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Abstract 

Unmanned Aerial Vehicles (UAVs), also known as drones, have had an exponential 

evolution in recent times due in large part to the development of technologies that enhance 

the development of these devices. This has resulted in increasingly affordable and better-

equipped artifacts, which implies their application in new fields such as agriculture, 

transport, monitoring, and aerial photography. However, drones have also been used in 

terrorist acts, privacy violations, and espionage, in addition to involuntary accidents in 

high-risk zones such as airports. In response to these events, multiple technologies have 

been introduced to control and monitor the airspace in order to ensure protection in risk 

areas. This paper is a review of the state of the art of the techniques, methods, and 

algorithms used in video, radiofrequency, and audio-based applications to detect UAVs and 

Unmanned Aircraft Systems (UAS). This study can serve as a starting point to develop 

future drone detection systems with the most convenient technologies that meet certain 

requirements of optimal scalability, portability, reliability, and availability. 

 
Keywords 

Drone detection, Deep Learning detection, Machine Learning classification, sound 

sensors, video sensors, radiofrequency sensors. 

 
Resumen 

Los vehículos aéreos no tripulados, conocidos también como drones, han tenido una 

evolución exponencial en los últimos tiempos, debido en gran parte al desarrollo de las 

tecnologías que potencian su desarrollo, lo cual ha desencadenado en artefactos cada vez 

más asequibles y con mejores prestaciones, lo que implica el desarrollo de nuevas 

aplicaciones como agricultura, transporte, monitoreo, fotografía aérea, entre otras. No 

obstante, los drones se han utilizado también en actos terroristas, violaciones a la 

privacidad y espionaje, además de haber producido accidentes involuntarios en zonas de alto 

riesgo de operación como aeropuertos. En respuesta a dichos eventos, aparecen tecnologías 

que permiten controlar y monitorear el espacio aéreo, con el fin de garantizar la protección 

en zonas de riesgo. En este artículo se realiza un estudio del estado del arte de la técnicas, 

métodos y algoritmos basados en video, en análisis de sonido y en radio frecuencia, para 

tener un punto de partida que permita el desarrollo en el futuro de un sistema de detección 

de drones, con las tecnologías más propicias, según los requerimientos que puedan ser 

planteados con las características de escalabilidad, portabilidad, confiabilidad y 

disponibilidad óptimas. 

 
Palabras clave 

Detección de drones, aprendizaje profundo, aprendizaje de máquina, sensores de sonido, 

sensores de video, sensores de radiofrecuencia. 
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1. INTRODUCTION 

 

Unmanned Aerial Vehicles (UAVs) and 

Unmanned Aircraft Systems (UAS), also 

known as drones, were once only thought of 

as military aircraft, and, news and 

government media show relatively large 

aircraft controlled by an operator hundreds 

of miles (or half a world) away. Unmanned 

aircraft, such as General Atomics MQ-1 the 

Predator, have become famous for providing 

surveillance and delivering weapons 

without putting the operator at risk. As the 

technology to control and operate 

unmanned aircraft has become cheaper and 

widely available, commercial- and 

consumer-grade drones have been 

developed by a variety of manufacturers, 

which has contributed to their growing 

popularity, increasing their 

commercialization and making them 

affordable to anyone [1], [2]. 

Although UASs can be used in an 

endless number of applications (such as 

merchandise transport, aerial photography, 

agriculture, monitoring, search, and rescue, 

among others), they also pose new 

challenges in terms of safeguarding certain 

areas or spaces susceptible to trespassing, 

electronic warfare, or terrorist acts [3], [4]. 

Considering the security problems 

generated by the wrongful or illegal use of 

UASs, different approaches to address them 

have been considered; they include the use 

of radars, the analysis of the 

electromagnetic spectrum, audio analysis in 

the audible spectrum and ultrasound, 

image analysis in different spectrum 

ranges, and the implementation of artificial 

intelligence techniques to improve the 

accuracy and efficiency of the detection [5]. 

