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Abstract. Here, we investigate different cell density-dependent migration strategies. In partic-
ular, we consider strategies which differ in the precise regulation of transitions between resting
and motile phenotypes. We develop a lattice-gas cellular automaton (LGCA) model for each
migration strategy. Using a mean-field approximation we quantify the corresponding spreading
dynamics at the cell population level. Our results allow for the prediction of cell population
spreading based on experimentally accessible single cell migration parameters.

Keywords and phrases: cell migration strategies, non-linear diffusion, lattice-gas cellular
automaton, mean-field approximation, spreading dynamics

Mathematics Subject Classification: 12A34, 56B78

1. Introduction

Cell migration is fundamental to tissue formation and regeneration, wound-healing as well as pathological
processes such as cancer invasion. An important aspect of the afore-mentioned processes is the emergence
of collectively moving cell populations. Different cell migration strategies allow for adaptation to microen-
vironmental conditions and influence the behavior of the moving cell population. In this manuscript, we
compare the impact of different cell migration strategies on the cell population spreading dynamics.

A cell migration strategy can be viewed as the way a cell adapts its migration mode/phenotype to
microenvironmental determinants. This corresponds to a special realization of phenotypic plasticity [10].
Cell migration modes have been originally classified based on the morphology of migration patterns. This
terminology was then extended to include molecular parameters, such as cytoskeletal organization, the
type of cell-matrix interaction and force generation, and the modification of the tissue structure imposed
by migrating cells [7, 8, 12, 19].

In this article, we investigate two cell migration strategies which differ in the precise local cell density
dependence. In particular, we consider strategies where increasing local cell density down-regulates or
up-regulates cell motility. Our aim is to compare the impact of the two cell migration strategies on the
population spreading dynamics. We develop a lattice-gas cellular automaton (LGCA) that has proven
useful in the modelling and analysis of interacting and migrating cell populations [5, 11]. Upscaling
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techniques such as mean-field approximations allow for the derivation of cell population level descriptions
[3]. Here, we derive such macroscopic equations and calculate the time evolution of the mean square
displacement (MSD) and cell density profiles to assess the spreading dynamics induced by each migration
strategy. Then, we compare these approximations with corresponding LGCA simulations. Finally, we
discuss the biological implications of our results.

2. Lattice-gas cellular automaton model

Our LGCA is defined on a two-dimensional square lattice L ⊂ Z
2. To every lattice node r ∈ L, velocity

channels (r, ci), i = 1, . . . , b, are associated. The parameter b defines the number of nearest neighbors on
the lattice. Here, we choose b = 4 and ci ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}. In addition, a fixed number of
rest channels, (r, ci), i = b+1, . . . ,K, with ci = {(0, 0)} is introduced. The LGCA imposes an exclusion
principle on channel occupation, i.e. at any time at most one cell is allowed in each channel at every lattice
node. Thus K defines the maximal capacity of cells per node. We model explicitly two cell phenotypes,
denoted by σ ∈ {m, r}: moving (m) and resting (r) cells. The occupation numbers at time k, ηi(r, k),
i = 1, . . . ,K, are random Boolean variables that indicate the presence (ηi = 1) or absence (ηi = 0) of a
cell in the channel (r, ci). The total number of cells at a node r and time k is defined by

n(r, k) = nm(r, k) + nr(r, k) =

b∑

i=1

ηi(r, k) +

K∑

i=b+1

ηi(r, k),

where nm(r, k) and nr(r, k) are the number of moving and resting cells at a node r at time k, respectively.

2.1. LGCA dynamics

The dynamics of our LGCA arise from the repeated application of three operators: propagation (P),
reorientation (O) and switch (S).

The propagation and reorientation operators define cell movement, whereas the switch operator changes
the phenotype of a cell. The composition S ◦ O ◦ P of the three operators is applied independently at
every node r of the lattice and at each time k to evaluate the configuration at time k + 1, see Fig. 1.
The precise update rules are described below. Since we assume that individual cells decide to switch
independently from each other, the corresponding transition probabilities for the cell number per node
follow a binomial distribution.

