tensile strength  

rm mm Mean flange radius 

Rmax μm Maximum depth of the assessed profile of surface roughness 

rp mm Punch edge radius 

rs mm Radius of macro-structures  

rθ mm Radius of the die edge from the centre 

Rz μm 
Average distance between the highest peak and lowest valley of 

surface roughness 

s0 mm Sheet thickness 

t s Time  

v mm.s-1 Sliding velocity between two friction bodies 
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V mm3 Volume 

w mm Deflection of plate in z-direction in buckled mode  

   

α - Contact area ratio 

α Rad Coordinate of the local intersection coordinate system 

α Rad Deflection angle of punch edge radius 

β - Drawing ratio 

β1 Rad Springback angle regarding the sidewall of the U-Channel 

β2 Rad Springback angle regarding the flange of the U-Channel 

δ mm Immersion depth  

Δ mm Opening gap of split ring 

φt - Tangential compression factor at the outlet of punch edge radius 

δh mm Virtual punch displacement 

δrθ mm Virtual displacement at outlet of the die edge radius 

δu mm Virtual displacement at the flange inner edge 

δV mm3 Virtual volume change 

δWext Nm Virtual external work 

δWint Nm Virtual internal work 

δεij - Virtual strain  

εpl - Plastic strain  

휀max,out
eb  - 

Maximum of tangential elastic bending strain due to the springback at 

the outer surface of the intact ring 

휀max,inn
eb  - 

Maximum of tangential elastic bending strain due to the springback at 

the inner surface of the intact ring 

η - Triaxiality 

η Pa.s Lubricant viscosity 

ηF - Forming efficiency 

θ Rad Bending angle 

Λ μm Period of micro-structures 

λ mm Wavelength of macro-structures 

μ - Friction coefficient 

ν - Poisson's ratio 

ρ mm-1 Curvature in the sidewall of the U-Channel 

Σ MPa External stress 

σ∞ MPa Asymptotic value for saturation strength 

σeq MPa Equivalent stress 

σI MPa First principle stress 

σII MPa Second principle stress 

σij MPa Internal stress 
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σIso MPa Pure isotropic stress 

σKin MPa Pure kinematic stress 

σm MPa Mean stress 

σn MPa Normal stress 

σr MPa Radial stress 

σt MPa Tangential stress 

σt,cr MPa Critical tangential stress 

σy MPa Yield stress 

σy,1 MPa Yield stress before bending over the die edge radius  

σy,2 MPa Yield stress after bending over the die edge radius 

σy0 MPa Initial yield stress 

σym MPa Mean yield stress 

σym,1 MPa Average yield stress over the flange area 

σym,2 MPa Average yield stress over the die edge radius  

𝜎max
eb  MPa Maximum of tangential elastic bending stress over the sheet thickness 

𝜎max,inn
el  MPa 

Maximum of tangential elastic bending stress at the inner surface of 

the cup  

𝜎max,out
el  MPa 

Maximum of tangential elastic bending stress at the outer surface of 

the cup 

τa MPa 
Average shear stress at contacting asperity peaks of surface 

roughness 

τb MPa Average shear stress in the valleys of surface roughness 

τf MPa Frictional shear stress 

   

BUP  
Blech Universal Prüfmaschine (English: sheet metal universal testing 

machine)   

CVD  Chemical Vapour Deposition 

DLC  Diamond Like Carbon  

DLIP  Direct Laser Interference Pattering 

EDM  Electrical Discharge Machining 

FEM  Finite Element Method  

o/w  Oil in Water  

PVD  Physical Vapour Deposition 

ta-C  Tetrahedral amorphous carbon 
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1. INTRODUCTION 

Metal forming belongs to one of the oldest technologies. During the first industrial revolution 

(18th -19th century), a mostly experience-based industrial metal forming technology developed 

for the first time after centuries or even millennia of traditional craftsmanship. It matured 

during two subsequent phases of development from approximately 1920 to 1960 with the 

establishment of the first scientific background of plasticity theory, materials technology, and 

experimental process analysis. Since 1960, the third phase of metal forming technology 

development was characterised by the introduction of the computer that revolutionised nearly 

all aspects of metal forming: process analysis and optimised design, materials technology and 

science, process-oriented tool technology, metrology and process control, etc. Consequently, 

product quality, productivity, flexibility, and economy were substantially improved [1]. Among 

the metal forming techniques, sheet metal forming is one of the most frequently used primary 

methods to produce different variety of components. Figure 1-1 shows for example the 

majority of the formed sheet metal parts in a car body. 

 

Figure 1-1: Structure of Audi A4 limousine with hang on parts [2] 

Deep drawing as a widely used industrial sheet metal forming process for the production of 

automotive parts, households, etc. belongs to one of the most energy-efficient production 

techniques, based on its high material utilisation. In today’s industry, the sustainable use of 

raw materials and the development of new green technology in mass production, with the 

Cold-formed steel

Hot-formed steel

Cast aluminium

Aluminium sections

Deep drawn aluminium
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aim of saving resources, energy and production costs, is a significant challenge. But one 

disadvantage of deep drawing regarding the realisation of green technology is the use of 

lubricants in this process. Therefore, a novel approach for modifying the conventional deep 

drawing process to achieve a lubricant-free deep drawing process is introduced within this 

thesis.  

Generally, in deep drawing the process window is limited by the occurrence of wrinkles and 

bottom cracks. Increasing the friction in the deep drawing process leads to an increase of the 

total punch force and as a result the risk of bottom cracks and a decrease of the process 

window become more probable. Moreover, in most cases, increasing the friction between 

the tool and the workpiece reduces the lifetime of the tool. That is why lubricants are mostly 

inevitable in the metal forming, especially in deep drawing for successful operation and 

reduction in energy consumption. However, the huge amount of lubricant used has economic 

and ecological disadvantages in today’s industry. Regarding economic aspects, using mineral-

oil-based lubricants leads to an increase of production steps, because an additional post-

treatment process is required for cleaning the workpiece by means of degreasing agents 

which are usually solvent-based [3]. Moreover, more than 15% of the total cost of sheet metal 

forming is spent on lubricating liquids, including buying the lubricants, machines for their 

application and cleaning lubricated parts [4]. Besides that, lubricants are often either harmful 

to health or harmful to the environment. Therefore, it is of great interest to develop a process 

which permits a significant reduction of the amount of lubricating agents or even lubricant-

free metal forming. However, this poses a great difficulty in application for sheet metal 

forming in general.  In recent years, numerous studies on the application of dry lubricants, as 

well as environmentally friendly lubricants during the forming process, have been performed 

[5]. Various tool materials and coatings have superior tribo-properties and have been 

investigated widely for general purposes in tribology. Nevertheless, all of these studies and 

proposed methods are based on laboratory conditions and none of them can realise a total 

lubricant-free forming process [6].  Therefore, a process without any lubrication with the 

capability to transfer into industrial application is of major interest. Within the scope of this 

thesis, a new, lubricant-free, deep drawing process is developed, which ensures the process 

window despite the absence of lubricants. Since the largest contribution of frictional force in 

the deep drawing process is on the die edge radius and flange area, these parts of the tool 

should be adapted for a stable lubricant-free deep drawing process. Reduction of friction on 

the die edge radius through tool coating and micro-structuring is already state of the art. 

However, a new tool design should be developed to reduce the amount of friction in the flange 

area of the drawing tool. Therefore, in order to decrease the present friction forces for a given 

friction coefficient, the integral of contact pressure over the whole contact area should be 

reduced. Thus, as one of the most promising methods, macro-structured deep drawing tools 

have been developed within the scope of this thesis to reduce the contact area with contact 

lines or points. For a time efficient process design and also to analyse the influence of process 

parameters on the process stability in advance, the newly developed process was modelled 

analytically. The results of the model were verified through experimental tests as well as FEM.   
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2. STATE OF THE ART 

In this chapter, the fundamentals of the deep drawing process are introduced. Furthermore, 

the advantages and disadvantages of using lubricants for a stable and efficient process are 

determined. Moreover, the already existing approaches for the reduction of friction in the deep 

drawing process are studied, with the aim of avoiding lubricants and to reach the vision of a 

lubricant-free deep drawing process. 

2.1 FUNDAMENTALS OF DEEP DRAWING PROCESS 

Nowadays, the classification of the forming processes can take place with regard to the 

temperature (cold forming, warm forming, or hot forming), process technology (sheet and bulk 

metal forming), and stress state [7]. According to DIN 8582 [8], depending on the main 

direction of the applied stress, they can be subdivided into five groups: 

 Forming under compressive conditions,  

 Forming under combined tensile and compressive conditions,  

 Forming under tensile conditions,  

 Forming by bending,  

 Forming under shear conditions. 

In order to assess the relative economic importance of sheet metal forming compared with 

other procedures, Table 2-1 gives an overview. 

Table 2-1: Comparison between different forming processes regarding their economic importance [9] 

Process 
Sheet metal 

forming 
Hot forming Cold forming Warm forming 

Relative ratio 

of production 
100 10 1 0.2 – 0.3 

DIN8584-3 defines the deep drawing process as follows: “Deep drawing is the forming of a 

flat sheet blank (or foil/plate, section/blank, depending on the material) into a hollow shape or 

of a hollow shape to a hollow shape with smaller perimeter by pressing it through a die without 

intended change of the blank thickness” [10]. Its main fields of application are now in the 

automotive industry (structural and body components), in the branch of components made by 

sheet metal for household applications (dishwashers, washing machines, catering containers, 

etc.), as well as in the aerospace sectors [11].  

Deep drawing of sheet metal is performed with a punch, blankholder, and drawing die. 

Generally, a basic deep drawing operation can be the forming of a sheet blank into a 

rotationally symmetric cup as illustrated in Figure 2-1. Understanding the material flow during 

the process is essential for understanding the present stresses on the workpiece. Considering 
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a rotationally symmetric deep drawing process, the material under the punch is forced into 

the cavity, pulling material in the flange area into the hole. Because of the applied tensile 

stress in the radial direction, the outer radii in the flange area decrease continuously, and this 

leads to induce a compressive stress in the tangential direction. It can cause an uneven 

distribution of thickness in the flange area, with the minimum at the inner and maximum at 

the outer part. Unless holding down pressure is applied from the blankholder, the induced 

compressive stress will cause the blank to buckle. In order to prevent the buckling of the blank 

and be able to control the material flow, the blankholder with predefined blankholder force FBH 

press the blank in the normal direction. When the blank passes the flange area, it is subjected 

to bend and slide over the die edge radius. After bending, the blank unbends to flow 

downward along the part wall. However, as the complexity goes up, the manufacturing 

difficulties increase. Deep drawing for complex geometries and large height-diameter ratio 

components is generally done in multiple steps due to limitations regarding the properties of 

the sheet material, especially its formability [12]. The most commonly used sheet materials 

for deep drawing applications are steel and aluminium alloys because of their mechanical 

properties, natural availability, and cost-effectiveness. Among them, cold-rolled steels 

because of their good ductility [13] and  aluminium-magnesium alloys due to their excellent 

balance between formability and strength [14] are usually used for deep drawing. The tool is 

subjected to repeated contacts with the blank material during forming processes. 

 

Figure 2-1: Deep drawing mechanism, geometrical variables, and acting stresses [10] 

For better understanding the process mechanism and also to find out the interrelationship 

between the process-relevant parameters, it is required to analyse the total punch force 

regarding its constituent parts. In the following, the parameters affecting the punch force are 

introduced. 

Normal stress

Tangential stress

Radial stress

Friction stress

:

:

:

:

• Flange area

• Main forming area

• Tensile-compression stress

• Part wall area

• Plain strain

• Side fixed uniaxial tension

• Bottom area

• Stretch forming

• Biaxial tension

FBH : Blank holder force

r0 : Sheet initial radius

ra : Sheet current radius

ri : Die inner radius

s0 : Sheet thickness

FBHFBH

ra

r0

riDie

Sheet metal

Blankholder

s0

s0
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2.1.1 Total forming force of a rotationally symmetric deep drawn cup 

Considering the rotationally symmetric deep drawing process, the total forming force Ftot 

consists of the superposition of four individual forces as follows:  

𝐹tot = 𝐹id + 𝐹b + 𝐹ff + 𝐹fd 2-1 

Here, Fid is the ideal forming force in the flange area, Fb is the bending force on the die edge 

radius, Fff are the friction forces between the workpiece and the tool in the flange area, and 

Ffd is the frictional force between the workpiece and the die edge radius. These forces can be 

calculated  individually based on SIEBEL`s calculations [15] as follows:  

𝐹id = 2 ∙ 𝜋 ∙ 𝑟i ∙ 𝑠0 ∙ 1.1 ∙ 𝜎ym,1 ∙ ln
𝑟0
𝑟i

 2-2 

𝐹b = 2 ∙ 𝜋 ∙ 𝑟i ∙ 𝑠0
2 ∙
𝜎ym,2

4 ∙ 𝑅M
 2-3 

𝐹ff = 2 ∙ 𝜇 ∙ 𝐹BH 2-4 

𝐹fd = (𝑒
𝜇∙𝛼 − 1) ∙ (𝐹id + 𝐹ff) 2-5 

In these equations, r0 and ri designate the initial radius of the sheet and the cup radius 

respectively, σym,1 is the average yield stress over the flange area, RM denotes the bending 

radius at the die edge radius, σym,2 is the average yield stress over the die edge radius, FBH is 

the blankholder force, μ is the COULOMB friction coefficient and α is the deflection angle at the 

die edge. Figure 2-2 represents a schematic overview of these force components. 

 

Figure 2-2: Individual components of the total forming force in deep drawing of the rotationally 

symmetric cup 

The total deep drawing punch force is the sum of all individual force components:   

σt

σr+dσr

r

dα

dr

ri

s0

RM

Ideal forming force Bending force on die 

edge radius

Friction force on the 

flange area

Friction force on die 

edge radius

ra
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𝐹tot = 2 ∙ 𝜋 ∙ 𝑟i ∙ 𝑠0 ∙ [𝑒
𝜇∙𝛼 (1.1 ∙ 𝜎ym,1 ∙ ln (

𝑟0
𝑟i
) +

𝜇 ∙ 𝐹BH
𝜋 ∙ 𝑟0

) + 𝜎ym,2 ∙
𝑠0

2 ∙ 𝑅M
] 2-6 

As the Equation 2-6 implies, there are many parameters, which influence the punch force, like 

the geometry of the workpiece, sheet thickness, material properties, friction coefficient and 

blankholder force. For a stable process, a good balance is required between the process 

parameters. In general, the working area for a stable deep drawing can be described through 

the process window.  

2.1.2 Process window in deep drawing 

In the deep drawing process, wrinkling, bottom cracking and earing are the most common 

process defects. Control of material flow is one of the most important issues in the deep 

drawing process for preventing defects in the deep drawn part [16]. Earing is one of the 

characteristic defects observed during the deep drawing process due to the anisotropic nature 

of sheet metal, which is defined as the formation of waviness on the uppermost portion of 

the deep drawn cup and can be reduced by modifying the initial blank geometry [17]. Plastic 

buckling in the flange area of the deep drawing process occurs because of high compressive 

stress and inadequate blankholder force leading to wrinkling. In order to ensure a stable 

process regarding the wrinkling, a high amount of blankholder force is required [18]. However, 

it increases the normal surface pressure and results in an increase of frictional forces in the 

flange area. Increasing the friction in deep drawing due to the relative motion between tools 

and the workpiece in the flange area, as well as the die edge radius under a high surface 

pressure, leads to an increase of total punch force which consequently results in exceeding 

the formability limits of the material. As a consequence, the risk of bottom cracking becomes 

more probable. Bottom cracks indicate material instability caused by strain localisation, when 

the plastic deformation carried out by the punch force exceeds the formability limit of the 

material [19]. Wrinkling and bottom cracking can lead to an immediate loss of part properties 

and functionality. Therefore, in deep drawing, the process window, which can be 

characterised as the working area for the production of faultless parts by means of a stable 

process, is limited by the occurrence of wrinkles and bottom cracks (see Figure 2-3). 

 

Figure 2-3: Process window in deep drawing 
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Generally, achieving the maximum process window and increasing the product quality are the 

indisputable targets in industrial production. That is why the control of material flow in deep 

drawing for enlargement of the process window is of importance. However, there are some 

methods to control the material flow in order to reach the greatest possible process window. 

For example, the geometry of the sheet metal plays an important role in material flow. 

Therefore, for deep drawing of complex geometries, the sheet metal geometry should be 

optimised to reach the greatest process window [20]. Furthermore, drawbeads can also be 

used to control the material flow during the process. Drawbeads restrain the material flow, 

causing a change of the strain distribution, which consequently hinders the material flow [21]. 

Above all, the reduction of friction can postpone the occurrence of bottom cracks and 

consequently the enlargement of the process window [22]. Hence, besides an optimum tool 

design, an excellent tribological system in the deep drawing process is essential for increasing 

the process quality and the enlargement of the process window through prevention of process 

failures. 

2.2 TRIBOLOGY IN METAL FORMING 

In the previous section, the mechanism of the deep drawing process was introduced and it 

was pointed out that the tribological behaviour of the deep drawing process is of importance 

to ensure a stable process with a large process window. The word tribology was first used in 

England in the 1960's, and is defined as the science and technology of interacting surfaces in 

relative motion. It comes from the Greek word “tribos” meaning to rub [23]. The term was 

coined as a conscious attempt to combine the historically independent fields of friction, 

lubrication and wear in an interdisciplinary manner [24]. Based on the lubricant viscosity, 

entrainment velocity and the surface pressure, different lubrication mechanisms can take 

place in the forming process. These mechanisms are discussed in the following section. 

2.2.1 Lubrication mechanisms in metal forming 

In sheet metal forming processes, the lubricant acts under a high normal pressure, and 

therefore the mechanism of lubrication depends on the lubricant viscosity η and the process 

properties (sliding velocity v and normal pressure P). The influence of these parameters can 

be described by the Stribeck curve [25], in which the friction coefficient is controlled by a 

single parameter produced by all three decisive factors. In a Stribeck curve (see Figure 2-4), 

these parameters are plotted in a logarithmic diagram and present four primary lubrication 

mechanisms (i.e. dry / boundary / mixed film / hydrodynamic) [26]. A dry (lubricant-free) 

condition means no lubrication is supplied at the mating surfaces; therefore, the friction is high 

and all the force is guided through from one body to another by contact at the asperities. 

Moreover, this can lead to pure intermetallic contact and cold welding (see section 2.4). 

Boundary lubrication is defined as a condition where the solid surfaces are so close together 

that the surface interaction between single or multi-molecular films of lubricants and the solid 

asperities dominates the contact, and force can be partially transmitted through this molecular 
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layer [27]. In the ideal situation, when such boundary layers are formed, and the underlying 

surfaces subsequently start to slide along each other, molecules of the lubricant are sheared 

off or pulled off the surfaces, and are then replaced by a new lubricant molecule. Boundary 

lubrication is the most widely encountered lubrication condition in the deep drawing process 

because of the high normal pressure and the minimum distance between the blank and tools 

[28]. With increasing load, the lubricant film becomes thinner and thinner, but as long as there 

is only one monolayer of lubricant present, friction remains relatively low. Besides boundary 

lubrication, mixed-layer lubrication is also frequently encountered in the deep drawing process 

[28]. 

 

Figure 2-4: The Stribeck curve showing the onset of various lubrication mechanisms [29] 

In this case, the micro-peaks of the metal surface experience boundary lubrication conditions 

and the micro-valleys of the metal surface become filled with the lubricant [30]. At some parts 

of the surfaces, the load is carried by the boundary layer, while at other parts a full lubricant 

film is built up [31]. The hydrodynamic lubrication mechanism occurs when the two surfaces 

are fully separated by a lubricant film. In this case, the relative tangential displacements lead 

to shear in the lubricant film only. The resisting force is now caused by this shear in the 

lubricant. In actual hydrodynamic lubrication, the lubricant is dragged into a lubricant film by 

the relative velocity of the surfaces and the shape of these surfaces [32]. This mechanism can 

be rarely seen in metal forming [28].  

Understanding the physical background of the frictional condition in metal forming processes 

is important for process design. Furthermore, for simulation procedures, depending on the 

process, it is important to apply the proper friction model. In the following section, the most 
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relevant friction models in metal forming are introduced and their fields of application are 

discussed in detail.  

2.2.2 Friction models in metal forming  

A quantitative description of friction in different conditions comes from the first investigation 

of THERMISTIUS in 350 BC [33]. He found that the friction for sliding is greater than that for 

rolling. This conclusion led to the investigation in modern terms that the static friction 

coefficient is greater than the kinetic. It was observed in the 1500's by DA VINCI [34], retrieved 

by AMONTONS in 1699 [35], verified by EULER in 1750 and COULOMB in 1781 that friction is 

proportional to the load and independent of the sliding contact area [36]. Thus, the friction 

coefficient is independent of velocity in the case of dry sliding [37]. In the theory of plasticity, 

this is usually known as the COULOMB friction model in the form:  

𝜏f = 𝜇 ∙ 𝑃 2-7 

Where τf denotes the frictionally-induced shear stress, μ is the COULOMB’s friction coefficient 

and P is the normal surface pressure. In many forming processes, the normal surface pressure 

P can reach a multiple of the yield stress of the material. At this point, the workpiece can start 

to deform plastically by shearing at the tool interface. Thus, the linear relationship between τf 

and P, as described by Equation 2-7, may not be valid at high surface pressure levels because 

the frictional shear stress τf cannot exceed the shear yield stress k of the deformed workpiece 

material. Therefore, the friction coefficient is no longer meaningful when μ·P exceeds τf. Thus, 

to avoid this limitation of COULOMB’s model, the shear friction model can alternatively be used 

[38]. This model assumes that the frictional shear stress τf must be linked with the shear yield 

stress k of the softer material with the following relation: 

𝜏f = 𝑚 ∙ 𝑘 2-8 

Whereby the proportionality factor m is the friction factor (0 ≤ 𝑚 ≤ 1) and k is the shear yield 

stress. In this model, m equals to zero for no friction, and m equals to unity for a sticking 

friction condition, which is the case where sliding at the interface is purely by shearing of the 

base material (adhesion). The shear yield stress k depends on the yield stress of material σy, 

and yield criterion. When the Tresca yield criterion is considered, the shear friction model can 

be written as follows:    

𝜏f = 𝑚 ∙
𝜎y

2
 2-9 

Moreover, by using the V. MISES yield criterion, it can be formulated as follows:  

𝜏f = 𝑚 ∙
𝜎y

√3
 2-10 
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The maximum of friction force in the shear friction model is independent of the normal 

pressure, but depends on the size of the contact area. This leads to an overestimation of 

friction in the case of low surface pressure. By summarising these two friction models, it can 

be concluded that the COULOMB’s friction model is well suited for friction modelling with low 

surface pressures, but it overestimates the friction stress under high contact pressure. On the 

other hand, the shear friction model is suitable for high surface pressure, but it overestimates 

the friction stress under low contact pressure. Beyond that, the real surface pressure is 

dependent on the part of the contact area, which is participating in the friction. Since the tool 

is rigid, it cannot be deformed. The workpiece surface can also be plastically deformed, which 

leads to the enlargement of the surface topography and as a result affects the real surface 

pressure. These loading parameters, i.e. surface pressure and surface enlargement, can be 

used in metal forming to describe the process and thus to select the tribological system and 

the tool design. It is more relevant in bulk metal forming because of the relative high surface 

pressure (locally even up to 3000 MPa) and the surface enlargement (in special cases up to 

20) [39]. Figure 2-5 compares the range of surface pressure and the resulting surface 

enlargement between the bulk and sheet metal forming process. 