In addition, there are lots of types of 

drones with different technical 

specifications, including potential payloads, 

operating frequency, level of autonomy, 

size, weight, kind of rotors, speed, and other 

characteristics [6]. This diversity of UAS 

designs, as well as the specific conditions of 

the area to be protected, increase the 

complexity of the solutions.  

This article is a state-of-the-art review 

of methods and techniques used for drone 

detection through video, radiofrequency and 

audio-based algorithms, which may serve 

as a reference point for the study, 

development, and implementation of these 

engineering solutions adapted to the 

characteristics of specific deployment 

environments. Section 2 of this study 

focuses on these detection methods and 

their classification. Finally, Section 3 

presents the conclusions.  

 

 

2. DETECTION METHODS 

 

2.1. Sound detection method 

 

2.1.1 Correlation techniques 
 

Correlation, in the broadest sense, is a 

measure of the association between 

variables. In correlated data, the change in 

the magnitude of one variable is associated 

with a change in the magnitude of another 

variable, either in the same (positive 

correlation) or the opposite direction 

(negative correlation) [7] (Fig.1). 

In [9] the authors recorded a signal to 

establish the fingerprint of a drone and 

correlate it with another noisy signal to be 

recognized in order to identify the presence 

or absence of the previously saved signal. 

They calculated Pearson, Kendall, and 

Spearman correlations, reaching for 4 

rotors drone getting maximum similarities 

of 49.3 %, 65.64 %, and 85.37 %, 

respectively. 
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Fig.1. Relationship between two variables with different correlation coefficients. Source: [8]. 

 

A. Pearson correlation 

 

Pearson’s correlation coefficient (r) is a 

measure of linear correlation between two 

quantitative variables regardless of the 

scale of the measure. The values 

determined by the Pearson correlation 

range between +1 and -1. A correlation 

value of 1 would indicate a strong direct 

relationship between the variables; -1, the 

existence of an inverse relationship; and 0, 

no linear relationship without ruling out 

the existence of some other type of 

relationship (quadratic, exponential, etc.) 

[10], [11]. 

 

 

  
∑ (    )(    )
 
   

√∑ (    )
  

   √∑ (    )
  

   

 (1) 

 

 

Equation (1) represents Pearson’s 

correlation, where variable n represents the 

sample size; Xi and Yi, the single samples; 

and variable  , the sample mean of  , i.e., 

 

x 
 

 
∑    
    (2) 

 

Likewise, in (2) can be applied to 

variable  . 
 

B. Spearman rank correlation 

 

The Spearman correlation coefficient (  ) 
is a measure of the correlation between two 

variables that can be continuous or 

discrete. A difference with the linear 

Pearson correlation is that Spearman’s 

quantifies the monotonous correlation, that 

is, variables that grow or decrease in the 

same direction, but not necessarily at a 
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constant rate, which could be associated 

with variables with non-normal 

distributions. The Spearman correlation 

assigns correlation ranges between +1 and -

1. In either of these two extreme cases, the 

variables could be perfectly correlated [12]. 

In particular, a Spearman correlation is 

recommendable when the data present 

outliers produced by noisy environments 

such as airports [13]. 

The Spearman correlation is given 

by (3), where   is the difference between 

the ranges of ordained   and   defined 

in (4). 

  

     
 ∑  

 

 (    )
 (3) 

 

          (4) 

 

C. Kendall rank correlation 

 

This type of correlation (τ) represents a 

measure of the degree of statistical 

dependence between two qualitative ordinal 

variables. It is used when the degree of 

linear correlation should be estimated, but 

the ordinal variables do not have a normal 

distribution. Because the variables to be 

analyzed are qualitative, the data should be 

assigned ranges that are barely affected by 

a few moderate outliers. The Kendall 

coefficient ranges between -1 and +1. For 

variables X and Y, both of size n, we 

consider a possible total of  (   ) 
  observations [14], [15], [16]. 