The phenotypic switching depends on the local cell density ̺ = n/K ∈ [0, 1]. Phenotypes are changed
with probabilities rs(̺) ∈ [0, 1] and 1 − rs(̺) that denote the probabilities of a moving cell to become
resting and vice versa. We assume that the density dependence of the phenotypic switch is monotonous.
Then, two strategies can be distinguished: (S1) cell motility increases with local cell density and
(S2) cell motility decreases with local cell density.

Moreover, we will distinguish two kind of dependencies for each strategy: linear and non-linear with
respect to local cell density rs(̺) ∈ [0, 1]. The simplest phenotypic switch function is the linear density
dependence:

rs(̺) = A+B̺, (2.1)

where A,B ∈ R with (A+B) ∈ [0, 1]. The non-linear switch involves a sigmoidal dependence on density,
which has been already introduced in [2, 14, 18]:

rs(̺) =
αmin + αmax

2
+

αmax − αmin

2
tanh(κ(̺− θ)), (2.2)

where κ ∈ R denotes the steepness of the switch function and θ ∈ (0, 1) the critical cell density value
at which the probabilities to switch from resting to moving and vice versa are equal. The parameters
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(a) (b)
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Figure 1. LGCA dynamics: CA model dynamics arise from repeated application of cell reactions
(phenotypic switching) and cell migration. (1a) Left. Local state space at a given node is divided into
rest channels and velocity channels. The cells in the rest channels, marked in green, are of resting
phenotype. The cells in the velocity channels, marked in orange, have the migratory phenotype. White
channels denote absence of cells. Right. Schematic illustration of model reactions. (1b) Example of cell
propagation in the LGCA model. Cells in the velocity channels before and after a propagation step;
orange arrows denote the presence of a cell in the respective velocity channel.
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Figure 2. Cell migration strategies: Schematic illustration of the phenotypic switch function rs which
depends on the local cell density ̺, see equation (2.2). The function rs represents the probability that
a cell is of resting phenotype and does not move. The parameter κ specifies the intensity of the switch
density dependence. The case κ > 0 represents the (S2) strategy regulation and the κ < 0 is related to
strategy (S1).

αmin, αmax ∈ [0, 1], where αmin < αmax, denote the upper and lower bound of the switching probability.
An illustration of (2.2) is shown in Figure 2.

In the LGCA simulation, we have implemented the following switching rules:
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(1) Define M1 = min(nm, (K − b) − nr) which is the potential number of cells that can switch from
the moving to the resting phenotype, taking into account the effect of local volume exclusion. The
transition probability that there are j1 successful events “moving→resting” is modeled by

WS
mr((nm, nr)|(nm − j1, nr + j1)) =

{(
M1

j1

)
rs(̺)

j1(1− rs(̺))
M1−j1 if 0 ≤ j1 ≤ M1,

0 else.
(2.3)

(2) Define M2 = min(nr, b− nm) which is the potential number of cells that can switch from the moving
to the resting phenotype, taking into account the effect of local volume exclusion. The transition
probability that there are j2 successful events “resting→moving” is given by

WS
rm((nm, nr)|(nm + j2, nr − j2)) =

{(
M2

j2

)
(1− rs(̺))

j2rs(̺)
M2−j2 if 0 ≤ j2 ≤ M2,

0 else.
(2.4)

Finally, the difference between successful switches “moving→resting” and “resting→moving” is used to
update the number of moving and resting cells so that (nm, nr) → (nm−(j1−j2), nr+(j1−j2)) = (n′

m, n′
r).

Note that the switching process does not change the total number of cells but the ratio of moving and
resting cells.

Subsequent to the switch operator, a reorientation step takes place where cells are randomly redis-
tributed to the channels, providing a new local cell configuration at each node. In our model, only the
cells of migratory phenotype move. Therefore, moving cells are distributed to the velocity channels, while
resting cells are distributed to the resting channels, resulting in a configuration ηS◦O(r).

The final update step is the application of a propagation operator. Cells in the velocity channels, i.e.
moving cells, are transported one lattice unit in directions determined by their velocities. The movement
of cells in the propagation step is purely deterministic. The spatio-temporal automaton dynamics is
therefore completely described by the mircodynamical equation

ηi(r+ ci, k + 1)− ηi(r, k) = ηS◦O
i (r, k)− ηi(r, k) ∈ {−1, 0, 1}, r ∈ L, i = 1, . . . ,K, k = 0, 1, . . . , (2.5)

where the change in the occupation numbers is −1 if a channel looses a cell, 0 if nothing is changed and
1 if a channel gains a cell, respectively.