 

Figure 2-5: Comparison between bulk and sheet metal forming regarding the surface pressure and 

the resulting surface enlargement according to [40] 

To take the effect of surface pressure in the friction calculation into account, OROWAN 

combined in Equation 2-11 both the friction models mentioned above (Equations 2-7 and 2-8), 

together with the goal of using the advantages of COULOMB’s model for low surface pressure 

and adequacy of the shear friction model for high surface pressure [41].  

𝜏f =

{
 

 𝜇 ∙ 𝑃  ,   𝑃 ≤
𝑚 ∙ 𝑘

𝜇

𝑚 ∙ 𝑘  ,   𝑃 >
𝑚 ∙ 𝑘

𝜇

 2-11 

However, a disadvantage of the Orowan friction law is the sudden transition from the 

COULOMB to the shear friction model. Since the first slipping of the surfaces begins locally in 

small regions, this is not justified physically with the OROWAN model. In addition, the sudden 

change of the friction model has a negative effect on the stability of a numerical 

implementation. SHAW et al. solve this problem in [42] by a continuous transition from the 

0 500 1000 1500 2000 2500 1 3 5 7 9 11

Bulk formingBulk forming

Sheet metal formingSheet metal forming

Surface pressure in MPa Ratio of surface enlargement
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COULOMB model in the area of small surface pressures to the shear friction model in the area 

of large surface pressures. The frictional shear stress in the Shaw friction law can be 

represented by means of a hyperbolic tangent as follows: 

𝜏f = 𝑘√𝑡𝑎𝑛ℎ (
𝜇 ∙ 𝑝

𝑘
)
𝑛𝑛

 2-12 

The parameter n determines the behaviour of the friction law in the transition region. Figure 

2-6 shows an overview of all the models mentioned above and compares their estimation 

about the progress of frictional shear stress as a function of surface pressure. 

 

Figure 2-6: An overview of COULOMB [37], shear friction [38], OROWAN [41], and SHAW [42] friction 

models 

However, none of these models considers the surface roughness of the bodies. Actually, 

when two nominally flat surfaces are placed in contact, surface roughness causes discrete 

contact spots. The total area of all these discrete contact spots constitutes the real contact 

area Ar, and in most cases, this will be only a fraction of the apparent contact area Aa. The ratio 

of the real contact area to the apparent contact area is known as the real contact area ratio α: 

𝛼 =
𝐴r
𝐴a

 
2-13 

To consider the effect of the real contact area ratio α on the frictional behaviour of bodies, 

WANHEIM and BAY proposed in [43] a general friction model: 

𝜏f = 𝑓 ∙ 𝛼 ∙ 𝑘 2-14 

Where f is the modified friction factor. In this model, the friction shear stress τf is a function 

of the real contact area ratio α. Although this is a relatively precise model, it cannot consider 

the effects of the lubricant during the process. For this purpose, a complex model for friction 

is proposed by BOWDEN and TABOR in [44]. In this model, the frictional shear stress τf is given 

by: 

𝜏f = 𝛼𝜏a + (1 − 𝛼)𝜏b 2-15 
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Here τa is the average shear stress at contacting asperity peaks, which is related to the real 

contact area ratio α, and τb is the average shear stress in the valleys (lubricants pockets), which 

can be estimated from the Newtonian viscous behaviour of the lubricant. It is also influenced 

by viscosity, pressure, film thickness of the lubricant, and the sliding speed of bodies. If the 

friction partners are in a lubricant-free condition, τb will be zero, and the friction shear stress τf 

will be only a function of the real contact area ratio. In order to indicate the relevant surface 

pressure for different manufacturing processes, KALPAKJIAN and SCHMID showed in [45] the 

nonlinear relation between frictional shear stress and surface pressure as a function of the 

real and apparent contact areas. Figure 2-7 classified the application range of each process 

based on these relations. 

 

Figure 2-7: Friction force as a function of normal force and the range of applications for various 

manufacturing processes (the ranges shown are for unlubricated cases) according to [45] 

Apart from process parameters, the types of lubricants and their physical properties have 

major influences on the lubrication mechanism. In the following, different types of lubricants 

used in metal forming are introduced.  

2.2.3 Diversity of lubricants in metal forming 

There are very many different types of lubricants in use for metal forming operations. 

Depending on many parameters, such as the tool and workpiece material, surface roughness 

and reactivity, temperature, contact pressure and sliding velocity, these may be classified as 

non-emulsifiable oils, oily emulsions, water-soluble synthetics, as well as consistent lubricants 

including pastes, greases, soaps, waxes, and solid lubricants [46]. Petroleum-based oil 

lubricants incorporate the most common technology. This product category has been used 

successfully in metal forming for many decades [47] and is classified into two types: non-

emulsifiable oils and oily emulsions. Non-emulsifiable oils (straight oils) differ in viscosity, and 
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the presence and concentration of lubricity additives and polar and nonpolar additives [48]. 

There is a vast variety of oil-soluble additives, which may be used to achieve the desired 

property of the lubricating oil, such as sulphurs or phosphorous carriers, esters, alcohols, and 

sulfonates. The product selection strongly depends on the application of interest. Solvent 

diluted oils, including vanishing oils, may be used in aluminium forming or shear cutting. 

Medium-viscosity straight oils are used for drawing, extrusion, or fine cutting, while high-

viscosity oils are usually used in heavy-duty forming operations. Emulsifiable oil concentrates 

represent an alternative to low viscosity or even solvent diluted oils. They can be diluted with 

water to achieve the desired viscosity and performance [49]. At low to medium 

concentrations, oil-in-water (o/w) emulsions are formed. Apart from ingredients that are 

susceptible to hydrolysis, most additives found in straight oils can also be used in emulsifiable 

concentrates. To that extent, there are few delimitations in the choice of additives [50]. While 

petroleum lubricants incorporate a very diverse set of products for the metal forming industry, 

the category of water-soluble synthetic lubricants may have come to incorporate an even 

larger group of products. It has come to represent most water-soluble lubricants that do not 

contain mineral oil. This definition includes products composed of vegetable oils, palm 

derivatives, and other natural ingredients [51].  

When necessary to improve lubricant performance or film stability, thixotropic oils, greases, 

waxes, pastes, and even solid lubricants such as graphite and molybdenum disulphide (MoS2) 

may be used [52]. Recent studies have shown that dry film lubricants provide better lubrication 

in deep drawing when compared with oil-based liquid lubrication [53]. This factor, as well as 

the savings for the lubricant used, has helped promote the use of dry film lubricants in the 

automotive industry for deep drawing of aluminium and high-strength steel parts [54]. Apart 

from the technical and process-based advantages of lubrication, they have many 

environmental and economic disadvantages that are described in the next section.  

2.3 ECONOMIC AND ECOLOGICAL DISADVANTAGES OF LUBRICATION 

From both the economic as well as the ecological points of view, all types of lubricants have 

several disadvantages in the sheet metal forming process. For the upcoming process steps 

after forming, such as joining, coating, and painting processes, which are required to have a 

perfectly clean surface, it is essential to remove the lubricant from the workpiece [55]. 

Removing the lubricant from the semi-finished parts can be done after some post-treatment 

process using many degreasing agents, which are costly and time consuming. Therefore, 

using the lubricant in the process leads to an increase in the number of process steps and as 

a result, an increase of the cycle time [56]. Focused on the economic point of view, the cost-

saving potential reached by lubricant-free processing can amount to about 2–17 % of the 

workpiece-specific production costs, depending on the selected production process [3]. 

Besides the economic problems, lubricants in the metal forming process have environmental 

and health burden disadvantages. Generally, two important manufacturing challenges in the 

21st century can be identified as environmental shifts and the deficiency of energy and 
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resources. This is not only due to increased production, which is already too high and leads to 

an oversupply in many industries, but also is mostly related to how the raw materials and 

energy are provided for the production and operation [57]. Based on [58] about 1% of the total 

mineral oil consumption is used to produce lubricants. World lubricant demand has remained 

flat at around 35 million tonnes per year since 1991, e.g. 37.4 million tonnes of lubricants were 

consumed worldwide in 2004: 53% automotive lubricants, 32% industrial lubricants (primary 

hydraulic oils) , 10% process oils (metal working fluid), and 5% marine oils [59]. The same 

holds true for the EU where the total lubricant demand of about 5.3 million tonnes annually 

has stayed unchanged since 1982. Germany is the largest national market for lubricants in 

Europe and ranks fifth in global terms with a total lubricant consumption (2.5 million tonnes 

yearly), while industrial lubricants account for 1.7 million tonnes and process oils for 0.6 million 

tonnes per year, respectively [60]. An estimation from MANG and DRESEL shows that 

approximately 50% of the total mineral oil consumption of European countries can be 

recovered by recycling and / or further utilisation of waste oil, while the other half is lost to the 

environment [59]. MADANHIRE and MBOHWA have characterised in [61] the potential human 

health and environmental hazards of widely used classes of lubricating oils because of their 

toxic additives. However, lubricants are mostly expected in sheet metal forming for a 

successful operation. In the next section, it shall be shown how the lubricants affect the 

process stability and the quality of the product through the reduction of tool wear and the 

frictional forces between the tool and the workpiece.  

2.4 EFFECTS OF LUBRICANTS ON THE QUALITY OF THE DEEP DRAWING 

PROCESS 

Generally, many parameters have an influence on the deep drawing process and the quality 

of the final product. Material properties, tool geometry, blankholder force and friction can be 

considered as the main factors affecting the process. Most notably, friction can directly affect 

the lifetime of a tool and the efficiency of the process. In the following, some beneficial effects 

of lubricants regarding the prevention of wear and galling are pointed out.   

One of the most important parameters for the efficiency of a deep drawing operation, i.e. the 

production rate, is the operational limits of the forming tools. The lifetime of the tool and the 

production speed, have to be carefully balanced to optimise the process efficiency [62]. 

Increasing the efficiency of the deep drawing operation often goes together with a higher 

mechanical load on the forming tools, resulting in higher wear and a shorter lifetime [63]. 

Wear, defined as the progressive loss of substance from the operating surface of a body, 

occurring as the result of relative motion at the surface [64], is one of the most important 

sources of process disturbance in sheet metal forming [65]. Tool wear influences the stability 

of the equipment, the production speed, and the quality of the products and the product’s 

surface [66]. Volume loss of the forming tool and volume loss of the sheet material are two 

types of wear in sheet metal forming, resulting from a combination of adhesive wear, abrasive 

wear, surface fatigue wear, and tribochemical wear [67]. Among these mechanisms, adhesion 
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and abrasion are known as the principal wear mechanisms in sheet metal forming [62]. 

Adhesive wear in sliding contact is a process where the contact surfaces adhere to each other 

so strongly that the atomic bonding forces occurring between the materials on the interface 

are stronger than the strength of the surrounding area in both materials [68]. A consequence 

of this shear may be the generation of wear particles or a transfer of material from one surface 

to the other. Patches of adhered hard material increase the surface roughness of the tool and 

when subsequent workpieces are to be formed, the adhered material may indent or scratch 

the surface and thereby worsen the surface finish of the product. In sheet metal forming, this 

problem is usually referred to galling [69]. The abrasive wear is the removal of material by a 

ploughing effect of the hard object into a softer surface [70]. The ploughing can be caused by 

a hard asperity on one of the contacting surfaces (two-body wear) or by wear particles in the 

contact (three-body wear) [71]. Both the adhesive and abrasive wear behaviour of contact 

bodies depend on different influencing parameters. Besides the material properties (chemical 

composition, microstructure, surface finish, and hardness), the geometry of the contact area, 

surface pressure, and the lubrication system have a major influence on the wear behaviour of 

the contact bodies [72]. Increasing the tool wear during the process prevents the control of 

strain distribution and as a result the loss of quality and the dimensional accuracy of the 

workpiece. Generally, there are three concepts to control the wear in sheet metal forming: 

improving the surface roughness of contact bodies to prevent the abrasive wear, changing 

the chemistry of either one or both surfaces to lower the adhesion between the sheet and 

tool surface, and using the lubricant to separate the sliding surface. Here, the lubricant can 

work as a layer of material with lower shear strength than the surfaces themselves [73]. 

However, the lubricant may not completely prevent the direct contact, although it will reduce 

it and may reduce the strength of the junctions formed [72].   

2.5 POSSIBILITIES FOR FRICTION REDUCTION IN THE DEEP DRAWING 

PROCESS 

As the Equation 2-6 implies, there are many parameters, which influence the punch force, like 

geometry of the workpiece, sheet thickness, material properties, friction coefficient and 

blankholder force. But, the friction coefficient and the blankholder force have a direct influence 

on the friction force in the deep drawing process. Reduction of the blankholder as mentioned 

in previous sections leads to process instability in the form of wrinkling. As a result of this, 

improving the tribological behaviour of the tool through surface treatment can be considered 

as the first step towards realisation of a lubricant-free (or minimal quantity lubrication) deep 

drawing process. Studies on metal forming without lubricants have shown that results highly 

depend on the material combinations to decrease the friction coefficient and wear in critical 

parts of the tools [3]. Generally, the different approaches to achieve a lubricant-free or minimal 

quantity lubrication forming process can be divided into three categories: ceramic tools [74], 

self-lubricating coating systems [75], and hard material coatings [76]. KATAOKA et al. 

investigate in [77] the prosperity of ceramic materials like SiC, Si3N4, and Al2O3 (oxide ceramics) 

as tool materials for a drawing die within a lubricant-free deep drawing process. However, this 
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was by providing a smaller limiting drawing ratio, compared to lubricated processes. 

Moreover, a high lubricant-free deep draw ability could be attained with these ceramic 

materials for mild steel, whereas no or little improvement could be seen for titanium and 

aluminium sheets. TAMAOKI et al. examined in [74] the electro-conductive ceramic tooling like 

ZrO2-WC and Al2O3-TiC for lubricant-free deep drawing applications. This type of ceramic 

tooling has a higher limiting drawing ratio compared with monolithic ceramic tools in a 

lubricant-free condition, but it remains below the lubricated case. Using environmental friendly 

self-lubricating materials such as graphite or colloidal suspension can reduce the friction 

coefficient significantly; however, they do not attribute further economic benefits to the 

lubricant-free deep drawing process [75]. 

There are many types of surface treatments available to improve the tribological behaviour of 

the forming process for lubricant-free applications, which can be categorised in surface coating 

and surface functionalisation [78]. The different surface coatings vary in composition, 

thickness, and mechanical properties [79]. The two main groups of coating types are deposited 

coatings and reactive coatings [80]. Deposited coatings can be obtained by deposition of extra 

material on the surface, while the reactive coatings can be obtained, in which a thin layer of 

the base surface or the surface of deposited coating is modified through thermal, 

thermomechanical or radiation methods [81]. Here, either an alloying element enters to the 

base material by diffusion or beam techniques, or the topology of the deposited coating 

changes via laser techniques. Some examples are nitriding, carburising, and ion implantation 

for direct fabrication of periodic structures on the surfaces. 

2.5.1 Surface coating 

Since the 1980s, there have been studies on the use of hard material coatings in forming tools 

for lubricant-free processes in the context of metal forming [3]. Nowadays, PVD and CVD 

coating processes are attractive for industrial applications because the deposition of these 

coatings, besides the improvement of the tribological behaviour of the tool, leads to increasing 

its lifetime to a large extent [82]. In deep drawing applications, in particular, Titanium Carbide 

(TiC), Titanium Nitride (TiN) and TiC/TiN coatings have been used to assure a long lifetime of 

the tool because of their high resistance to abrasive and adhesive wear [83]. They provide a 

powerful means in those cases where the use of lubricants cannot be completely avoided and 

a minimal quantity of lubrication may provide technological and ecological advantages [84]. 

In recent years, the introduction of the diamond like carbon coatings (DLC) has represented 

an attractive solution for the development of lubricant-free forming or processes with minimal 

quantity of lubrication due to their excellent tribological behaviour [85]. DLC possesses an 

array of valuable properties: an extremely low friction coefficient, abrasion and wear 

resistance, exceptional hardness, and high dielectric strength [86]. DLC is considered as an 

amorphous material, containing a mixture of sp2 - and sp3 -bonded carbon. Based on the 

percentage of sp3 carbon and the hydrogen content, four different types of DLC coatings have 
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been identified: tetrahedral carbon (ta-C), hydrogenated amorphous carbon (a-C:H hard and 

soft), and hydrogenated tetrahedral carbon (ta-C:H) [87]. JIANG et al. showed in [88] that the 

hydrogen content in amorphous carbon films affects their hardness and tribological properties 

significantly. Tetrahedral amorphous carbon (ta-C), with a high fraction of sp3-bonded carbons 

(up to 80%) and less than 1% hydrogen content, has shown promising tribological and 

mechanical properties, such as a low friction coefficient, high hardness (slightly less than that 

of diamond) [89], low roughness [90], high inertness, and low mass diffusivity [91]. Figure 2-8 

compares the different amorphous carbons, regarding the hydrogen content, their bonding 

states and also summarises the properties of ta-C coating. Through evaporation of graphite as 

a source of carbon, in the PVD process with arc discharge (vacuum arc PVD) under ultrahigh 

vacuum conditions, a pure carbon layer can be reached [92]. Through setting the deposition 

parameters like pressure, it is possible to adjust the fraction of sp2 and sp3-bounded carbons 

[93]. Because of the vacuum arc process, small graphitic particles (micro-particles), which are 

emitted from the carbon source, are incorporated in the coating. This leads to a disturbance 

of the layer growth and thus increases the surface roughness [94]. Due to their poor bonding 

to the layer composite, these particles reduce the corrosion resistance. 

 

Figure 2-8: Threefold diagrams of amorphous carbon types and the properties of ta-C coating [95] 

Pores or pinholes, because of the growth defects are positions with an increasing corrosion 

potential. This leads to a local delamination of the coating [96]. Particularly in the case of hard 

coatings, such as ta-C, increased roughness decreases the running behaviour of the friction 

system. This can result in an increased friction and wear of the counter body [97]. Hence, a 

process like brushing is required for roughness reduction of the coated surface. 

KUNZE et al. brushed the ta-C coated tools for 5 min using a wire brush (low alloy steel, wire 

diameter of 0.2 mm) with a brush force of 50 N. The rotating speed of the wire brush was 

6,000 rpm and that of the tool (rotating contrarily) was 150 rpm. They showed in in [98] that 

the surface roughness of the coated tools in terms of Ra, Rz, and Rmax can be reduced down to 

the roughness of the substrate through a brushing process (see Figure 2-9), while no changes 

in coating thickness were observed, as concluded from calotte grinding prior and after 

brushing. Furthermore, they showed that an additional brushing does not lead to a further 

reduction in surface roughness.  

Properties of ta-C:

• Atomic arrangement: amorphous carbon

• Bonding state: up to 80% sp³

• Hydrogen content: less than 1%

• Hardness: 55-65 GPa

• Friction coefficient: 0.12 – 0.19 (without lubrication)

• Ideal for structuring / pattering
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Figure 2-9: Average of specific roughness values
 
for the substrate, coated and brushed surfaces [98] 

KUNZE et al. examine in [99] the tribological characteristics of the ta-C coated cylindrical 

specimens with a layer thickness of 3 - 5 µm via the draw-bend test (see section 2.6) at room 

temperature, with a constant drawing velocity of 100 mm/s and a contact surface pressure of 

50 MPa. They tested the ta-C coated specimens under lubricant-free conditions and the 

uncoated tools under lubricant-free as well as lubricated conditions (lubricating oil “WISURA 

ZO 3368”) against workpiece strips from commercially sourced DC04 steel (1.0338) with 1 

mm thickness, 20 mm width, and 1000 mm length. Each tool was subjected to 100 draw-

bend tests corresponding to an effective testing distance of 40,000 mm. To assure total 

lubricant-free conditions, each strip was cleaned using a citrus-based cleaner, and finally 

treated with acetone to remove all traces of pre-lubricants. The resulting average friction 

coefficient for the uncoated tool (lubricant-free and lubricated) and the ta-C coated tool 

(lubricant-free) are shown in Figure 2-10.  

 

Figure 2-10: Comparison between the friction coefficient of the ta-C coated tool in lubricant-free 

conditions and uncoated tools in lubricant-free and lubricated conditions resulting from draw-bend 

tests with a range of results 
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As this diagram indicates, the friction coefficient can be reduced from 0.24 to 0.21 (~12%) 

through lubrication. However, coating the tool with ta-C reduces the friction coefficient to 

~0.17 (lubricant-free conditions) which is about 30% and 19% less than in the uncoated case 

under lubricant-free and lubricated conditions, respectively. These results show that the ta-C 

tool coating employed introduces a well-defined boundary layer, which is capable of taking 

over the tribological functions of the lubricant. More particularly, because of its disordered 

network of carbon atoms [100], changing the fraction of sp2 and sp3-bounded carbons is 

feasible with the aim of wear resistance improvement. 

