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Abstract
States facing the decision to develop a nuclear weapons program do so within a
broader context of their relationships with other countries. How these diplomatic,
economic, and strategic relationships impact proliferation decisions, however, remains
under-specified. Adding to the existing empirical literature that attempts to model
state proliferation decisions, this article introduces the first quantitative heterogeneous
network analysis of how networks of conflict, alliances, trade, and nuclear cooperation
interact to spur or deter nuclear proliferation. Using a multiplex network model, we
conceptualize states as nodes linked by different modes of interaction represented on
individual network layers. Node strength is used to quantify factors correlated with
nuclear proliferation and these are combined in a weighted sum across layers to
provide a metric characterizing the proliferation behavior of the state. This multiplex
network modeling approach provides a means for identifying states with the highest
relative likelihood of proliferation—based only on their relationships to other states.
This work demonstrates that latent conflict and nuclear cooperation are positively
correlated with proliferation, while an increased trade dependence suggests a
decreased proliferation likelihood. A case study on Iran’s controversial nuclear program
and past nuclear activity is also provided. These findings have clear, policy-relevant
conclusions related to alliance posture, sanctions policy, and nuclear assistance.

Keywords: Network science, Multiplex modeling, Nuclear proliferation

Introduction
The puzzle of nuclear proliferation—why states decide to acquire nuclear weapons—has
long been a central question for scholars of international security and has contributed
to both theoretical and empirical studies with a view towards designing policies to pre-
vent the spread of nuclear weapons (Singh and Way 2004; Kaplow and Gartzke 2016).
Much has been made of the appropriateness of the U.S. withdrawal from the Joint Com-
prehensive Plan of Action (JCPOA) and its potential consequences for Iran’s decision
to pursue nuclear weapons (Sherman 2018). But what of the broader forces that drive a
state’s decision to pursue nuclear weapons in the first place? Although much has been
learned using observational data, regression-based modeling, and comparative case stud-
ies, questions remain concerning the relevant variables that influence a state’s decision to
proliferate (Singh andWay 2004; Kaplow and Gartzke 2016; Fuhrmann 2009b; Fuhrmann
and Sechser 2014a; Jo and Gartzke 2007; Montgomery and Sagan 2009). Contributing
to this literature, this work demonstrates the first use of multiplex network analysis to
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examine the relative likelihood of states to acquire nuclear weapons based on external
factors.
Network science is a broad area of study that has been applied to a wide range of sub-

jects ranging from the spreading of disease to social networks (Valente 2010; Scott 2017).
Political scientists have previously used network characteristics including centrality, den-
sity, transitivity, and interdependence, among others, to study conflict, cooperation,
influence, and other types of interstate interactions (Maoz et al. 2007; Borgatti et al. 2009;
Hafner-Burton et al. 2009; Maoz 2009; 2010; Lazer 2011; Ward et al. 2011; Maoz 2012a;
2012b). These monoplex network approaches represent a powerful tool for investigating
global systems, but are limited insofar as different types of interactions are considered in
isolation (Jackson and Nei 2015). As a response to this shortcoming, multiplex networks
have emerged in the past decade as a framework allowing for the simultaneous view of
a complicated web of different types of interactions (Kivelä et al. 2014; Boccaletti et al.
2014; Chapela et al. 2015; Newman 2003; Pillai and Karabatis 2016). By analyzing distinct
relationships in concert rather than individually, multiplex network models provide addi-
tional insight into the structure and dynamics of real world interconnected global systems.
The approach used in this work models individual network layers with time-series data
separately, according to their own specific dynamics, and then combines them to gain a
holistic view of how different types of international ties work together to either motivate
or deter a state’s potential nuclear weapons program.
Using open-source data, we develop a multiplex network model in which sovereign

states (nodes) are connected through four relationships (edges or links) theorized to be
correlates of nuclear proliferation: conflict, alliances, nuclear cooperation agreements
(NCAs), and trade. While these correlates are by no means an exhaustive set, they pro-
vide a basis for a proof-of-concept demonstration of the application of multiplex network
analysis to understanding nuclear proliferation. The network model is both multilayer—
meaning that multiple networks exist within the model—and multiplex—meaning that
each layer of the network is comprised of the same nodes. Node strength metrics
produced using this framework quantitatively capture the degree of influence of each rela-
tionship variable on an annualized basis and are evaluated using correlation analysis to
give a multidimensional perspective on the relative causes of nuclear proliferation.1

