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Abstract. In the context of the Franks–Misiurewicz conjecture, we study homeomorphisms

of the two-torus semiconjugate to an irrational rotation of the circle. As a special case,

this conjecture asserts uniqueness of the rotation vector in this class of systems. We first

characterize these maps by the existence of an invariant ‘foliation’ by essential annular

continua (essential subcontinua of the torus whose complement is an open annulus) which

are permuted with irrational combinatorics. This result places the considered class close

to skew products over irrational rotations. Generalizing a well-known result of Herman on

forced circle homeomorphisms, we provide a criterion, in terms of topological properties

of the annular continua, for the uniqueness of the rotation vector. As a byproduct, we

obtain a simple proof for the uniqueness of the rotation vector on decomposable invariant

annular continua with empty interior. In addition, we collect a number of observations on

the topology and rotation intervals of invariant annular continua with empty interior.

1. Introduction

Rotation theory, as a branch of dynamical systems, goes back to Poincaré’s celebrated

classification theorem for circle homeomorphisms. It states that given an orientation-

preserving circle homeomorphism f with lift F : R → R, the limit

ρ(F) = lim
n→∞

(Fn(x) − x)/n,

called the rotation number of F , exists and is independent of x . Furthermore, ρ(F) is

rational if and only if f has a periodic orbit and ρ(F) is irrational if and only if f is

semiconjugate to an irrational rotation.

Since both cases of the above dichotomy are easy to analyse, this result provides a

complete description of the possible long-term behaviour for a whole class of systems

without any additional a priori assumptions, a situation which is still rare even nowadays

in the theory of dynamical systems. In addition, the rotation number can be viewed as an

element of the first homological group of the circle and thus provides a link between the



Torus homeomorphisms semiconjugate to irrational rotations 2115

dynamical behaviour of homeomorphisms and the topological structure of the manifold. It

is not surprising that the consequences of this result have found numerous applications in

the sciences, ranging from quantum physics to neural biology [1, 2]. Hence, the attempt to

apply this approach to higher-dimensional manifolds, in order to obtain a classification of

possible dynamics in terms of rotation vectors and rotation sets, is most natural. However,

despite impressive contributions over the last few decades, fundamental problems still

remain open even in dimension two.

Already in the case of the two-dimensional torus T2 = R2/Z2, a unique rotation vector

does not have to exist. Instead, given a torus homeomorphism f homotopic to the identity

and a lift F : R2 → R2, the rotation set is defined as

ρ(F) =
{
ρ ∈ R2 | ∃zi ∈ R2, ni ր ∞ : lim

i→∞
(Fni (zi ) − zi )/ni = ρ

}
.

This is always a compact and convex subset of the plane [3]. Consequently, three principal

cases can be distinguished according to whether the rotation set (1) has non-empty interior,

(2) is a line segment of positive length or (3) is a singleton, that is, f has a unique rotation

vector. Existing results on each of the three cases suggest that a classification approach is

indeed feasible: for example, in case (1) the dynamics are ‘rich and chaotic’, in the sense

that the topological entropy is positive [4] and all of the rational rotation vectors in the

interior of ρ(F) are realized by periodic orbits [5]; in case (3) a Poincaré-like classification

exists under the additional assumption of area preservation and a certain bounded mean

motion property [6], and the consequences of unbounded mean motion are being explored

recently as well [7–9]. In the case where the rotation set is a segment of positive length,

examples can be constructed whose rotation set is either (a) a segment with rational slope

and infinitely many rational points or (b) a segment with irrational slope and one rational

endpoint [10]. Recent results on torus homeomorphisms with this type of rotation segment

indicate that these examples can be seen as good models for the general case [11–13].

In addition, there exist many further results that provide more information on each of the

three cases. Just to mention some of the contributions in this direction, we refer to [14–19].

In the light of these advances, it seems reasonable to say that the outline of a complete

classification emerges. Yet, there is still a major blank spot in the current state of

knowledge. It is not known whether any rotation segment other than the two cases (a) and

(b) mentioned above can occur, and if so, hardly anything is known about the dynamical

consequences of rotation segments of such exceptional type. Actually, it was conjectured

by Franks and Misiurewicz in [10] that these cannot occur. However, while this conjecture

has been the focus of attention for more than two decades, it has defied all experts and to

date there are still only very partial results on the problem. A deeper reason for this may

lie in the fact that it concerns dynamics without any periodic points, in particular in the

case where the rotation segments do not contain any rational points†, and therefore many

standard techniques in topological dynamics based on the existence of periodic orbits fail

to apply. Independent of whether the conjecture is true or false, this highlights the need

for a better understanding of periodic-point-free dynamics, which seems a worthy task in

a broader context as well.

† Note that a periodic orbit always has a rational rotation vector.
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We believe that in this situation the systematic investigation of suitable subclasses of

periodic-point-free torus homeomorphisms is a good way to obtain further insight. In

fact, there are some classes that have been studied intensively already. First, Franks and

Misiurewicz proved that for time-one maps of flows the rotation set is either a singleton

or an interval of type (a) or (b) [10]. Second, Kwapisz considered torus homeomorphisms

that preserve the leaves of an irrational foliation and showed that the rotation set is either

a segment with a rational endpoint or a singleton [20]. Finally, for skew products over

irrational rotations on the torus, Herman proved the uniqueness of the rotation vector [21].

Hence, in these cases the conjecture was confirmed for the particular subclasses, which

are certainly very restrictive compared with general torus homeomorphisms. However,

since these are the only existing partial results on the problem, they are the only obvious

starting point for further investigations. The aim of this article is to make a first step

in this direction by studying torus homeomorphisms which are semiconjugate to a one-

dimensional irrational rotation. For obvious reasons these do not have any periodic orbits,

but apart from this little is known about the dynamical implications of this property. We

first provide an analogous characterization of these systems.

Denote by Homeo0(Td) the set of homeomorphisms of the d-dimensional torus that

are homotopic to the identity. Recall that an essential annular continuum A ⊆ T2 is a

continuum whose complement T2 \ A is homeomorphic to the open annulus A = T1 × R.

An essential circloid is an essential annular continuum which is minimal with respect to

inclusion amongst all essential annular continua. We refer to §2 for the corresponding

definitions in higher dimensions. Note that for any family of pairwise disjoint essential

continua in Td there exists a natural circular order. We say a wandering† essential

continuum has irrational combinatorics (with respect to f ∈ Homeo0(Td)) if its orbit is

ordered in Td in the same way as the orbit of an irrational rotation on T1. See §3 for more

details.

THEOREM 1. Suppose f ∈ Homeo0(Td). Then the following statements are equivalent:

(i) f is semiconjugate to an irrational rotation R of the circle;

(ii) there exists a wandering essential circloid with irrational combinatorics;

(iii) there exists a wandering essential continuum with irrational combinatorics;

(iv) there exists a semiconjugacy h from f to R such that for all ξ ∈ T1 the fibre h−1{ξ}

is an essential annular continuum.

The proof is given in §3. Issues concerning the uniqueness of the semiconjugacy in the

above situation are discussed in §4. In general, the semiconjugacy is not unique, but there

exist important situations where it is unique up to post-composition with a rotation. In this

case every semiconjugacy has only essential annular continua as fibres.

For the two-dimensional case, the implication ‘(iii) ⇒(i)’ in Theorem 1 is contained in

[22], and the proof easily extends to higher dimensions. In our context, the most important

fact will be the equivalence ‘(i) ⇔ (iv)’, which says that the semiconjugacy can always

be chosen such that its fibres are annular continua. This places the considered systems

very close to skew products over irrational rotations, with the only difference that the

† We call A ⊆ Td wandering, if f n(A) ∩ A = ∅ for all n ≥ 1.
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topological structure of the fibres can be more complicated. For this reason, one may hope

to generalize Herman’s result to this larger class of systems, thus proving the existence

of a unique rotation vector. To that end, however, we here have to make an additional

assumption on the topological regularity of the fibres of the semiconjugacy.

An essential annular continuum A ⊆ T2 admits essential simple closed curves in its

complement. The homotopy type of such curves is unique, and we define it to be the

homotopy type of A. We say A is horizontal if its homotopy type is (1, 0). Given a

horizontal annular continuum A, we denote by Â a connected component of π−1(A),

where π : R2 → T2 is the canonical projection. Let T : R2 → R2, (x, y) 7→ (x + 1, y).