2.5.2 Surface micro-structuring 

Surface structuring to control frictional forces has been intensively used since ancient times 

[101]. For example, during the Tong Dynasty in China, ridged patterns or dimples were placed 

on the soles of shoes for labourers to help them work on muddy, slippery ground. For 

approximately fifty years, surface micro-structuring has been studied as a means of controlling 

friction and wear in sliding contacts [102], because of its relative simplicity for implementation 

and as it may be used in conjunction with other lubrication approaches for industrial 

applications [103]. FRANZEN et al. showed in [104] the influence of surface micro-structuring 

on the friction between the forming tool and the workpiece in comprehensive strip drawing 

and deep drawing experiments, for different product shapes considering steel and aluminium 

sheets. Generally, from the tribological point of view, the surface should fulfil three main 

requirements. The surface has to store and transport lubricant and additionally has to pick up 

wear particles. The micro-spaces on the conventionally very smooth tool surface can store 

and reserve the lubricant during the process (lubricant pockets), and consequently improve 

the tribological properties of the surface. Also in lubricant-free conditions, the wear particles 

can be collected between the micro-holes and improve the lifetime of the tools by preventing 

the wear and galling [105]. There are different techniques or manufacturing processes of 

surface texturing. LASAGNI et al. compared in [106] the different micro-structuring methods 

regarding the fabrication speed and structure size (see Figure 2-11). The conventional micro-

milling processes can achieve a relatively high surface structuring speed (~10-2 m²/min), but 

with a limited resolution, generally between 15 and 100 µm. Electron and Ion-Beam 

lithographic methods have been also used to fabricate high-resolution surface patterns with 

feature sizes even smaller than 100 nm, but with a very slow fabrication speed [107]. In 

addition, almost all lithographic methods are limited to planar surfaces. A very advantageous 

method for micro-structuring is provided by laser processing techniques. Laser-based 

fabrication methods offer several advantages due to their remote and thus contactless 

operation, their flexibility during materials processing, as well as their precise energy 

deposition. Direct Laser Writing (DLW) has been, for example, utilised to structure several 

materials with features generally between 1 and 100 μm [108]. However, achieving 

resolutions lower than 5 µm is normally associated with an increased technical complexity and 

long processing times [106].  
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Figure 2-11: Different micro-structuring technologies differing from the surface fabrication speed and 

structure size [106] 

An innovative solution for high-speed surface patterning of periodic structures in a one-step 

process is Direct Laser Interference Patterning (DLIP). Here, periodic structures can be 

produced in different materials including metals, ceramics, polymers, and coatings in a single 

step process [109]. A significant advantage of this technique compared with other surface 

structuring methods is that large areas can be processed within a short period. This method 

is particularly suited to fabricate periodic patterns on planar, as well as non-planar surfaces. 

Moreover, DLIP enables the fabrication of complex structures by systematically varying the 

dimensions of the gratings superimposed upon each other [110]. The DLIP process employs 

the interference generated by coherently overlapping two or more laser beams and thereby, 

producing a periodic modulation of the laser intensity (see Figure 2-12-A).  

 

Figure 2-12: Direct Laser Interface Pattering; A) schematic of the interference principle, B) line-type 

pattern with corresponding two laser beams and C) dot-type pattern with corresponding three laser 

beams [111] 
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The shape of the interference pattern is directly transferred to the material surfaces and 

depending on the number of beams used, different geometries are possible [112]. In order to 

fabricate one and two-dimensional periodic microstructures on the surface, a two and three 

beam interference setup can be utilized (Figure 2-12-B and Figure 2-12-C) [111]. Recent 

studies show that the tribological performance of ta-C coatings can be further improved by a 

texturing of the surface [113]. 

In [114], the effect of local transformation of the ta-C coating by means of the DLIP method 

from sp3-hybridised carbon into sp2-rich material is investigated. In this study, the ta-C coated 

samples of the draw-bend test are structured with the DLIP process using a 532 nm ns-pulsed 

laser system. Three different patterns (dot-like, line-like and, cross-like patterns) with a 

structure period of Λ = 10 μm are compared with an unstructured ta-C coated tool (reference) 

to investigate the impact of local graphitisation of the ta-C film on its wear behaviour, and the 

results are shown in Figure 2-13-A. As the diagram indicates, all three types of DLIP structured 

samples exhibit much more resistance against wear. The light microscopic images of the 

sample shown in Figure 2-13-B reveal that the height of structures after 40000 mm drawing 

is not decreased dramatically.  

 

Figure 2-13: Comparison between unstructured and DLIP structured ta-C coating regarding wear 

reduction by the draw-bend test; A) relative wear and B) structure height differences before and after 

testing [114] 
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layer. On the other hand, the patterned surfaces offer the possibility to store wear particles in 

the topographic valleys [115]. Therefore, the topology of microstructures can affect the 

storage manner of wear particles and then the wear behaviour of the tool. The second reason 

for wear reduction through micro-structuring is due to the physical properties of sp2-bonded 

carbons in the ta-C layer. Here, the localised sp2-bonded carbons become more intense 

towards the substrate-film interface to provide better roughness and adhesion, while the 

remaining sp3- bonds have the beneficial effect of friction reduction as shown by MERKLEIN in 

[116]. 

Apart from surface treatment technologies, the reduction of the frictional contact area, as well 

as the integral of the contact pressure over the contact area, can also reduce the amount of 

frictional forces. This is discussed in Chapter 4 in detail. 

2.6 TRIBOLOGICAL TESTING METHODS 

Large amounts of test methods for the measurement of the friction coefficient, often referred 

to as tribometers, have been developed over the years for a variety of purposes. In this 

section, only a small number of tests are presented. These tests are considered either 

because of being frequently used, or for representing interesting recent developments in the 

field of tribotesting [117]. 

2.6.1 Tribometer 

A tribometer is the general name given to a machine or device used to perform tests and 

simulations of friction, wear and lubrication, which are the subject of the study of tribology. 

Pin-on-disk and ball-on-disk are two common types of tribometers. According to DIN 50324 

[118], in the pin-on-disk (or ball on disk) a pin with a rounded tip is positioned perpendicular to 

the other, usually a flat circular disk. A ball, rigidly held, is often used as the pin specimen. The 

testing machine causes either the disk specimen or the pin specimen to rotate about the disk 

centre. In either case, the sliding path is a circle on the disk surface. The pin specimen is 

pressed against the disk at a specified load. In this way, by knowing the pressing force, based 

on the COULOMB friction model, the friction coefficient can be measured [119]. However, this 

testing method does not consider the surface enlargement during the process in metal 

forming. Furthermore, due to the high level of uniform pressure (HERTZIAN pressure) in this 

testing method, the friction coefficient cannot be measured under conditions similar to those 

encountered in the real forming process. Therefore, in the sheet metal forming process, the 

friction coefficient will be evaluated through other testing methods like strip-drawing or the 

draw-bend test.  
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2.6.2 Strip-drawing and the draw-bend test 

For the forming processes with high normal pressure, the dependency of the friction 

coefficient on the parameters like pressure, velocity, and sliding direction has to be measured 

through a proper friction test method [120]. Strip-drawing and draw-bend friction tests are 

regarded as the best candidates for this purpose because of their known capability to change 

the contact pressure and sliding velocity [121].  In the strip-drawing test, a strip of metal is 

drawn through two friction pads that are pressed together with a defined normal force. The 

resultant friction force on the metal strip can be recorded with a metrological device, with 

which the COULOMB friction model is determined [7]. However, the non-uniform pressure 

distribution at the die edge radius with an arbitrary bending angle can be mapped in the draw-

bend test [122]. The draw-bend test will be performed in a two-step process. First, a strip will 

be drawn over a freely turning roller and due to bending and unbending forces, Fb can be 

determined as the difference between the pulling and the back tension forces F1 and F2, 

respectively. A second strip will then be drawn over a fixed roller, and the corresponding 

pulling and back tension forces F1 and F2 can be measured. Figure 2-14 shows the mechanism 

of a draw-bend test under deflection angle of θ. 

 

Figure 2-14: Schematic overview of a draw-bend test for the calculation of the friction coefficient 

under high non-uniform pressure 

Several considerations, each derived based on different sets of assumptions, have been 

developed to determine the friction coefficient from the measured forces during a draw-bend 

test [123]. FOX et al. developed a model in [124] to express the friction coefficient for a general 

deflection angle θ based on an integrated force balance solution (Equation 2-16). In order to 

consider the effects of the bending radius rb and the sheet thickness s0, FOX et al. modified 

this model in [124] and developed a more detailed expression of the friction coefficient in a 

draw-bend test (Equation 2-17). This equation, which was originally obtained from a force 

balance, is equivalent with the model of SULONEN et al. [125], which was developed with an 

incremental energy balance integrated over a 90° arc (Equation 2-18). A fourth solution 

developed by WILSON et al. [126] is based on a macroscopic force balance that assumes the 

external forces should be balanced by a roller force due to the effects of the contact pressure 
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and an average frictional force (Equation 2-19). Their result ignores both the effects of bending 

and sheet thickness. It should be noticed that the friction coefficient from Equation 2-19 is 

derived from a system force equilibrium and gives the averaged value of the pressure 

distribution at the pin / strip contact [127]. Table 2-2 summarises the Equations 2-16 to 2-19.  

Table 2-2: Common equations used to calculate the friction coefficient for the draw-bend test 

Summary of approaches Equation   

Incremental force balance; 

ignore sheet thickness; 

variable bending angle 

𝜇 =
1

𝜃
ln
𝐹1 − 𝐹𝑏
𝐹2

 2-16 

Incremental force balance; 

include sheet thickness; 

variable bending angle 

𝜇 =
1

𝜃
(
𝑟b + 0.5𝑠0

𝑟b
) ln (

𝐹1 − 𝐹𝑏
𝐹2

) 2-17 

Incremental force balance; 

include sheet thickness; 

90° bending angle 

𝜇 =
1

𝜋
(
𝑟b + 0.5𝑠0

𝑟b
) ln (

𝐹1 − 𝐹𝑏
𝐹2

) 2-18 

System force balance; 

ignore sheet thickness; 

variable bending angle 

𝜇 =
2

𝜃
(
𝐹1 − 𝐹2
𝐹1 + 𝐹2

) 2-19 

2.7 SUMMARY OF CHAPTER 2 

The majority of automotive parts are manufactured by means of the sheet metal forming 

technology. The process window in sheet metal forming is highly dependent on the material 

flow and restricting parameters. For a given blank shape and final part geometry, it is 

necessary to optimise the retention forces applied to the blank in order to control the material 

flow and as a result, enlargement of the process window. Friction is one of the most restricting 

parameters in sheet metal forming operations. In most cases, it is beneficial to reduce the 

friction between the tool and the workpiece to increase the process window, the extension 

of the tool life, the prevention of galling and seizure, and the improvement in the surface finish 

of the products. There are a number of ways to reduce the friction, like lubricating, improving 

the surface roughness, reducing the forces acting on the surfaces, surface texturing and 

reducing the contact area.  

In the sheet metal forming process, using lubrication reduces the total punch force. However, 

from both an economic as well as an ecological point of view, there exists a strong demand 

to avoid lubricants within metal forming processes. For the upcoming process steps after 
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forming, which are required to have a perfectly clean surface, it is essential to remove the 

lubricant from the workpiece. Removing the lubricant from the semi-finished parts can be 

done after some post-treatment process, which are costly and time consuming. Therefore, 

using the lubricant in the process leads to an increase in the number of process steps. Besides 

the increase of process steps, lubricants in the metal forming process have environmental 

and health burden disadvantages. Therefore, various green manufacturing strategies under 

laboratory conditions have been developed by manufacturers to reduce the friction forces, and 

as result reduce the amount of lubrication. 
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3. OBJECTIVES  

The conservation of required energy, lubricants and other resources for forming processes is 

a major engineering challenge from the economic and ecological points of view. Therefore, 

developing economically beneficial green technologies - from process and tooling to the entire 

enterprise - is one way to insure that future manufacturing systems are sustainable. To 

achieve this, innovation in advanced manufacturing is needed.  

In sheet metal forming, especially the deep drawing process, lubricants are of importance to 

reduce the frictional forces in order to enlarge the process window and increase the lifetime 

of tools. So far, the elementary requirements for a nearly lubricant-free deep drawing process 

are usually discussed along with tools materials and tool coating to decrease the frictional 

force and increase their lifetime. However, a totally lubricant-free deep drawing process has 

economic as well as ecological advantages. Figure 3-1 shows the schematic benefits of a 

lubricant-free deep drawing process for industrial applications. 

 

Figure 3-1: Advantages of a lubricant-free deep drawing process according to [128] 

In order to realise an economically applicable lubricant-free deep drawing process, an adapted 

tool design is required to minimise the frictional force during the process. The overall goal of 

this thesis is to design a lubricant-free deep drawing process by means of adapted tools, which 

ensures the process window despite the absence of lubricants by minimisation of frictional 

forces between the sheet and tools, and also the control of material flow during the process.  

Since in the absence of lubricants, relevant shear stresses arise because of relative movement 

between the sheet and tools, the new tool design must be able to reduce the frictional forces 

to the smallest possible extent. In order to decrease the amount of frictional force for a given 

friction coefficient, the integral of the contact pressure over the contact area has to be reduced 

by means of macro-structured tools. In this way, the contact area between the workpiece and 

tools will be reduced to some lines or even some points. As a result of this, the risk of wrinkling 

in the unsupported part of the sheet metal increases, because the usually utilised blankholder 

force is not applicable. By increasing the geometrical moment of inertia of the sheet, this 

effect can be avoided. This can be achieved by immersing the peaks of the blankholder’s 
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structure slightly into the valleys of the drawing die and generating a wave structure in the 

sheet metal perpendicular to the tangential stress. This method can increase the buckling 

stiffness of the sheet metal. Therefore, the macro-structured tool can ensure the process 

stability regarding the process limits, i.e. avoiding wrinkling and bottom cracking during the 

lubricant-free deep drawing to ensure a process-reliable production.    

Generally, the method developed for the lubricant-free deep drawing process should fulfil the 

function of usual lubricants by means of the process and tool design. Moreover, an increase 

in sustainability should be achieved against conventional process chains.  

For understanding the process and its influencing parameters, as well as a time efficient 

process design in advance, the process limits should be modelled analytically. Therefore, the 

sub-goal of the thesis is to develop an analytical model for the deep drawing of rotationally 

symmetric parts based on plasto-mechanical approaches, which can predict the stability of 

the process as a function of the tool and workpiece input parameters. In the further 

development step, the model should be extended to allow the prediction of process stability 

for complex 3D geometries. The feasibility of the process, the results of the analytical models 

and the shape accuracy of the deep drawn parts should be verified by means of numerical 

simulations as well as experimental tests.  
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4. METHODOLOGY AND APPROACH 

As already discussed in previous chapters, there exists a strong demand to realise a lubricant-

free deep drawing process without any negative effects on the process window. For this 

purpose, the amount of frictional forces has to be reduced. In section 2.1.1, the Equations 2-4 

and 2-5 showed that the flange area and the die edge radius of the deep drawing die are the 

most critical area regarding the friction. In section 2.5, it was shown that there are several 

investigations and examinations which focus on reducing the friction on the die edge radius 

of deep drawing tools by means of various surface treatments in order to realise a lubricant-

free process. However, in order to realise a total lubricant-free deep drawing process, the 

friction in the flange area should also be minimised. In order to study the importance of friction 

on the flange area of a deep drawing process, a number of calculations based on Equation 2-2 

to 2-6 are performed. The results show that the share of friction on the flange area Fff from 

the total punch force in deep drawing of rotationally symmetric cups may be about 20%, 

depending on the dimension of the parts. In this context, the friction coefficient and the 

blankholder force play an important role. In order to clarify the importance of these process 

parameters on friction reduction in the flange area, Figure 4-1 gives an overview. 

 

Figure 4-1: Reduction of punch force in deep drawing process through 50% reduction of A) friction 

coefficient and B) blankholder force 

The diagram in Figure 4-1-A shows that for a constant blankholder force (FBH = 100 kN), 50% 

reduction of the friction coefficient leads to almost 30% reduction of the total punch force, 

while the diagram in Figure 4-1-B indicates that for a constant friction coefficient (µ = 0.15), 

50% reduction of the blankholder force can reduce the total punch force by up to 17%. 

Therefore, improving the tribological behaviour of the tool through surface treatment as the 

current state of the art, and reduction of the total surface pressure, are two methods to 

decrease the frictional force. Consequently, a combination of these approaches can lead to 
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realising a total lubricant-free deep drawing process. Since reducing the integral of the contact 

pressure over the contact area can reduce the amount of frictional force, a novel approach 

should be taken towards reduction of the contact area in the flange area. Therefore, the 

proposed strategy in this thesis is to minimise the whole contact surface in the forming tool 

through macro-structuring. In the following, this is described in detail. 

Generally, the frictional force is the product of frictional shear stress and the contact area as 

follows:  

𝐹f = ∫𝜏𝑓 ∙ d𝐴r 
4-1 

Here Ff is the frictional force, τf the frictional shear stress (see section 2.2.2) and Ar the real 

contact area. This equation can be developed based on the COULOMB friction model:  

𝐹f = ∫𝜏𝑓 ∙ d𝐴r = ∫𝜎n ∙ 𝜇 ∙ d𝐴r 4-2 

Here, σn is normal stress and μ the friction coefficient. As the Equation 4-2 shows, the normal 

stress, friction coefficient and real contact area have a contributing role in friction force during 

the process. Based on this equation, a way to reduce the total friction force is reduction of the 

contact area. However, this leads to increase of contact pressure locally, because of the 

HERTZIAN contact mechanism [129]. But, since the relative high normal contact pressure acts 

on only very small zone, the resulting friction force in the integral sum will be minimised. 

Based on this consideration, to reduce the contact area between the tools and the workpiece, 

macroscopic-structuring of the tools is proposed in this thesis. In this way, the contact area 

between the workpiece and the tools will be reduced to a small number of lines, and as a 

result the integral of the total contact pressure over the contact area will be reduced compared 

with conventional tools. This is depicted schematically in Figure 4-2. 

 

Figure 4-2: Surface pressure in A) conventional and B) macro-structured deep drawing tool 
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In addition, macro-structuring can be used as an analogy to the drawing bead, in order to 

control the material flow in the flange area. This aspect is contrary to the reduction of friction, 

but is essential for the successful design of a deep drawing process. Thus, the macro-

structuring is provided to reduce the frictional force, as well as for control of the material flow. 

For this purpose, two different tooling arrangements can be considered with the capability to 

improve the frictional behaviour, as well as to influence the material flow in the flange area of 

the deep drawing tool. These differ in the radial offset between the structures of the 

blankholder and the drawing die as shown in Figure 4-3. In the next sections, the functions 

and application types of each tooling arrangement are discussed regarding the process 

stability. 

 

Figure 4-3: Tooling arrangement for macro-structured deep drawing; A) Tip to Tip and B) Tip to Hutch 

4.1 MACRO-STRUCTURING: TIP TO TIP 

In the deep drawing of parts with relatively complicated geometries and the existence of 

tangential compressive stress in the flange area, the risk of wrinkling in the unsupported sheet 

metal area will be increased, because the usually utilised blankholder force is not applicable. 

To avoid this, the geometrical moment of inertia of the sheet metal should be increased. But, 

this is not applicable with the tooling arrangement of Tip to Tip, due to a two-sided contact 

between the sheet metal and the tool. Therefore, it can be concluded that this tooling 

arrangement can enlarge the process window regarding bottom cracking and cannot prevent 

the risk of wrinkling. Nevertheless, this tooling arrangement can be applied only for simple 

geometries, where there is no tangential compressive stress in the flange area like the draw 

bending of U-Channels.  

4.2 MACRO-STRUCTURING: TIP TO HUTCH 

As mentioned above, in order to avoid the risk of wrinkling and enlarge the process window 

in the deep drawing process with macro-structured tools, the geometrical moment of inertia 

of the sheet metal against tangential compressive stresses should be increased. This can be 

achieved in the tooling arrangement Tip to Hutch by immersing the blankholder slightly into 

the drawing and die inducing an alternating bending mechanism. This creates a wave structure 
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in the flange with the desired increased geometrical moment of inertia. Contrary to draw 

beads, which are primarily used to control the material flow, macro-structured deep drawing 

tools with the Tip to Hutch arrangement can be used to reduce the frictional force due to a 

minimal contact area and to increase the resistance against wrinkling. Consequently, based 

on fundamental studies regarding the macro-structured deep drawing tool with induced 

alternating bending, following positive and stabilising effects can be achieved [130]: 

 reduction of the contact area up to 80%, 

 increasing the resistance of the sheet against wrinkling and 

 possible material flow control. 

Figure 4-4 compares schematically the conventional and macro-structured tool regarding the 

amount of friction, and also shows how the generated alternating bending can increase the 

geometrical moment of inertia of the sheet metal to prevent the wrinkling. 

 

Figure 4-4: Comparison between the A) conventional and B) macro-structured deep drawing process 

Since the alternating bending increases the stiffness of sheet metal, it can be expected that 

the process window will be enlarged in contrast to the Tip to Tip tooling arrangement regarding 

the reduction of bottom cracks as well as wrinkling. Figure 4-5 compares the process window 

in the conventional and macro-structured deep drawing process. 
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Figure 4-5: Process window in A) a conventional deep drawing process, B) macro-structuring the tools 

with Tip to Tip tooling arrangement, and C) macro-structuring with Tip to Hutch tooling arrangement 

However, the geometry of induced alternating bending plays an important role in process 

stability. Wavelength and immersion depth are two parameters which determine the 

geometry of alternating bending. Wavelength λ is the distance between two supporting points 

and immersion depth δ is the height difference between the peak of the die and the 

blankholder’s structures as shown in Figure 4-6. 

 

Figure 4-6: Geometrical parameters of induced alternating bending during the process 

These two parameters can be used as setting parameters in order to ensure a stable process 

for the deep drawing with macro-structured tools. Even by a very low immersion, a plastic 

bending mechanism and consequently a further strain hardening in the sheet metal can occur. 

That is why besides the geometry part, material properties and the sheet metal thickness, the 

radius of alternating bending is an important influencing factor in the stability conditions of 

products. Assuming that there are constant mean radius in the sheet metal over the flange 

area, the alternating bending radius can be calculated as a function of the wavelength and 

immersion depth as follows: 

𝑟b =
𝜆2

16𝛿
+
𝛿

4
 

4-3 

Wrinkling

Bottom cracking

Process window

FBH

Drawing ratio 

A) Conventional 

process

B) Macro-structured: 

Tip to Tip

B) Macro-structured: 

Tip to Hutch

Wrinkling

Drawing ratio

FBH

Wrinkling

Drawing ratio

FBH

Process window

Process window

Bottom cracking Bottom cracking

Punch Alternating bending

λ

δ

rb: Bending radius,  : Bending angle, λ: Wavelength, δ: Immersion depth, rs: Structure radius 

δ

rs

rb

rb

θ

λ

rb

r

z



Methodology and approach 

 

33 

 

Figure 4-7 shows how the bending radius from Equation 4-3 will be reduced by increasing the 

immersion depth for different wavelengths. Assuming that the plastic strain begins from  

εpl = 0.002, for a sheet metal from steel with a thickness of s0 = 0.6 and 0.8 mm, the critical 

bending radius to start a plastic bending mechanism will be 150 and 200 mm, respectively. 