The determinants of nuclear proliferation
There are a variety of ways to classify determinants of nuclear proliferation. Previ-
ous studies, for example, have categorized proliferation determinants into demand-side
(e.g., political motivation) and supply-side factors (e.g., technical capability, specific
weapons technology, etc.) (Sagan 1997). In this work, the network science formalism
encourages a typology of proliferation determinants as factors internal and external to
the state, where internal factors are properties of nodes (i.e., domestic properties of
states) and external factors are properties of edges (i.e., relationships between states).
Those factors internal to states that have been theorized to impact proliferation deci-
sions include indigenous nuclear capabilities, domestic political structure, regime type,
identity-based considerations, and leadership psychology (Gartzke and Kroenig 2009;
Way and Weeks 2014; Rublee 2009; Hymans 2010). External factors theorized to drive a
state’s desire for nuclear weapons include armed conflicts, military alliances, economic
sanctions, international trade, membership in international institutions, nuclear rivalry,
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and the international transfer of nuclear technology and knowledge (Sagan 1997; Jo
and Gartzke 2007; Fuhrmann 2009b; Fuhrmann and Kreps 2010; Haggard and Noland
2010; Miller 2014; Fuhrmann and Sechser 2014b; Solingen 1994; Potter 2010; Singh and
Way 2004). This paper focuses on a subset of external determinants of nuclear prolif-
eration: conflict, alliances, NCAs, and trade. While other important external correlates
of proliferation behavior exist (e.g., membership in international institutions, negative
security assurances), this proof-of-concept demonstration is limited to those variables
commonly highlighted in the nuclear proliferation literature with robust, open-source
data categorizing and quantifying the nature of these interstate relationships.
The first correlate of proliferation included in this demonstration is interstate conflict—

a measure used to represent the external security concerns of states. Studies from Jo and
Gartzke, Fuhrmann, and Kreps and Fuhrmann detail the statistical significance of conflict
in contributing to a state’s decision to proliferate (Jo and Gartzke 2007; Fuhrmann 2009b;
Fuhrmann and Kreps 2010). Theories that privilege external security concerns posit that
states involved in a conflict or facing an existential threat are more likely to proliferate
with the goal of achieving their own security (Singer et al. 1972).With nuclear capabilities,
states might also theoretically increase their bargaining power in high-intensity conflict
scenarios (Fuhrmann 2009a; Gartzke and Jo 2009).
The second correlate examined is alliance relationships, or agreements between two or

more states to cooperate on a given set of objectives. Alliances have been hypothesized
to increase the security of member states and thus dull state motivations to bolster their
security via nuclear weapons (Singh andWay 2004). Betts and Thayer offer examples of a
“security guarantee” from a nuclear power that effectively substitutes for nuclear weapons
(Betts 1993; Thayer 1995).
Third, the model includes a variable that accounts for nuclear assistance via NCAs—

formal agreements in which one state supplies the other with nuclear technologies,
materials, expertise, knowledge, or some combination thereof. In prior studies, the receipt
of NCAs by a state has been correlated with an increase in proliferation likelihood, as the
acquisition of nuclear assistance lowers technical barriers to nuclear weapons produc-
tion (Kroenig 2009; Fuhrmann 2009a; Maoz 2009; Braun and Chyba 2004). Brown and
Kaplow, Fuhrmann, and Kroenig conclude that nuclear and technical assistance agree-
ments increase the likelihood of nuclear proliferation via information sharing and by
increasing the latent capability of recipient states (Brown and Kaplow 2014; Fuhrmann
2009a; Kroenig 2009). Our model offers a useful test of whether this finding remains
robust.
Finally, we include a trade dependence variable. Trade relationships have been hypoth-

esized to influence the proliferation calculus of states, providing leverage for one state to
dissuade another from proliferating given the opportunity cost of doing so (Solingen 1994;
Gleditsch 2002). In this work, the chosen metric of trade is trade dependence—the degree
to which one state is dependent upon another in its balance of trade (Maoz 2010). Solin-
gen’s work concerning regional proliferation in East Asia, for example, argues that states
pursuing economic liberalization and increased trade ties in a regional context do not
pursue nuclear weapons—in spite of constant external security threats (Solingen 1994).
Taken together, our model tests the relative salience of each variable as a driver of

state proliferation and questions how much rather than whether a variable influences
proliferation behavior.
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Constructing individual layers of themultiplex network
In this section, we detail the operationalization of open-source data to construct weighted
monoplex network layers and, in turn, a multiplex network. Unitary states are modeled
as nodes with consensus data from established databases used to quantify edges in the
form of edge weights.2 These are assigned in proportion to the intensity of the connec-
tions in the different network layers (Pastor-Satorras and Vespignani 2004). That is, the
connections between the nodes (edges) have a value associated with them (weight) based
on the “strength” of the dyadic relationship between nodes within that layer. For example,
edge weights are higher between the United States and North Korea during the thrust of
the Korean War, but these weights decrease in value at times where there are less overt
actions and threats between the two states. The links are also directed, in that the value
associated with the relationship from one node to another is not necessarily the same
in the opposite direction. For example, the United States may make an explicit threat to
Russia, but the Russian Federation remain silent. In the directed network, this would rep-
resent an increased edge weight from the United States to Russia while the edge weight
from Russia to the United States would be lower in value.
Each of the four layers in the multiplex network corresponds to a variable theorized

to affect nuclear proliferation—conflict, alliances, NCAs, and trade. The edges are built
upon historical data from the period 1951–1990.