The Kendall correlation between 

variables X and Y is defined as (5): 

  

    
 

 (   )  ⁄
 (5) 

 

where   is the difference between 

concordant pairs and discordant pairs.  

In pair observation,      concordant 

refers to the case in which    increases 

along with   . When    decreases as    
increases, it is a discordant pair. 

 

2.1.2. Linear predictive coding 

 

In [17], the authors used LPC (Linear 

Predictive Coding) and covered detection 

distances as long as 40 mt using a Cyclone 

drone. Linear Predictive Coding is defined 

as a digital method for encoding an analog 

signal in which a particular value is 

predicted by a linear function of the past 

values of the signal [18]. Therefore, it can 

be performed by minimizing the sum of 

squared differences between the actual data 

and the linearly predicted ones [19]. 

 

 ( )   ( )  ∑   

 

   

(   ) (6) 

 

In (6) represents the LPC coefficients, 

where  ( ) is the estimate of  ( );  , a 

parameter called the model order that 

determines how many previous samples are 

used in the estimation; and  ( ), the 

predictor coefficients [20]. 

 

2.1.3. K-nearest neighbors algorithm 
 

Machine learning methods have also 

been used to address the drone detection 

problem. In [21], the authors introduced 

real-time drone detection using  Plotted 

Image Machine Learning (PIL), which 

resulted in an 83 % accuracy, and K-

Nearest Neighbors (KNN), which resulted 

in a 61 % accuracy. The KNN algorithm is 

one of the simplest similarity-based 

artificial learning algorithms, and it offers 

an interesting performance in some 

situations [22]. When classifying a given 

instance, the idea is to make the nearest 

neighbor instances near to new instance 

assing its class through vote. The class of 

the new instance is then determined based 

on the most frequent class among the k-

nearest neighbors. The value of k must be 

chosen a priori; various techniques have 

been proposed to select it, such as cross-

validation and heuristics. This value should 

not be a multiple of the number of classes to 
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avoid tie votes. Thus, in the case of a binary 

classification, it is necessary to assign k an 

odd value so that a majority is necessarily 

constituted. The performance of the KNN 

algorithm also depends largely on the 

measurement used to calculate the 

distances between the instances [23].  

The characteristics of the observations 

are recorded for both the training and the 

test dataset. By default, the KNN function 

employs Euclidean distance, which can be 

calculated with (7). 

 

 (   )   √(     )  (     )      (     )     (7) 

 

where   and   are element instances to 

be compared with n characteristics [24]. 

 
2.1.4. Acoustic fingerprinting technique 

 

Audio fingerprinting is a technology 

used for the exact identification of audio 

content. Its typical use is to precisely 

identify a piece of audio in a large collection 

given a short query (where a query is a 

potentially distorted or modified audio 

excerpt) [25]. 

In [26], a time-frequency fingerprint was 

extracted by a warning system to recognize 

drone sounds. The authors reported a drone 

recognition accuracy of 98.3 % using a 

classifier based on a Support Vector 

Machine (SVM), which is a classification 

technique described in [27].   

Audio fingerprinting systems typically 

aim at identifying an audio recording given 

a sample of it by comparing the sample 

against a database to find a match. Such 

systems generally transform, first, the 

audio signal into a compact representation 

(e.g., a binary image) so that the 

comparison can be performed efficiently 

[28]. In [29], an algorithm, once 

implemented, was responsible for 

extracting unique characteristics (such as 

tone frequencies and spectral 

characteristics) of all kinds of audio signals 

within the audible range. Once the 

extraction was complete, characteristics 

were stored as acoustic fingerprints that 

would serve to characterize the object of 

interest later. The algorithm also had a 

second training phase that made it more 

efficient. The algorithm first obtained the 

pitch frequency and subsequently extracted 

the spectral signature. The pitch frequency 

extraction used autocorrelation.  

 

2.2. Video detection methods 
 

2.2.1. Method based on object movement and 

ml (machine learning) with conventional 
cameras 

 

According to [30] the methods of 

detection through video are useful only to a 

certain extent. Other authors [31], [32], 

[33], believe that interest object detection 

can be successful if it is based on 

differences between multiple consecutive 

data-frames in a video, which allows the 

extraction of the interest object in motion 

and the omission of background pixels. 