This value corresponds to an immersion depth of δ > 0.05 mm. Based on this assessment, 

even by small immersion depths and large wavelengths, a plastic bending mechanism will 

occur which leads to a further strain hardening in the flange area. However, inducing plastic 

alternating bending requires further forming energy, which will be delivered from the punch 

force. 

 

Figure 4-7: Change of the alternating bending radius as a function of immersion depth and 

wavelength; A) s
0
 = 0.6 mm and s

0
 = 0.8 mm 

In other words, in the deep drawing process with macro-structured tools the frictional forces 

will be reduced, but in contrast the bending energy will be increased. The energy to induce 

the alternating bending supersedes the frictional energy in the process and makes the 

lubricant-free process possible. Therefore, in order to reach the same process window of 

conventional deep drawing for the macro-structured process, the energy to induce the 

alternating bending should be smaller than the energy to overcome the friction. This can be 

achieved through a proper tool design. Figure 4-8 compares the energy terms in the 

conventional and macro-structured processes. 

 

Figure 4-8: Energy terms in the conventional and macro-structured deep drawing processes 
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4.3 SUMMARY OF CHAPTER 4 

In order to realise a lubricant-free deep drawing process, the present frictional forces in critical 

frictional areas of the tools, namely the flange area and the die edge radius, should be 

minimised to ensure the large process window. There are a number of techniques to reduce 

the friction coefficient at the die edge radius by means of surface treatment methods. But, 

friction reduction in the flange area of deep drawing tools has not been comprehensively 

studied so far. The integrative approach to minimise the frictional forces during the process is 

based on macro-structuring of the flange area with different tooling arrangements. The variant 

Tip to Tip can minimise the frictional shear stress through the reduction of the contact area. 

Nonetheless, this increases the risk of wrinkling which is caused by compressive tangential 

stress in the free, non-contact areas of the sheet metal. To avoid wrinkling, the sheet metal 

in the flange area should be stabilised by increasing its geometrical moment of inertia. This 

can be achieved by immersing the blankholder slightly into the drawing die, inducing an 

alternating bending mechanism (variant Tip to Hutch). Therefore, the friction in the deep 

drawing process with macro-structured tools will be reduced while the bending energy 

increases. Therefore, for a deep drawing process with a large possible process window, an 

optimum tool design is required. 
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5. EXPERIMENTAL SETUP 

The realisation of a lubricant-free deep drawing process and verification of the approaches 

require a comprehensive experimental test. In this chapter, press machines, tooling and 

workpiece material are used, as well as conventional and macro-structured tools are 

introduced for the experimental tests.   

5.1 PRESS MACHINES 

The experimental tests are carried out with two different hydraulic machines, which are 

introduced in this section.    

5.1.1 Hydraulic press BUP 600 

The hydraulic press BUP 600 sheet metal testing machine by Roell Amsler makes it possible 

to test sheet metal materials for complex deformation conditions, or to carry out standardised 

and approved sheet metal test methods such as the Bulge test, the cupping test, or the 

recordings of FLC curves. The machine is equipped with a ViALUX-camera system, which 

permits visual evaluation of the local deformation changes by means of visio-plastic tracking. 

The machine provides a maximum punching and clamping force of 600 kN, with a maximum 

testing speed of 20 mm/s over the maximum ram stroke of 120 mm. The machine can control 

the travel of a deep draw piston, its load and the speed of the draw piston continuously with 

its hydraulic drive. Figure 5-1 shows the fundamental components of the sheet metal testing 

machine.  

 

Figure 5-1: Hydraulic press machine BUP 600 

For the deep drawing process, the sheet is clamped between the blankholder and the die. The 

punch moves upwards against the clamped sheet metal and draws it into the forming die. The 

measurement computer is provided for the evaluation and analysis of the measured forces 

and resultant driven forming energy. Regarding the measurement technology, there is a 

Testing machine

Piston-cylinder system with blankholder

Optical strain measurement camera

Measurement computer

Tool head (die)



Experimental setup 

 

36 

 

hydraulic pressure sensor integrated in the testing machine, and the pressure will be 

converted into force by means of an integrated measuring board. 

5.1.2 Hydraulic press Röcher RZP 250 

The second hydraulic press which will be used for deep drawing of complex part geometries 

is RZP 250 from Röcher Maschinenbau and is shown in Figure 5-2. This press will be used for 

deep drawing of complex big size geometries because of its high nominal force (2500 kN). 

The table to the right of Figure 5-2 shows the properties of the press. The punch force from 

experimental tests is measured indirectly from the hydraulic pressure of the press machine. 

The hydraulic cylinder of the press machine has two pistons with mutual hydraulic pressure 

and known surface. Measuring the acting hydraulic pressure on each piston, it is possible to 

calculate the plunger force. Obviously, there are some disturbance variables like friction 

between the cylinder and the pistons, friction on guides (tool and press machine), the weight 

of the plunger, tool, etc. In order to eliminate these disturbance variables and obtain the pure 

forming force, the measured value should be calibrated based on a comparison with an idle 

operation. Through subtracting the measured force of an idle operation from the total force, it 

is possible to measure the forming force with a very good accuracy. 

 

Figure 5-2: RÖCHER RZP250 Press 
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5.2 TOOLING MATERIAL 

High-duty, cold work tool steel 1.2379 (EN X153CrMoV12) is widely used in industrial tool 

making applications such as deep drawing, punching and blanking of stainless steel, brass, 

copper, zinc and hard abrasive materials, generally due to its excellent properties like high 

yield stress, high hardness, very good dimensional stability, high compressive strength, good 

tempering resistance and high abrasive and adhesive wear resistance. Furthermore, it is a 

very good base material for PVD and CVD coating, as well as nitriding due to its secondary 

hardening properties [131]. Therefore, it is chosen as the tooling material for experimental 

tests in this thesis. The chemical composition of 1.2379 is shown in Table 5-1.  

Table 5-1: Chemical composition of the studied tool steel (in wt. %) [132] 

Designation to C Cr Mo V 

1.2379 1.5 - 1.6 11.0 – 12.0 06 - 0.8 0.9 – 1.0 

Tools made by tooling steel 1.2379 can be hardened up to a hardness level of 60-62 HRC 

through heat treatment.  

5.3 WORKPIECE MATERIALS 

Steels and aluminium alloys are widely used materials in today’s industrial applications 

involving simple to complex deep drawing processes which require very high formability, 

mainly ductility and drawability. In the automobile industry, exterior components such as doors 

(frames and panels), front fenders, hoods (frames and panels), roof panels, trunk lids, and rear 

side panels are made up of steel and aluminium alloys [133]. Cold-rolled low-carbon steels as 

one of the most common forms of steel for forming applications, with the European standard 

EN 10130: 2006, are being produced for industrial applications in a broad spectrum of grades, 

meeting the specifications as listed in Table 5-2 [134]. 

The mechanical properties of the individual cold-rolled low-carbon steel grades are 

characterised by the yield point and tensile strength, as well as by a guaranteed minimum 

fracture strain. Because of the very low carbon content, minimal alloying elements and a 

relatively simple ferritic microstructure, they have excellent formability, relatively low strength 

and also some of the best weldability of any metal. Therefore, these grade of steels with a 

usual thickness ranging from 0.5 to 3.0 mm [135] have long been used for many applications 

in the automotive industry, including the body structure, closures, and other ancillary parts. 

Among these grades, the fracture strain of DC01 and DC03 is lower than DC04, DC05 and 

DC06 (see Table 5-2). Besides that, DC05 and DC06 have lower yield stresses compared to 

DC04. Furthermore, the formability of DC06 is highly dependent on the strain rate [136]. 
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Therefore, DC04 was chosen as the workpiece material for the experimental tests in this 

thesis because of its excellent formability properties. 

Table 5-2: Low-carbon steel grades with mechanical properties and chemical components [134] 

Designation to Mechanical properties Chemical composition 

EN 10130 
EN 10027-2 

Material No. 

σy0 in 

MPa 

Rm in 

MPa 

A80 min 

%  
C % P % S % Mn % 

DC01 1.0330 280 270-410 28 0.12 0.045 0.045 0.60 

DC03 1.0347 240 270-370 34 0.10 0.035 0.035 0.45 

DC04 1.0338 210 270-350 38 0.08 0.030 0.030 0.40 

DC05 1.0312 180 270-330 40 0.06 0.025 0.025 0.35 

DC06 1.0873 170 270-330 41 0.02 0.020 0.020 0.25 

Steel apart, the usage of aluminium in automobiles has been gradually increasing so that 

nowadays it is the second-most used material in automobiles and it has the potential to be 

used to substitute steel in car body sheet components and become the most-used material 

[137]. Among the aluminium alloys, both the 5000 and 6000 series show very excellent 

formability and have very good surface quality, though the 6000 series lose their formability 

because of their aging effect [138]. Magnesium is one of the most effective and widely used 

alloying elements for aluminium, and is the principal element in the 5000 series alloys [139]. 

When it is used as the major alloying element or combined with manganese, the result is a 

moderate to high strength, non-heat-treatable alloy. It is a readily weldable material used in a 

wide variety of applications, including pressurised vessels, buildings, transport and the 

automotive industry. EN AW-5182 and EN AW-5754 are the principal 5000 series alloys and 

are primarily used in the automobile industry [140]. Furthermore, they are also the key alloys 

utilised in the production of beverage cans, as well as electrical and computer components 

due to its good deep drawing and stretch behaviour [14]. Although both of them have very 

similar mechanical properties, EN AW-5754 is usually recommended for relatively high 

temperature applications [141]. Therefore, besides DC04, the aluminium alloy EN AW-5182 is 

chosen as the second workpiece material for the tests. This material is called AA5182 in this 

thesis. The most important mechanical properties and chemical components of AA5182 are 

listed in Table 5-3 and Table 5-4, respectively.  
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Table 5-3: Mechanical properties of AA5182 [142] 

Designation to Mechanical properties 

Material Nr. Chemical symbol σy0 in MPa Rm in MPa A80 min. in %  

EN AW-5182 EN AW-Al Mg4,5Mn0,4 125 275 28 

Table 5-4: Chemical components of AA5182 in wt% [143] 

Si Fe Cu Mn Mg Cr Zn Ti 

0.25 0.35 0.15 0.20-0.50 4.0-5.0 0.10 0.25 0.10 

For the numerical simulations and analytical calculations, both testing materials should be 

characterised regarding their flow curve by means of uniaxial tensile tests at room 

temperature, which corresponds approximately to the same temperature as in the 

experimental tests. In order to take the effects of anisotropy and the rolling direction into 

account, tensile samples were cut in three directions (0°, 45° and 90° to the rolling direction) 

according to DIN 50125 [144]. Each test was repeated five times and the average flow 

stressed for DC04 and AA5182 are plotted with a red line in Figure 5-3-A and B, respectively. 

Although the tensile test can be used to evaluate the flow curve of the materials, the range of 

the equivalent true strain in this test is limited. However, in reality, the materials undergo 

higher deformation, so that an equivalent true strain up to 1.0 is required for analysing the 

process. In order to extend the flow curves determined from the tensile tests, the curve must 

be extrapolated. Therefore, there are various approaches to extrapolate the flow curve [145]. 

Unlike material models which overestimate the flow stress at a high strain level, VOCE 

postulated the existence of a saturation stress at which the rate of hardening should be zero. 

Due to its intrinsic saturation character, this model gives a good flow stress description [146]:  

𝜎y = 𝜎∞ − (𝜎∞ − 𝜎y0) ∙ 𝑒
(−𝑚𝜀pl) 5-1 

Where σ∞ is the asymptotic value for saturation strength (ultimate strength), σy0 is the initial 

value of isotropic hardening, m and εpl are the characteristic strain constant and equivalent true 

strain, respectively. Although this model might underestimate the yield stress at very high 

strain levels, since the strain level in the sheet metal forming process is usually around 0.5, it 

can better describe the material behaviour than other models  [147]. Moreover, in contrast to 

many other material models that rely on purely analytical curve fitting, each parameter of this 

model has physical significance and can be determined by a simple curve fitting [148]. The 

matched VOCE formulation parameters for testing both materials DC04 and AA5182 are listed 

in Table 5-5. 



Experimental setup 

 

40 

 

Table 5-5: Parameters of the VOCE model for testing both materials 

Material σ∞ in MPa σy0 in MPa m 

DC04 420 155 7.5 

AA5182 390 150 10 

Based on fitting these parameters, the flow curves of DC04 and AA5182 are extrapolated 

regarding the VOCE material model up to an equivalent true strain of 1.0. Figure 5-3-A and B 

shows that there is a good correlation between the experimental data and the extrapolated 

curve for both materials.  

 

Figure 5-3: Flow curve of workpiece materials; A) DC04 and B) AA5182 

5.4 CONVENTIONAL AND MACRO-STRUCTURED TOOLS 

Within the scope of the experimental tests, different deep drawing tools with diverse 

objectives were considered. In order to investigate the effect of macro-structuring on friction 

reduction as well as the effect of alternating on the springback behaviour of specimens, the 

deep drawing tools for draw bending of the U-Channel were used, while to study about the 

process stability tools for deep drawing of closed-form geometries like rotationally symmetric 

or rectangular cups were chosen.  

5.4.1 Tools for draw bending of U-Channels 

Draw bending of U-Channels is considered in this thesis to examine the influence of the 

contact area on friction reduction in a deep drawing process and the effects of alternating 
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parts. Draw bending of U-Channels is chosen for two main reasons: Firstly, there is no ideal 

forming as a result of tensile-compressive stress in the flange area, and the total forming 

energy consists of bending and friction. Therefore, the effect of the contact area, as well as 

alternating bending on the forming energy can be determined directly with this test. Secondly, 

this process allows fast responses due to its simplicity, which is suitable for performing a large 

number of parameter studies. For this purpose, conventional and macro-structured drawing 

tools were constructed from tool steel 1.2379. Figure 5-4 shows the top and side views of 

conventional and macro-structured tools with corresponding dimensions schematically. Here, 

in the test series, where a calculation of the surface pressure is required (i.e. variant Tip to 

Tip), the peaks of macro-structured tools are flattened with a width of 0.5 mm in order to avoid 

the HERTZIAN pressure and to be able to gain an analysable condition. Furthermore, the contact 

area of both tools were polished to reach a roughness of Ra = 0.3 µm and Rz = 0.5 µm for 

comparable testing conditions and to assure the reproducibility of results. 

 

Figure 5-4: Geometry and dimensions of A) conventional and B) macro-structured draw bending of  

U-Channel forming tools 

5.4.2 Tools for deep drawing of axial symmetric parts 

In order to verify the applicability of the macro-structured deep drawing process and its 

influence on process stability regarding wrinkling, conventional and macro-structured 

rotationally symmetric tools from tooling material 1.2379 were manufactured for experimental 

tests. Because of structural reasons, the outer radius of the tools was limited to 113 mm. In 

order to reach drawing ratio greater than 2, the inner radius of the tools selected was  
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conventional and macro-structured tools was RM = 10 mm. Moreover, a constant wavelength 

of λ = 8 mm was considered for the macro-structured tool. Additionally, in order to verify the 

transferability of the approach into the non-rotationally symmetric parts, a rectangular tool was 

constructed with inner and outer dimensions of 85 mm × 85 mm and 205 mm × 205 mm, 

respectively. In order to be able to ensure comparability, a constant wavelength of λ = 8 mm 

and a die edge radius of RM = 10 mm were considered for the rectangular tool. In order to 

prevent very small straight parts in the rectangular tool, the corner radius should not be very 

large. From the other side, a very small corner radius and considering the draw ratio, leads to 

a reduction of the outer radius of the sheet metal, and consequently the alternating bending 

mechanism cannot take place. Because of these limitations, a corner radius of RC = 20 mm 

was chosen for the rectangular tools. Furthermore, the contact areas of all three tools were 

polished to get an equivalent surface roughness of Ra = 0.3 µm and Rz = 0.5 µm. Figure 5-5 

shows the top view of conventional and macro-structured rotationally symmetric tools, as well 

as the macro-structured rectangular tool with corresponding dimensions. 

 

Figure 5-5: Tools for deep drawing of axial symmetric parts; A) Conventional, rotationally symmetric, 

B) macro-structured, rotationally symmetric and C) macro-structured, rectangular 
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6. PROCESS MODELING AND DETERMINATION OF 

PROCESS CRITERIA 

In the deep drawing process with macro-structured tools, the process stability strongly 

depends on the selection of process inputs, i.e. wavelength and immersion depth. Therefore, 

to design a tool with the greatest possible process window, the process should be analysable 

regarding the correlation of influencing factors. This can be achieved through a combination 

of analysing methods i.e. trial and error, FEM or developing an analytical model which can 

predict the best proper setting parameters. Trial and error methods of testing should be used 

only as a final choice, because the process has many drawbacks that make it an unwise choice 

in certain situations. Besides that, FEM’s main advantage is that it produces a comprehensive 

set of results. However, verification of the results can be sensitive to boundary conditions, 

and therefore the model usually needs to be refined repeatedly to give assurance that the 

results are reasonably accurate. Subsequently, the results should be verified and optimised 

with experimental testing through trial and error methods. Therefore, it is a time-consuming 

procedure regarding the tool design in sheet metal forming operations. However, despite 

these techniques, an analytical model can be developed for understanding the process 

behaviour regarding its response by changing the input parameters in a time-efficient manner. 

However, FEM simulation based on the preliminary results of the analytical model might be 

required for the final tool design, but it takes much less time. Figure 6-1 compared both 

procedures regarding the required time needed for tool design. 

 

Figure 6-1: Comparison of time needed for tool design between two procedures 

Because of that, the physical characteristics of the deep drawing process with macro-

structured tools need to be modelled analytically (or semi-analytically). Consequently, based 

on the information gained from the model, the criteria for prediction of the process limits 

should be developed. The criteria should be able to predict the onset of wrinkling in rotationally 

symmetric areas of the deep drawn parts and also to determine the maximum allowable punch 

force for prevention of bottom cracks. Furthermore, a criterion is necessary to make a 

statement about the geometrical properties and the dimensional accuracy of the specimens 

after the forming operation. In the following, the process is modelled and the proposed criteria 

are introduced.  
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6.1 PROCESS MODELLING: BUCKLING STABILITY 

Since in the deep drawing process with a macro-structured tool, the usually utilised 

blankholder force is not applicable, understanding the influence of parameters for buckling 

stiffness of the sheet metal plays an important role for a stable process. For this purpose, an 

analytical model has to be developed to describe the buckling stability of the sheet metal as a 

function of geometry and material properties in the most critical areas.  

6.1.1 Identification of the most unstable part of the flange area  

As discussed in Chapter 2, the tangential compressive stresses cause wrinkling in the 

rotationally symmetric parts of the deep drawing process, while the radial tension and the 

normal compression stress from the blankholder have a compensating effect. In deep drawing 

with macro-structured tools, the induced alternating bending increases the buckling stiffness 

of the sheet and prevents the buckling. However, this process provides so far a special case, 

in which the peripheral area of the flange (the red area in Figure 6-2) in contrast to the inner 

areas (the green area in Figure 6-2) is supported only on one side by the tool and forms a free 

end part. Consequently, the free end part of the sheet in deep drawing with the macro-

structured tool is the most critical area regarding wrinkling since (see element 1 in Figure 6-2): 

i) the tangential compressive stress (cause of wrinkling) in this area is maximum, ii) the radial 

tangential stress (wrinkling compensator) in this area is minimum (compare elements 1 and 2 

in Figure 6-2), iii) this part is supported only on one side, while the other parts have two 

supporting points, and iv) there is no alternating bending in this area, while the other parts 

have a wave structure which increases their buckling stiffness. 

 

Figure 6-2: Stress state on the flange area of the deep drawing process with macro-structured tools.  

That is why this part is the most critical part of the sheet metal regarding wrinkling, i.e. if the 

process is unstable, wrinkling will initiate from the free end part. Therefore, it is necessary to 

control the stability only in this area. In the following, the conditions for stability shall be studied 

in the free part of the sheet metal.  
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6.1.2  Buckling analysis of the free end part of the sheet 

By taking into account that area 1 in Figure 6-2 undergoes no alternating bending, σr and σt are 

the present stresses in this region. Considering the force equilibrium condition, the radial 

tensile stress σr can be written as [9]: 

𝜎r(𝑟) = 𝜎y(𝑟) ∙ ∫
d𝑟

𝑟
= 𝜎y(𝑟) ∙ ln (

𝑟0
𝑟
) 6-1 

Where σy(r) is the corresponding yield stress at any arbitrary radius r, and r0 is the initial radius 

of the sheet. Regarding the TRESCA yield criteria, the tangential compressive stress σt(r) can 

be written as:  

 𝜎t(𝑟) = 𝜎r(𝑟) − 𝜎y(𝑟) 6-2 

Having the flow curve of the material, it is possible to calculate the current stress state at the 

free end part of the sheet. Modelling the free end of the sheet with a rectangular plate, 

supported on one side (simply supported) and free in movement at the other side which 

sustain high tangential compressive and low radial tensile stresses, it is possible to perform a 

buckling analysis. The first theoretical examination of plate buckling was by BRYAN [149], who 

obtained a solution to the problem of a simply supported plate under uniform compression in 

1890. Since then, numerous researchers have investigated the local instability in plates under 

a wide variety of loading and boundary conditions using many different methods of analysis. 

When a compressed plate buckles, it develops out-of-plane ripples, or buckles, along its 

length. In the elastic range, the buckled portions of the plate lose their loading, and become 

ineffective at resisting further loading, while in the portions of the plate close to the supports, 

out-of-plane buckling is diminished, and these parts have post-buckling reserves of strength 

and stiffness. The plate as a whole sustains increases in load after buckling, but the axial 

stiffness reduces [149]. The post-buckling behaviour of individual thin plates is governed by 

two simultaneous non-linear differential equations originally set up by VON KÁRMÁN [150]. For 

this aim, a rectangular perfectly flat plate with thickness s0, length and width dimensions a and 

b, respectively, was subjected to uniform compressive stress σt and tensile stress σr, which is 

supported on one side and free in movement at the other side, and is considered in Figure 

6-3: 

 

Figure 6-3: Buckling of rectangular plate under uniaxial compression and tension 
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The equilibrium equation for the flat plate under uniaxial tension and compression can be 

written as: 

𝜕4𝑤

𝜕𝑥4
+

2𝜕4𝑤

𝜕𝑥2𝜕𝑥2
+
𝜕4𝑤

𝜕𝑦4
=
12(1 − 𝑣2)

𝐸𝑠0
3 (𝜎𝑡

𝜕2𝑤

𝜕𝑥2
− 𝜎𝑟

𝜕2𝑤

𝜕𝑦2
) 6-3 

Where, w denotes the deflection in the z-direction, v and E are POISSON’s ratio and the YOUNG 

modulus, respectively. Substituting σr and σt from Equations 6-1 and 6-2 into the Equation 6-3 

and taking into account that x and y correspond to the width and perimeter of the free end 

part of the sheet in the flange area, this equation make a statement about the buckling 

strength of this part. Therefore, this investigation leads to understanding the correlation 

between the material properties and structural geometry, and their influence on the stability 

of the sheet metal in the flange area. Besides that, for better understanding the influence of 

process parameters on the forming energy, this is followed with the analytical method.  