Then we say A is compactly generated if there exists a compact connected set G0 ⊆ Â such

that Â =
⋃

n∈Z T n(G0). In this case G0 is called a compact generator of A. An essential

annular continuum with arbitrary homotopy type is said to be compactly generated if there

exists a homeomorphism of T2 which maps it to a compactly generated horizontal one.

THEOREM 2. Suppose f ∈ Homeo0(T2) is semiconjugate to an irrational rotation of the

circle and the semiconjugacy h is chosen such that its fibres h−1(ξ) are all essential

annular continua. Further, assume that there exists a measurable set Ω ⊆ T1 of positive

Lebesgue measure such that h−1{ξ} is compactly generated for all ξ ∈ Ω . Then f has a

unique rotation vector.

The proof is given in §5.

Remark 1.1.

(i) We say an annular continuum is thin if it has empty interior. Note that in the situation

of Theorem 2, all but at most countably many of the fibres are thin in this sense.

(ii) Since the set Ω is measurable and compactly generated fibres are mapped to

compactly generated ones, ergodicity of the irrational rotation implies that almost

all fibres have this property.

(iii) A thin annular continuum A contains a unique circloid CA (see [6, Lemma 3.4]). If

the fibre h−1{ξ} of the semiconjugacy h over ξ is thin, we denote this circloid by

Cξ . It turns out that the assertion of Theorem 2 remains true if the fibres h−1(ξ) are

replaced by the circloids Cξ in the statement. This is not completely obvious, since

in general a thin annular continuum A may not be compactly generated even if this

is true for the circloid CA it contains. Only the converse implication is true, as we

show in Proposition 6.5.

However, in the situation of the theorem, it turns out that having a set of positive

measure on which fibres are compactly generated is equivalent to having a set of

positive measure on which the corresponding circloids are compactly generated. A

precise statement is given in Proposition 6.7.

(iv) The notion of a compact generator is closely related to the more classical one

of decomposability of an annular continuum. Here, a continuum C is called

decomposable if it can be written as the union of two proper subcontinua. It is rather

easy to show that the existence of a compact generator of a circloid C is equivalent

to the fact that a lift of C to a finite covering of T2 is decomposable. Likewise, a

compactly generated annular continuum always has a decomposable finite covering,
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although the converse is not true anymore in this case, even if the annular continuum

is thin. However, we will not make use of these facts and just work with compact

generators, which are most convenient for our purposes.

As a byproduct of our methods, we also obtain the uniqueness of the rotation vector for

invariant compactly generated thin annular continua, thus obtaining a variation of a result

by Barge and Gillette [23].

THEOREM 3. Suppose f ∈ Homeo0(T2) and A is a thin annular continuum that is

compactly generated and f -invariant. Then f|A has a unique rotation vector, that is, there

exists a vector ρ ∈ R2 such that limn→∞(Fn(z) − z/n) = ρ for all z ∈ R2 with π(z) ∈ A.

Moreover, the convergence is uniform in z.

Barge and Gillette stated the result for decomposable cofrontiers, which includes the

case of thin circloids, but their argument can be adapted to thin annular continua without

too much effort. Our proof is essentially a variation of theirs. An alternative proof by Le

Calvez [24] uses Caratheodory’s prime ends, which is a classical approach to study the

rotation theory of continua [25–27].

It should be noted that there exist important examples of invariant thin annular continua

which are not compactly generated. One example is the Birkhoff attractor [28], which

does not have a unique rotation vector and therefore cannot have compact generator

due to the above statement. Another well-known example is the pseudo-circle, which

was constructed by Bing in [29] and latter shown to occur as a minimal set of smooth

surface diffeomorphisms [30, 31]. Whether pseudocircles admit dynamics with non-

unique rotation vectors is still open.

We close by collecting some observations on the topology and dynamics of invariant

thin annular continua in §6. It is known that any thin annular continuum A contains a

unique circloid CA (see Lemma 2.3). We show that if A is compactly generated, then so

is the circloid CA. Conversely, if CA is compactly generated then either A is compactly

generated as well or A contains at least one infinite spike, that is, an unbounded connected

component of A \ CA. Finally, reproducing some examples due to Walker [32] we show

that thin annular continua can have any compact interval as rotation segment, even in the

absence of periodic orbits.

2. Notation and preliminaries

The following notions are usually used in the study of dynamics on the two-dimensional

torus or annulus. For convenience, we stick to the same terminology also in higher

dimensions. We let T1 = R/Z and denote by Ad = Td−1 × R the d-dimensional annulus.

If d = 2, we simply write A instead of A2. We will often compactify A by adding two

points −∞ and +∞, thus making it a sphere. As long as no ambiguities can arise, we

will always denote canonical quotient maps such as R → T1, Rd → Td , Rd → Ad by π .

Likewise, on any product space πi denotes the projection to the i th coordinate. We call

a subset A ⊆ Ad or A ⊆ Rd bounded from above (from below) if πd(A) is bounded from

above (from below). By A or cl(A) we denote the closure of a set A. A closed set is called

thin if it has empty interior.
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We say a continuum (that is, a compact and connected set) E ⊆ Ad is essential if Ad \ E

contains two unbounded connected components. In this case, one of these components

will be unbounded above and bounded below, and we denote it by U+(A). The second

unbounded component will be bounded above and unbounded below, and we denote it

by U−(A). The set A is called an essential annular continuum if Ad \ A = U+(A) ∪

U−(A). Note that in dimension two, one can show by using the Riemann mapping theorem

that both unbounded components are homeomorphic to A and A is the intersection of a

decreasing sequence of topological annuli. This is not true anymore in higher dimensions,

but at least we have the following.

LEMMA 2.1. If (An)n∈N is a decreasing sequence of essential annular continua, then

A =
⋂

n∈N An is an essential annular continuum as well.

Proof. As a decreasing intersection of essential continua, A is an essential continuum.

Further, we have that Td \ A =
⋃

n∈N Td \ An is the union of the two sets

U+ =
⋃

n∈N

U
+(An) and U− =

⋃

n∈N

U
−(An).

As the union of an increasing sequence of open connected sets is connected, both these sets

are connected. Hence, Td \ A consists of exactly two connected components U+(A) =

U+ and U−(A) = U−, both of which are unbounded. �

Given a set S ⊆ Rd , we say S is horizontal if πd(S) is bounded and Rd \ S contains two

different connected components U+(S) and U−(S) whose image under πd is unbounded.

Note that in this case one of the two components, which we always denote by U+(S), is

bounded below whereas the other component, denoted by U−(S), is bounded above. By

definition, U±(S) are always open sets. Similarly, given a set B ⊆ Ad bounded above

(below) we denote by U+(B) (U−(B)) the unique connected component of Ad \ B which

is unbounded above (below). The same notation is used on Rd . A horizontal connected

closed set S is called a horizontal strip, if Rd \ S = U+(S) ∪ U−(S). Note that, thus, the

lift of an essential annular continuum A ⊆ Ad to Rd is a horizontal strip. More generally,

we say a strip is a set which can be obtained from a horizontal strip by a linear coordinate

change.

In any d-dimensional manifold M , we say A is an annular continuum if it is contained

in a topological annulus A ≃ Ad and it is an essential annular continuum in the above sense

when viewed as a subset of A. In this situation, we say A is essential if essential loops in

A are also essential in M . We call C ⊆ Ad an essential circloid if it is an essential annular

continuum and does not contain any other essential annular continuum as a strict subset.

Circloids in general manifolds are then defined in the same way as annular continua.

Finally, we call a strip S minimal if it is a minimal element of the set of strips with the

partial ordering by inclusion.

LEMMA 2.2. An annular essential continuum in Ad or Td is a circloid if and only if its lift

to Rd is a minimal strip.

Proof. We give the proof for Ad , the case of Td is more or less the same. Let C ⊆ Ad

be a circloid and denote its lift to Rd by S. Suppose S′ is a closed connected strict subset
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of S. Then there exists x ∈ S and δ ∈ (0, 1/4) such that Bδ(x) ∩ S′ = ∅. Let x0 = π(x).