Conflict variable

The conflict variable engages with existing work that finds that the presence of disputes
increases the likelihood of proliferation. To operationalize this, we use the Dyadic Milita-
rized Interstate Dispute (MID) database that builds upon the Correlates of War (COW)
MID dataset to construct the conflict variable (Ghosn et al. 2004). Specifically, we use the
variables, HiactA and HiactB, denoting the highest action taken by the respective sides
in any given dispute. The variable reflects a low ranking of conflict if states are solely
the recipient of conflict action and do not respond (coded as 1). The ranking increases
as states threaten (2), display (3), or use force (4). The highest ranking represents a
declaration of war (5).
Edges in themonolayer conflict network indicate the presence of a conflict between two

states, i and j, and are used to quantify a conflict metric for each dyad:

Cij = Iij. (1)

The measure of conflict, Cij, is equal to the directed conflict intensity, Iij, as defined by the
MID Database, where i is the recipient of conflict action (Jones et al. 1996). For example,
for two states i and j, where j has issued a display of force to i and i does not respond, Cij
= 3 and Cji = 1. As a real-world example, in 1961, the United States is coded as having
used force against North Vietnam, but North Vietnam is coded as only displaying its force
against the United States. In this case, CNV ,US = 4 and CUS,NV = 3. As this work focuses
on interactions between states rather than the properties of individual states, factors such
as the relative military strength are not included when assessing the conflict metric.

Alliances

To examine the effect of formal agreements between states on nuclear proliferation, the
alliance value, a, defined in terms of the strength of the alliance commitment, is adapted
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from Moaz’s Relative Commitment variable constructed from the Leeds’ Alliance and
Treaty Obligation Project dataset (Leeds et al. 2002; Maoz 2009). The variable is coded
into five categories: consultation (1), nonaggression (2), neutrality (3), offense (4), and
defense pacts (5).
It is possible for states to share multiple concurrent alliance commitments between

them. To account for simultaneous alliances between two states, an alliance commitment
variable is used to represent directed edge weights in the alliance layer of the network.
As alliances are dyadic, the alliance commitment, Bij, of state i from j is the sum of the
strength of the alliance commitments issued by j to i:

Bij =
∑

aij. (2)

Using the ranking of alliance strength, for example, for two states i and j, where j has
issued a defense commitment to i and a consultation pact is shared, the alliance commit-
ment score is Bij = 1 + 5 = 6. Conversely, as i has no defense commitment to j, Bji = 1.
This example is meant only to be illustrative and in the overwhelming majority of cases,
alliance commitments are mutual with symmetrical edge weights. For example, in 1971,
China and North Korea maintained a mutual defense pact coded as 5, in addition to a
mutual non-aggression pact coded as 2, resulting in symmetric directed links with an
alliance commitment score (i.e., edge weight) of 7.

Nuclear cooperation agreements

As noted above, NCAs are formal agreements between states to cooperate on one or
morematters of nuclear technologies, safety, materials, and knowledge. To address NCAs,
the model uses Fuhrmann’s Nuclear Cooperation Agreement Dataset and, specifically,
the nca type variable adapted from Keeley’s compilation of NCAs (Fuhrmann 2012; Kee-
ley 2009). Fuhrmann’s seven measure scale accounts for nuclear safety, cooperation in
research and training, the transfer of nuclear materials, development towards a research
program, development towards a nuclear electricity program, an agreement with no
restrictions, and a military assistance agreement. We use this variable to construct a 3-
measure ordinal scale of NCAs based on the relevance of the type of nuclear assistance
to a nuclear weapons capability from those exclusively concerned with safety-related
agreements (1), non-safety-related agreements (2), and finally to agreements dealing with
sensitive nuclear assistance (3).3

Safety-related agreements cover only authorized cooperation in the realm of nuclear
safety. Non-safety-related NCAs are more significant from the standpoint of enabling
the technologies, facilities, materials, and expertise necessary for the development of
a nuclear weapons program. These activities cover cooperation in research and devel-
opment, training, transfer of nuclear-related materials (e.g., uranium, heavy water, or
plutonium), development of a nuclear research program (including export of a research
reactor), and development of a nuclear program for electricity production. The final cod-
ing considers sensitive nuclear assistance (e.g., enrichment, reprocessing, etc.) indepen-
dent of other non-safety-related NCAs due to the increased proliferation risk associated
with these technologies (Fuhrmann 2009a; Kroenig 2009).
Each NCA can last for a specific number of years or for an indefinite period of time,