In [34], the authors used a passive color 

camera in combination with an active laser 

range-gated viewing sensor in the Short 

Wave Infrared (SWIR) band in order to 

effectively eliminate the foreground and 

background around an object. In [35], the 

authors proposed a two-frame differencing 

to detect motion applying a series of 

operations of erosion and dilatation. 

Afterward, they used local features to 

implement Speeded Up Robust Features 

(SURF) to distinguish whether the object 

was or not a drone. To mitigate false 

alarms, in [35], a coherency score was 

computed for each blob generated by the 

two-frame differencing.  

The objective of all these techniques is to 

subtract the background and identify any 

flying object in the scene; however, in many 

other studies, this is complemented with a 

recognition and classification of the object 

with more sophisticated methods. Fig. 2, 

taken from [36], shows the difference 

between the two concepts, detection and 
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classification, and their importance in order 

to reduce false alarms. 

Several studies [37], [38], [39], have 

implemented methods based on machine 

learning. For instance, SSD (single shot 

detector-ResNet-101), Faster R-CNN 

(ResNet-101), Yolo v2, and Yolo v3 have 

been used for the detection process, 

achieving drone classification accuracies of 

81.92 %, 85.33 %, 70 % to 90 %, and 91 %, 

respectively. 

Faster R-CNN is a detection system 

composed of two modules. The first one is a 

convolutional Region Proposal Network 

(RPN), and the second one is the detector 

Fast R-CNN, which finds or generates the 

region proposals. RPN takes an image as 

input and frames the objects in it in 

rectangles, each one with an objectivity 

score based on a sliding window [40]. In 

turn, a Single Shot Detector (SSDs) is 

designed for real-time detection and only 

needs a shot to detect multiple objects in 

the image, while detectors like those 

mentioned above (Fast R-CNN) need two 

shots— one to generate the regions and one 

to detect the objects in each one. 

Fig. 3 shows this process: the SSD 

applies a convolutional 1network over the 

input image only once and calculates a 

features map; then, it executes a simple 

convolutional code for predicting the 

delimiter squares and the classification 

probability after multiple convolutional 

layers [41]. 

The YOLO (You Only Look Once) as 

shown in Fig. 4 and explained in [41], 

divide the input image in       grid, if the 

center of an object falls inside a cell in the 

grid, that cell will be responsible for 

detecting the object, these grids predict B 

bounding boxes with confidence scores 

relatives to object that contain, it can be 

trained from extreme to the other and offers 

real-time detection with high accuracy. 

 

 

 

 
Fig. 2. Flying object detections can be filtered by a classifier to reduce the number of false alarms  

Source: [36]. 
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Fig. 3. (a) The SSD only needs an input image and ground truth boxes for each object during training. In a 

convolutional fashion, it evaluates a small set of default boxes (e.g., 4) of different aspect ratios at each location in 

several feature maps with different scales, e.g., (b) 8×8 and (c) 4×4. For each default box, it predicts both the shape 

offsets and the confidences for all object categories ((c1, c2, ·· ·, cp)). During the training stage, these default boxes 

are first matched to the ground truth boxes. For example, the authors have matched two default boxes with the 

cat and one with the dog, which is treated as positives and the rest as negatives. The model loss is a weighted sum 

of localization loss (e.g., Smooth L1 [42]) and confidence loss (e.g., Softmax). Source: [41]. 

 

 

 
Fig. 4. Image classification process in YOLO. Source [41]. 
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2.2.2. Thermal radiation method 

 

Thermal cameras capture images in 

which one color represents warmer areas 

and another, colder areas (e.g., white and 

black, respectively). Many color palettes are 

available to map these temperature 

measurements generating different 

brightness and contrast, that can be used 

by a linear transfer function that can be 

seen as a sliding window to change the 

location and width [43]. According to [44], 

the fusion of infrared thermal images with 

the visible spectrum is useful to detect 

objects with temperature differentials due 

to emission or reflection, such as drones 

and people. A system of this kind that uses 

conventional sensors captures objective 

information such as emitted and reflected 

radiation. By combining the characteristics 

of each visible color and the target heat 

signature, the tracking strategy can be 

more robust and complete. 