2.2. Scaling of the LGCA

We have chosen a non-dimensional scaling with unit lattice spacing and unit time scale k ∈ N in our
LGCA simulation. Thus, cells residing at velocity channels move one lattice unit per unit time step. Our
dimensionless simulations can easily be rescaled such that the temporal and spatial scales fit to specific
applications. In our case, cell switching probabilities are related to the real dimensional mean time Tm(̺)
of a cell to stay in moving state and the mean time Tr(̺) to stay in resting state, respectively, by

rs(̺) =
τ

Tm(̺)
, 1− rs(̺) =

τ

Tr(̺)
, (2.6)

where τ is a sufficient small real dimensional time step length.

Besides scaling the LGCA time intervals, also the lattice spacing can be adjusted. If the lattice spacing
is ǫ, the mean square displacement of a cell per time step τ in the LGCA is proportional to ǫ2/τ . Thus,
by scaling x = ǫr ∈ R, the relationship between the LGCA motility and measured movement of cells is
characterised by the diffusion constant D = ǫ2/τ .
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3. Jump process formulation and macroscopic dynamics

In order to analyse the cell population behavior, we derive a mean-field approximation for our LGCA
model that can be analytically investigated. The main idea behind such an approach is to replace the
description of interactions among many cells by a simplified description based on average (or effective)
interactions. This reduces the multicellular nature of the problem into an effective formulation that
can be stated in the form of macroscopic deterministic descriptions such as partial differential equations
(PDE).

3.1. LGCA dynamics described by a jump process

Here, we adopt the convenient assumption that the LGCA dynamics describe a stochastic jump process
which allows for the derivation of a single macroscopic equation. A jump process is a stochastic process
that involves discrete spatial “jumps” at discrete times associated with the corresponding jump proba-
bilities. Typically jump probabilities are stationary and depend on local information, such as local cell
density.

3.1.1. Generalised master equation of a jump process

The general formulation of a jump process is given by the following master equation [13]:

P (r, k + τ) =
[
1− Φ(k)

]
P (r, k) +

∫ k+τ

k

∫

L

φ(k + τ − s)T (r, r′)P (r′, s)dr′ds, (3.1)

where T (r, r′)’s are the corresponding jump probabilities and P (r, k) the probability of finding a cell at
node r. The probability density function φ(k) corresponds to the waiting times of cells, i.e. the time

that they need between two jumps, and Φ(k) =
∫ k+τ

k
φ(s)ds the probability of a cell staying at a specific

node. As it is obvious, the waiting time distribution is related to the phenotypic switch dynamics, since
the operator S dictates the onset of cells’ motility.

The jump probabilities correspond to the random walk dynamics of our LGCA, i.e. it is equiprobable
to jump from node r to an adjacent node r+ ci. Then the jump probabilities read as:

T (r, r+ ci) =
1

b

b∑

i=1

δ(r, r+ ci), (3.2)

where the delta of Kronecker is δ(x, y) = 1 if x = y, else δ(x, y) = 0.
As stated above, the phenotypic switch is associated with the waiting time distribution. The operator

S implies a Markov chain with transition probabilities (2.3) and (2.4). Therefore, the waiting times of
changing an automaton state (nr, nm) are exponentially distributed with probability distribution function

φ(k) = λe−λk and the corresponding cumulative distribution is Φ(k) =
∫ k+τ

k
φ(k + τ − s)ds = 1 − λ.

Therefore, the problem is reduced to calculate the rate λ that denotes the rate of a resting cell becoming
motile related to the transition probability WS

rm (2.4).