depending on the terms of the agreement. Since the duration of many NCAs is confi-
dential or unknown, NCA edges are treated as indefinite in the model for the sake of
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consistency across cases. Further, as additional NCAs may be signed between states over
time, the value of each additional NCA is added to the states’ previous NCA metric to
account for the accumulation of nuclear materials, expertise, and latent technological
capabilities. This coding scheme provides ameasure of the amount of nuclear cooperation
that occurs between states over time and reflects the accrual of weapons-related infor-
mation and technology. The NCA value, nij, is quantified based on the nature of nuclear
assistance state i receives from state j.
As with alliances, states can have multiple NCAs with the same partner. The accumu-

lated nuclear cooperation, Nij, that state i receives from state j is calculated as the sum of
each individual NCA coding, nij:

Nij =
∑

nij. (3)

For two states i and j, where i has been the recipient of two non-safety-related NCAs
from j, but i has never supplied an NCA to j, Nij = 2 + 2 = 4 while Nji = 0. For
example, France supplied a safety-related agreement (coded as 1) and a non-safety-related
agreement (coded as 2) to the United States in 1958, yielding an accumulated nuclear
cooperation value of 3. In addition, a previous safety-related agreement and a non-safety-
related agreement by France to the United States was supplied in 1956. As past NCAs are
treated as persistent in the model, the directed edge weight in the NCA monolayer for
France to the United States was valued at Nij = 3 + 3 = 6 in 1958.

Trade dependence

Trade is included in the model to test its effect on proliferation likelihood, where an
edge in the trade monolayer network represents an international exchange of goods and
services. While there are many ways to calculate trade dependence and considerable lit-
erature in disagreement over the most appropriate method (Gleditsch 2002; Mansfield et
al. 2002; Gartzke 2007), the model uses the Russett and Oneal formulation as it reflects
the economic integration of states into the global economy by measuring the proportion
of their economies devoted to bilateral trade (Oneal and Russet 1997; Oneal and Russett
1999; Russett and Oneal 1999).
Trade dependence,Dij, measures the total trade between two states as a fraction of each

state’s gross domestic product (GDP). For two states, i and j, the trade dependence, Dij, of
state i on j equals its exports to j, Exij, plus its imports from j, Imji, divided by its GDP:

Dij = Exij + Imji

GDPi
. (4)

Trade dependence is asymmetric as it is shaped by the relative strength of the state’s econ-
omy and the degree of dependence on a particular partner. For example, in 1990, the
United States’ trade dependence upon China was 0.003 while the Chinese trade depen-
dence on the United States was 0.12, indicating that China’s GDP was more dependent on
trade with the United States than U.S. GDP was dependent on trade with China.

Multiplex network analysis
The monoplex networks are layered to create a multiplex network, as shown in Fig. 1.
The states (nodes) participate in all network layers, but the relationships between states
(edges) are unique in each layer based on the relevant interstate relations. In this section,
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Fig. 1 An illustrative multiplex network of proliferation-relevant determinants, with layers from top to bottom
showing the NCAs, alliances, conflict, and trade relationships between nodes. Panel a shows a schematic
network representation, where the nodes represent states. These nodes participate in all network layers, but
the relationships between nodes (edges) are unique in each layer based on the relevant interstate relations.
Panel b shows the full network representation of the model for the year 1980, built using open-source data

we provide a framework for quantifying global dynamics in such an interconnected sys-
tem. First, we determine monolayer metrics for each of the variables on a country-year
basis. These monolayer metrics allow for the comparison of the relative importance
of each variable in explaining proliferation. We then quantify a state’s annualized pro-
liferation metric based on the four variables outlined above using a weighted sum of
normalized monolayer metrics, where the weights are determined via a historical analysis
of the relative importance of the various proliferation determinants. This process yields
the annualized proliferation metric, Ri(t), for each node in the multiplex network.4 As
the temporal evolution of the multiplex network is treated as a series of annual snapshots,
the merger or disintegration of states (e.g., the reunification of East andWest Germany in
1990, in the case of the former) results in a change in the number of nodes as a function
of year.
While methods for dealing with correlated data in multiplex networks exist (Nicosia

and Latora 2015), this work treats network layers as independent as an initial explo-
ration of the applicability of network science in this space. Given potential correlations
between the variables, future studies of nuclear weapons proliferation should go beyond
the basic combinatorics used in this proof-of-concept to look closely at the interdepen-
dent effects of political, security, and economic networks within which decisions about
nuclear weapons are made (Morone et al. 2015).