6.2 PROCESS MODELLING: FORMING ENERGY 

Generally, the load-displacement progress in the deep drawing process is of importance, 

because a high level of loading leads to process instability in the form of bottom cracks. The 

calculation of the total punch force for the conventional deep drawing process based on the 

investigation of SIEBEL was already introduced in section 2.1.1. However, in the deep drawing 

process with macro-structured tools, it differs from the conventional process because of 

additional alternating bending. In this section, the required forming force is modelled for deep 

drawing with a macro-structured tool.  

There are several methods to calculate the forming force for the deep drawing process. DOEGE 

has compared in [9] the method of SIEBEL [151], BAUER [152] and the “principle of virtual 

work”. As Figure 6-4 shows, there is a very good agreement between the experimental results 

and the results from the method principle of virtual work. 

 

Figure 6-4: Comparison between the calculated punch force from the method of Siebel, Bauer and 

the principle of virtual work with experimental results according to [9] 
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Since the semi-analytical method based on the principle of virtual work can predict the forces 

in the deep drawing process more accurately compared with the SIEBEL formulation (approx. 

20% [4]), this method is used in this thesis to calculate the punch force. 

The total energy for deep drawing with macro-structured tools Et, consists of the ideal energy 

in the flange area Eid, the energy to realise the alternating bending, as well as the bending at 

the radius of the drawing die Eb, and the energy to overcome the friction on the contact area 

Ef, see Figure 6-5 (compare with Figure 2-2). 

 

Figure 6-5: Individual components of the total forming energy for deep drawing of a rotationally 

symmetric cup with a macro-structured tool 

The summation of all the energy terms results in the total energy Et:  

𝐸t = ∫𝐹t ∙ dℎ = 𝐸id + 𝐸b + 𝐸f 6-4 

Ft and dh represent the punch force and punch displacement. Based on the principle of virtual 

work, it is possible to calculate the ideal energy for axial symmetric geometries. The principle 

of virtual work implies that the external work corresponds to the inner work, i.e.  

𝛿𝑊int = 𝛿𝑊ext 6-5 

Equation 6-5 indicates that the virtual external work, which results from the external forces, is 

equal to the virtual internal work, which is calculated from the existing internal stresses and 

the virtual strains. Therefore, in a forming process, the virtual energy for plastic deformation 

of a certain volume has to be equal to the product of the according applied force and the virtual 

punch displacement. To establish the progress of ideal energy during the process numerically, 

it is required to consider the process incrementally. The incremental process evaluation allows 

the consideration of the process time and the relevant non-linearities. For this, the whole 

process should be divided into small time intervals. To calculate the ideal forming energy Eid, 

the frictional and bending energy are not considered, but only the available energy inside the 
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sheet metal in the flange area. Furthermore, the sheet metal forming process is considered 

quasi-static, i.e. the inertial forces are neglected. By an appropriate cut-out volume of the sheet 

metal, it is possible to find out the relevant forming forces. Therefore, the principle of virtual 

work can be written as follows [153]: 

𝛿𝐸id = ∫Ʃ ∙ 𝛿𝑢 d𝐴 = ∫𝜎ij ∙ 𝛿휀𝑖𝑗d𝑉 6-6 

Here, Ʃ represent the external stress of the considered cut-out volume, δu the virtual 

displacement on the cut-out location, and σij and δεij the internal stress and virtual strain of the 

volume, respectively. Figure 6-6 illustrates the considered flange volume, virtual 

displacements and also the corresponding radius. 

 

Figure 6-6: Principle of the analytical calculation of ideal forming energy in the flange area according 

to the principle of virtual work [153] 

Considering the mean vertical anisotropy �̅� according to HILL [154] and by neglecting the 

change of sheet thickness during the process, the ideal forming energy in the flange area can 

be calculated as [9]:  

𝐸id = √
�̅� + 1

�̅� +
1
2

∙
𝛿𝑉

𝛿ℎ
∙ ∫ 𝜎y(𝑟) ∙

1

𝑟
d𝑟

𝑟a

𝑟i
∗

 6-7 

Here, δV and δh are the virtual volume change and virtual punch displacement respectively; ri* 

is the inner radius of the flange, while ra is the current outer radius of the sheet metal. The 

instantaneous yield stress σy(r) of any point in the flange area of the rotationally symmetric 

blanks, with an initial radius of r0, can be determined as a function of the current outer flange 

radius ra and the corresponding radius of the point r [155]:  

𝜎y(𝑟) = 𝑎 [
2

√3
ln(

√𝑟0
2 + 𝑟a

2 + 𝑟2

𝑟
)]

𝑛

 6-8 
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Where a and n are the material constants and can be determined through material 

characterisation tests. As Figure 6-5 shows, the sheet metal undergoes an additional 

alternating bending in the flange area, besides the double bending over the die edge radius. 

The energy for the alternating bending in the structured surface, as well as the bending at the 

die edge radius, can also be calculated with the help of the principle of virtual work as follows:   

𝐸b = (𝑟M +
𝑠0
2
) ∙ √

�̅� + 1

�̅� +
1
2

∙ 𝛿𝑉 ∙ ∫
cos(𝜃)

𝑟(𝜃)

𝜃

0

𝜎𝑦(𝜃)d𝜃 6-9 

Here s0 is the initial sheet thickness and rb and θ are the bending radius and bending angle, 

respectively. The current yield stress σy(r), depending on the radius and the virtual punch 

displacement, can be determined through Equation 6-8. Figure 6-7 illustrates the considered 

volume for bending over the die edge radius, as well as the present internal and external loads 

on the sheet metal in this area. Obviously, the model can be used to compute the required 

bending energy for alternating bending in the structured area of the flange through applying 

the corresponding bending radius and bending angle. 

 

Figure 6-7: Principle of the analytical calculation of the bending energy, according to the principle of 

virtual work [153] 

The calculation of frictional energy between the part and the tools is based on the explicit use 

of the local pressure and the local frictional force present along the contact length, as originally 

pursued by EULER and EYTELWEIN [156]. But, on the die edge radius occur high local stress 

peaks, which cannot be considered in that model. Accordingly, in the half-analytical model 

based on the principle of virtual work, the frictional energy can also be calculated from the 

present stresses [9]:  

𝐸f = (
𝜇

𝜇 − 1
) ∙ √

�̅� + 1

�̅� +
1
2

∙ 𝛿𝑉 ∙ ((
1
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1

𝜇 − 1
) ∙ 𝜎y,1 + 𝜃 ∙ 𝜎y,2) 6-10 

Where, µ is the friction coefficient, θ is the bending angle and σy,1 and σy,2 are the yield stress 

before and after the bending, respectively. With the ability to calculate all the individual energy 
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terms for deep drawing with macro-structured tools and superposing them, the correlation 

between all the influencing parameters and the forming force can be studied in advance.  

6.3 EXTENSION OF THE MODEL FOR DEEP DRAWING OF NON-

ROTATIONALLY SYMMETRIC PARTS 

In contrast to rotationally symmetrical parts, there is no uniform stress distribution in the 

flange area of irregularly shaped parts along the drawing contour. For example, in the deep 

drawing of rectangular cups, the tangential compressive stresses appear significantly in the 

rotationally symmetric area, while on the straight parts, act almost exclusively radial tensile 

and almost no tangential compressive stresses. In reality, however, the tangential stress in 

transition from the rotationally symmetric part to a straight area does not suddenly drop to 

zero, but it is reduced continuously in a transition zone. This is show schematically in Figure 

6-8-A. 

 

Figure 6-8: Stress state in the flange area of the rectangular cup; A) Distribution of tangential stress 

in the flange area according to [157] and B) the stress state in rotationally symmetric and straight 

parts of the flange area 

During the deep drawing of irregular sheet metal parts, the individual parts of the sheet metal 

part undergo different stresses, which can also change during the forming process. Thus, 

there should be a distinction between areas where tensile stress states exist and areas where 

tensile-compression stress occurs. Therefore, in a first approximation, the flange area can be 

subdivided into the rotationally symmetric and straight areas [157], as shown in Figure 6-8-B. 

Based on this consideration, the 2D-analytical model developed in this thesis can be extended 

for deep drawing of non-rotationally symmetric parts. For this aim, the model can be used to 

describe the buckling stiffness of the flange area in the deep drawing of the rectangular cups 

with a simplified assumption, in which the rotationally symmetric and straight part of the 

flange can be individually analysed. Consequently, the straight zones can be assumed as a 
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rotationally symmetric part with an infinite radius. However, due to the absence of tangential 

stress in the straight area, buckling stiffness is less relevant. Despite buckling stiffness having 

less relevance in the straight area, the energy calculation to determine the load-displacement 

progress of the process in this area is of importance. In order to make an accurate statement 

about the required forming energy for the deep drawing of rectangular cups with macro-

structured tools, it is required to exclude the ideal forming energy from the calculation, i.e. 

Equation 6-6.  

6.4 DEVELOPMENT OF A CRITERION FOR THE PREDICTION OF 

WRINKLING 

In order to be able to make a statement about the onset of wrinkling in the deep drawing 

process with macro-structured tools, the model developed in section 6.1 can be used. Based 

on this model, a criterion to predict the onset of wrinkling is developed within the scope of 

this section.  

Generally, considering the buckled mode of the plate shown in Figure 6-3, the deflection 

geometry of the plate w in the z-direction can be written as: 

𝑤 = ∑ ∑ 𝑤𝑚𝑛 sin
𝑚𝜋𝑥

𝑎
𝑛=1,2,3,…𝑚=1,2,3,…

sin
𝑛𝜋𝑦

𝑏
 6-11 

Here m and n are the number of half sine waves in the buckled mode. It should be taken into 

account that, w = 0 at x = 0, y = 0 and y = a. Considering these boundary conditions, the 

substitution of Equation 6-11 into Equation 6-3 gives: 

(
𝑚4𝜋4

𝑎4
+ 2

𝑚2𝑛2𝜋2

𝑎2𝑏2
+
𝑛4𝜋4

𝑏4
) =

12(1 − 𝑣2)

𝐸𝑠0
3 (𝜎t

𝑚2𝜋2

𝑎2
− 𝜎r

𝑛2𝜋2

𝑏2
) 6-12 

Solving the differential equation, the compressive stress σt can be written as:  

𝜎t =
𝜋2𝐸𝑠0

2 ((
𝑚
𝑎 )

2
+ (

𝑛
𝑏
)
2
)
2

12(1 − 𝑣2) ((
𝑚
𝑎 )

2
− (

𝜎r
𝜎t
) (
𝑛
𝑏
)
2
)
 6-13 

The lowest value of the plate buckling stress σt,cr in this equation can be obtained when the 

plate buckles only in one direction, i.e. in the case of wrinkling n = 1. Therefore, the critical 

tangential stress σt,cr can be written as:  
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𝜎t,cr =

𝜋2𝐸𝑠0
2 ((

𝑚
𝑎
)
2
+ (

1
𝑏
)
2

)

2

12(1 − 𝑣2) ((
𝑚
𝑎 )

2
− (

𝜎r
𝜎t
) (
1
𝑏
)
2

)

 6-14 

This equation gives the critical value of the tangential compressive stress for the onset of 

elastic buckling in a plate with given dimensions under uniaxial compression and tension 

stress, σt and σr. In relation to wrinkling, m indicates the number of initiated wrinkles. However, 

since in the deep drawing process, wrinkling forms a plastic buckling, Equation 6-14 should 

be modified for plastic buckling. VON KÁRMÁN [158] has shown that the conventional elastic 

bending theory can be extended to cover plastic bending by the substitution for YOUNG’s 

modulus E of a plastic buckling modulus, E0: 

𝐸0 =
4𝐸𝑃

(√𝐸 + √𝑃)
2 6-15 

Where, P being the slope of the stress–strain curve of the material in simple tension at a given 

value of strain; it follows that E0 is a function of strain. In order to apply Equation 6-14 for the 

prediction of process stability, the parameter m, which indicates the number of wrinkles in an 

unstable process, has to be calculated. 

Besides that, In order to transfer this criterion to a deep drawing process with macro-

structured tools, it is required to know the number of wrinkles at the onset of buckling when 

the critical stress is reached (m in Equation 6-14). The number of wrinkles in a deep drawing 

process depends on the blankholder force. There is no conventional blankholder force by the 

free end part of the sheet in the deep drawing process with macro-structured tools. SENIOR 

used the energy method in [159] to solve the stability problem in the deep drawing process 

for both cases with and without the blankholder. Considering stable equilibria, if the total 

energy tending to restore the conditions for equilibrium in a system is greater than the energy 

for displacing it, the system remains stable. Equating the two energy values gives the critical 

conditions.  In the wrinkling of a deep drawn flange due to lateral collapse under the induced 

tangential compressive stress, the energy terms involved are of three main types:  

 EB, the energy due to bending into a half sine wave segment of the wrinkled flange,  

 Et, the energy due to the tangential compressive forces,  

 EL, the energy due to the lateral loading of the flange surface.  

Due to lateral elastic bending, the energy stored in a half sine wave segment can be written 

as: 

𝐸B =
1

2
∫ 𝐸0𝐼

d2𝑦

d𝑥2
d𝑥

𝑙

0

 6-16 
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Here, E0 is the plastic buckling modulus, I is the moment of inertia and l is the length of a half 

sine wave segment and can be determined as follows:   

𝑙 =
𝑟m
𝑚 

 6-17 

Where rm is the mean flange radius and m the total number of waves formed. The energy due 

to the tangential compressive forces can also be written as:  

𝐸t =
𝜎t𝑏𝑠0
2

∫ (
d𝑦

d𝑥
)
2

d𝑥
𝑙

0

 6-18 

Where b is the flange width. Considering the flange surface as q, the third energy component 

EL can be calculated as follows:  

𝐸L = ∫ ∫ 𝑏𝑞 d𝑦 d𝑥
𝑦

0

𝑙

0

 6-19 

The critical condition is reached when:  

𝐸B + 𝐸L = 𝐸t 6-20 

SENIOR solved in [159] the differential equation with respect to the upper and lower limits of 

the integral and showed that the number of waves m which the flange would wrinkle is:   

1.65
𝑟m

𝑟0 − 𝑟i
≤ 𝑚 ≤ 2.33

𝑟m
𝑟0 − 𝑟i

 6-21 

Here, rm is the mean flange radius, r0 and ri are the initial radius of the sheet and inner radius 

of the drawing die, respectively.  

Substituting the upper and lower limits of m from Equation 6-21 into Equation 6-14 leads to 

define a safety limit for the tangential stress. The upper and lower limits of the critical 

tangential stress σt,cr are plotted in Figure 6-9-A, and this is compared with the tangential stress 

at the free end part. As long as the tangential stress during the process lies below the critical 

tangential stress σt,cr, no wrinkling is expected and the process will be stable. If the tangential 

stress exceeds the critical value and enters into the uncertain zone, the process will be 

unstable and wrinkling will be initiated. In order to use this investigation as a criterion for the 

prediction of wrinkling in the deep drawing process with macro-structured tools, the progress 

of the tangential compressive stress at the free end part of the sheet should be evaluated. 

This can be achieved using Equation 6-2. Here, it should be noted that the maximum length 

of the free end part is half of the wavelength λ. Because of the strain hardening of the sheet 

during the process, the amount of tangential stress increases by each time step. Figure 6-9-B 

shows schematically the development of tangential stress, especially at the free end part of 

the sheet as a function of sheet radius and time. 
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Figure 6-9: Free end part of the sheet metal; A) Controlling the stability of the process regarding 

wrinkling and B) Progress of the tangential stress at the free end part of the sheet during deep 

drawing 

6.5 DEVELOPMENT OF A CRITERION FOR PREDICTION OF BOTTOM 

CRACKS 

Generally, fractures occur in the deep drawing process in the bottom corner of the part, since 

the material undergoes less plastic deformation and strain hardening, and therefore its 

strength is less than other parts. Regarding the theoretical calculation of the maximum 

drawing ratio, the forming force which is required to perform the plastification in the forming 

area should be compared with the maximum allowable force transmission in the bottom area 

of the cup. The greatest possible drawing ratio results from the consideration of equilibrium. 

For this purpose, the total forming force based on the developed model in section 6.2 should 

be compared with the maximum allowable punch force.  

Considering the fracture locus of stainless steel as presented in Figure 6-10, in the space of 

the stress triaxiality and the equivalent plastic strain to fracture, it can be observed that the 

equivalent plastic fracture strain for plane stress conditions is very close to the uniaxial tension 

condition. Therefore, since the stress state in the cylindrical wall of a drawn part is very similar 

to the uniaxial stress state, it is possible to use it as a simple failure criterion by comparing it 

with the tensile strength of the material. 
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Figure 6-10: Fracture locus in the space of the stress triaxiality and the equivalent plastic strain to 

fracture 

Considering Rm as the ultimate tensile strength of the sheet, the maximum transferable punch 

or bottom crack force Fbc can be roughly calculated by means of the following equation: 

𝐹bc = 𝐴0 ∙ 𝐶R ∙ 𝑅m 6-22 

Here, A0 is the cross sectional area of the drawn part and CR is a dimensionless crack factor 

for the correction. To identify the crack factor, the model from DOEGE can be used [9]. This 

factor can vary from 0.9 to 1.5 as a function of the material and process properties. In order 

to determine this factor analytically, it must be assumed that neither the bending, nor the 

tangential compressive stress, nor material slippage, nor the friction above the punch edge 

radius, influence the transferable force. However, it is to be expected that the punch edge 

radius, the sheet thickness, the drawing ratio and above all the current stress state influence 

the crack factor. This relationship can be derived using the natural exponential function as 

follows [160]: 

𝐶R = 𝑒
𝜑𝑡 6-23 

Here φt is the tangential compression factor at the outlet of the punch edge radius and can be 

determined as follows  [160]:  

𝜑𝑡 = ln

√
𝑟p𝐴
𝑠0
(
𝑟i
𝑟p
− 1) (𝐴2 − 1) + (1 − cos𝛼)

2
3
𝑟p
𝑠0
(𝑎3 − 1) + (

𝑟i
𝑟p
− 1)

2

𝑟i
𝑟p
− 1 + sin𝛼

 
6-24 
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𝐴 = (
𝑠0
𝑟p
+ 1) 6-25 

Where, rp and α are the punch edge radius and the deflection angle of the punch edge radius, 

respectively. Comparing the bottom crack force Fbc as a criterion for the fracture with the 

calculated punch force, which is computed through the energy method, it is possible to make 

a precise and explicit statement about the stability of the process regarding bottom cracks. 

Obviously for a stable process, the punch force must not exceed the maximum transformable 

force or the bottom crack force Fbc.  

6.6 DEVELOPEMENT OF A CRITERION FOR PREDICTION OF 

DIMENSIONAL ACCURACY OF THE PARTS 

The deep drawing of sheet metal induces complex deformations, which in different regions 

of the sheet metal can have vastly different accumulated plastic strains [161]. Upon unloading 

by removing the tools, springback occurs which can change the shape accuracy of the part 

[162]. Springback is caused by non-uniform residual stresses, through the sheet thickness of 

the formed part, that create a bending moment, which causes a distortion of the workpiece 

upon unloading. Springback strains are almost completely elastic; non-linear recovery strains 

are usually small but, in extreme cases, they can amount up to 10% of the total recovery [163]. 

Therefore, reliable prediction of springback is of importance during the tool design. Nowadays, 

engineering guidelines and finite element software are used in the design process to predict 

the amount of springback in sheet metal forming. Based on this prediction, the tools’ 

geometry and process parameters are modified to obtain the desired product shape [164]. 

However, the current accuracy of springback prediction is not sufficient [165]. 

The fact that materials are subjected predominantly to tangential compression as long as they 

are in the flange area, followed by radial tension for the inward cup side and radial compression 

for the outward cup side during the bending over the die edge radius, results in complex strain 

path changes in the sheet. Additionally, in the deep drawing process with macro-structured 

tools, further strain hardening as a result of alternating bending decreases the amount of 

elastic strains within the sheet thickness. Moreover, for some materials, the load change 

during the alternating bending leads to a kinematic hardening, see Figure 6-11. Due to the 

closed-form shapes and accordingly high structural stiffness, the deep drawn parts contain 

high residual stresses, which are strongly dependent on the material hardening behaviour. 

Since most of them will be cut out for the follow-on operations, the residual stresses lose 

their balance, which leads to a dimensional inaccuracy in the form of springback in the part. 

The positive effect of the increased retention force for the compensation of springback 

through increasing the blankholder force in the conventional deep drawing process is known 

from the literature [166]. However, since in the lubricant-free deep drawing process the usually 

utilised blankholder force is not applicable, it can be performed geometrically through retention 
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force results from alternating bending. Based on this consideration, developing a criterion to 

predict the amount of springback due to the release of the residual stresses after cutting out 

the specimen in the deep drawing process with a macro-structured tool is essential. For this 

purpose, a half-analytical criterion is developed in this section. 

 

Figure 6-11: Influence of alternating bending on the kinematic hardening behaviour of the workpiece 

A way to quantify the circumferential residual stress in deep drawing cups is called ring 

splitting (Figure 6-12), a method introduced by SIEBEL and MÜHLHÄUSER in [167]. Ring splitting 

is one of the most common springback-measurement tests for the deep drawing of 

symmetrical parts, which offers an opportunity to evaluate the amount of residual stress in 

the specimen. In this test, a ring (see Figure 6-12-A) will be cut out from the wall part of a 

deep drawn cup and subsequently split open. The tangential residual stress can then be 

determined from the ring opening chord upon splitting. 