Then C ′ = C \ Bδ(x0) is non-essential, and we can find a proper curve γ : R → Ad in C ′

that goes from −∞ to +∞, that is, limt→±∞ πd ◦ γ (t) = ±∞. Further, we may assume

that γ takes values in Bδ(x0) only on a single open interval. This allows us to choose

a suitable lift γ̂ : R → Rd of γ that takes values in Bδ(x), but not in Bδ(x) + (0, n) for

any n ∈ Z \ {0}. Then γ̂ is a proper curve in the complement of S′ connecting U−(S) and

U+(S), and therefore S′ cannot be a strip. This shows that the lift of a circloid is a minimal

strip. The converse implication is proved in a similar way. �

LEMMA 2.3. [6, Lemma 3.4] Every thin annular continuum A ⊆ Ad contains a unique

circloid CA, which is given by

CA = U+(A) ∩ U−(A). (2.1)

The same statement applies to thin strips and to thin annular continua in Td .

The proof in [6] is given for essential annular continua and for d = 2, but it literally

goes through in higher dimensions and for strips. The same is true for the following

result, which describes an explicit construction to obtain essential circloids from arbitrary

essential continua. Given an essential set A ⊆ Rd which is bounded above, we write

U+−(A) instead of U−(U+(A)) and use analogous notation for other concatenations of

these procedures.

LEMMA 2.4. [6, Lemma 3.2] If A ⊆ Ad is an essential continuum, then

C
+(A) = Td \ (U+−(A) ∪ U

+−+(A)) and C
−(A) = Td \ (U−+(A) ∪ U

−+−(A))

are circloids. Further, we have ∂C±(A) ⊆ A.

The circloids C+(A) and C−(A) are the ‘highest’ and the lowest circloids, respectively,

whose boundary is contained in A. The same construction works for strips in Rd , and

for essential continua in Td as long as they are not doubly essential, that is, they admit

an essential curve in their complement. However, in these cases an orientation has to be

fixed in order to distinguish between the upper and the lower minimal strip, respectively

circloid.

Given two horizontal essential continua A1, A2 ⊆ Td , we say Âi ⊆ Ad is a lift of Ai if

it is a connected component of π−1(Ai ). We write Â1 ≺ Â2 if Â2 ⊆ U+( Â1). When A1

and A2 are disjoint, we choose lifts Â1 ≺ Â2 such that no integer translate of Â1 or Â2

is contained in U+( Â1) ∩ U−( Â2). Then we let (A1, A2) = π(U+( Â1) ∩ U−( Â2)) and

[A1, A2] = π(Ad \ (U−( Â1) ∪ U+( Â2))).

With these notions, we define a circular order on pairwise disjoint essential continua

A1, A2, A3 ⊆ Td by

A1 ≺ A2 ≺ A3 ⇔ A2 ∈ (A1, A3).

Using these notions, we now say a sequence (An)n∈N of pairwise disjoint essential

continua in Td has irrational combinatorics if there exists ρ ∈ R \ Q such that for arbitrary

y0 ∈ T1 the sequence yn = y0 + nρ mod 1 satisfies

Ak ≺ Am ≺ An ⇔ yk < ym < yn
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for all k, m, n ∈ Z. We complete the topological preliminaries with two applications of

Mayer–Vietoris sequences.

LEMMA 2.5. Let A, B be compact subsets of Ad such that:

(i) A ∩ B = ∅;

(ii) Ad \ A has exactly one unbounded component;

(iii) Ad \ B has exactly one unbounded component.

Then Ad \ (A ∪ B) has exactly one unbounded component.

Proof. We include a short proof based on the use of Mayer–Vietoris sequences. Assume

for a contradiction that Ad \ (A ∪ B) has two unbounded components. Let U± be the

component of (A ∪ B)c containing ±∞, where Ac denotes the complement of a set A in

Ad . Let γ ± be the 0-cycle corresponding to the point ±∞ and κ± = [γ ±] ∈ H0((A ∪ B)c)

its equivalence class. Note that since both A and B have only one unbounded component

in their complement, the 0-cycle γ + − γ − represents the zero element in H0(Ac) and

H0(Bc). Therefore, in the Mayer–Vietoris sequence

H1(Ad)
∂∗
→ H0(Ac ∩ Bc)

θ∗
→ H0(Ac) ⊕ H0(Bc)

ξ∗
→ H0(Ad) → 0,

the map θ∗ sends κ+ − κ− to zero. However, as the sequence is exact and H1(Ad) = 0,

the map θ∗ is injective. Hence, we must have κ+ = κ−, contradicting our assumption. �

A proof of the following statement can be given in a similar way.

LEMMA 2.6. [34, Theorem 11.5] Suppose A, B ⊆ R2 are both continua, but A ∩ B is not

connected. Then A ∪ B separates the plane, meaning that R2 \ (A ∪ B) has at least two

connected components.

Finally, we will frequently use the following uniform ergodic theorem (e.g. [35, 36]).

THEOREM 2.7. Suppose X is a compact metric space and f : X → X and ϕ : X → R are

continuous. Further, assume that there exists ρ ∈ R such that

∫

X

ϕ dµ = ρ

for all f -invariant ergodic probability measures µ on X. Then

lim
n→∞

1

n

(n−1∑

i=0

ϕ ◦ f i (x)

)
= ρ for all x ∈ X.

Furthermore, the convergence is uniform on X.

3. Semiconjugacy to an irrational rotation

We now turn to the proof of Theorem 1. The implications (ii) ⇒ (iii) and (iv) ⇒ (i) in

Theorem 1 are obvious. Hence, in order to prove all the equivalences, it suffices to prove

(iii) ⇒ (ii), (i) ⇒ (iii) and (ii) ⇒ (iv). We do so in three separate lemmas and start by

treating the easiest of the three implications, which is (iii) ⇒ (ii).
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LEMMA 3.1. Let f ∈ Homeo0(Td) and suppose E is a wandering essential continuum.

Then C+(E) is a wandering essential circloid and the circular ordering of the orbits of E

and C+(E) are the same.

Proof. Suppose f ∈ Homeo0(Td) and E is a wandering essential continuum with

irrational combinatorics. Let En = f n(E) and Cn = C+(En) = f n(C+(E)). Note that, as

remarked above, Lemma 2.4 can be applied to essential continua of arbitrary ‘homotopy

type’. Assume for a contradiction that the Cn are not pairwise disjoint, that is, Ci ∩ C j 6= ∅

for some integers i 6= j . Since ∂Cn ⊆ En for all n ∈ Z and the En are pairwise disjoint,

Ci must intersect the interior of C j or vice versa. Assuming the first case, Ci has to

intersect some connected component U of int(C j ). We distinguish three cases. First,

if Ci ⊆ U , then this contradicts the minimality of C j . Second, if U ⊆ int(Ci ), then

∂U ⊆ int(Ci ) since ∂U ⊆ ∂C j ⊆ E j and, hence, ∂U is disjoint from ∂Ci ⊆ Ei . This

means that ∂C j intersects int(Ci ). However, as C j cannot be contained in Ci we must

have ∂Ci ∩ ∂C j 6= ∅, contradicting the disjointness of Ei and E j . As a third possibility,

this only leaves the case where ∂Ci intersects ∂U , and hence ∂C j , leading to the same

contradiction as before. Thus, Ci and C j are disjoint, which shows that C0 is wandering.

The fact that circular ordering is preserved when going from (En)n∈N to (Cn)n∈N is

obvious. �

The next lemma shows (ii) ⇒ (iv). Given ρ ∈ Td , we denote by Rρ : Td → Td , x 7→

x + ρ the rotation by ρ.

LEMMA 3.2. Let f ∈ Homeo0(Td) and suppose C is a wandering essential circloid with

irrational combinatorics of type ρ. Then there exists a semiconjugacy h : Td → T1 from

f to Rρ such that the fibres h−1{ξ} are all essential annular continua.

Proof. By performing a change of coordinates, we may assume that C and all its iterates

are horizontal. Let T ′ : Ad → Ad , (x, y) 7→ (x, y + 1). We let Cn := f n(C) and denote

the connected components of the lifts of these circloid by Ĉn,m , where the indices are

chosen such that for all integers n, m we have:

(i) π(Ĉn,m) = Cn ;

(ii) F(Ĉn,m) = Ĉn+1,m ;

(iii) T ′(Ĉn,m) = Ĉn,m+1.