Within network: monolayer metrics

The first step in the multiplex network analysis is to construct node-based metrics for
each layer. To construct the monolayer metric, let L denote the set of layers in the mul-
tiplex network (i.e., L = {conflicts, alliances, NCAs, trade}). For a given layer, x ∈ L, the
contribution to the proliferation metric per year, R(i|x)(t), is defined by the node strength
(Opsahl et al. 2010). That is,

R(i|x)(t) =
n∑

j=1
fij, (5)
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where j is an index of node edges, n is the degree of the ith node in year t, and fij is the
edge weight between the ith and jth nodes in year t. The node degree is defined as the
number of connections a node has to other nodes in the monolayer network. The edge
weights are given by Cij, Bij, Nij, and Dij for the conflict, alliance, NCA, and trade layers,
respectively. These monolayer metrics are then combined across networks to attain the
desired proliferation metric described in the next section.

Across networks: proliferation metrics

The next step in the analysis is to combine each of the monolayer metrics into a prolifer-
ation metric, Ri(t), across all layers in the model. To determine Ri(t) for the ith node, the
monolayer metrics defined in Eq. 5 are normalized and combined using a weighted sum:

Ri(t) =
∑

x∈L
wx(t − 1) ˆRi|x(t) (6)

where wx(t − 1) is a weighting factor representing the influence of the xth layer on the
proliferation metric determined in year t − 1 and ˆRi|x(t) is the normalized contribution
to the proliferation metric of node i arising from the xth layer in year t. The monolayer
network metrics are normalized on a year-by-year basis using min-max scaling, which
provides a linear transformation of the entire range of values for each variable to the range
from −1 to 1. This ensures an equal relative contribution from each monolayer. That
is, although the variable scaling differs within each monolayer network, normalization
ensures that the relative importance of the determinant associated with each monolayer
is appropriately quantified by the weighting factors and not influenced by the magnitude
of the individual variables. We assess the weighting factors using historical proliferation
data from the previous (t − 1) year. This is done to reflect imperfect knowledge of global
nuclear proliferation activity in the year that the assessment of the proliferation metric is
performed, where it is assumed that the relative importance of different types of relation-
ships to a state’s proliferation calculus in the current year is similar to that of the previous
year.
Weighting factors are determined on a year-by-year basis as the correlation between

the ˆRi|x(t) values in a given layer and the Singh and Way proliferation metric, p, obtained
using a linear scale derived from known historical cases of nuclear weapons inactivity
(p = 0), exploration (p = 1), pursuit (p = 2), and acquisition (p = 3) (Singh and Way
2004). The Singh and Way metric is used as it offers greater granularity than alternative
measures of nuclear proliferation-relevant activity and has been applied extensively in
research and analysis related to nuclear proliferation.5 The weighting factor, wx, is quan-
tified using the Pearson correlation coefficient between the proliferation metric and the
monolayer network metrics (Pearson 1931; 1929; Edgell and Noon 1984).
More formally, let k be the number of nodes in the network (k varies from 77 in 1952 to

161 in 1990 due to data availability and the geopolitical events that alter state sovereignty
or territorial integrity). Then, wx, is calculated on a year-by-year basis using the variances
and covariances of the Singh and Way proliferation metric, p, and the monolayer metric
Ri|x:

wx =
∑k

(i=1)(pi − p̄)(Ri|x − ¯Rx)√∑k
(i=1)(pi − p̄)2

√∑k
(i=1)(Ri|x − R̄x)2

, (7)
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where pi is the Singh and Way proliferation metric of the ith node in a given year, p̄ is the
mean of the Singh and Way proliferation metrics for all nodes in a given year, Ri|x is the
monolayer metric of the ith node in a given year, and R̄x is the mean of the monolayer
metrics for all nodes in the xth layer in a given year.

Correlations in complex networks
Figure 2 provides the results of the correlation analysis between monolayer metrics and
the proliferation metric provided by Singh andWay. Layers with a positive coefficient are
correlated with an increase in the likelihood of nuclear proliferation while the layers with
a negative coefficient are correlated with a reduced likelihood of nuclear proliferation.
As shown in Fig. 2, the incidence of conflict is positively correlated with state

proliferation-relevant behavior. This finding provides further evidence that security con-
cerns drive proliferation behavior—underlining findings in the existing proliferation
literature detailing the statistical significance of conflict in contributing to a state’s nuclear
proliferation (Fuhrmann 2009b; Jo and Gartzke 2007; Fuhrmann and Kreps 2010).
Second, nuclear cooperation agreements generally have the strongest correlation with

proliferation-relevant activity. This result mirrors Fuhrmann’s argument concerning the
unintended consequences of nuclear cooperation agreements (Fuhrmann 2009a). It is also
a particularly relevant finding given the responsibility of nuclear states to facilitate the
“fullest possible exchange of equipment, materials and scientific and technological infor-
mation” related to peaceful uses of nuclear technology in Article IV of the Treaty on the
Non-Proliferation of Nuclear Weapons.
Contrary to existing scholarship that theorizes that alliances decrease the likeli-

hood of proliferation, our analysis suggests that the correlation between alliances and
proliferation-relevant activity is marginally positive and over time moves towards zero.
This finding raises questions for policy-makers concerning the utility of negative secu-
rity assurances, nuclear umbrellas, and extended deterrence strategies for arresting state