Fig. 5 shows the result of a test 

conducted by the authors using techniques 

of background subtraction for movement 

detection with a thermal camera. This kind 

of devices can be used for object detection in 

other light conditions, such as nighttime, 

with high reliability [45]. 

 

2.3. Radiofrequency detection methods 

 

A. Radio sensors 

 

Another technology used to face this 

problem is radiofrequency, which is 

considered an effective method for drone 

detection because of its long-range and 

early-warning capabilities. It can be used to 

localize and track drones and pilots, 

develop small-size portable equipment, 

which can be low cost and passive 

(therefore, no license is required), and 

detect multiple drones or controllers [46], 

[47].  

 

 
Fig. 5. Thermal object detection; implementation of an algorithm for object detection  

using a thermal camera. Source: Created by the authors. 
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The modulation implemented by 

different brands of drone manufacturers for 

radio control of unnamed aircraft is based 

on techniques such as spread spectrum and 

frequency-hopping to allow the coexistence 

of different radiant sources (emitters and 

receivers) in the same frequency band and 

prevent or reduce interference. Therefore, 

the algorithms developed for drone 

detection using radiofrequency analysis to 

sense alterations in the electromagnetic 

spectrum produced by the communication 

signal between the drone and the controller, 

which implies an analysis in the time and 

frequency domain in the specific bands 

where most drones operate (400 MHz, 

2.4 GHz, and 5.8 GHz) [48]–[50]. 

Software-Defined Radio (SDR) is a 

hardware-based platform that provides 

software control modulation techniques, 

wideband or narrowband operation, 

communications security functions (such as 

hopping), and satisfies waveform 

requirements of current and evolving 

standards over a broad frequency range 

[51]. In [52], the authors used an SDR 

USRP B210 to implement the AOA (Angle 

Of Arrival) technique applying the Pseudo-

Doppler principle to calculate the direction 

in which the drone was detected by 

adopting two proposed methods: 1) spectral 

correlation density and cyclic 

autocorrelation function and 2) analyzing 

the reflection from a non-cooperative 

transmitter. 

In [53], the authors proposed two 

methods for identifying physical signatures 

of drone body movement: the first one was 

based on an Inertial Measurement Unit 

(IMU) and the second one, on the reflection 

analysis of a Wi-Fi signal emitted by a 

transmitter in a cooperative way using an 

SDR USRP B200 mini software-defined 

radio. Afterward, the shift and the 

vibration in the received signal were 

analyzed, and the drone was identified. The 

authors reported a precision of 95.9 %, 

accuracy of 96.5 % and a recall of 97 % 

when they experimented with IMUs at a 

distance of 10m. When the distance 

increases, the performance of the detection 

falls to 89.4 % of accuracy, 86.7 % of 

precision and 93 % of recall at 100m; and, 

81.5 % of precision 84.9 % of accuracy and 

90.3 % of recall at 600m distance. When it 

was kept in mind the external interference, 

the authors reported getting 92 % of 

accuracy, 88.7 % of precision, and 96.3 % of 

recall in one environment with the 

interference of 16 Wi-Fi channel actives in 

the experiment place. 

Furthermore, in [54], the authors 

implemented a passive radar using low-cost 

DVB-T receivers that utilized three 

television towers emitting signals instead of 

a dedicated radar emitter. They measured, 

on the one hand, the signal emitted by the 

non-cooperative source (called the reference 

signal); and, on the other hand, the signal 

reflected by the targets. Since the reference 

signal is not known, a matched filter 

approach is required to find delayed copies 

of this reference signal in the measured 

signal: a cross-correlation technique can be 

applied to identify the time-delayed copies 

of the reference in the measurement. The 

system was tested with two different 

applications: short-range moving target 

detection and moving target tracking. 