We claim that

H(z) = sup{nρ + m | z ∈ U
+(Ĉn,m)}

is a lift of a semiconjugacy h with the required properties. Note that due to the

irrational combinatorics we have nρ + m < ñρ + m̃ if and only if Ĉn,m ≺ Ĉñ,m̃ , such that

in particular H(z) is well defined and finite for all z ∈ Ad . Further, for any z ∈ Ad we have

H ◦ F(z) = sup{nρ + m | F(z) ∈ U
+(Ĉn,m)}

= sup{nρ + m | z ∈ U
+(Ĉn−1,m)} = H(z) + ρ.

In a similar way one can see that H ◦ T (z) = H(z) + 1, such that H projects to a map

h : Td → T1 which satisfies h ◦ f = Rρ ◦ h.
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In order to check the continuity of H , suppose U ⊆ R is an open interval and

let z ∈ H−1(U ). Choose r = nρ + m < H(z) < ñρ + m̃ = s with r, s ∈ U . Then z ∈

U+(Cn,m) ∩ U−(Cm̃,ñ) =: V . From the definition of H we see that H(V ) ⊆ [r, s] ⊆ U ,

and thus H−1(U ) contains an open neighbourhood of z. Since U and z ∈ H−1(U ) were

arbitrary, H is continuous. The fact that h is onto follows easily from the minimality of

Rρ , so that h is indeed a semiconjugacy from f to Rρ .

It remains to prove the fact that the fibres h−1{ξ} are annular continua. In order to do

so, note that for ξ ∈ T1

H−1{ξ} =
⋂

nρ+m<ξ

U
+(Ĉn,m) ∩

⋂

ñ+ρm̃>ξ

U
−(Ĉñ,m̃)

=
⋂

nρ+m<ξ

Ad \ U−(Ĉn,m) ∩
⋂

ñρ+m̃>ξ

Ad \ U+(Ĉñ,m̃).
(3.1)

Note here that for all n, m, n′, m′ with nρ + m < n′ρ + m′ we have

U
+(Ĉn′,m′) ⊆ Ad \ U−(Ĉn′,m′) ⊆ U

+(Ĉn,m)

and similar inclusions hold in the opposite direction. This explains the second equality in

(3.1). Choosing sequences ni , mi , ñi , m̃i with niρ + mi ր ξ and ñiρ + m̃i ց ξ , we can

rewrite (3.1) as

H−1{ξ} =
⋂

i∈N

Ad \ (U−(Ĉni ,mi
) ∪ U

+(Ĉñi ,m̃i
)).

Since the sets of the intersection are all essential annular continua, so is H−1{ξ} by

Lemma 2.1. �

It remains to prove the implication (i) ⇒ (iii).

LEMMA 3.3. Suppose that h : Td → T1 is a semiconjugacy from f ∈ Homeo0(Td) to an

irrational rotation Rρ . Then every fibre h−1{ξ} contains a wandering essential continuum

with irrational combinatorics.

Proof. We first show that the action h∗ : 51(Td) → 51(T1) of h on the fundamental

groups is non-trivial. Suppose for a contradiction that h∗ = 0. Then any lift H : Rd → R
of h is bounded since in this case supz∈Rd ‖H(z)‖ = supz∈[0,1]d ‖H(z)‖. However, if R̂ρ

is the lift of Rρ which satisfies H ◦ F = R̂ρ ◦ H , then this contradicts the unboundedness

of

H ◦ Fn(z) = R̂n
ρ ◦ H(z).

Consequently, h∗ is non-trivial, and by composing h with a linear torus automorphism

we may assume that h∗ is just the projection to the last coordinate. This composition may

change the rotation number, but does not effect its irrationality. We obtain a lift ĥ : Ad → R
which satisfies ĥ(z) → ±∞ if z → ±∞.

As a consequence, the intermediate value theorem implies that every properly

embedded line Ŵ = {γ (t) | t ∈ R} intersects all level sets Êx = ĥ−1{x}. Hence, all Êx

are essential.

If Êx is not connected, we consider the family of all compact and essential subsets

of Êx and choose and element Ê which is minimal with respect to the inclusion. Note

that such minimal elements exist by the lemma of Zorn. By Lemma 2.5 Ê is connected.
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Further, E = π(Ê) is wandering since Ê ⊆ h−1{x}. Hence, E is the wandering essential

continuum we are looking for. The fact that E has irrational combinatorics can be seen

from the semiconjugacy equation. �

4. On the uniqueness of the semiconjugacy

In light of the preceding section, it is an obvious question to ask to what extent a

semiconjugacy between f ∈ Homeo(T2) and an irrational rotation Rρ of the circle is

unique. It is easy to check that for every rigid rotation R : T1 → T1 the map R ◦ h

is a semiconjugacy between f and Rρ as well. Hence, there is non-uniqueness of the

semiconjugacy in general. Nevertheless, one could ask whether there is uniqueness up to

post-composition with rotations. In brief, we will speak of uniqueness modulo rotations.

Consider f ∈ Homeo0(T2) given by f (x, y) = (x + ρ1, y) with ρ1 ∈ Qc. For any

continuous function α : T1 → T1, we have that hα(x, y) = x + α(y) is a semiconjugacy

from f to Rρ1
. Thus, we do not have uniqueness of the semiconjugacy even modulo

rotations. However, it is not difficult to see that all of the possible semiconjugacies between

f and Rρ1
are given by hα for some continuous function α. This implies in particular that

on every minimal set Yr = {(x, y) ∈ T2 | y = r}, r ∈ T1, given any two semiconjugacies

h1 and h2 we have that h1|Yr = (R ◦ h2)|Yr for some rigid rotation R. This, as we will see,

is a general fact.

We say that an f -invariant set Ω is externally transitive if for every x, y ∈ Ω and

neighbourhoods Ux , Uy of x and y, respectively, there exists n ∈ N such that f n(Ux ) ∩

Uy 6= ∅. Note that f n(Ux ) and Uy do not need to intersect in Ω as in the usual definition

of topological transitivity. In the above example the sets Yr are transitive, hence externally

transitive.

Given f ∈ Homeo0(T2) semiconjugate to a rigid rotation Rρ and a f -invariant

set Ω ⊆ T2, we say that the semiconjugacy is unique modulo rotations on Ω if for

all semiconjugacies h1, h2 from f to Rρ we have h1|Ω = (R ◦ h2)|Ω for some rigid

rotation R.

PROPOSITION 4.1. Let f ∈ Homeo(T2) be semiconjugate to a rigid rotation of T1.

Further, assume that Ω ⊂ T2 is an externally transitive invariant set of f . Then the

semiconjugacy is unique modulo rotations on Ω .

Proof. Let h1, h2 be two semiconjugacies between f and Rρ . By post-composing with

a rigid rotation, we may assume that h1(x) = h2(x) for some x ∈ Ω . Suppose for a

contradiction that h1(y) 6= h2(y) for some y ∈ Ω .

Let ε = 1
2

· d(h1(y), h2(y)) and δ > 0 such that d(h1(x ′), h2(x ′)) < ε if x ′ ∈ Bδ(x)

and d(h1(y′), h2(y′)) > ε if y′ ∈ Bδ(y). Due to Ω being externally transitive, there

exists z ∈ Bδ(x) and n ∈ N such that f n(z) ∈ Bδ(y). However, at the same time we

have that ε < d(h1( f n(z)), h2( f n(z))) = d(Rn
ρ(h1(z)), Rn

ρ(h2(z))) = d(h1(z), h2(z)) <

ε, which is absurd. �

As a consequence, we obtain the uniqueness of the semiconjugacy modulo rotations

whenever the non-wandering set of f is externally transitive. The reason is the following

simple observation.
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LEMMA 4.2. If h1(x) = h2(x) for two semiconjugacies between f ∈ Homeo(T2) and a

rigid rotation of T1, then h1(y) = h2(y) for all y with x ∈ O(y, f ).

Proof. Suppose for a contradiction that x ∈ O(y, f ) but h1(y) 6= h2(y). Let ε =

d(h1(y), h2(y))/2 and δ > 0 such that if x ′ ∈ Bδ(x), then h1(x ′), h2(x ′) ∈ Bε(h1(x)).

Further, let n ∈ N be such that z := f n(y) ∈ Bδ(x). Then on the one hand h1(z), h2(z) ∈

Bε(h1(x)), and on the other hand d(h1(z), h2(z)) = d(h1(y), h2(y)) = 2ε, which is

absurd. �

Given f ∈ Homeo(T2) we denote its non-wandering set by Ω( f ). Since any orbit

accumulates in the non-wandering set, the combination of Proposition 4.1 and Lemma 4.2

immediately yields the following result.