3.1.2. Calculation of jump waiting time λ

The dynamics of the switch operator can be described by the following master equation

d

dt
PS(nr, nm) = WSPS(nr, nm), (3.3)

where PS(nr, nm)(r, k) is the probability of finding nr resting cells and nm moving cells at a node r at
time k, within the context of the switch operator S for a time step [k, k+ τ), and WS the corresponding
transition probability matrix. For simplicity the spatiotemporal arguments have been omitted. During
the application of operator S the number of total cells within the node is constant. Then applying the
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formula PS(n = nr + nm) =
∑

nr
PS(nr, n− nr) =

∑

nm
PS(n− nm, nm) to the switch operator master

equation (3.3):
∑

nr

d

dt
PS(nr, n− nr) =

d

dt
PS(n) = 0,

since the operator is mass conserving. The above equation implies that:

∑

nr

WSPS(nr, n− nr) =
∑

nm

WSPS(n− nm, nm), (3.4)

From the left hand side of the (3.4), we can easily calculate the average flux of cells from resting to
moving JS

rm:

JS
rm =

∑

nr

∑

z

WS
rm

(
(nm, nr)|(nr − z, nm + z)

)
PS(nr − z, nm + z)

=
∑

nr

∑

z

WS
rm

(
(nr + z, nm − z)|(nr, nm)

)
PS(nr, nm)

=
∑

nr

∑

z

z

(
M2

z

)
(
1− rs(̺)

)z
rs(̺)

M2−zPS(nr, n− nr)

=
(
1− rs(̺)

)∑

nr

M2P (nr, n− nr). (3.5)

The above relation involves node capacity restriction effects due to the presence of M2 = min(nr, b−nm),
see equation (2.4). By assuming a low density regime ̺ ≪ 1, it is M2 = nr. Therefore, for constant n
the above equation yields

JS
rm =

(
1− rs(̺)

)
〈nr〉,

where 〈·〉 denotes an ensemble average. Similarly, we can elaborate the right hand side of equation (3.5)
and find out that equals to JS

mr = rs(̺)〈n− nr〉. From the equilibrium condition JS
mr = JS

rm we obtain:

〈nr〉
(
1− rs(̺)

)
= 〈n− nr〉rs(̺)

〈nr〉 = rs(̺)〈n〉. (3.6)

Thus, at the mean-field limit of the process, the fluxes of moving and resting cells are JS
rm = (1 −

rs(̺))rs(̺)〈n〉 = JS
mr. Please note, the switch dynamics are equilibrated only for their average behavior,

whereas the whole probability distribution PS(nr, nm) is not necessary at steady state.
From the above discussion, we can easily conclude that the average jump rate is

λ = JS
rm/〈nr〉 = 1− rs(̺),

which is inversely proportional to the average time of a cell staying at a resting state Tr(̺), see (2.6).
Please note, the latter is only possible in the context of low density assumption, since for high densities
capacity effects should be included. After the calculation of the parameter λ, we are now able to explicitly
formulate the jump process master equation:

P (r, k + 1) = rs(̺(r, k))P (r, k) +

b∑

i=1

1− rs(̺(r+ ci, k))

b
P (r+ ci, k). (3.7)

3.2. Mean-field approximation of low density LGCA dynamics

In this Section, we are interested in the average behavior of the system. Therefore, we can average the
jump process master equation (3.7) by applying to both sides the operation

∑

n n, since the local cell
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density is defined as ρ(r, k) =
〈
̺(r, k)

〉
= K−1

∑

n nP (r, k), and obtain:

ρ(r, k + 1) =
〈
rs(̺(r, k))

〉
ρ(r, k) +

b∑

i=1

1−
〈
rs(̺(r, k))

〉

b
ρ(r+ ci, k). (3.8)

Due do the mean-field assumption, we obtain
〈
rs(̺(r, k))

〉
≈ rs(ρ(r, k)). In combination with the low

density assumption (see previous Section), we approximate rs(ρ) for small cell densities as rs(ρ) =
rs(0) + r′s(0)ρ+O(ρ2) = A+Bρ+O(ρ2) and equation (3.8) becomes

ρ(r, k + 1) = Aρ(r, k) +Bρ2(r, k) +
1

b

b∑

i=1

(1−A)ρ(r+ ci, k)−Bρ2(r+ ci, k). (3.9)

To convert (3.9) into a continuous macroscopic PDE, we identify the average density ρ(r, k) by its
continuous counterpart ρ(x, t), where x = rǫ ∈ R and t = kτ ∈ R+, with ǫ, τ ∈ R+, which gives

ρ(x, t+ 1) = Aρ(x, t) +Bρ2(x, t) +
1

b

b∑

i=1

(1−A)ρ(x+ ǫci, t)−Bρ2(x+ ǫci, t). (3.10)