In contrast, in [55], the authors 

implemented a Random Forest (RF) 

classifier to detect, in six different 

scenarios, where the wireless signals were 

present using the network traffic for the 

complete analysis. The authors reported a 

minimum true positive rate of as less as  

      and a false positive rate below 

         
 

B. Radar-based detection 

 

Radars are electromagnetic systems 

designed to detect and locate target objects 

(such as aircraft, ships, spacecraft, vehicles, 

people, and the natural environment) that 

reflect a signal. They use electromagnetic 

radio waves to determine the angle, range, 

or velocity of objects [56]. Radars are also 
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implemented to monitor restricted areas in 

different ways [57]; however, conventional 

radars are not optimized to sense small 

UAVs because they are smaller and slower 

than traditional aircraft and they fly at 

lower altitudes. Moreover, UAVs normally 

use rotor blades made of carbon, fiber, or 

plastic materials. And the smaller the 

drone, the more likely its blades are made 

of plastic, which is important for the 

visibility of the blades in radar systems 

[58], [59]. 

Other radar systems are more compact, 

and versatile, offer high-resolution (which 

makes them more affordable) and adopt 

different methods. mmWave radars are a 

special class of radar technology that uses 

short-wavelength electromagnetic 

waves.mmWave systems transmit signals 

with wavelengths in the millimeter range 

and can detect movements as small as a 

fraction of a millimeter [60], [61].  

Fig. 6 shows two mmWave systems 

commercialized by National Instruments 

(a) and Ancortek (b), respectively. The 

latter was used in [62] to measure the 

radial velocity signatures and the angular 

velocity signatures of drone blades at 

different angles and to get distinct features 

in the time-frequency domain for its 

subsequent classification.  

Researchers at the Fraunhofer Institute 

for High-Frequency Physics and Radar 

Techniques (FHR) used this technology to 

simultaneously detect and track three 

multicopters in real-time in a measurement 

range from 50 to 150 m [65]. In turn, other 

authors [66] presented a rationale for using 

MIMO techniques to thin a transceiver 

element array without sacrificing image 

quality and the concepts behind the MIMO 

overlay or virtual array. They introduced a 

design of practical MIMO arrays for 

imaging radars at millimeter-wave 

frequencies and an analysis of spreading 

sequences suitable for UAV imaging radars. 

These examples show that the use of 

radar systems based on mmWave 

technology is effective in drone detection 

and tracking. 

Another technology used for drone 

detection is the software-defined radar 

described in [67], which applies the same 

principles of a software-defined radio: the 

components that have typically been 

implemented as hardware (e.g., mixers, 

filters, modulators, demodulators, 

detectors, etc.) are implemented using 

software on a computer or another 

programmable device, usually a Field-

Programmable Gate Array (FPGA) [54]. In 

[68], the authors presented the development 

of a multi-band, multi-mode SDR radar 

platform that consists of a replaceable 

antenna and RF modules in the S-, X-, and 

K- bands. The transmission of a modulated 

radar waveform and the reception of echo 

are the working principles of the system, 

which was successfully tested in a small 

drone detection. 

 

 
Fig. 6. (a) mmWave Software-Defined Radio (SDR) from NI [63].  (b) mmWave radar kit from Ancortek 

Source: [64]. 
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The literature includes other kinds of 

technologies. For instance, a Holographic 

Radar (HR) is mentioned in [69] as a 

surveillance radar operating in the 3-D and 

L-bands with high detection capacity. Said 

radar system can detect miniature UAS in 

a complex horizon, but it may detect other 

small moving objects such as birds due to 

its high sensitivity. That study provides 

results of Doppler characteristics for micro-

drones and highlights the fact that a 

Doppler classification is fundamental to 

differentiate objects. 