 

Figure 6-12: The ring splitting method to determine circumferential residual stress in deep drawing 

cups; A) Cutting area in a rotationally symmetric deep drawing cup for the splitting test, B) springback 

in the split ring and C) tangential residual stress at the inner and outer cup surfaces 
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To determine the tangential residual stress in the wall of the cup, the ring opening gap Δ can 

be approximated with a circular arc, as shown in Figure 6-12-B: 

2𝜋𝑟2 = 2𝜋𝑟1 + ∆ 6-26 

or:  

𝑟2 − 𝑟1 = ∆/2𝜋 6-27 

Here r1 and r2 are the mean radius of the intact and split ring. The maximum tangential elastic 

bending strain due to the springback at the outer and inner surfaces of the intact ring 휀max,out
eb  

can be determined from the bending theory as follows: 

휀max,out
eb =

𝑠0
2𝑟1

−
𝑠0
2𝑟2

=
𝑠0
2
(
𝑟2 − 𝑟1
𝑟1𝑟2

) 6-28 

While the maximum tangential elastic bending strain at the inner surface 휀max,inn
eb  is: 

휀max,out
eb =

𝑠0
2𝑟2

−
𝑠0
2𝑟1

=
𝑠0
2
(
𝑟1 − 𝑟2
𝑟1𝑟2

) 6-29 

By substituting the Equations 6-28 and 6-29 into 6-26, the elastic bending strain can be written 

as:  

휀max,out
eb =

𝑠0
2
(
∆

𝑟1𝑟2
) 6-30 

and  

휀max,inn
eb = −

𝑠0
2
(
∆

𝑟1𝑟2
) 6-31 

Since Δ/2π ≪ r1, it can be assumed that r1 ≈ r2, therefore: 

휀max,out
eb =

𝑠0
4𝜋
(
∆

𝑟1
2
) 6-32 

and 

휀max,inn
eb = −

𝑠0
4𝜋
(
∆

𝑟1
2
) 6-33 

Considering the Equations 6-32 and 6-33, the maximum tangential elastic bending stress at 

the outer and inner surfaces can be calculated as follows: 
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𝜎max,out
el =

𝐸 ∙ 𝑠0
4𝜋

(
∆

𝑟1
2) 6-34 

𝜎max,inn
el = −

𝐸 ∙ 𝑠0
4𝜋

(
∆

𝑟1
2) 6-35 

As the Equations 6-34 and 6-35 show, the residual stresses are tensile at the cup outer surface 

and compressive at the inner surface. Figure 6-12-C shows these stresses schematically. As 

long as there is no springback in the workpiece, because of equilibrium conditions, the bending 

moment should be zero due to tangential stresses over the sheet thickness in the wall part of 

the cup (intact ring) [168]: 

𝑀b = 𝑀b
res −𝑀b

eb = 0 6-36 

Here, 𝑀b
res is the bending moment because of the residual stress in the intact ring and 𝑀b

eb is 

the induced elastic bending moment which is necessary to close the split ring. Since 𝑀b
eb is 

an elastic bending moment, considering the equilibrium conditions, it is symmetric about the 

natural axis, i.e. over the sheet thickness and can be written as a function of its maximum 

value 𝜎max
eb : 

𝑀b
eb = 𝑏 ∙ ∫ 𝜎max

eb ∙
2𝑥

𝑠0

𝑠0
2

−
𝑠0
2

∙ 𝑥 ∙ 𝑑𝑥 6-37 

𝑀b
eb =

4

3
𝑏 ∙ 𝜎max

eb ∙ (
𝑠0
2
)
3

 6-38 

Substituting Equation 6-38 in 6-36 and using the Equation 6-34 or 6-35, the opening gap Δ due 

to springback can be derived as follows [168]: 

∆=
24 ∙ 𝜋 ∙ 𝑟1

2 ∙ 𝑀b
res

𝐸 ∙ 𝑠0
4  6-39 

To find the opening gap for a given deep drawn part, the residual bending moment in the intact 

ring 𝑀b
res has to be calculated by means of FEM-simulations. This way it is possible to evaluate 

the amount of residual stress in a part deep drawn by a macro-structured tool and compare it 

with the reference samples.  

6.7  SUMMARY OF CHAPTER 6 

For better understanding the physical behaviour of the deep drawing process with macro-

structured tools, and also to find out the cause-and-effect relationship between the process 

parameters, an analytical model was developed within the scope of this chapter. The model 

describes the buckling stability of sheet metal in the flange area and also can determine the 
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load-displacement progress of the process as a function of the process input parameters. In 

this chapter, it was shown that the 2D model can be extended so that the deep drawing of 

non-rotationally symmetric parts can also be analysed. For this purpose, the flange area should 

be subdivided into rotationally symmetric and straight areas, and they should be subjected to 

analysis individually. Additionally, for a time efficient prediction of the process limits, some 

criteria were devised based on the developed model. With the help of the developed criteria, 

the process limits, i.e. bottom cracking and wrinkling, can be predicted based on the energy 

method and buckling analysis, respectively. Moreover, a criterion was developed to evaluate 

the amount of springback in the wall part of the deep drawn specimens.  
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7. RESULTS 

In order to control the applicability of the proposed approach and verify the developed model 

and criteria, several experimental as well as numerical tests were carried out and their results 

are shown within the scope of this chapter. Experimental tests were performed with the 

experimental setups as introduced in Chapter 5, while all numerical simulations were carried 

out with the commercial FEM-Software simufact.forming. The results show an overview 

about the effects of macro-structuring on process characteristics, e.g. friction, stability and 

springback behaviour. Consequently, the developed process model will be verified, as well as 

the analytical criteria to determine the process limits and predict the dimensional accuracy of 

the part.  

7.1 INVESTIGATION ABOUT THE EFFECTS OF MACRO-STRUCTURING 

ON PROCESS CHARACTERISTICS 

As mentioned above, in this test series the influence of the contact area on friction reduction 

is examined. Furthermore, the influence of alternating bending on the process stability and 

compensation of springback is investigated. For this end, numerical as well as experimental 

tests are performed.  

7.1.1 Investigation about friction reduction through macro-

structuring 

In Chapter 4, it was discussed how the macro-structuring of tools can reduce the integral of 

the surface pressure over the contact area. In order to control the feasibility of this approach 

for real applications, the draw bending of the U-channel as a forming process is considered in 

this section. Here the conventional and macro-structured tools are used, which were 

introduced in section 5.4.1. The tests are carried out with the hydraulic press machine BUP 

600 at room temperature, with a constant drawing velocity of 10 mm/s, which corresponds to 

the deep drawing process. The conventional and macro-structured tools were subjected to 

lubricant-free, as well as lubricated conditions. For the lubrication, the industrial mineral oil-

based lubricant “WISURA ZO 3368” was used. This lubricant, which has some additional 

additives like phosphor, is commonly used in the field of metal forming, especially for the deep 

drawing of aluminium and stainless steel alloys [169]. Workpiece strips were cut from DC04 

steel of 1 mm thickness and 60 mm width to have a good manageability and 280 mm length 

to realise a relatively big drawing depth with the existence of the remaining flange area. Each 

strip was cleaned using a citrus-based cleaner and finally treated with acetone to remove all 

traces of pre-lubricants. All tests were repeated five times in order to get consistent 

information about the statistical repeatability of the results. In order to investigate the effect 

of the contact area on friction properties, an experimental matrix was defined. Within this 
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matrix, two constant initial surface pressures PTotal = 5.1 and 6.8 MPa were considered for the 

draw-bending of the U-Channels, which correspond to the deep drawing process. The results 

of the tests are presented in Figure 7-1. As the results show, 28.1 kN is required for the draw-

bending of a U-Channel with a conventional tool in lubricant-free conditions under the initial 

surface pressure of PTotal = 5.1 MPa. By increasing the surface pressure to 6.8 MPa, the 

increased frictional force prevents the material flow on the flange area, which finally leads to 

necking and consequently the tearing of specimens. Lubricating the specimen with WISURA 

ZO 3368 improves the frictional behaviour of the process and decreases the punch force to 

23.5 kN under PTotal = 5.1 MPa (approx. 16% reduction compared with lubricant-free 

conditions). However, the results show that through lubricating, the specimen will not tear 

under the initial surface pressure of 6.8 MPa. Although reducing the contact area by means of 

macro-structured tools (from 5850 mm2 for a conventional tool to 327 mm2 for a macro-

structured tool, i.e. approx. 94% reduction) leads to an increase of local surface pressure in 

the contact zones, based on Equation 4-2, this results in a drastic reduction of frictional forces. 

This statement can also be verified with the experimental results. As shown in Figure 7-1, the 

average punch force for the draw-bending of U-Channels in lubricant-free conditions with 

macro-structured tools under the initial surface pressure PTotal = 5.1 and 6.8 MPa is 6.1 and  

6.6 kN, respectively (approx. 74% and 77% reduction compared to the conventional process 

in lubricated conditions). Furthermore, using the macro-structured tools in lubricated 

conditions reduce the punch force even further, i.e. to 4.9 and 5.1 kN under an initial surface 

pressure of PTotal = 5.1 and 6.8 MPa, respectively. As the diagram shows, the deviation of the 

results is almost proportional to the average values. This reveals that there are no systematic 

errors in the test and measurement procedures. 

 

Figure 7-1: The required punch force for forming the U-Channel with conventional and macro-

structured tools in lubricant-free as well as lubricated conditions 
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The results reveal that macro-structured tools can be used to reduce the contact area between 

tools and the workpiece, and this leads to a decrease in the amount of frictional shear 

stresses, and as a result the total frictional force in the process. In the next section, the effects 

of alternating bending on the process stability for the deep drawing of rotationally symmetric 

and rectangular cups are studied.  

7.1.2 Investigation about process stabilisation through macro-

structuring 

In Chapter 4, with the help of Equation 4-2, it was shown that macro-structuring tools reduce 

the frictional shear stress, and as a result the total punch force in the sheet metal forming 

process. It was also discussed that the amount of the immersion depth and the wavelength 

as two important process input parameters, which define the geometry of alternating bending, 

have a great influence on the process stability regarding wrinkling and bottom cracking. In 

order to investigate the sensitivity of the process window regarding the process input, various 

numerical simulations were performed. For this purpose, the blanks from DC04 were 

subjected to numerical simulations. For this end, sheet metal with a 90 mm radius and  

1.0 mm thickness was chosen for 3D simulation of a rotationally symmetric deep drawing 

process. In order to reduce the calculation time, a quarter of the workpiece with two 

symmetric planes was subjected to the FE-simulation. The inner radius of the tool is 50 mm 

so that a drawing ratio of β = 1.8 can be realised.  Here, solid shell elements (element size:  

1 mm with 5 integration layers per thickness and one integration point per layer) were used.  

The variant matrix studied comprises 4 different wavelengths and five different immersion 

depths. The parameter limits of the simulation matrix were chosen regarding the process 

window, so that the intended wrinkling and bottom cracking occurred. For comparison, a 

series of simulations were also carried out with a sheet thickness of 0.6 mm. The calculations 

were performed with and without friction in order to be able to analyse the frictional 

component and the bending component separately from each other. The numerical results 

shown in Figure 7-2 confirm basically the hypotheses of the analytical considerations regarding 

the influences of wavelength and immersion depth.  

Red marked areas indicate the occurrence of bottom cracks, orange areas indicate the 

appearance of wrinkles. Due to the lower buckling stiffness, the 0.6 mm sheet has a higher 

sensitivity to wrinkling than the 1.0 mm sheet, which reduces the process window (green 

area). Furthermore, as expected, the simulations show that friction increases the risk of 

bottom cracks and therefore reduces the process window. 
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Figure 7-2: Results of the numerical parameter analysis of the process window 

Moreover, in order to verify this state and control the applicability of the macro-structured 

deep drawing process, similar test series were performed experimentally. For this purpose, 

the tools introduced in section 5.4.2 were used. Sheet metals from the workpiece material 

DC04, which was introduced in section 5.3 with two different thicknesses of s0 = 0.6 and  

1.0 mm, were cut for the deep drawing process. Figure 7-3 shows the geometry and 

dimensions of the tools and the workpieces. 

 

Figure 7-3: Geometry of the sheet metals used for the control of process stability 
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The ring can be used to adjust the amount of the immersion depth, i.e. δ = 0.2 and 0.4 mm in 

the macro-structured process. In the conventional process, the height of the ring was set to 

be equal to the sheet thickness. Pressing the blankholder with a full load to the spacer ring 

keeps the space between the blankholder and the drawing die constant during the process. 

Consequently, in order to control the feasibility of the new developed process for more 

complex geometries, the deep drawing of rectangular cups was performed with immersion 

depths of δ = 0.2 and 0.4 mm. As Figure 7-4-A and Figure 7-4-B show, no wrinkling can be 

seen in the workpiece made by the macro-structured process, which reveals that alternating 

bending can stabilise the sheet metal against wrinkling.  

 

Figure 7-4: Results of the experimental tests for the control of process stability regarding wrinkling 

by deep drawing with macro-structured tools 
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δ = 0.4 mm leads to bottom cracks, as shown in Figure 7-4-E. It is because of the increased 

alternating bending energy in the flange area and consequently the increasing total punch 

force, which should be transferred to the bottom part of the workpiece. The stress caused by 

the punch force over the cross sectional area of the thin part exceeds the ultimate tensile 

strength of the workpiece, and this leads to the fracture of the material. Testing the same 

material with the conventional process, results in a number of wrinkles in the part, as shown 

in Figure 7-4-F. As mentioned above, to test the more complicated geometries with the macro-

structured deep drawing tool, rectangular tools are considered. Here, the stress state in the 

transition area, where the tangential stress decreases in the corners toward the straight parts 

is more complicated and the risk of wrinkling is higher. For that end, the sheets with a 

thickness of s0 = 1.0 mm were subjected to deep drawing with macro-structured tools. The 

results, which are depicted in Figure 7-4-G and Figure 7-4-H, show that there is no significant 

wrinkling in the workpiece and that the stability of the process is guaranteed. Summarising 

the results of the experimental tests, it can be concluded that the induced alternating bending, 

during deep drawing with macro-structured tools, increases the process stability through 

increasing the geometrical moment of inertia. Therefore, in this way, it is possible to enlarge 

the process window even more than with the conventional process. However, it should be 

noticed that excessive immersion depths can lead to bottom cracks in the workpiece. 

Therefore, process stability strongly depends on the process input parameters. Hence, to have 

the greatest possible process window, the optimum values of wavelengths and immersion 

depths should be chosen based on the criteria developed in Chapter 6.  

7.1.3 Investigation about springback reduction through macro-

structuring 

As already discussed in section 6.6, the alternating bending mechanism in the deep drawing 

process with macro-structured tools can lead to a kinematic hardening effect of some 

materials. Because of this effect, there is a need to investigate the effects of process 

parameters on the springback behaviour of the workpiece in the newly developed deep 

drawing process. In this section, the effect of alternating bending is studied, as well as the 

resulting kinematic hardening on the springback behaviour of the deep drawn parts in the axial 

and tangential directions. To get information about the effects of materials on springback in 

deep drawing with macro-structured tools, two different types of industry-relevant materials, 

the alloy steel DC04 and the aluminium alloy AA5182, were subjected to numerical and 

experimental tests. For this purpose, draw bending of a U-Channel was considered. This 

method is attractive for these test series, because the level of springback due to the 90° 

bending in the axial direction is relatively large and it can easily be measured. The sensitivity 

of springback to basic parameters, such as tool radius, sheet thickness, geometric parameters 

of the tools, mechanical properties of the sheet materials and friction parameters, is usually 

studied by means of this technique [170]. Furthermore, the U-Channel parts are common 

elements in industrial sheet metal forming. They appear in many auto-body cover panels like 
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side members and beams. To achieve that, the process without alternating bending  

(δ = 0.0 mm) is compared to the process with alternating bending and an immersion depth of 

δ = 0.2 mm in draw bending of the U-Channel. The immersion depth of 0.2 mm is chosen 

because it corresponds to the stable deep drawing process. Furthermore, in order to examine 

the effects of kinematic hardening on springback of the workpiece during the process, the 

materials are considered with pure isotropic, pure kinematic and also a combined hardening 

behaviour in the numerical simulation. The BAUSCHINGER coefficients of each material for the 

combined hardening rule with a  plastic strain of 0.3 are taken from literature [171] and listed 

in Table 7-1.  

Table 7-1: BAUSCHINGER coefficients of testing materials [171] 

Material BAUSCHINGER coefficient 

DC04 0.60 

AA5182 0.85 

Here, in the case of 100% isotropic hardening, the BAUSCHINGER coefficient is equal to 1 and 

by 100% kinematic hardening it is equal to zero. The process was simulated with a 2D FEM-

Model with plane strain solid elements (7 elements across the sheet thickness of 1.0 mm) 

and a constant friction coefficient of µ = 0.15 using the COULOMB friction model. The friction 

coefficient was chosen based on the investigations introduced in Chapter 2. For the 

experimental tests, the setup applied in section 7.1.1 with the Tip to Hutch arrangement was 

used. All the tests were repeated five times in order to get sufficient information about the 

statistical repeatability of the results. The springback behaviour of U-Channels can be 

characterised regarding the final part geometry with three parameters: the angle between the 

bottom and the wall β1, the angle between the wall and the flange β2, and the radius of 

curvature of the sidewall ρ. As β1 and β2 increase and ρ decreases (the curvature of sidewall 

increases), springback increases. Figure 7-5 shows the springback geometry of a U-Channel 

cross section.  

 

Figure 7-5: Schematic Overview for springback geometry for a U-Channel [172] 
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Since β1 and β2 are usually very close together and there is almost a linear relation between 

the sidewall curvature and deflection angles, β1 was chosen as a scale to study the effects of 

the process parameters on springback in this section. 

Experimental results reveal that the springback of workpieces will be reduced through 

generating an alternating bending mechanism, because of the induced tensile force in the 

flange area. The geometries of the formed parts which are depicted in Figure 7-6 show that 

regardless of the material, the springback in the process with alternating bending (δ = 0.2 mm) 

is always less than the process without alternating bending (δ = 0.0 mm). 

 

Figure 7-6: Springback behaviour of the workpieces with and without alternating bending for A) 

DC04 and B) AA5182 [148] 

Based on the measured springback angle for both materials, it can be concluded that the 

amount of springback reduction through alternating bending for DC04 and AA5182 is 

approximately 23% and 32%, respectively. Furthermore, the results reveal that the springback 

of the aluminium alloy is higher than DC04 because of its smaller value of YOUNG modulus. To 

investigate the effects of kinematic hardening as a result of alternating bending on the 

springback of workpieces, numerical simulations were performed. The numerical results 

based on FEM-simulation for draw bending of the U-Channel with macro-structured tools 

confirm that the retention force caused by alternating bending in the flange area compensates 

for the springback of the workpiece in both hardening models. As Figure 7-7 shows, the 

springback will be reduced by generating alternating bending for pure isotropic, pure 

kinematic, and also combined hardening types in both testing materials. Based on the results 

of the simulations, the amount of springback by the pure isotropic hardening model is slightly 

higher than the pure kinematic model. This is due to the larger level of the stored energy 

density predicted by the simulation with the isotropic hardening model [173]. Furthermore, 

the springback reduction through alternating bending in the pure kinematic hardening model 

is more than the pure isotropic model (see the values below the diagram). This is because of 

the induced BAUSCHINGER effect as a result of alternating bending. In other words, the 

BAUSCHINGER effect has an additional influence on the compensation of springback. In 

summary, the retention force induced through alternating bending reduces the amount of 

springback during deep drawing with macro-structured tools. Moreover, the BAUSCHINGER 

effect because of alternating bending can reduce further the springback behaviour of materials 

with predominately a kinematic hardening effect.  
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Figure 7-7: Springback angle of U-Channels under different hardening types for A) DC04 and B) 

AA5182 

7.2 VERIFICATION OF THE DEVELOPED ANALYTICAL METHODS  

In this section, the developed analytical methods to describe the process, as well as the 

criteria for the prediction of process limits and dimensional accuracy of the parts, are verified 

through experimental tests and numerical simulations. 

7.2.1 Verification of the developed process model: forming energy 

To verify the analytical model for calculation of the total energy for deep drawing of rotationally 

symmetric geometries, the analytical results are compared with FEM results and experimental 

tests. In these test series, samples from DC04 with two different initial outer radius of r0 = 90 

and 100 mm, two different sheet thicknesses of s0 = 1.0 and 0.6 mm under two different 

immersion depths of δ = 0.2 and 0.04 are considered. Based on the experimental draw-bend 

test, the friction coefficient between the tools and the workpiece is set to be µ = 0.15 for both 

analytical and numerical calculations. The experimental tests are repeated five times in order 

to get reliable information about the statistical repeatability of the results. Figure 7-8 compares 

the calculated total energy Et from Equation 6-6 with measured values from experimental tests 

and also FEM results. The diagrams reveal that the analytical and numerical results exhibit a 

very good agreement with the experimentally determined for forming energy in the whole 

matrix of the study. The error indicators in both diagrams show a very small deviation from 

the five repetitions per parameter set in the experiments. 
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Figure 7-8: Comparing the analytical calculated total forming energy with experimental and FEM 

results for deep drawing of rotationally symmetric cups with outer radius of A) 90 mm and B) 100 

mm [130] 

The results verify the model for the calculation of total energy. However, as depicted in Figure 

7-8-B, a bottom crack occurs in deep drawing of the part with an initial outer radius of  

r0 = 100 mm, a thickness of s0 = 0.6 mm, and an immersion depth of δ = 0.4 mm. In order to 

verify the applicability of the analytical model developed for more complex geometries by 

means of the assumptions mentioned in section 6.3, the rectangular macro-structured tools 

are used. In order to use the energy method for the rectangular cups, it should be divided into 

four rotationally symmetric corners and four straight sections. In the straight sections there is 

no compressive tangential stress and as a result the ideal forming energy Eid will be eliminated 

from the total forming energy Et.  For the other equations, the tool radius will be assumed to 

be infinite. With these simplified assumptions, the total energy can be calculated. As the 

diagram in Figure 7-9 shows, there is also a very good agreement between the calculated 

energy and the experimentally and numerically determined values.  

 

Figure 7-9: Comparing the analytically calculated total forming energy with experimental and FEM 

results for the deep drawing of rectangular cups 
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However, the diagram shows the analytical determined energies are always slightly lower 

than the experimentally determined energy since the in-plane shearing in the transition area 

between the corner areas and the straight regions is not considered in the calculations. 

Furthermore, small unconsidered parts of the sheet metal between the corners and the 

straight parts (dark parts of the sheet metal in Figure 7-9) are not subjected to the calculation 

because of their indefinable geometry. These results show that with the ability to calculate all 

the individual energy terms for deep drawing with macro-structured tools, it is possible to 

design the most energy-efficient process regarding the process input parameters.  