Expanding all terms in (3.10) in a truncated Taylor series in powers of ǫ and τ up to second order gives

ρ+ τ∂tρ+
τ2

2
∂ttρ = Aρ+Bρ2 +

1−A

b

b∑

i=1

(

ρ+ ǫJ(x)ci +
ǫ2

2
cTi H(x)ci

)

(3.11)

−
B

b

b∑

i=1

(
ρ2 + 2ǫρJ(x)ci + ǫ2(J(x)ci)

TJ(x)ci + ǫ2ρcTi H(x)ci
)

where J is the Jacobian matrix and H the Hessian matrix. For the sake of clarity, we have droped the
temporal t and the spatial argument x. To proceed, we consider the diffusive limit, i.e. ǫ → 0, τ → 0
and lim

ǫ,τ→0

ǫ2

τ
= const := D. This gives

∂tρ =
1−A

b

D

2

b∑

i=1

cTi H(x)ci −
B

b
D

b∑

i=1

(J(x)ci)
TJ(x)ci −

B

b
Dρ

b∑

i=1

cTi H(x)ci. (3.12)

Taking into account the channel’s symmetry it is

∂tρ =
1−A

b
D∇2ρ−BD(∇ρ)2 −BDρ∇2ρ = D

(
1−A

2
−Bρ

)

︸ ︷︷ ︸

=:D(ρ)

∇2ρ+D (−B)
︸ ︷︷ ︸

=D′(ρ)

(∇ρ)2 (3.13)

Finally, the jump process of our LGCA can be approximated by a degenerate diffusion equation

∂tρ = D∇(D(ρ)∇ρ) . (3.14)

The resulting non-linear diffusion coefficient D(ρ) = 1−A
2 −Bρ fulfils our intuition since (i) if B = 0 then

we expect a constant coefficient, and (ii) for A = 0 the expected diffusion coefficient in one dimension is
1/2. Moreover, for A > 0 and B = 0 the rs(ρ) = A > 0 indicates a tendency of cells to rest and therefore
implies a reduced diffusion coefficient (1−A)/2 < 1/2. In the following, we test the validity of our PDEs
and we showcase their resulting behavior.
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3.3. Comparison of the PDE approximation and the LGCA dynamics

In this Section, we compare the derived PDE approximation (3.14) with the LGCA simulations. Let us
consider a square lattice (rx, ry) ∈ L = Lx × Ly with periodic boundary condition on the Ly-axis, that
is n(rx, ry = 0, k) = n(rx, ry = Ly, k) for all rx ∈ [0, Lx], k ∈ N, and open boundary conditions on the
Lx-axis. The initial condition of the simulations is a thin stripe of cells located along the center line
column rx = Lx

2 . A typical simulation lasts for 1000 time steps. In order to study cell motility, we reduce
the two-dimensional system to one dimension by averaging the concentration profile along the Ly-axis
that is ˜̺(rx, k) := 1

|Ly|

∑

ry∈|Ly|
̺(k). The observable that characterizes the motility rate of cells is the

mean square displacement (MSD)

〈r2x(k)〉 =
∑

rx∈Lx

(

rx −
Lx

2

)2

˜̺(rx, k).

The above simulation set up reduces the problem of calculating the MSD to one dimension (please
see Appendix). Then, by means of our resulting mean-field approximation (3.14), we can calculate the
corresponding time evolution of MSD in one dimension as:

d

dt
〈x2(t)〉 =

∫

R

x2∂tρdx = D

∫

R

x2∂x(D(ρ)∂xρ) dx. (3.15)

Using integration by parts and assuming appropriate boundary conditions, i.e. ∂tρ(x, t)
∣
∣
∣
±∞

=

ρ(x, t)
∣
∣
∣
±∞

= 0, ∀t ∈ R+, we finally obtain for phenotypic switches in the form of rs(ρ) = A + Bρ

the following equation:

d

dt
〈x2(t)〉 = D′(0)

∫

R

ρ2(x, t)dx+D(0)

∫

R

ρ(x, t)dx, (3.16)

with D(0) = D(1 − A) = 2DD(0), D′(0) = DD′(0) = −DB. It is evident in the absence of density
dependence in the phenotypic switch function, B = 0 , the MSD reduces to the classical relationship:

〈x2(t)〉 = D(0)t, (3.17)

for initial conditions 〈x2(0)〉 = 0 and for normalised cell density
∫

R
ρ(x, t)dx = 1. However, the existence

of density dependence can potentially change the MSD time evolution since the integral term in equation
(3.16) may converge to zero for growing time or stay persistently different than zero. Since analytical
treatment of the one dimensional equation (3.16) is non-trivial, we solve it numerically1. In particular,
we use periodic boundary conditions in the y-axis combined with a sufficiently large domain to avoid
boundary effects and define an initial cell density corresponding to the initial condition used in the
LGCA.

We simulate the LGCA and approximated PDE model for two selected examples, the linear phenotypic
switch function (2.1) and the sigmoidal shaped switch function (2.2). According to the mean-field deriva-
tion, our PDE approximation is only valid for small cell densities values in order to avoid node capacity
effects. From equation (3.9), we can easily observe that the term Bρ2(x, t) for large B introduces errors
in the corresponding mean-field approximation, since we have assumed that the local fluctuations are
zero, i.e. 〈̺2(x, t)〉 ≈ 〈̺(x, t)〉2 = ρ2(x, t). Therefore, we expect for B ≪ 1 a good agreement of equation
(3.14) solution with the actual LGCA dynamics for long enough times. In particular, for early simulation
times, when all cells are around a point, the deviation between LGCA and the corresponding PDE is
enhanced. In the long run, cell spreading improves the performance of our mean-field approximation,
since ρ(x, t) → 0. Moreover, B increases the impact of the integral term in equation (3.16), that is more
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Figure 3. Comparison of PDE approximation and LGCA simulation for linear phenotypic
switch function: The phenotypic switch function is given by rs(ρ) = A + Bρ. Figure (3a) and (3b)
correspond to strategy (S1) with phenotypic switch parameters A = 0.1, B = 0.1 and A = 0.1, B =
0.5, respectively. Figure (3c) and (3d) correspond to strategy (S2) with phenotypic switch parameters
A = 0.9, B = −0.1, and A = 0.9, B = −0.5, respectively. LGCA simulations are performed for
1000 iteration steps and average over 100 simulation runs. The PDE is scaled by ǫ = 10−1 resulting
into (x, t) = (10−1r, 10−2k) and with diffusion coefficient D = 1. The initial cell density is given by
˜̺(rx, 0) = ρ(x, 0) = 0.25 for rx = x = 0. Each Figure shows the comparison of the time evolution of the
mean square displacement and the cell density profile of the LGCA and the PDE after 1000 iteration
steps (inlet).

prominent in early times of the simulation. However, we are more interested in the long-term behavior
of the MSD.

For the case where the phenotypic switch depends linearly on local density and for B ≪ 1 the mean-
field MSD 〈x2(t)〉 agrees well with the one calculated directly from LGCA simulations 〈r2x(k)〉 (see Figure
3(a) and 3(c)). In particular, due to the fast spreading the integral term of equation (3.16) becomes
insignificant and the MSD is dominated by the linear term D(0)t. For the linearly increasing switch

1We solve the degenerate diffusion equation (3.14) numerically in one dimension using the open source package XMDS
(code available from http://www.xmds.org ) [4].
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(B > 0) increasing B implies a deviation of the two MSD estimations mainly due to the impact of local
fluctuations (Figure 3(b)). In particular, due to the fast spreading the integral term of equation (3.16)
becomes insignificant and the MSD is dominated by the linear term D(0)t. On the other hand, in the
linearly decreasing phenotypic switch (B < 0), large B introduces errors to the analytic approximation
when compared to the automaton MSD. Moreover, the time evolution of the analytic MSD is initially
strongly non-linear since the impact of the integral term in equation (3.16) is dominant (Figure 3(d)).