 

 

3. CONCLUSION 

 

Nowadays, there are several ways to 

implement a drone detecting 

system. Nevertheless, each one of them 

presents advantages and disadvantages 

that may be considered in the design stage. 

Sound-based detection is easy to install 

and represents a low-cost solution, but most 

of these systems need a database that must 

be constantly updated to be effective, have 

a short-range coverage, are sensitive to 

environmental noise, and need a large 

network of interconnected microphones 

deployed for detection[70]–[72]. Video-based 

detection is difficult to port to low-power 

processors because of their processing 

capabilities; moreover, the cameras can 

capture images as far as 350 feet 

(approximately 107 meters), but they have 

a very difficult time distinguishing birds 

from drones and require a line of 

sight. Besides, small drones cannot produce 

enough heat for thermal cameras to detect 

them [73]–[75]. 

Alternatively, radar systems can offer 

good capabilities, especially at long ranges 

and in poor visibility conditions (thick fog or 

nighttime), but conventional radars are not 

optimized to sense objects that are smaller 

and slower and fly at a lower altitude than 

traditional aircraft. Radars can only detect 

drones while they are flying and present a 

high false-positive rate in busy urban 

environments [76], [77]. In turn, 

radiofrequency-based methods are unable 

to detect drones if they are not 

communicating with the controller and are 

less effective in crowded RF areas unless a 

passive radar is designed with this type of 

sensors in order to detect and track any 

moving target [78]. 

Table 1 is a summary of the technologies 

cited in this article with their advantages 

and disadvantages. We can see that none of 

the options is a perfect system. As a result, 

several companies around the world have 

decided to produce combined systems in 

order to decrease the error rate, as can be 

seen in Table , which presents a comparison 

of the technologies implemented by 

different manufacturers of drone detection 

system. 

This study examined several techniques, 

methods, and algorithms for drone 

detection. In Table 2, the best technology in 

terms of cost-benefit is radiofrequency 

because it can detect the drone and the 

controller, track multiple targets, and 

operate over long distances; moreover, it is 

relatively cheap. Its incapacity to detect 

inertial flights, as mentioned above, can be 

addressed by implementing passive non-

cooperative pulse radars as illuminators. 

Radar technology is the most expensive, 

but it offers the longest range, and sound is 

the most inefficient method in terms of cost-

benefit. However, the combination of these 

techniques can provide a robust system 

that can efficiently address the drone 

detection problem. 
This study opens a path for future 

developments because it can be used to 

understand the technologies involved in 

drone detection systems, which is necessary 

for selecting the best architecture and 

methodology depending on the place and 

the conditions of the deployment. Future 

studies should implement low-cost high-

accuracy multimodal systems to protect 

specific areas of interest.  
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Table 1. Summary of technologies for drone detection. Source: Created by the authors. 

Technology Advantages Disadvantages 

Sound 
-Medium cost 

-Does not require line of sight 

-Does not work in urban environments 

-Short operation range 

-Needs a large dataset  

-Cannot detect controllers 

-Stronger systems need a large array of 

antennas 

 

Video 

 

 

-Can record visual evidence 

-Low false alarm rates 

-Low to medium cost 

-Can track autonomous flight 

 

 

-Difficulty to distinguish drones from 

birds 

-High computational cost 

-Depends on the weather 

-Requires a line of sight 

-Cannot detect controllers 

Radar 

-Long-range 

-Can track autonomous flight 

-Simultaneous detection and tracking 

of multiple drones 

 

-Difficulty to detect small, plastic, 

electric-powered drones 

-Expensive 

-Difficulty to distinguish drones from 

birds 

-Requires a line of sight (obstacles) 

-Cannot detect controllers 

 

Radio Frequency 

-Low to medium cost 

-No license required 

-Can triangulate drone and controller 

position 

-Extremely low false alarm rate 

-Long-range 

-Unable to detect autonomous drones  

-Less effective in crowded RF areas 

-Requires a line of sight (obstacles) 

 

 

 
Table 2. Comparison of types of technology used by drone manufactures 

Source: Created by the authors. 
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