COROLLARY 4.3. Suppose that f ∈ Homeo(T2) is semiconjugate to a rigid rotation of

T1. Further assume that Ω( f ) is externally transitive. Then the semiconjugacy is unique

modulo rotations.

For irrational pseudorotations of the torus†, external transitivity of the non-wandering

set was proved by Potrie in [37]. Hence, applying Corollary 4.3 in both coordinates yields

the following result.

COROLLARY 4.4. Let f ∈ Homeo(T2) be an irrational pseudo-rotation which is

semiconjugate to the respective rigid translation of T2. Then the semiconjugacy is unique

up to composing with rigid translations of T2.

Finally, one may ask the following question.

Question 4.5. Does every semiconjugacy between f ∈ Homeo0(T2) and a rigid rotation

on T1 have essential annular continua as fibres?

We note that in the example f (x, y) = (x + ρ1, y) discussed above this is true, since the

fibres of the semiconjugacy hα are the essential circles {(x − α(y), y) | y ∈ T1}, x ∈ T1.

By Theorem 1 it is also true whenever the semiconjugacy is unique modulo rotations, since

there always exists one semiconjugacy with this property and the topological structure of

the fibres is certainly preserved by post-composition with rotations.

5. Fibred rotation number for foliations of circloids

The aim of this section is to prove Theorem 2. In order to do so, we need some further

preliminary results. Given two open connected subsets U, V of a manifold M , we say that

K ⊆ M \ (U ∪ V ) separates U and V if U and V are contained in different connected

components of M \ K .

LEMMA 5.1. Suppose S ⊆ Rd is a thin horizontal strip and K ⊆ S is a connected closed

set that separates U+(S) and U−(S). Then CS ⊆ K .

† That is, torus homeomorphisms homotopic to the identity with unique and totally irrational rotation vector.
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Proof. Suppose CS * K and let z ∈ CS \ K . Then Bε(z) ⊆ Rd \ K . However, as Bε(z)

intersects both U+(S) and U−(S) by Lemma 2.3, this means that U+(S) ∪ Bε(z) ∪ U−(S)

is contained in a single connected component of Rd \ K , contradicting the fact that K

separates U+(S) and U−(S). �

Given an essential annular continuum A ⊆ A, we denote its lift to R2 by Â = π−1(A).

Let T : R2 → R2, (x, y) 7→ (x + 1, y). Then we say A has a compact generator, if there

exists a compact connected set G0 ⊆ Â such that
⋃

n∈Z Gn = Â, where Gn = T n(G0).

LEMMA 5.2. If A ⊆ A is an annular continuum with generator G0, then Gn ∩ Gn+1 6= ∅

for all n ∈ N.

Proof. It suffices to prove that G0 ∩ G1 6= ∅. Suppose for a contradiction that the

intersection is empty. Then G0 has a connected neighbourhood U such that T (U ) ∩ U =

∅. Since U cannot be contained in bounded connected component of T (U ) and vice

versa, we have T (D) ∩ D = ∅ where D = Fill(U ). Owing to Frank’s lemma [38],

this implies that T n(D) ∩ D = ∅ for all n ∈ Z \ {0}, contradicting the connectedness of

A ⊆
⋃

n∈Z T n(D). �

Given any bounded set B ⊆ R2, we let

νB = max{n ∈ N | ∃z ∈ B : T n(z) ∈ B}.

LEMMA 5.3. Suppose that A, A′ ⊆ A are thin essential annular continua with compact

generators G0, G ′
0. Further, assume f ∈ Homeo0(A) maps A to A′. Then for any lift F of

f the set F(G0) intersects at most νG0
+ νG ′

0
+ 1 integer translates of G ′

0.

Proof. Suppose F(G0) intersects G ′
n and G ′

m for some m > n. Then due to Lemma 5.2,

the set ⋃

k≤n

G ′
k ∪ F(G0) ∪

⋃

k≥m

G ′
k ⊆ Â′

is connected and therefore separates U+( Â′) and U−( Â′). Hence, by Lemma 5.1 it

contains C Â′ = ĈA′ . Let z0 ∈ G ′
0 ∩ C Â and assume without loss of generality that z j =

T j (z0) /∈ G ′
0 for all j ≥ 1. Then zn ∈ G ′

n and z j /∈
⋃

k≤n G ′
k for all j > n. Furthermore,

since zm ∈ G ′
m we have that z j /∈

⋃
k≥m G ′

k for all j < m − νG ′
0
. Thus, we must have

{zn+1, . . . , zm−νG′
0
−1} ⊆ F(G0).

However, since F(G0) contains at most νG0
integer translates of z0, this implies m − n ≤

νG0
+ νG ′

0
+ 1. �

As a first consequence, this yields the following variation of [23, Theorem 2.7].

COROLLARY 5.4. Let f ∈ Homeo0(A) with lift F : R2 → R2 and suppose A is an

f -invariant thin essential annular continuum which is compactly generated. Then f|A

has a unique rotation number, that is,

ρA(F) = lim
n→∞

π2 ◦ (Fn(z) − z)/n

exists for all z ∈ π−1(A) and is independent of z. Moreover, the convergence is uniform

in z.
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Proof. As ρ(F, z) = limn→∞ π2 ◦ (Fn(z) − z)/n = limn→∞
1
n

∑n−1
i=0 ϕ ◦ f i (z) is an

ergodic sum with observable ϕ(z) = π2(F(z) − z), we have that ρ( f, z) =
∫

A
ϕ dµ =:

ρ(µ) µ-almost surely for every f -invariant probability measure supported on A. Note

here that ϕ is well defined as a function A → R. Assume for a contradiction that the

rotation number is not unique on A. Then Theorem 2.7 implies the existence of two

f -invariant ergodic measures µ1, µ2 supported on A with ρ(µ1) 6= ρ(µ2). Consequently,

we can choose z1, z2 ∈ A with ρ(F, z1) = ρ(µ1) 6= ρ(F, z2) = ρ(µ2). However, at the

same time we may choose lifts ẑ1, ẑ2 ∈ G A of z1, z2, where G A is a compact generator

of A. Then Lemma 5.3 implies that Fn(ẑ1) and Fn(ẑ2) are contained in the union

of 2νG A
+ 1 adjacent copies of G A. Consequently, we have that d(Fn(ẑ1), Fn(ẑ2)) ≤

diam(G A) + 2νG A
+ 1 for all n ∈ N, a contradiction. The uniform convergence follows

from the same argument. �

Remark 5.5.

(i) As remarked before we note that as a special case, Corollary 5.4 applies to

decomposable essential thin circloids. In order to see this, recall that a continuum C

is called decomposable if it can be written as the union of two non-empty continua C1

and C2. If C is a thin circloid, then due to the minimality of circloids C1 and C2 have

to be non-essential. Hence, connected components Ĉi of π−1(Ci ) ⊆ R2, i = 1, 2,

are bounded. If these lifts are chosen such that their intersection is non-empty, then

G = Ĉ1 ∪ Ĉ2 is a compact generator of C .

(ii) Conversely, if C has a compact generator G0 and n is chosen such that T n(G0) ∩

G0 = ∅, then a lift of C to the 2n-fold covering decomposes into two continua, which

are given by the projections of the sets
⋃n−1

i=0 T i (G0) and
⋃2n−1

i=n T i (G0).

(iii) Theorem 2.7 in [23] is stated for the case where A is a cofrontier, which is defined as

an irreducibly plane-separating continuum. A cofrontier is always the boundary of a

circloid, and conversely an annular continuum is a circloid if and only if its boundary

is a cofrontier. Since circloids may have interior, the two concepts are not the same.

However, while the subtle difference may play a role in other situations (see, for

example, [6]), it is of minor importance in our context here and the arguments in

[23] work for both cases.

(iv) Examples of (hereditarily) non-decomposable circloids were constructed by Bing

[39] and may occur as minimal sets of smooth surface diffeomorphisms [30, 31].

In the particular case of rational rotation number, we further obtain the existence of

periodic orbits.

COROLLARY 5.6. Let f ∈ Homeo0(A) with lift F : R2 → R2. Further, suppose that A

is an f -invariant thin essential annular continuum which is compactly generated and

ρA(F) = {p/q}. Then F has a q-periodic orbit with rotation number p/q in π−1(A).