Fig. 2 Weighting factors for conflict, alliance, trade, and NCA network layers as a function of year. The annual
weighting factor is obtained as the Pearson correlation coefficient between the monolayer metrics and the
proliferation metric for all states in a given year
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proliferation. The salience of alliances also appears to consistently decrease as a function
of time. Indeed, the movement toward zero suggests that alliances do not influence the
spread of nuclear weapons positively or negatively. Given existing scholarship that the-
orizes the moderating effects of alliances on proliferation, this finding suggests further
study is necessary to understand the specific conditions under which alliances influence
proliferation. Understanding these conditions is particularly important for U.S. policy-
makers given the importance assigned to its extended deterrence commitments in Europe
and Asia, designed to both deter regional powers and avoid proliferation in Japan, South
Korea, and Germany, among others.
The correlation values for trade dependence are marginally negative. This finding

underlines previous work that outlines the power of a highly interconnected global econ-
omy to dissuade states from engaging in taboo behaviors that may result in isolation and
economic sanctions. This finding may also reflect the hypothesized opportunity costs of
proliferation-relevant behavior, in which states forego nuclear proliferation to obtain the
benefits of integration into the global economy. For policy-makers, a negative correla-
tion between proliferation and trade dependence is of interest given the costs of isolating
potential proliferators and the creation of a variety of sanctions regimes targeting states
believed to be surreptitiously pursuing a nuclear weapons program. Indeed, this suggests
that sanctions may have the unintended consequence of making proliferation more likely
by decreasing the dependence of the target state upon outside trade that might otherwise
mitigate its proliferation risk.
Furthermore, the correlation between proliferation and alliances, trade, and NCAs

tends to vary smoothly with time, consistent with the assumption of gradual change in
the temporal profile of the importance of the various relationships to a state’s prolifera-
tion calculus. With that said, the correlation between conflict and nuclear proliferation
exhibits fluctuations throughout the nuclear age. This fluctuation may be explained in
three ways. First, it may suggest a more dynamic conflict environment from year to year.
Second, conflict may have a latent effect upon a state’s decision to pursue its nuclear pro-
gram that country-year data do not capture. Third, nuclear weapons programs may have
an inertia that make them difficult to arrest once they begin. In the following section, we
use various methods to test the model performance against observational data.

Model performance
Having outlined the correlations between each monolayer metric and state proliferation,
we turn to an evaluation of the proliferation metric defined in Eq. 6 against Singh and
Way’s empirical measure of proliferation, which serves as a fiducial. It is important to
clarify that the Singh and Way proliferation data used to derive the weights in Eq. 7 are
not used as a metric for model verification. As shown in Eq. 6, weights are defined using
Singh and Way proliferation metric data from the previous year while comparisons are
performed using the state’s proliferation stage in the current year, with an emphasis on
a dichotomous interpretation (i.e., proliferator/non-proliferator) of the Singh and Way
proliferation measure. In simple terms, we are probing the question as to whether the
historical record and this multiplex formalism may be relied upon to generate real-time
insights on a state’s proliferation interests. We assess the robustness of our model using a
rank analysis, where the highest ranked proliferators across time (based on historical data)
are compared against the proliferation metric defined in this work. Uncertainty in the
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model input due to both lack of knowledge (e.g., an undocumented NCA) and inherent
variability (e.g., ordinal coding of the threat of force in conflict intensity using qualita-
tive and subjective metrics) results in uncertainty in the assessment of the proliferation
metric. In lieu of a probabilistic uncertainty quantification, we perform a statistical anal-
ysis that compares the results from the model against the empirical record to assess the
internal validity of the model.

Rank analysis

In this test, we examine the performance of the multiplex network analysis with the
goal of quantifying the success of the model in differentiating states with and with-
out proliferation activity. To this end, we investigate the magnitude of the proliferation
metric on a state-by-state basis in relation to the empirical record. This rank analysis
further compares states that have exercised the exploration, pursuit, or acquisition of
nuclear weapons versus clearly non-nuclear states, and demonstrates that the model can
be used to distinguish between proliferators and non-proliferators with strong statistical
significance.
To compare the output of our model against the historical record, states are first ranked

based on their proliferation metric in a given year from highest to lowest. The rank
analysis converts the ordinal rank of a state in the proliferation metric distribution to
a percentile rank, where the highest proliferation metric in a given year corresponds to
100% (rank 1) and the lowest corresponds to 0% (rank 0). This approach accounts for the
changing number of nodes in the network as a function of year. For all years represented
in the model, we determine the percentile rank for the four categories of state defined by
the Singh and Way proliferation metric of 0 (no activity), 1 (explore), 2 (pursue), and 3
(acquire). We then average the percentile ranks for all of the states in each category over
the year range of 1951-1990, as shown in Table 1.
The average percentile rank increases as the proliferation stage progresses towards