For the case where the phenotypic switch sigmoidally depends on local density, a low-density linearised
version rs(ρ) = rs(0) + r′s(0)ρ + O(ρ2) is used for the continuous estimation of MSD (3.16). Of course,
the corresponding automaton MSD calculation involves the full sigmoidal switch function. The resulting
continuous MSD strongly relies on the value of

B = r′s(0) =
αmax − αmin

2
κ
[
1− tanh2(−κθ)

]
,

which obviously depends on the value of the parameters κ and θ. In our examples, we have used κ = ±8
which implies steep sigmoidal switches and significantly differs from the linear switch. Again for B ≪ 1,
e.g. for the high θ value, we observe again an excellent agreement of the MSDs calculated from the LGCA
and the corresponding PDE (see Figure 4(a) and 4(c)). As stated before, for large B we observe again
a small deviation of the analytically calculated MSDs with the corresponding LGCA ones. Interestingly,
for very small θ the integral term becomes dominating and the sign of B, that follows the sign of κ,
introduces a negative correlation of the linear contribution D(0)t with the full MSD evolution (see Figure
4(b), 4(d)).

4. Discussion

In this article, we developed a lattice-gas cellular automaton model to compare density-dependent cell
migration strategies. In the model, we distinguish two cell phenotypes, migratory and resting, and we
assume that cells change their phenotype depending on the local cell density. We study two opposing
strategies, (S1) cell motility increases with local cell density and (S2) cell motility decreases with local
cell density. In addition, we assume for both strategies linear and sigmoidal dependencies on the local
cell density. The model facilitates the derivation of a macroscopic cell population description. We derive
analytic formulations for the two migration strategies which correspond to non-linear degenerate diffusion
equations. Subsequently, we compare the time evolution of the population spreading behavior for the
two migration strategies. Finally, we show that the mean-field PDE is a good approximation for specific
parameter regimes when compared to LGCA simulations with respect to the resulting mean square
displacement.

Our mathematical model considers local cell density as mediator of cell migration regulation. Cell
density is known to be correlated with nutrient gradients, secreted factors, as well as oxygen or toxic
metabolites [9,10,17,20]. The dependence of cell migration on local cell density implies adaptation to the
current microenvironmental conditions, here mediated by the cell density. So far only a few experimental
studies have attempted to quantify the role of cell density as a cell migration regulator, e.g. [15]. We
believe that a more precise quantification of cell density effects on migration is crucial for a better
distinction of cellular and non-cellular influences on the precise regulation of cell migration strategies.

Our model allows to study the impact of micro-environmental heterogeneity. The probabilistic switch
between moving and resting phenotypes indirectly models other micro-environmental factors than local
cell density that impact cell motility. In particular, the limit values of the phenotypic switch function can
be associated with the uncertainty in a cell’s decision, over a resting or a motile state, for the different local
density values. In other words, if minρ{rs(ρ)} = 0 and maxρ{rs(ρ)} = 1 then the cell deterministically
decides to move or to rest according to local cell density. However, relaxing these limiting values a
“noise” in the cell motility regulation is introduced, interpreted as the effective impact of other micro-
environmental factors, such as extracellular matrix components. Finally, a spatial distribution of these
limiting values of the switching function may account for a measure of micro-environmental heterogeneity
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Figure 4. Comparison of PDE approximation and LGCA simulation for sigmoidal phenotypic
switch function: The phenotypic switch function is given by rs(̺) =

αmin+αmax

2 + αmax−αmin

2 tanh(κ(̺−
θ)). Parameters are αmin = 0, αmax = 0.6, K = 8. Figure (4a) and (4b) correspond to strategy (S1)
with , θ = 3

8 , κ = 8 and θ = 1
16 , κ = 8, respectively. Figure (4c) and (4d) correspond to strategy

(S2) with , θ = 3
8 , κ = −8 and θ = 1

16 , κ = −8, respectively. LGCA simulations are performed for

1000 iteration steps and average over 100 simulation runs.The PDE is scaled by ǫ = 10−1 resulting
into (x, t) = (10−1r, 10−2k) and with diffusion coefficient D = 1. The initial cell density is given by
˜̺(rx, 0) = ρ(x, 0) = 0.25 for rx = x = 0. Each Figure shows the comparison of the time evoultion of the
mean square displacement and the cell density profile of the LGCA and the PDE after 1000 iteration
steps (inlet).

impacting cell migration regulation. In the future, we are planning to precisely quantify heterogeneity
with respect to different micro-environmental parameters.