Proof. By going over to the qth iterate, we may assume that ρA(F) = {0}. Further, by

replacing G0 with
⋃n

i=0 Gi for sufficiently large n ∈ N, we may assume without loss of

generality that F(G0) ∩ G0 6= ∅. Then Lemma 5.3 implies that C := (
⋃

k∈Z Fk(G0)) is

a compact and invariant set. Moreover, as A is thin, C is a non-separating continuum.
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Therefore the Cartwright and Littlewood theorem [40] implies the existence of a fixed

point of F in C . �

As Lemma 5.3 works for any combination of two compactly generated thin annular

continua, we can prove Theorem 2 in a similar way as the above Corollary 5.4. However,

what we need as a technical prerequisite is the measurable dependence of the size of

the generators of fibres h−1(ξ) under the assumptions of the theorem. We obtain this in

several steps. We place ourselves in the situation of Theorem 2 and assume again without

loss of generality that the action h∗ : 51(T2) → 51(T1) on the fundamental group is the

projection to the second coordinate. This implies that the annular continua Aξ = h−1{ξ}

are all of homotopy type (1, 0). We denote by f̂ the lift of f to A and by F the lift to R2.

Further, we denote by ĥ : A → R a lift of h to A and by H : R2 → R a lift to R2.

Let Ω0 = {ξ ∈ T1 | Aξ is thin}, Ω = π−1(Ω0) and Aξ = ĥ−1{ξ} (ξ ∈ R). Then all Aξ

are essential annular continua in A, and Aξ is thin if and only if ξ ∈ Ω . Further, define

A+
ξ = ∂U+(Aξ ) and A−

ξ = ∂U−(Aξ ). Then for all ξ ∈ Ω we have Aξ = A+
ξ ∪ A−

ξ and, by

Lemma 2.3, A+
ξ ∩ A−

ξ = CAξ
=: Cξ .

We recall that for a metric space (X, d) and C, D ⊂ X , the Hausdorff distance is defined

as

dH(C, D) = max

{
sup
x∈C

d(x, D), sup
y∈D

d(y, C)

}
.

The convergence of a sequence {Cn}n∈N of subsets in X to A ⊂ X in this distance is

denoted either by Cn →H A or by limH
n→∞ Cn = A. Note that dH(C, D) < ε if and only

if C ⊆ Bε(D) and D ⊆ Bε(C), and that the Hausdorff distance defines a complete metric

if one restricts to compact subsets.

LEMMA 5.7. If Aξ is thin, then limH
ξ ′րξ A−

ξ ′ = limH
ξ ′րξ Aξ ′ = A−

ξ and limH
ξ ′ցξ A+

ξ ′ =

limH
ξ ′ցξ Aξ ′ = A+

ξ .

Proof. We prove limH
ξ ′րξ A−

ξ ′ = limH
ξ ′րξ Aξ ′ = A−

ξ , the opposite case follows by

symmetry. Since A−
ξn

⊆ Aξn , it suffices to show that for all ε > 0 there exists δ > 0 such

for all ξ ′ ∈ (ξ − δ, ξ) we have

Aξ ′ ⊆ Bε(A−
ξ ) and A−

ξ ⊆ Bε(A−
ξ ′). (5.1)

We start by showing the first inclusion. Fix ε > 0. Assume for a contradiction that there

exists a sequence ξn ր ξ such that Aξn ( Bε(A−
ξ ) for all n ∈ N. Let zn ∈ Aξn \ Bε(A−

ξ )

and z = limn→∞ zn . Then z /∈ Bε(A−
ξ ) and, thus, since all of the zn are below Aξ ,

we have z /∈ Aξ . However, at the same time h(z) = limn→∞ h(zn) = limn→∞ ξn = ξ , a

contradiction.

Conversely, in order to show the second inclusion in (5.1), assume for a contradiction

that there exists a sequence ξn ր ξ such that A−
ξ ( Bε(A−

ξn
) for all n ∈ N. Let Kn =

A−
ξ \ Bε(A−

ξn
) and note that A−

ξ ∩ Bε(A−
ξn

) = A−
ξ ∩ Bε(U

−(A−
ξn

)), which is increasing

in n. Then (Kn)n∈N is a decreasing sequence of non-empty compact sets, such that

K =
⋂

n∈N Kn 6= ∅. Let z ∈ K . Then Bε(z) ∩ A−
ξn

= ∅ and thus Bε(z) ⊆ U+(A−
ξn

) for all

n ∈ N. This implies h(z′) ≥ ξ for all z′ ∈ Bε(z), contradicting the fact that Bε(z) intersects

U−(Aξ ) and h < ξ on U−(Aξ ). �
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Given a compactly generated thin annular continuum A, we let

τ(A) = inf{diam(G) | G is a compact generator of A}. (5.2)

LEMMA 5.8. The function ξ 7→ τ(A−
ξ ) is lower semicontinuous from the left on Ω , that

is,

lim inf
ξ ′րξ

τ(A−
ξ ′) ≥ τ(A−

ξ ) for all ξ ∈ Ω.

Similarly, ξ 7→ τ(A+
ξ ) is lower semicontinuous from the right on Ω .

Proof. Let ξn ր ξ and assume without lose of generality that τ := limn→∞ τ(A−
ξn

) exists

and is finite. Choose generators Gξn of Aξn of diameter smaller than τ(A−
ξn

) + 1/n. Then,

using Lemma 5.7, it is straightforward to verify that any limit point G of (Gξn )n∈N in the

Hausdorff metric is a compact generator of A−
ξ of diameter smaller than τ . �

It is easy to check that real-valued functions which are lower semicontinuous from

one side are also measurable. Consequently, since τ(Aξ ) ≤ η(ξ) := τ(A−
ξ ) + τ(A+

ξ ), the

function η provides a measurable majorant for the minimal diameter of the generators of

Aξ . Further, A±
ξ are compactly generated if and only if Aξ is compactly generated, a fact

which follows from the topological considerations on thin annular continua exposed in the

next section, see Lemma 6.1. Altogether, this yields the following result.

COROLLARY 5.9. The map ξ 7→ τ(Aξ ) has a measurable majorant η : T1 → R+ such

that η(ξ) < ∞ if Aξ is compactly generated.

We are now in the position to complete the proof of Theorem 2 by adapting the measure-

theoretic argument of Herman in [21, Theorem 5.4].

Proof of Theorem 2. Let f ∈ Homeo0(T2) and suppose h : T2 → T1 is a semiconjugacy

to the irrational rotation Rρ . We assume that h∗ = π∗
1 , such that there exist continuous lifts

ĥ : A → R of h and f̂ : A → A of f which satisfy

ĥ ◦ f̂ = Rρ ◦ ĥ.

Let F : R2 → R2 be a lift of f . Assume for a contradiction that f has no unique rotation

vector. Since the semiconjugacy is homotopic to π1, the first coordinate of any rotation

vector of f must be ρ. Therefore, similar to the proof of Corollary 5.4, this implies the

existence of two f -invariant ergodic probability measures µ1 and µ2 with

ρ1 =

∫

T2
π2(F(z) − z) dµ1(z) 6=

∫

T2
π2(F(z) − z) dµ2(z) = ρ2.

As h−1{ξ} is compactly generated for Lebesgue-almost everywhere ξ ∈ T1, Corollary 5.9

yields the existence of a finite-valued measurable majorant of ξ 7→ τ(h−1{ξ}). Hence, we

can find a constant C > 0 and a set ΩC ⊆ T1 of positive measure such that for all ξ ∈ ΩC

the annular continuum h−1{ξ} has a compact generator Gξ with diam(Gξ ) ≤ C .