nuclear weapons acquisition. This suggests that the model yields, on average, higher pro-
liferation metric values for states with a more advanced proliferation status and broadly
reflects the empirical record. Indeed, the model allows for differentiation between states
with nuclear weapons programs and those with no nuclear weapons related activity
within one standard deviation. The large standard deviations prevent the individualized
differentiation of states exploring, pursuing, and acquiring nuclear weapons using the
proliferation metric defined in this work. However, inclusion of additional external prolif-
eration determinants (e.g., economic sanctions, participation in nonproliferation treaties
or regimes, etc.), internal proliferation determinants (e.g., regime type, leadership psy-
chology, indigenous technological proficiency, etc.), and correlation across layers that

Table 1 Average percentile rank of each state’s proliferation metric grouped by proliferation stage

Proliferation Stage Average Rank Standard Deviation Count

No Activity (0) 0.45 0.27 4518

Explore (1) 0.65 0.23 204

Pursue (2) 0.86 0.11 174

Acquire (3) 0.93 0.10 216

States with and without nuclear weapons (Stage=3 and 0, respectively) are differentiated with the statistical significance of one
standard deviation. The count gives the number of country-year instances used to derive each average rank
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captures the interplay between motivation and technical capability may serve to improve
model resolution.

Statistical analysis

Next, we determine the median proliferation metric for states grouped into two sample
sets: those without and those with proliferation activity (the latter includes the subgroups
of explore, pursue, and acquire), as illustrated in Fig. 3.
We then performed a Mann Whitney U test to quantify the statistical significance of

the difference between the median proliferation metric values for the two sample sets
(Mann and Whitney 1947). This, in combination with the percentile rank analysis, pro-
vides a quantitative assessment of whether states with proliferation activity were valued at
higher proliferation metric values using the network model. The use of two groups refo-
cuses the performance assessment on illuminating proliferators within the total sample
population.
The results from the Mann-Whitney U test were used to generate a p-value as a func-

tion of year, shown in Fig. 4, reflective of the probability that the median proliferation
metric values for states with and without proliferation activity are equal. The p-values
for the year range of 1951–1990 varied from 10−9 to 0.06. With the exception of 1953,
all p-values lie below a statistical significance threshold of 0.05. The relatively higher
p-values in the early 1950s may be due in part the relative youth of nuclear weapons,
where proliferation behavior is more strongly driven by technical capability rather than
geopolitical concerns. The p-value tends to decrease as a function of time indicating an
increased robustness of the multiplex network model to differentiate proliferators in later
years.
Taken together, the performance evaluations suggest that the differences between pro-

liferators and non-proliferators are well-established by the proliferation metric and that
the network analysis has external validity when compared against the empirical record.

Fig. 3 Median proliferation metric as a function of year for states grouped by no activity (non-proliferators)
and those with nuclear weapons exploration, pursuit, or acquisition (proliferators). The median state
proliferation metric (SPM) values are shown using data points while the line is provided to guide the eye
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Fig. 4 The p-value characterizing the median proliferation metrics for proliferators versus non-proliferators as
a function of year

The Iran case
In this section, we examine the case of Iran across the time period included in the model.
Iran offers a useful case given the variation in its level of proliferation—as indicated in
several studies (Singh and Way 2004; Kroenig 2009)—and its continued policy relevance
amid disagreement among policy-makers about the appropriate policies to encourage
nonproliferation (Reardon 2012; Waltz 2012).
Iran’s nuclear ambitions in the five decades covered by our model can usefully be split

into two phases: the first, in the 1960s and 1970s prior to the Islamic Revolution and the
second, in the 1980s during its conflict with Iraq. These phases, appropriately, reflect the
rise in the proliferation metric from the multiplex model, as shown in Fig. 5.
During the first phase, Shah Pahlavi, seeking a “full-fledged nuclear power indus-

try”, contracted with an American company (AMF) to create its first research reactor
and other nuclear reactors designed for power production with further support pro-
vided by the French and German governments (Burr 2009; Albright 2005). These
reactors were ostensibly part of modernization efforts with substantial foreign assis-
tance. By 1974, Iran created the Atomic Energy Organization of Iran (AEOI) with
additional NCA assistance from the United States, Germany, and France (Bahgat
2006). During this phase, we observe the approximate doubling of the NCA contri-
bution to the proliferation metric, strengthening Iran’s latent nuclear capability. At
the end of this first phase, Iran’s alliance metric contribution to the overall prolifera-
tion metric diminishes in 1980 following the 1979 Revolution. This political upheaval
transformed Iran from a constitutional monarchy to a theocratic republic, significantly
changing the structure of its alliances with states around the world and leading to
the withdrawal of foreign assistance. Trade is consistently low throughout this phase
and does not appear to negatively influence the proliferation metric in a substantial
way. Interestingly, the Revolution initially led to a plateau in Iran’s nuclear ambi-
tions as Ayatollah Khomeini’s regime found nuclear technology contrary to its religious
convictions.
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Fig. 5 The proliferation metric for Iran as a function of year. The monolayer contributions to the proliferation
metric are shown in the stacked bar, and the filled diamonds give the total proliferation metric. Iran’s
proliferation stage is plotted on the secondary ordinate axis