7.2.2 Verification of the developed criterion: prediction of wrinkling 

In order to control the accuracy of the criterion developed for the prediction of wrinkling, 

experimental deep drawing processes with macro-structured tools were performed. For this 

end, macro-structured tools with a constant wavelength of λ = 8.0 mm were used. Since the 

thickness plays an important role on the buckling stiffness of the sheet metal, and thereby the 

critical tangential stress σt,cr for wrinkling, blanks with an initial outer radius of r0 = 100 mm in 

three different thicknesses of s0 = 0.3, 0.5 and 0.6 mm were subjected to the tests. In the 

following, the critical stress σt,cr for wrinkling (see Equation 6-14) will be compared with the 

present tangential stress on the free end part of the sheet metal (Equation 6-2). As mentioned 

in the section on the Development of a criterion for the prediction of wrinkling, for a stable 

process, the tangential stress σt must always be below the critical tangential stress σt,cr. This 

criterion is controlled in this section. Figure 7-10 shows the results of the experimental tests 

for the verification of the criterion developed regarding the prediction of wrinkling. Here all the 

tests were repeated five times in order to get adequate information about the statistical 

repeatability of the results. The results of the tests with a sheet thickness of s0 = 0.6 mm are 

depicted in Figure 7-10-A. Here, the progress of the tangential stress at the free end part of 

the sheet (most unstable part of the flange area, see section 6.1.1) over the punch 

displacement is shown with a green line. The critical tangential stress for the onset of buckling 

σt,cr, which is shown with a red line is almost 480 MPa.  As the figure shows, the present 

tangential stress on the free end part of the flange is always below the critical stress. 

Therefore, there is no wrinkling expected in this case. The experimentally deep drawn cup 

reveals that there is no wrinkling up to a punch displacement of h2 = 45 mm. However, 

repeating the test with a thinner sheet metal (s0 = 0.3 mm) leads to dropping off of the critical 

tangential stress σt,cr up to 120 MPa. As Figure 7-10-B shows, from the beginning of the 

process (by punch displacement of h1 = 35 mm), the present tangential stress of the sheet 

metal is always above an allowable value in the uncertain zone. As a result, it is expected that 

wrinkling will be initiated at the beginning of the process. The experimentally deep drawn part 

shown in Figure 7-10-B verifies this prediction. However, the critical situation should be for 

the sample with a sheet thickness of s0 = 0.5 mm. As the Figure 7-10-C shows, at the 

beginning of the process, the tangential stress at the free end part of the sheet is below the 

critical stress (σt,cr = 310 MPa), and therefore no wrinkling should be expected at the 

beginning. Continuing the process, the tangential stress reaches the critical value and enters 
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into the uncertain zone by a punch displacement of 43 mm. It means that the wrinkling should 

be initiated at the free end part of the sheet. This statement is verified through the experiment. 

As shown on the figure, by a punch displacement of h2 = 45 mm, small wrinkling can be seen 

on the free end part of the sheet. The experimental results show a good agreement with the 

analytical criterion for the prediction of wrinkling in the deep drawing process with a macro-

structured tool. In the next section, the validity of the criterion developed for the prediction of 

bottom cracks will be examined. 

 

Figure 7-10: Prediction of wrinkling for samples with a sheet thickness of A) s0 = 0.6 mm,  

B) s0 = 0.3 mm and C) s0 = 0.5 mm 
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the criterion developed regarding the prediction of bottom cracks, the critical bottom crack 

force for all the test series are calculated using the Equations 6-22 to 6-25. Figure 7-11 

compares the measured maximum punch forces from the test series introduced in section 

7.2.1 with the analytically calculated forces and also the corresponding bottom crack forces 

Fbc.  

 

Figure 7-11: Prediction of bottom cracks through the critical punch force for sheet metals with outer 

radius of A) 90 mm and B) 100 mm 
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simulated by means of FEM. In the simulation sets, the deep drawing process with 

conventional tools was considered as a reference and is compared with the macro-structured 

deep drawing process with two different immersion depths of δ = 0.2 and 0.4 mm, 

respectively, and a constant wavelength of λ = 8.0 mm. The results of the FEM are based on 

2D FEM-simulations with an isotropic hardening assumption. The workpiece consists of 

eleven elements over its thickness with a maximum element size of 0.1 mm. The blanks with 

an initial outer radius of r0 = 90 mm and a sheet thickness of s0 = 0.6 mm were chosen for 

the analysis. As mentioned in previous sections, based on experimental determinations, the 

friction coefficient was set to be µ = 0.15 for the simulations. The conventional processes are 

simulated using a spacer ring with a height equal to the sheet thickness in order to realise a 

uniform surface pressure in the flange area. The simulations consist of two steps: deep 

drawing up to the predefined height and consequently unloading the workpiece to simulate 

the springback of the parts. To evaluate the opening gap of the split rings from Equation 6-39, 

it was necessary to determine the bending moment as a result of the residual stress 𝑀b
res. For 

this purpose, the progress of the tangential residual stress 𝜎t
res over the sheet thickness on 

the wall of the part (where a ring will be cut out), should be determined based on the FEM 

results. Figure 7-12 shows these stresses at the height of 35 mm from the bottom of the 

parts. Consequently, the opening gap  from Equation 6-39 can be evaluated based on 

numerical integration of the shown residual stress curves. In order to verify the results of the 

developed criterion, the results should be compared with real values from the experimental 

test. The experimentally deep drawn parts are cut out by means of an electrical discharge 

machining (EDM) process to prevent the external residual stresses through the cutting 

process, because it does not require high cutting forces for removal of the material.  

 

Figure 7-12: Tangential residual stress over the sheet thickness in the cup made by conventional and 

macro-structured processes from A) DC04 and B) AA5182.  
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The opening gap of each ring after splitting was measured and is listed in Table 7 2. Moreover, 

the calculated values for the opening gap, based on the half-analytical method, are also 

presented in the same table in order to compare with the experimental results. The 

experimental results exhibit a very good agreement with the half-analytically determined 

opening gap of the split rings. The results reveal that regardless of the material, by increasing 

the immersion depth in the macro-structured deep drawing process, the amount of residual 

stresses can be reduced. It is because of the superimposed tensile stress as a result of 

alternating bending, which is transferred from the punch to the material. This superimposed 

tensile stress changes the proportion of the residual tensile and compression stress through 

the sheet thickness. As a result, the stored elastic energy and consequently the springback of 

the rings after cutting will be decreased. The same effect is also seen in [174]. 

Table 7-2: The opening gap of split rings based on experimental tests and calculated values. 

Material 

Opening gap in mm 

(conventional) 

Opening gap in mm (macro-structured) 

δ = 0.2 mm δ = 0.4 mm 

 Measured Calculated Measured Calculated Measured Calculated 

DC04 50 48.7 45 44.1 37 36.9 

AA5182 95 99.2 73 81.1 64 71.8 

In other words, the created non-frictional retention force can be used positively to compensate 

the springback behaviour of the workpiece. Furthermore, the additional plastic deformation 

due to the alternating bending decreases the elastic strains. This can also lead to a reduction 

of springback in the deep drawn parts with macro-structured tools. Figure 7-13 shows the top 

view of the split rings and gives an overview regarding the effects of the material and the 

process on residual stress in the deep drawing process. 

 

Figure 7-13: Results of the ring splitting test for cups made by conventional and macro-structured 

tools from A) DC04 and B) AA5182. 
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7.3 SUMMARY OF CHAPTER 7 

Within the scope of this chapter, the analytical model and criteria developed in the previous 

chapter were verified by means of the FEM, as well as experimental tests. Regarding process 

stability, it was confirmed that the onset of wrinkling can be predicted analytically based on 

the in-plane buckling theory. It was shown that as long as tangential stress at the free end 

part of the sheet is below the critical tangential stress, no wrinkling is expected in the process. 

The results verified also that the developed criterion can predict the process stability regarding 

bottom cracks based on the energy method. For this purpose, the maximum allowable punch 

force is a good benchmark for comparison with the forming force. 

Moreover, there was a good agreement between the experimentally measured and 

analytically calculated values, regarding the residual stresses in the workpiece. It was also 

shown that the residual stresses in the deep drawing process with macro-structured tools are 

generally smaller than by the conventional process.   
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8. TRANSFER OF THE METHODOLOGY INTO THE 

COMPLEX GEOMETRIES 

Deep drawing of complex geometries is widely used in sheet metal forming processes to 

produce irregularly shaped components. The formed asymmetric cups are needed in a variety 

of industrial uses. It is required for automotive applications and aerospace parts, as well as a 

wealth of other products. Rectangular and elliptic cups with large aspect ratios are used for 

electrical parts such as battery containers, semi-conductor cases, and crystal vibrators. In this 

chapter, the transferability of the developed approach into complex geometries is 

investigated. 

8.1 CONSTRUCTION OF A DEEP DRAWING TOOL TO FORM A T-CUP  

In order to control the transferability of the already proposed technology into complex 

geometries for industrial applications, a modular deep drawing tool with a relatively complex 

geometry, a so called “T-Cup”, was constructed in the scope of this thesis. Figure 8-1 shows 

a detailed view of the tool. The form entails concave and convex shapes, as well as straight 

parts to have a variety of stress states in the part. The modularity of the tool allows all 

functional surfaces to be changed, like the die edge radius and the flange area, regarding their 

forms and dimensions. The modular die edge from the cold work tool steel 1.2379, with a 

radius of 10 mm, was hardened up to 60 HRC and afterwards grinded and polished to reach 

a surface roughness of Ra = 0.1 and Rz = 3.2 μm. The segments of the flange area also from 

tool steel 1.2379, with a delivered hardness of 25 HRC, were milled to fabricate the macro-

structures with a constant wavelength of λ = 10 mm, based on preliminary investigations by 

means of the FE and the analytical method. These segments were also ground and polished 

manually to reach a surface roughness of Ra = 0.6 and Rz = 6.5 μm. Here, polishing the macro-

structures using a classical polishing machine was not applicable. These parts were 

assembled from several segmented pieces on the fixing plate. To compare the macro-

structured deep drawing with the conventional process, conventional flange segments with 

the same inner and outer geometries were also constructed and manufactured. These 

segments have the same hardness and surface roughness as the die edge radius. The surface 

properties of both conventional and macro-structured tools are listed in Table 8-1. 

Table 8-1: Surface-related properties of the modular deep drawing tool    

Part Hardness (HRC) Ra (μm) Rz (μm) 

Die edge radius 62 0.1 3.2 

Conventional flange 62 0.1 3.2 

Macro-structured flange 25 0.6 6.5 
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The differences between the roughness and the hardness values were because of their 

manufacturing processes. To apply the blankholder force, six pneumatic springs were used. 

The nitrogen medium (N2) used in each spring, with the maximum filling pressure of 15 MPa, 

realises a quasi-steady working spring stiffness of 625 N/mm. The 80 mm nominal stroke of 

springs determines the traveling distance of the tool and also its maximum drawing depth. 

The tool is cleaned with a proper cleaning agent before being used to ensure a total lubricant-

free deep drawing process. The hydraulic press machine RZP 250 from Röcher Maschinenbau 

(see section 5.1.2) was used to form the T-Cups because of its high power performance and 

room capacity. 

 

Figure 8-1: Detailed view and components of the T-Cup deep drawing tool 
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8.2 DETERMINATION AND EVALUATION OF OPTIMUM INITIAL BLANK 

GEOMETRY  

Deep drawing of complex parts requires several intermediate steps to avoid any defects and 

to achieve the final desired geometry successfully. Using the optimum initial blank geometry 

has many advantages in the deep drawing process. The optimum initial blank geometry not 

only reduces the material costs of the produced part, but also improves the deep drawing 

quality, thickness distribution and formability of the part, and minimises forming defects. 

However, finding the optimum blank geometry could be difficult and time consuming. Since 

experimental trial-and-error methods for achieving the initial blank geometry are time 

consuming and expensive, other methods were sought for optimum blank design in the sheet 

metal forming operations. Different approaches for blank geometry design have been reported 

in the literature [175]. These methods can be classified as the slip-line field method [176], 

geometrical mapping [177], the analogy method [178], ideal forming [179], the inverse 

approach [180], backward tracing [181], and the sensitivity analysis method [182]. The blank 

shape design in this thesis was carried out using the slip-line field method. Slip-line field theory 

is based on the analysis of a deformation field that is both geometrically self-consistent and 

statically admissible. Slip lines are planes of maximum shear stress and are therefore oriented 

at 45° to the axes of principal stress [183]. Using this graphical-analytical approximation 

method, the initial blank geometry was determined for deep drawing of the T-Cup as shown 

in Figure 8-2. 

 

Figure 8-2: Determination of the optimum initial blank geometry using Slip-line field theory  
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parts, it is possible to find out the required punch force. Subsequently, it can be compared 

with the bottom crack force Fbc and used to predict the process stability regarding bottom 

cracks. Moreover, considering the stress states in each part which are labelled with directional 

arrows in Figure 8-3, it is possible to specify the most unstable areas regarding wrinkling. Parts 

2, 4 and 6, with a quarter circle geometry and 100 mm radius, undergo tensile-compressive 

stress with superimposed alternating bending. Because of the existing tangential compressive 

stress in these areas, these parts are the most probable wrinkling zones of the sheet metal. 

Therefore, the model for analysing the rotationally symmetric deep drawing process can be 

applied to these parts. Straight parts 1, 5 and 7 sustain alternating bending with superimposed 

tensile stress. 

 

Figure 8-3: The superposing method for analysing the deep drawing of the T-Cup 

Hence, the corresponding forming force can be calculated by excluding the ideal forming force 

from the punch force calculation of the rotationally symmetric parts. In part 3, a tensile-tensile 

stress state leads to stretch forming conditions. The stretch of the sheet with a thickness of 

s0 = 1.0 mm can be estimated by the formulation of OEHLER und KAISER [184], which is verified 

by LANGE in [166] as following:  

𝐹sf =
𝐴1
𝜂F
𝜎ym ln

𝐴1
𝐴0

 8-1 

Here, A0 is the original area of the sheet, A1 is the increased area after stretch drawing, and 

σym is the mean yield stress. The forming efficiency is x = 0.5 to 0.7. If the stresses are 

distributed uniformly over the entire surface, this factor should be ηF = 0.7, and for unequal 

load distribution the forming efficiency should be ηF = 0.5 [166].  

50

150

25

7
6

5

4

3

2 1

30



Transfer of the methodology into the complex geometries 

 

81 

 

8.3 TEST PROCEDURE AND INTERPRETATION OF RESULTS  

In order to investigate the usability of macro-structured tools, as well as verification of the 

analytical model for a T-Cup, experimental tests were performed. For this purpose, sheet 

metals from DC04 with 1.0 mm thickness were cut out through the laser-beam cutting 

method, corresponding to the already determined optimum shape. The sheet metals were 

cleaned after deburring with acetone to remove the initial corrosion-preventing oil on the sheet 

metal. Subsequently, the cleaned and deburred sheet metals were subjected to the deep 

drawing process with macro-structured tools with an immersion depth of δ = 0.2 mm. The 

exact immersion depth can be adjusted by using a contouring spacer ring. Figure 8-4 shows 

the progress of the drawing process in three stages. As the Figure shows, there is a stable 

process regarding both the failure cases of bottom cracking and wrinkling. 

 

Figure 8-4: Progress of the deep drawing of the T-Cup with macro-structured tools 

In order to make a statement about the accuracy of the analytical criterion to predict the 

occurrence of bottom cracks, the required punch force to form the T-Cup, calculated from the 

analytical model, was compared with the FEM and experimental results. The process was 

simulated in 3D with the FEM. For the simulation, solid shell elements with 2 mm element 

size which consist of 5 integration layers (1 integration point on each layer) were used. To 

increase the accuracy of the simulation, the anisotropic yield function of HILL was applied, 

with the corresponding r-values determined from uniaxial tensile tests. The frictional force 

based on the COULOMB model with a friction coefficient of μ = 0.15 for the whole tool was 

considered. Figure 8-5 shows the load-displacement curve for deep drawing of the T-Cup, 

regarding the experimental, FEM and analytical results. The results show that the progression 

of forces over the punch displacement tended to be similar. However, for determination of 

bottom crack by means of developed criterion only the maximum value of the punch force is 

relevant, therefore this is considered for the calculations. 
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Figure 8-5: Load-displacement curve for the deep drawing of the T-Cup 

To quantify the punch force and also to be able to assess the process window regarding 

bottom cracks, the critical bottom crack force from Equation 6-22 was calculated. All results 

regarding the maximum punch force from the experimental tests, FEM calculations and the 

analytical model are summarised in Figure 8-6 and compared with the relating bottom crack 

force Fbc. 

 

Figure 8-6: Comparison between the maximum punch force from the experimental tests, FEM 

calculations and the analytical model 
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ignoring the in-plane shearing in the transition area between the corner areas and the straight 

regions. Moreover, the small parts of the sheet metal between the geometrically definable 

segments were not considered in the calculations (see Figure 8-3). Comparing the punch force 

from the analytical model with the bottom crack force (Fbc = 285 kN, see the dashed line in 

Figure 8-6), it can be noted that no bottom cracks was expected. Obviously this statement 

was verified with the experimental tests.  

To investigate the stability of the process regarding wrinkling, the analytical criterion based on 

buckling analysis which was proposed in section 6.4 should be used for the corners with high 

probability of wrinkling (the green marked parts of the sheet metal in Figure 8-7). As shown in 

Figure 8-7, the corners approaching a quarter circle and an outer radius of 100 mm were 

subjected to the analysis. Setting the corresponding parameter into Equation 6-13, results in 

the critical tangential stress of σt. cr = 721MPa, which is well over the acting tangential stress. 

This consideration reveals that the analytical model expects no wrinkling for the deep drawing 

of the T-Cup, which was verified with the experimental tests. 

 

Figure 8-7: Buckling analysis to predict the process stability regarding wrinkling for the deep drawing 

of the T-Cup 
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corresponding results are presented in Figure 8-8-A, and compared with results of the deep 

drawing process with macro-structured tools in lubricant-free conditions. The results show 

that for deep drawing of a T-Cup with conventional tools in lubricant-free conditions with use 

of space ring (with the height equal to the sheet thickness), the total punch force amounts to 

almost 220 kN. This is approximately 10% more than deep drawing with macro-structured 

tools. Here, it must also be taken into account that according to Table 8-1, the conventional 

tools have much better surface roughness as well as hardness, which play a very significant 

role on the tribological behaviour of the tools. However, repeating the test without a spacer 

ring and direct application of blankholder force leads to bottom cracks in the workpiece. The 

blankholder force which is provided from pneumatic springs varies during the test regarding 

their spring stiffness. Figure 8-8-B shows the change of the blankholder force and resulting 

surface pressure as a function of drawing depth. Changing the test conditions through 

lubricating the sheet metal with WISURA ZO 3368 leads to a reduction of the punch force of 

up to 195 kN in the deep drawing process with conventional tools and use of a space ring. 

This value is very close to the required punch force for the deep drawing of a T-Cup with 

macro-structured tools in lubricant-free conditions. Therefore, it proves that the macro-

structured tools can fulfil the function of lubricants regarding the reduction of friction to realise 

a lubricant-free forming process even for complex geometries. Moreover, the results show 

that no bottom cracks occur when applying the blankholder force for the conventional process 

in lubricated conditions. However, the punch force increases up to 225 kN, which is 

approximately 12% higher than a macro-structured tool. 

 

Figure 8-8: Comparison between the conventional and macro-structured deep drawing processes; A) 

Difference between the conventional and macro-structured deep drawing processes regarding the 

total punch force and B) the progress of the blankholder force as a function of drawing depth 

Material: DC04    Sheet thickness: s0 = 1.0 mm    Drawing depth: 70 mm    Lubricant: WISURA ZO 3368
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In order to clarify the advantages of the macro-structured process over the conventional 

process, the parts which are formed in lubricant-free conditions are compared in Figure 8-9. 

As mentioned above, there is no significant difference between the forming force in macro-

structured and conventional tools using the spacer ring in lubricant-free conditions 

(approximately 10%). However, as shown in Figure 8-9-A, the bottom area of the deep drawn 

part made by a conventional tool is not formed plastically, and therefore there is a bending 

fold in the corner of the part. Despite this, in the deep drawn part made by macro-structured 

tools, the bottom area is totally flat. This is because of the possibility to control the material 

flow in deep drawing with macro-structured tools through alternating bending mechanisms. 

 

Figure 8-9: Comparison between the part properties made by conventional and macro-structured 

tools in lubricant-free conditions; A) Conventional tool and B) macro-structured 

8.4 SUMMARY OF CHAPTER 8 

Several structural parts of automobile components have complicated and very often 

asymmetrical geometries, which require their production to be performed by means of the 

deep drawing process. This fact indicates the importance of technology transfer into the 

industrial parts. To control the transferability of the proposed approach and also the suitability 

of the criteria developed to predict the process limits, a tool for deep drawing of the T-Cup 

was constructed. The flange area of the tool is macro-structured, based on an already 

developed model to have a stable process. The advantage of the T-Cup is because of its variety 

of stress states. Slip-line field theory was used to determine the optimum initial blank 

geometry. Firstly, the experimentally deep drawn parts with macro-structured tools in 

lubricant-free conditions had neither wrinkles nor bottom cracks. For verification of the model 

with the experimental observations, the required forming force for the T-Cup was determined 

analytically and numerically. These forces were in a very good agreement with the 

experimentally measured force. Therefore, it can be concluded that the model is able to 

predict the required forming force of the complex geometries as well. Comparing this force 

with the critical bottom crack force, showed that the process is in a safe working area and no 

bottom cracks are expected. The process was also analysed regarding wrinkling to control the 
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accuracy of the criterion for the prediction of wrinkling. The implemented buckling analysis 

showed that the critical tangential stress for the initiation of wrinkling is over the true 

compressive stress in corners of the part. Therefore, the analytically developed criterion 

predicted no wrinkling in the specimen and it was proven with real experimental tests. 

Furthermore, it was shown that the macro-structured deep drawing process in lubricant-free 

conditions requires less punch force compared to the conventional process in lubricated 

conditions through application of the direct blankholder force. Moreover, the results showed 

that using a spacer ring in the deep drawing process with conventional tools in lubricated 

conditions requires almost the same amount of punch force as the macro-structured process. 

The results revealed that macro-structured tools can be completely replaced with conventional 

tools to reduce the frictional force and realise a lubricant-free forming process. However, the 

results showed that there is no significant difference in the punch force between conventional 

tools using a spacer ring and macro-structured tools in lubricant-free conditions. But, in deep 

drawing with a macro-structured tool the material flow can be controlled, in a way which can 

influence the material strain in the bottom part of the T-Cup. Thereby, unlike conventional 

process, the material in this area can be formed plastically and consequently no bending folds 

occur in this area. 
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9.  POSSIBILITIES FOR PROCESS IMPROVEMENT 

It has already been shown that to eliminate the lubrication from the deep drawing process 

macro-structured tools can be used. Using macro-structured tools can reduce the amount of 

frictional forces in the flange area. As a sub-target, it is also possible to enlarge the process 

window compared with the conventional process. For this end, the total punch force of the 

lubricant-free deep drawing process with macro-structured tools should be less than the 

punch force of the conventional process in lubricated conditions. Therefore, in order to 

improve the process regarding the enlargement of the process window, a further reduction of 

the punch forces is necessary. Considering the energy component for deep drawing with 

macro-structured tools as introduced in section 6.2, the ideal forming energy and the energy 

for bending over the die edge radius are unchangeable for a particular process. However, a 

further reduction of friction on the flange area, as well as reduction of the alternating bending 

energy, can be considered as two improving measures for the enlargement of the process 

window in deep drawing with macro-structured tools. In this chapter, these measures are 

introduced and their influences on the reduction of punch force are examined through the 

FEM and experimental tests.   