Both µ1 and µ2 must be mapped to the Lebesgue measure on T1 by h, since this is the

only invariant probability measure of Rρ . Hence, for almost every ξ ∈ T1 there exist points
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z1, z2 ∈ h−1{ξ} which are generic with respect to µ1 and µ2, respectively. In particular,

for any lift ẑi ∈ R2 of zi we have that

lim
n→∞

π2(Fn(ẑi ) − ẑi )/n = ρi (i = 1, 2). (5.3)

Without loss of generality, we may assume that h−1{ξ} has compact generator Gξ and

Rn
ρ(ξ) visits ΩC infinitely many times, that is, R

ni
ρ (ξ) ∈ ΩC for a strictly increasing

sequence (ni )i∈N of integers. Given lifts ẑ1, ẑ2 ∈ Gξ of z1, z2, Lemma 5.3 implies that

π2(Fni (ẑ1)) − π2(Fni (ẑ2) ≤ diam(G
r

ni
ρ (ξ)

) + νGξ
+ νG

r
ni
ρ (ξ)

+ 1 ≤ νGξ
+ 2C + 1

for all i ∈ N. As ρ1 6= ρ2, this contradicts (5.3). �

6. Comments on the topology of thin annular continua

The aim of this section is to give a basic classification for the topology of thin annular

continua in the context of compact generators, and to prove the result on foliations of T2

into essential annular continua mentioned in Remark 1.1(c). First, we have the following.

LEMMA 6.1. Suppose A is a thin essential annular continuum which is compactly

generated. Then any thin essential annular continuum A′ ⊆ A is compactly generated

and τ(A′) ≤ τ(A), with τ defined as in (5.2). In particular, this holds for the circloid CA

and for the annular continua A− and A+ defined in the previous section.

Proof. Suppose G0 is a compact generator of A and Â, Â′ are lifts of A and A′,

respectively, to Rd . Then it suffices to show that G ′
0 = G0 ∩ Â′ is connected, since in

this case G ′
0 is a compact generator of A′.

In order to do so, consider the closed-disc-compactification D of R2, obtained by adding

a circle at infinity. Let C be the closure of Â′ in D. Note that C is just the union of Â′ with

two points in the unit circle. Suppose for a contradiction that G0 ∩ Â′ = G0 ∩ C is not

connected. Viewing D again as a subset of the plane allows to apply Lemma 2.6, which

implies that the union G0 ∪ C separates the plane. However, this is impossible since by

assumption Â has empty interior. �

We now investigate essential annular continua which are not compactly generated in

more detail. To that end, given X ⊂ R2, we denote by [X ]y the connected component of y

in X and define width(X) = sup{x1 − x2 | (x1, y1), (x2, y2) ∈ X}. For an essential annular

continuum A ⊂ A, we denote the lifts of A and CA by Â and ĈA. Then we define the set

of spikes of A as

SA := {[ Â \ ĈA]x | x ∈ Â \ ĈA}

and say that A has an infinite spike if there exists S ∈ SA with width(S) = ∞. Further we

let WSA
:= sup{width(S) | S ∈ SA}. We start with a general observation.

LEMMA 6.2. If A is a thin annular continuum and S is a spike of A with width(S) < ∞,

then S ∩ ĈA 6= ∅.

Proof. As in the previous proof, we consider the closed-disc-compactification D of R2

and the closure C of ĈA in D. Then [41, Theorem 2.16] implies that S intersects C , and

since S is bounded the intersection must be contained in ĈA. �
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G

S0
T(S0)

S

FIGURE 1. Proof of Lemma 6.4: the generator G of CA and the two copies of S0 bound every other spike.

COROLLARY 6.3. Let A be an essential thin annular continuum. If CA is compactly

generated and WSA
< ∞, then A is compactly generated.

Proof. Let G ′ be a generator of CA. For every spike S choose n ∈ Z such that S′ := T n(S)

intersects G ′. Note that this is possible due to Lemma 6.2. Since WSA
< ∞, we have that

G := (G ′ ∪
⋃

S∈SA
S′) is a compact generator of A. �

Our next aim is to show that if CA is compactly generated, then WSA
= ∞ implies the

existence of an infinite spike.

LEMMA 6.4. Let A be a thin annular continuum such that CA is compactly generated and

WSA
= ∞. Then there exists an infinite spike S ∈ SA.

We note that when CA has no compact generator, then WSA
may be infinite even if all

spikes are bounded. An example can be produced by attaching longer and longer spikes to

the pseudocircle constructed by Bing [29].

Proof. We assume that the supremum WSA
is obtained by spikes in U−(ĈA), the other

case is symmetric. Suppose for a contradiction that width(S) < ∞ for every S ∈ SA. Let

x0 ∈ Â \ U+(C Â) = ( Â ∩ U−(ĈA)) ∪ ĈA such that

π2(x0) = min

{
π2(x)

∣∣∣∣ x ∈
⋃

S∈SA

S ∩ U
−(ĈA)

}
.

By changing coordinates if necessary, we can ensure that the map π2 on A reaches its

minimum outside of C Â. Hence, we may assume x0 /∈ C Â.

Let γx0
(t) = x0 + t · (1, 0) and S0 ∈ SA such that x0 ∈ S0. Then due to Lemma 6.2 and

the fact that CA has a compact generator, we can consider a compact generator G of CA

that verifies G ∩ S0 6= ∅ and G ∩ T (S0) 6= ∅ (see Figure 1).

Due to the definition of x0, we have that given any spike S ⊂ U−(ĈA) different from S0

the inclusion

S ⊂

(
U+(γx0

(R)) ∩ U
−

(⋃

n∈Z

T n(G)

))∖ ⋃

n∈Z

T n(S0)

holds. Therefore, width(S) < 2 · width(S0) + width(G). This contradicts WSA
= ∞. �
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Altogether, we have now obtained the following basic classification concerning the

existence of generators for essential thin annular and their circloids.

PROPOSITION 6.5. Let A ⊂ A be an essential thin annular continuum. Then:

(i) if A is not compactly generated, then either

(a) CA is not compactly generated or

(b) CA is compactly generated and A contains an infinite spike;

(ii) if A compactly generated, then so is CA.

Note that Proposition 6.5 does not rule out the coexistence of an infinite spike and a

compact generator. In fact, this may happen, and a way to construct such examples is the

following. Let I = [0, 1] × {0} and J = {0} × [0, 1]. We consider K = J ∪ I ∪ T (J ). Fix

x0 ∈ J \ I and x1 = T (x0) and let γ : R+ = [0, +∞) → {(x, y) ∈ R2 | 0 < x < 1, y > 0}

be an injective curve that verifies

(i) γ ([n, +∞)) ⊂ B1/n(K ) for every n ∈ N;

(ii) limi γ (ti ) = x0, lim j γ (t j ) = x1 for two strictly increasing sequences of positive

integers (ti )i∈N, (t j ) j∈N.

Now let A = π( Ã) where Ã :=
⋃

n∈Z T n(K ∪ γ (R+)). It is easy to see that A is a

thin essential annular continuum. Furthermore, the set G = K ∪ γ (R+) is compact and

connected, and hence a generator of A. Finally the set S := Ã \ (R × {0}) is connected

since S =
⋃

n∈Z T n((J ∪ T (J ) \ I ) ∪ γ (R+)). Hence, A has compact generator G and

at the same time contains the infinite spike S. What is not clear to us is whether similar

examples can be produced with an infinite spike that is not T -invariant.

Question 6.6. Suppose that A is a thin annular continuum which contains an infinite spike

S with T n(S) ∩ S = ∅ for all n ∈ N. Does this imply that A has no compact generator?

As an example in the class of continua given in (i)(a), we have the Birkhoff attractor.

This is an essential thin circloid which has a segment as a rotation set for some map that

leaves it invariant (see e.g. [28]). Hence, due to Corollary 5.4 the Birkhoff attractor cannot

have a compact generator. For the class given in (i)(b) we can consider the continuum

given by A = π(R × {0} ∪ {(x, 1/x) ∈ R2 | x ≥ 1}), which contains the infinite spike S =

{(x, 1/x) ∈ R2 | x ≥ 1}. Again, annular continua of this type can occur as invariant sets

with non-unique rotation number for annular homeomorphisms. Examples, which are

basically due to Walker [32], will be discussed in the next section.

Finally, as mentioned in Remark 1.1(c), we close with a result on the topology of

essential annular continua in foliations given by a semiconjugacy.

PROPOSITION 6.7. In the situation of Theorem 1.1, the following are equivalent.

(i) There exists a set Ω ⊆ T1 of positive Lebesgue measure such that for all ξ ∈ Ω the

fibre Aξ = h−1(ξ) is compactly generated.

(ii) There exists a set Ω ⊆ T1 of positive Lebesgue measure such that for all ξ ∈ Ω the

fibre Aξ is thin and the circloid Cξ it contains is compactly generated.