By themid-1980s—and during a period of intense conflict with neighboring Iraq—these
convictions changed with the Iranian regime calling for its nuclear scientists abroad to
return to Iran as, “deterring Iraq became the principal rationale for the current regime’s
revival of the country’s nuclear weapons program” (Bowen and Kidd 2004). Once again,
the model trends well with Iran’s proliferation trajectory, as shown by the increasing
proliferation metric—primarily driven by an increase in the conflict environment—
immediately prior to the decision to explore (Stage=1) then pursue (Stage=2) a nuclear
program in 1984. Indeed, Iran’s nuclear program reached its highest proliferation stage
during the period under review in 1988 with the separation of plutonium from irradi-
ated uranium at the Tehran Research Reactor (Bowen and Kidd 2004). By the early 1990s,
Iran was once again seeking foreign assistance—this time from Moscow and Beijing—
to complete the nuclear reactors that were moth-balled following the 1979 Revolution
even as the threat from neighboring Iraq decreased following the cessation of hostilities
and the outbreak of the First Gulf War. Once again, Iran’s proliferation timeline (i.e., the
proliferation stage metric in Fig. 5) closely mirrors the increase in the conflict metric.

Conclusions, implications, and future work
In this demonstration of the application of multiplex modeling in the nuclear domain, we
quantify each state’s relative proliferation motivation as a node-based metric of its rela-
tions with other states, explore the variables that correlate with proliferation decisions,
and test this metric against the empirical record to demonstrate the utility of multiplex
network modeling.
As noted, substantial attention has been given to the U.S. withdrawal from the JCPOA

and its potential consequences for Tehran’s decision to pursue nuclear weapons. This
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model provides a framework for policymakers to consider the effects of interstate inter-
actions on proliferation decision-making utilizing real-time, observable data on political
and economic relations. Beyond the four determinants considered in this work, themodel
can be refined in resolution (e.g., to include data on regional rivalry, strategic trade, non-
proliferation treaties, nuclear weapon free zones, nuclear umbrella coverage, etc.) with
different intra- and inter-layer network dynamics. Future work, for example, might also
consider node attributes for each state to model the internal determinants of prolifera-
tion (such as regime type) in addition to the external factors discussed herein. One might
also consider indirect ties or “friend-of-friend” relations, which have been shown to affect
the security-seeking behavior of states (Singh andWay 2004; Lupu and Traag 2013).Aside
from state-level proliferation, future work may also explore the use of graph metrics
such as transitivity or degree of multiplexity to characterize global proliferation-relevant
phenomena. Similarly, network neighborhood analysis may be used to explore subgraph
features reflective of military alliance blocs, such as NATO or (historically) the Warsaw
Pact, or multilateral agreements such as the Treaty on the Nonproliferation of Nuclear
Weapons. Taken together, the potential contribution of the multiplex modeling approach
to exploring appropriate nonproliferation policy solutions is considerable.
Multiplex network analysis may also be usefully applied to entirely different social

science questions. For example, this method might be used to examine state motiva-
tions for joining international organizations. Alternatively, future researchmight consider
conflict as a dependent variable to examine the network-related determinants of war
such as neighborhood dynamics, relative wealth, regime type, and international orga-
nization membership. The multiplex network methodology exemplified in this paper
extends traditional network approaches to consider real-world, multi-relational complex-
ity and offers a new paradigm within which to explore the structure and dynamics of
interconnected global systems.

Endnotes
1 The model does not yield a measure of absolute proliferation likelihood, as there are a

variety of both domestic and inter-state proliferation determinants that are not included
in this demonstration.

2 Future work might consider both non-state actors and military alliance blocs such as
NATO or (historically) the Warsaw Pact as nodes in a network.

3 Safety agreements are drawn from a score of 1 on Fuhrmann’s scale, non-safety
agreements account for score 2-5, and sensitive agreements are drawn from scores 6
and 7.

4 For any two states i and j, a large value of Ri relative to Rj indicates that state i is more
motivated by the examined variables to proliferate than state j.

5Other metrics considered by the research team include the NPROGRAM and
NWEAPON variables included in Jo and Gartzke (2007) and a series of dichotomous
measures.
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