9.1 USE OF ROTARY ELEMENTS AS MACRO-STRUCTURED ELEMENTS 

For further reduction of frictional forces, spherical elements with very small friction 

coefficients should be combined with line structures in the flange area of the deep drawing 

tools to induce alternating bending. For this purpose, rotary spherical elements (like ball 

casters) can be used [185]. By using these elements, the contact lines can be reduced to 

contact points, minimising the contact area even further. This leads to a reduction of the 

frictional force and changes the type of friction from sliding to rolling. However, using the 

spherical elements in the flange area reduces the supporting points against wrinkling. 

Therefore, the spherical elements should only be applied in uncritical areas regarding 

wrinkling, like the straight parts of a deep drawing part. 

Based on the positive results achieved in Chapter 7, the amount of friction reduction for an 

oval-form macro-structured tool with combined forming elements compared to a conventional 

deep drawing tool (see Figure 9-1-A) was examined through numerical investigation [114]. To 

determine the non-frictional forming force, which means without any friction, a third simulation 

was carried out. As Figure 9-1-B shows, approximately 70 kN were required for the forming 

process in the idealised case without friction. Therefore, this result can be considered as the 

lowest forming force for deep drawing of this part. As the diagram shows, a punch force of 

155 kN is required for the deep drawing process with a conventional tool, and 85 kN are solely 

necessary to overcome the frictional forces caused by using a sliding friction coefficient of  

µ = 0.15. Therefore, 55% of the total punch force is due to the frictional force. Simulation 

results from deep drawing processes with macro-structured tools combined with spherical 

elements (with a friction coefficient of µ = 0.02 based on [186]) and line structures (with a 
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sliding friction coefficient of µ = 0.15) indicate a total punch force of 90 kN, which is equivalent 

to a reduction of 42% compared to the conventional process. In this case of macro-structured 

tools, about 10 kN are required to generate the alternating bending, but the frictional forces 

account for only 10 kN. This means a reduction of 88% compared to the conventional process. 

Comparing the macro-structured deep drawing process with a frictionless deep drawing 

process shows that the punch force increases by only 22% because of alternating bending 

and frictional forces. This can be used to enlarge the process window significantly. 

 

Figure 9-1: Using rotary elements as macro-structured elements; A) Schematic of conventional and 

macro-structured deep drawing tools, B) comparison between the conventional and macro-

structured deep drawing process regarding the punch force [114] 

By using the industrial ball casters available on the market as forming elements, some other 

advantages can be expected in terms of the process design and tool technology. Due to the 

locally variable adjustability of the position and the height of the elements relative to the sheet 

metal, a high level of flexibility can be achieved for setting the values of the wavelengths and 

immersion depths. The ball casters are available in numerous different designs with regard to 

the types of construction, diameter and permissible load suspension. 

9.2 MACRO-STRUCTURED TOOLS WITH VARIABLE WAVELENGTHS  

In this section, the already developed approach for the lubricant-free deep drawing process 

can be improved regarding the locally adapted wavelengths in order to further reduce the 

punch force and also the enlargement of the process window. The improving approach 

considers all requirements of a lubricant-free deep drawing process for the broadest possible 

material spectrum, based on macro-structured elements with variable wavelengths. So far, a 

constant wavelength λ has been used for the macro-structuring, while the value of λ at the 

most critical part of the flange is determined for a stable process regarding wrinkling. As 

shown in section 6.1.1, this corresponds to the area of the greatest tangential compressive 
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stress; in the rotationally symmetric case, this is the outer free end part of the blank. As a 

result of material flow, this area moves in a radial direction, whereby the tangential 

compressive stress increases continuously because of the strain hardening of the sheet 

metal. This effect has less importance for the low-strength materials, but it can be taken into 

account in the selection of the wavelength λ for the deep drawing of (super) high-strength 

materials. Figure 9-2-A shows how the tangential stress at the free end part of the sheet metal 

increases during the process. In other words, the risk of wrinkling at the free end part 

increases during the process. In order to compensate for this effect, the wavelength should 

be reduced in the direction of material flow. This way allows macro-structures to be used with 

a higher wavelength at the outer part of the flange, where there is no particularly high risk of 

wrinkling. Furthermore, in contrast to the previous consideration, the number of alternating 

bending mechanisms in the flange area can also be reduced since the number of macro-

structures can be smaller. This strategy reduces the required energy to generate the 

alternating bending mechanism, which results in a reduced punch force and thus an increased 

process window for the lubricant-free deep drawing, especially for (super) high-strength 

materials. 

 

Figure 9-2: Macro-structured tool with variable wavelength; A) Increasing the amount of tangential 

compressive stress as a result of strain hardening, and B) developing a concept for a macro-structured 

tool with variable wavelength 
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considered as the critical tangential stress σt,cr as shown in Figure 9-2-B for the four time step. 

Knowing the amount of critical tangential stress per each time step, the wavelength can be 

calculated locally based on the inverse calculation of the already developed criteria (Equation 

6-14). In order to investigate the effects of the proposed approach regarding the reduction of 

forming energy and punch force, as well as the enlargement of the process window, new 

rotationally symmetric macro-structured deep drawing tools with variable wavelengths from 

the tooling material described in 5.2, were provided for the experimental tests. As it depicted 

in Figure 9-3, the wavelength varies from 11 mm to 8 mm in a radial direction of material flow 

based on the extended analytical approach which is discussed above. For experimental 

verification of the approach, the same material DC04 was chosen. In order to quantify the 

advantages of deep drawing with variable macro-structured tools, the same experimental test 

series which were carried out with a constant wavelength tool (section 7.2.3), are repeated 

with a new tool design. 

 

Figure 9-3: Macro-structured deep drawing tool with variable wavelength 

As mentioned above, the experimental test matrix used in section 7.2.1 is repeated with a 

new macro-structured tool. Here the blanks, with outer radius of r0 = 90 and 100 mm and two 

different sheet thicknesses of s0 = 0.6 and 1.0 mm, were subjected for the test series. The 

immersion depth varies from δ = 0.2 to 0.4. The measured punch forces for deep drawing 

with variable macro-structured tools are compared with the previous results and shown in 

Figure 9-4. As the diagram shows, the punch forces are always slightly reduced by using the 

macro-structured tools with variable wavelengths (11 mm < λ < 8 mm). Based on these results, 

it can be concluded that the modified macro-structured tool can further reduce the punch force 

and improve the efficiency of the lubricant-free deep drawing process. Furthermore, despite 

macro-structured tools with a constant wavelength, no bottom cracks occurred when using 

variable wavelength tools for deep drawing samples with a thickness of s0 = 0.6 and an 

immersion depth of δ = 0.4 mm.  
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Figure 9-4: Comparison between macro-structured tools with constant and variable wavelengths 

regarding the punch force and enlargement of the process window for sheet metals with outer radius  

of A) 90 mm and B) 100 mm 

9.3 SUMMARY OF CHAPTER 9 

Within the scope of this chapter, two different methods were introduced to improve the 

process regarding reducing the forming energy which leads to enlargement of the process 

window. It was shown that the rotary spherical element reduces the contact lines to contact 

points and changes the sliding friction condition to a rolling condition. The FEM results showed 

that the share of friction from the total punch force can be reduced up to 88%. However, this 

method can be applied only in the uncritical parts of the tool regarding wrinkling, because of 

the loss of supporting points.   

As a second method, it is possible to adjust the macro-structures to the acting tangential 

stress at the free end part of the sheet metal locally. Through this method, a macro-structure 

with a variable wavelength can be plausible. Generally, the tangential compressive stress 

increases continuously at the free end part of the sheet metal during the process due to the 

strain hardening of the material, while the radial tensile stress is always zero. Therefore, the 

risk of wrinkling increases during the process. Based on this investigation, locally adapted 

macro-structures were developed which leads to reduction of the bending energy at the outer 

part of the flange area, and as a result, reduction of the punch force. The experimental results 

showed that the punch force can be slightly reduced through this measure. 

Summarising these statements, it can be concluded that by combining the improvement 

methods, the punch force can be further reduced for the lubricant-free deep drawing process 

and the process window can be enlarged regarding bottom cracks. It should also be taken into 

account that these methods have no negative influences on the process stability regarding 

wrinkling.  
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10. SUMMARY AND CONCLUSIONS 

Friction is one of the most restricting parameters in sheet metal forming operations. In the 

deep drawing process, lubricants are applied with the aim of reducing the friction between 

the tool and the sheet metal for protection of the semi-finished products against corrosion, 

reduction of tool wear and also the enlargement of process window. However, from both 

economic and ecological points of view, it is strongly recommended to remove the lubricants 

within the deep drawing process. For the upcoming process steps after forming, such as 

joining and coating processes, which are absolutely sensitive to contaminants and oil, it is 

essential to clean the workpieces from lubricants. This is carried out in post-treatment 

processes by use of degreasing agents, which are solvent-based and therefore 

environmentally unfriendly and unhealthy. In addition to lubrication, there are currently a 

number of ways to reduce friction, like improving the surface quality (hardness as well as 

roughness), tool coating, and surface texturing. However, for a total lubricant-free process, 

the frictional forces should be reduced even further. Realising a total lubricant-free deep 

drawing process leads to:  

 a reduction of process steps in production,  

 a reduction of mineral oil needs and 

 establishing a green forming technology. 

The goal of this thesis was to develop a new deep drawing tool for lubricant-free applications, 

which ensures the process window in lubricant-free conditions. Since the largest contribution 

of the drawing force is the friction in the flange area, this part of the tool should be adapted 

for the new tool design. In order to decrease the amount of frictional force in this area for a 

given friction coefficient, the integral of the contact pressure over the contact area has to be 

reduced. To achieve that, this area is macro-structured, which has only line contacts and thus 

a smaller contact area with the sheet metal. This can increase the risk of wrinkling in the 

unsupported sheet metal areas, because the usually utilised blankholder force is not 

applicable. To avoid this effect, the geometrical moment of inertia of the sheet should be 

increased by the alternating bending mechanism of the material in the flange area through 

immersing the blankholder slightly into the drawing die. Figure 10-1 summarises the sequence 

of approaches to realise the lubricant-free deep drawing process. 

 

Figure 10-1: Procedural methods for realisation of the lubricant-free deep drawing process 
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Therefore, the developed process can, besides the reduction of the contact area and the 

blankholder force, also increase the resistance of the sheet metal against wrinkling. 

Furthermore, through adjusting the immersion depth, it is possible to control the material flow 

and enlarge the process window. The induced alternating bending to stabilise the sheet metal 

against wrinkling during deep drawing with macro-structured tools generates an additional 

force in the drawing direction. The created non-frictional restraining force can be used 

positively to compensate the springback behaviour of the workpiece. Generally, following 

positive effects can be achieved by deep drawing with macro-structured tools: 

 reducing the contact area,  

 reducing the integral of the contact pressure over the contact area,  

 reducing the total punch force through minimising the frictional force, 

 saving the added-cleaning time of the lubricant, as well as its disposal costs through 

elimination, 

 enlargement of the process window regarding bottom cracks through reducing the 

total punch force, 

 increasing the process stability regarding wrinkling through inducing alternating 

bending, 

 compensation of the springback effect because of the induced alternating bending as 

a non-frictional restraining force, 

 possibility to control the additional strain hardening, as well as the strain softening 

through alternating bending for a material with predominantly isotropic or kinematic 

hardening behaviour, 

 possibility to control the material flow by adjusting the amount of the immersion depth 

and  

 no die spotting is required for the new tool systems.   

Since the process stability is dependent on the two input parameters, local immersion depth 

and local wavelength, it is necessary for a time efficient tool design to have an analytical model 

and criteria to predict the process stability in a fast and accurate way in advance. Therefore, a 

deep drawing process with macro-structured tools was modelled analytically to predict bottom 

cracks and wrinkling by means of the energy calculation method, as well as plastic buckling 

analysis, respectively. The feasibility of the process and also the accuracy of the model were 

verified through numerical simulations, as well as experimental tests. The results from the 

analytical model were in a very good agreement with both the numerical and experimental 

results.  

In order to control the transferability of the proposed approach into a more complicated 

geometry, macro-structured as well as conventional tools for the deep drawing of the T-Cup 

were constructed within the scope of this thesis. Both criteria to predict the process limits 

were used for deep drawing of the T-Cup with macro-structured tools. Based on these 

predictions, neither bottom cracks nor wrinkling were expected during the process and the 

experimental results verified these prognoses. Moreover, the results showed that the 
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maximum punch force for deep drawing with macro-structured tools in lubricant-free 

conditions were very close to that of conventional tools in lubricated conditions. The results 

showed that using conventional tools with a blankholder force in lubricant-free conditions 

produces bottom cracks in the workpiece. However, using a spacer ring for deep drawing with 

conventional tools in lubricant-free conditions leads to a stable process with no significant 

difference in the punch force compared to macro-structured tools. Nevertheless, due to the 

ability of macro-structured tools to control material flow during the process, no bending folds 

occurred on the bottom part of the specimen.   

Moreover, two additional approaches were introduced to reduce the punch force further. The 

use of rotary elements as macro-structures changes the type of friction from sliding to rolling, 

which can reduce the frictional force further and leads to enlargement of the process window. 

Although this is a complicated approach in application, it can be considered as a vision for 

future work. Besides that, it was shown that locally adapting the wavelength regarding the 

tangential stress can lead to further reduction of the punch force. 

Although, the design for macro-structured tool can be relatively more time- and cost-

consuming, because of its form and additional wear minimising surface treatments like coating 

and micro-texturing, it provides several economic and ecological advantages in production. 

Since the main task of macro-structuring is to reduce the amount of frictional forces, it can be 

used in the presence of lubrication to perform a minimum-quantity lubrication. Moreover, the 

newly developed tool design can in combination with a common lubricating system reduce 

the frictional forces further and thereby lead to increased enlargement of the process window.
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II. ZUSAMMENFASSUNG 

Reibung stellt einen der am stärksten einschränkenden Parameter in der Blechumformung 

dar. Bei Tiefziehprozessen wird deshalb Schmierstoff eingesetzt, um die Reibung zwischen 

Werkzeug und Blech zu verringern, Halbzeug gegen Korrosion zu schützen, den 

Werkzeugverschleiß zu begrenzen und das Prozessfenster zu vergrößern. Aus ökonomischen 

und geoökologischen Gesichtspunkten besteht die Herausforderung, auf den Einsatz von 

Schmierstoffen verzichten zu können. So muss beispielsweise der Schmierstoff für die 

Folgeoperationen nach dem Umformen, wie Fügen und Beschichten, die überwiegend sehr 

sensibel bezüglich Verunreinigungen und Öl sind, unbedingt entfernt werden. Die Reinigung 

wird mithilfe von Entfettungsmitteln durchgeführt, die Lösemittel enthalten und somit 

umweltunfreundlich und gesundheitsschädlich sind. Neben der Schmierung gibt es derzeit 

eine Reihe von Möglichkeiten, um die Reibung zu verringern, z. B. eine verbesserte 

Oberflächenqualität (Härte sowie Rauheit), die Werkzeugbeschichtung und die 

Oberflächenstrukturierung. Trotzdem muss die Reibung für einen schmierstofffreien Prozess 

noch weiter reduziert werden. Die Realisierung eines total schmierstofffreien 

Tiefziehprozesses ermöglicht  

 eine Reduzierung der Produktionsschritte, 

 eine Reduzierung des Mineralölbedarfs und 

 die Realisierung einer „Green Technology“. 

Das Ziel dieser Arbeit war die Entwicklung eines neuen Tiefziehwerkzeuges für 

schmierstofffreie Anwendungen, welches die Stabilität des Prozessfensters sicherstellt. Da 

die Reibung im Flanschbereich den größten Anteil an der Umformkraft hat, sollte dieser Teil 

des Werkzeuges bei der neuen Werkzeugauslegung angepasst werden. Bei gegebener 

Reibzahl muss das Integral der Flächenpressung über die Kontaktfläche reduziert werden, um 

die Reibkräfte zu reduzieren. Durch die Makrostrukturierung reduziert sich die Kontaktfläche 

zu einem linien- oder punktförmigen Kontakt. Dies kann zur Erhöhung der Neigung zur 

Faltenbildung im Flanschbereich in den nicht gestützten Bereichen führen. Allerdings 

ermöglicht das geringfügige Eintauchen des Niederhalters in die Struktur der Matrize eine 

Erhöhung des Flächenträgheitsmoments des Bleches durch die eingebrachte Wellenstruktur 

im Flanschbereich, was die Stabilisation des Flanschbereiches ermöglicht und somit einer 

Faltenbildung entgegenwirkt. Neben ökonomischen und ökologischen Vorteilen ermöglicht 

das Tiefziehen mit makrostrukturierten Werkzeugen die Steuerung des Materialflusses durch 

Einstellung der Eintauchtiefe und reduziert das Rückfederungsverhalten des Bauteils. Durch 

Tiefziehen mit makrostrukturiertem Werkzeug kann eine Vielzahl positiver Effekte erreicht 

werden: 

 Reduzierung der Kontaktfläche 

 Reduzierung des Integrals der Flächenpressung über die Kontaktfläche 

 Reduzierung der gesamten Stempelkraft durch Minimierung der Reibkräfte 
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 Einsparung von Reinigungszeiten durch den Wegfall  von Schmierstoffen und der 

Entsorgungskosten 

 Erweiterung des Prozessfensters bezüglich der Bodenreißer durch Verringerung der 

Stempelkraft 

 Erweiterung der Prozessstabilität bezüglich der Faltenbildung durch Ausnutzung des 

Wechselbiegemechanismus 

 Kompensation des Rückfederungsverhaltens des Bauteils durch den erzeugten 

Wechselbiegemechanismus in Form einer nicht reibungsbehafteten Rückhaltekraft 

 Möglichkeit zur Kontrolle der zusätzlichen isotropen und kinematischen Verfestigung 

im Flanschbereich durch den Wechselbiegemechanismus 

 Möglichkeit zur Werkstoffflusssteuerung durch Einstellung der Eintauchtiefe 

 Keine Tuschierung bei neuen Werkzeugen erforderlich 

Da die Prozessstabilität von den Prozessparametern, d. h. Eintauchtiefe und Wellenlänge, 

abhängt, ist es für ein zeiteffektives Werkzeugdesign notwendig, die Prozessstabilität anhand 

analytischer Modelle und Kriterien schnell und präzise vorhersagen zu können. Aus diesem 

Grund wurde der entwickelte Tiefziehprozess analytisch mittels Energiemethode und auch 

Beulanalyse modelliert, um das Auftreten von Bodenreißern und Faltenbildung vorhersagen 

zu können. Die Machbarkeit des Prozesses sowie die Genauigkeit der analytischen 

Berechnungen wurden durch numerische Simulationen und experimentelle Untersuchungen 

überprüft. Die Ergebnisse zeigten eine hohe Übereinstimmung mit den numerischen und 

experimentellen Ergebnissen. 

Damit die Übertragbarkeit des hier vorgestellten Ansatzes auf kompliziertere Geometrien 

gewährleistet werden kann, wurden im Rahmen dieser Arbeit sowohl makrostrukturierte als 

auch konventionelle Werkzeuge zum Tiefziehen eines T-Napfes konstruiert und gefertigt. Die 

beiden Kriterien zur Vorhersage der Prozessgrenzen wurden für die Werkzeugauslegung 

angewandt. Darauf basierend wurden keine Bodenreißer und keine Faltenbildung erwartet, 

was sich experimentell bestätigte. Darüber hinaus zeigten die Resultate, dass die maximale 

Stempelkraft beim Tiefziehen mit makrostrukturiertem Werkzeug unter schmierstofffreien 

Bedingungen nur marginal höher als jene beim konventionellen Tiefziehen mit Distanzring 

unter Einsatz von Schmierstoff ist. Des Weiteren zeigte sich, dass das konventionelle 

Tiefziehen ohne Einsatz von Schmierstoff durch die aufgebrachte Niederhaltekraft zum 

Bodenreißer kam. Allerdings führte der Einsatz eines Distanzrings beim konventionellen 

Tiefziehen unter schmierstofffreien Bedingungen ebenfalls zu einem stabilen Prozess ohne 

wesentlichen Unterschied bezüglich der Stempelkraft gegenüber dem Tiefziehen mit 

makrostrukturiertem Werkzeug. Jedoch treten bei letzterem Prozess durch seine Fähigkeit, 

den Materialfluss während des Prozesses zu kontrollieren, keine Beule im Bodenbereich des 

Bauteils auf. 

Nachfolgend werden zwei weitere Ansätze erwähnt, um die Stempelkraft weiter zu 

reduzieren. Der Einsatz von gelagerten Kugeln als Makrostruktur führt dazu, dass Rollreibung 

statt Gleitreibung Anwendung findet, was die Reibkräfte weiter reduzieren und das 
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Prozessfenster vergrößern kann. Auch wenn dies in der Anwendung und Umsetzung ein 

komplizierter Ansatz seien mag, kann er doch als Vision für die zukünftige Forschung 

verstanden werden. Außerdem zeigte sich, dass eine lokal angepasste Wellenlänge bezüglich 

der tangentialen Spannung einen Beitrag zur weiteren Reduzierung der Stempelkraft leisten 

kann. 

Obwohl die Auslegung und Herstellung der makrostrukturierten Werkzeuge aufgrund ihrer 

Form und zusätzlicher verschleißminimierender Maßnahmen, wie Beschichtung und 

Oberflächenstrukturierung, relativ zeit- und kostenintensiv seien kann, bietet ihr Einsatz 

zahlreiche ökonomische und ökologische Vorteile in der Fertigung. Da die Hauptaufgabe der 

Makrostrukturierung eine Reduktion der Reibkräfte ist, kann sie auch in Gegenwart von 

Schmierstoffen im Rahmen einer Minimalmengenschmierung zum Einsatz kommen. Das neu 

entwickelte Tiefziehwerkzeug kann in Kombination mit herkömmlichen Schmiersystemen die 

Reibung hochgradig verringern und somit zu einer signifikanten Vergrößerung des 

Prozessfensters führen. 

.
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