One possible biological application of our model may be the investigation of the transition between
mesenchymal and epithelial cells [1, 19]. The mesenchymal migration mode is characterised by high cell
motility, proteolytic degradation of extracellular matrix, lack of cell polarity and down-regulation of cell-
cell adhesion. On the other hand, epithelial cells are immotile, connected by strong adhesion bonds and
exhibit regular shapes. Epithelial and mesenchymal phenotypes can be interpreted as two migration
modes, resting and motile, respectively. In recent experimental studies [15], it has been demonstrated
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that in the case of MET increasing local cell density mediates the inhibition of cell migration. On the
other hand, there is experimental evidence that relates the epithelial-mesenchymal transition (EMT) to
cell density modulations [6,16]. Translated into our model, the mesenchymal-epithelial transition (MET)
corresponds to strategy (S1), whereas the epithelial-mesenchymal transition (EMT) could be related to
strategy (S2). However, further research is required to establish this association, since we lack enough
biological evidences specially for the EMT case.

A. Equivalence of 2D cylindric and 1D cartesian diffusion equation.

It is important to show that the simulation setting, described in Section 3, reduces the dimension of the
system but it does not influence the qualitative behavior of the LGCA. In the following, we show that the
diffusion coefficient is identical both in free boundary 2D simulations and in simulations with periodic
B.C. on the Ly−axis.

The evolution of a system on a lattice with periodic B.C. on the Ly-axis can be seen as an evolution on
a cylindrical surface with open B.C., resembling the ”evolution on a tube”. Therefore, the macroscopic
dynamics of the system can be realized by the diffusion equation in cylindrical coordinates. In particular,
a classical diffusion equation in cylindrical coordinates (x, y, z) = (r cos θ, r sin θ, z) yields

∂

∂t
ρ(r, θ, z, t) = D

[1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
+

∂2

∂z2

]

ρ(r, θ, z, t), (4.1)

with boundary conditions ρ(r, θ = 0, z, t) = ρ(r, θ = 2π, z, t) and ∂θρ(0) = ∂θρ(2π). Moreover, the
variable radial coordinate is fixed as r = r0 = |Ly|/2π. Thus, eq. (5.1) simplifies to

ρt = Dρzz +
4π2D

|Ly|2
ρθθ, (4.2)

In order to reduce the system dimension to 1D, we integrate along the angular coordinate θ and the
quantity of interest is the normalized averaged cell density along the Ly-axis

ρ̃ =
1

2π

∫ 2π

0

ρ
|Ly|

2π
dθ.

We derive the evolution equation for ρ̃ by integrating eq. (5.2) over θ, previously multiplied by |L2|/4π
2

ρ̃t = Dρ̃zz +
2πD

|Ly|2

∫ 2π

0

ρθθ
|Ly|

2π
dθ = Dρ̃zz +

D

|Ly|

[
ρθ(2π)− ρθ(0)

]
. (4.3)

The last term is obviously zero due to the periodic B.C. of the system. Thus, we obtain the equation

ρ̃t = Dρ̃zz. (4.4)

The above equation shows that the ”tube” simulation setup and the dimension reduction process
(through averaging along the Ly-axis) to the Lx-axis does not change the diffusion coefficient of the
original system. Thus, the mean square displacement will remain intact, i.e. 〈z2〉 = 2Dt.
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Table 1. List of symbols

LGCA notation

L ⊂ Z
d d-dimensional regular square lattice

r ∈ L node on the lattice
σ ∈ {m, r} cell type in the model (moving m and resting r)
K ≥ 2d capacity of each lattice node (2d velocity channels and K−2d resting

channels)
n(r, k) ∈ {0, . . . ,K} cell number at a node r and time k
̺(r, k) = n(r, k)/K cell density at a node r and time k (0 ≤ ̺(r, k) ≤ 1)
ρ(r, k) = 〈n(r, k)〉/K mean cell density at a node r and time k (0 ≤ ρ(r, k) ≤ 1)
k ∈ N automaton time step
rs probability that a moving cell changes to resting
1− rs probability that a resting cell changes to moving
κ ∈ R intensity of the phenotypic switch
θ ∈ (0, 1) critical cell density value at which the probabilities to switch from

resting to moving and vice versa are equal
P(·) probability
Tm mean time of a cell to stay in moving state
Tr mean time of a cell to stay in resting state
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