The significance of this statement lies in the fact that it demonstrates that there is at

least one mechanism, compactly generated circloids with infinite spikes attached, which



Torus homeomorphisms semiconjugate to irrational rotations 2133

can lead to the non-uniqueness of the rotation vector in the invariant case, but not in the

case of a semiconjugacy to an irrational rotation.

Proof of Proposition 6.7. By Proposition 6.5, if Aξ is compactly generated on a set of

positive measure, then so is Cξ . Conversely, suppose the circloids Cξ are compactly

generated for all ξ ∈ Ω , where Ω ⊆ T1 has positive measure. For all ξ ∈ Ω , let Gξ be

a compact generator of Cξ with diam(Gξ ) = τ(Cξ ). Further, let τ be as in (5.2). Using

Lemma 6.1, it can be shown in exactly the same way as in Corollary 5.9 that the mapping

ξ 7→ τ(Cξ ) has a measurable majorant η. Using this, we define

Ωn = {ξ ∈ T1 | η(ξ) ≤ n}.

Then Ω ′ =
⋃

n∈N Ωn has the same measure as Ω .

Fix any n ∈ N and any Lebesgue density point in Ωn . Then there exist sequences

ξ−
n and ξ+

n such that ξ ∈ (ξ−
n , ξ+

n ) for all n ∈ N and limn→∞ d(ξ−
n , ξ+

n ) = 0. Exactly

as in the proof of Lemma 5.8, we have that G̃± = limH
n→∞ Gξ±

n
is a compact generator

of A±
ξ , where we go over to subsequences if necessary in order to force convergence.

Consequently G̃ξ = G̃−
ξ ∪ G̃+

ξ is a compact generator of Aξ . Since Lebesgue density

points have full measure in Ωn and limn→∞ LebT1(Ωn) = LebT1(Ω), this proves the

statement. �

7. Rotation intervals for thin annular continua: construction of examples

Our final objective is to construct examples of invariant thin essential annular continua

which have compactly generated circloid, at least one infinite spike and a non-trivial

rotation interval. As mentioned before, our construction is similar to that of Walker [32].

It leads to the following statement.

PROPOSITION 7.1. Given any segment I ⊂ R, there exists a map f ∈ Homeo(A) which

leaves invariant an essential thin annular continuum A ⊂ A such that CA has compact

generator, A has an infinite spike, and ρA( f ) = I .

Proof. Let D ⊂ Diffeo+(T1) be the set of lifts G : R → R of orientation-preserving circle

diffeomorphisms g with a totally disconnected non-wandering set Ω(g). Note that this

means g either has rational rotation number and a totally disconnected set of periodic

points, or g is a Denjoy example (with irrational rotation number).

Our aim is to construct a family of examples of homeomorphisms fG,α of A,

parametrized by G ∈ D and α ∈ R, such that:

(i) fG,α leaves invariant some annular continuum AG,α with compactly generated

circloid and at least one infinite spike; and

(ii) ρAG,α
(F) = conv({α, ρ(G)}), where conv(X) denotes the convex hull of X , and

ρ(G) is the rotation number of G.

This will prove Proposition 7.1.

For any t ∈ [0, ∞), let Rt = R × {t} and define i : (0, +∞) → R by i(x) = 1/x .

Further, let L = {L p}p∈R be the C∞-foliation of R × (0, +∞) whose leaves are given

by

L p = graph(i) + (p − 1, 0)
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for every p ∈ R, where graph(i) = {(x, i(x)) | x > 0}. Hence, all leaves are horizontal

translates of each other, and L p is the leaf passing through the point (p, 1), see Figure 2.

Let

p(x, y) = x −
1

y
+ 1

and note that thus (x, y) ∈ L p(x,y) for all (x, y) ∈ R × (0, ∞).

Now, consider

F1 : R × (0, ∞) → R × (0, ∞), (x, y) 7→ (x + v(x, y), y),

where

v(x, y) = G(p(x, y)) − p(x, y).

Note that p(F1(x, y)) = x + v(x, y) + 1 − 1/y = p(x, y) + v(x, y) = G(p(x, y)), such

that F1(L p) = LG(p). Hence, the map F1 permutes the leaves of the foliation L according

to the dynamics given by G, while leaving the second coordinate invariant. In particular,

this means that F1 preserves the set

T :=
⋃

p∈π−1(Ω(g))

L p.

Further, F1 is a C1 diffeomorphism since p is C∞ and G is C1.

Given (x, y) ∈ R × (0, ∞), let X (x, y) be the vector which is tangent to L p(x,y) in

the point (x, y) and which is scaled such that its first coordinate is α − v(F−1
1 (x, y)) =

α − p(x, y) + G−1(p(x, y)). In explicit form, we have

X (x, y) = (α − v(F−1
1 (x, y)), t (x, y)),

where

t (x, y) = −
α − v(F−1

1 (x, y))

(x − p(x, y) + 1)2
.

Then X defines a C1-vector field on R × (0, ∞).

Choose an increasing C1-function η : (0, ∞) → [0, ∞) such that η(y) = 0 for y ≥ 2/3

and η(y) = 1 if 0 ≤ y ≤ 1/3 and let X̃(x, y) = η(y)X (x, y). Then again X̃ is a C1-vector

field, which induces a flow Φ X̃ on R × (0, ∞). We denote the time-one-map of this flow

by F2 and define FG,α : R2 → R2 by

FG,α =

{
F2 ◦ F1(x, y) if y > 0,

(x + α, y) if y ≤ 0.

See Figure 2 for a geometric intuition. By periodicity of the construction in the

x-direction, FG,α induces a map fG,α on A, and we claim that this has the properties

stated above. In order to see this, note that F1 preserves the horizontal lines Rt , t > 0, and

since η(y) = 0 if y ≥ 2/3 this implies that FG,α preserves all of the horizontal lines above

R2/3. Further, the flow Φ X̃ preserves the foliation L, even leaf by leaf, since by definition

it is a flow along the leaves of this foliation. Therefore, FG,α preserves the horizontal strip

continuum (R0 ∪ T ) ∩ (R × [0, 1]), which projects to an annular continuum AG,α with

the properties stated above.
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FIGURE 2. Two-step construction of the map FG,α . The flow Φ X̃ used in order to define F2 moves points along

the leaves of the foliation L. Owing to the geometry of L, orbits close to R0 remain near R0 for a long time and

move with constant speed α − (π1 ◦ F1(x, y) − x) in the x-direction, such that π1 ◦ FG,α(x, y) − x = α.

Moreover, FG,α is bijective and a homeomorphism when restricted to either the

open upper half-plane or the closed lower half-plane. In order to show that it is a

homeomorphism of R2, it only remains to check the continuity of FG,α on the line R0.

However, due to the geometry of the foliation L and the definition of the vector field

X̃ , which coincides with X in R × [0, 1/3], points which are close to R0 get mapped

to points close to R0 again. The reason is that orbits of Φ X̃ starting close to R0 travel

with bounded speed along the leaves of the foliation L, which are almost horizontal near

R0. Furthermore, if these orbits start sufficiently close to R0, then they will remain in the

region R × [0, 1/3] until time 1. Since the first coordinate of the vector field is equal to

α − v(F−1
1 (x, y)), which is constant along the leaves of the foliation as it only depends on

p(x, y), we obtain that π1(F2(x, y)) − x = α − v(F−1
1 (x, y) for sufficiently small y > 0

and all x ∈ R. However, this means that π1(FG,α(x, y)) − x = α. Altogether, this shows

the continuity of FG,α on R0.

Finally, we need to check that ρ(FG,α) = conv(α, G(α)). By going over to the inverses

if necessary, we may assume without loss of generality that ρ(G) > α. In this case, the line

R0 is a repeller, since in order to make up for the difference α − ρ(G) < 0 of the rotation

numbers, orbits close to R0 have to move to the left, and hence upwards, until they leave

the region R × [0, 1/3].

Consequently, all forward orbits starting strictly above R0 will remain bounded away

from R0. This means, however, that the part of the horizontal displacement π1 ◦

Fn
G,α(x, y) − x which comes from the movement along the leaves is bounded independent

of n. Hence, the asymptotic speed of these orbits is determined by the permutation of

the leaves by F1, which implies that they have rotation number ρ(G). Hence, all rotation

vectors are either ρ(G) or α, and since the endpoints of the rotation interval are always

realized by pointwise rotation vectors, we obtain ρAG,α
(FG,α) = [α, ρ(G)]. �
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