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In this work we prove the existence and uniqueness up to a stopping time for the stochastic counterpart of Tosio
Kato’s quasilinear evolutions in UMD Banach spaces. These class of evolutions are known to cover a large
class of physically important nonlinear partial differential equations. Existence of a unique maximal solution
as well as an estimate on the probability of positivity of stopping time is obtained. An example of stochastic
Euler and Navier-Stokes equation is also given as an application of abstract theory to concrete models.
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1 Introduction

In a seminal paper [10], Tosio Kato established the existence and uniqueness of local in time mild solutions of
the Cauchy problem for various quasilinear equations of evolution. He showed that a wide range of important
physical problems can be modeled in a unified manner by a class of quasilinear evolution equations in a Ba-
nach space. These examples include the first order symmetric hyperbolic systems, second order nonlinear wave
equations, Korteweg-de Vries (KdV) equation, Navier-Stokes equations, Euler equations of fluid dynamics, equa-
tions of compressible fluid flow, compressible viscoelastic fluid flow equations, magnetohydrodynamic (MHD)
equations, coupled Maxwell and Dirac equations of quantum electrodynamics, and Einstein field equations of
general relativity. As a stochastic counterpart of Kato’s theory, the paper [7] considered the stochastic quasilinear
evolution equation in a separable Hilbert space with Gaussian cylindrical Wiener noise and outlined the ideas
for existence and uniqueness of local mild solutions using fixed point arguments. In this work we consider the
stochastic quasilinear evolution equation in a reflexive UMD Banach space with more general noise coefficient
and prove the existence and uniqueness of local pathwise mild solution up to a stopping time as well as the
existence of a maximal solution. This paper also improves several other aspects of the Hilbert space case pre-
sented in [7] such as the introduction of stopping time in the arguments along with an estimate of its probability
of positivity and a clarification on the conditions on the covariance structure of the noise. We demonstrate the
application of abstract theory to concrete models by giving an example of the stochastic Euler and Navier-Stokes
equations perturbed by Gaussian cylindrical Wiener noise. The current literature on stochastic evolutions, for
example [3, 4, 21, 27, 22, 26], do not cover linear and quasilinear evolution equation of hyperbolic type. To the
best of the authors knowledge, a systematic treatment for the local solvability of stochastic quasilinear evolution
equation of hyperbolic type by extending Kato’s theory is only treated in [7] and this paper.
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2 M. T. Mohan and S. S. Sritharan: Stochastic quasilinear evolution equations

2 Stochastic quasilinear evolution equation

Let us consider the Cauchy problem for the stochastic quasilinear evolution equation

du(t) + A(t,u(t))u(t)dt = ΦdWH(t), 0 ≤ t ≤ T,

u(0) = u0 ,

}
(2.1)

in a Banach space X. Let L(X,Y) denotes the space of all bounded linear operators from X to Y and D(A)
denotes the domain of any operator A. Let us begin with a set of assumptions as in [10] and [7].

2.1 The main assumptions are;

(A1) Let X be a reflexive UMD Banach space of type 2 (defined in section 2.1). There is an another reflexive
UMD Banach space Y ⊂ X of type 2 which is continuously and densely embedded in X. There exists an
isomorphism S : Y → X and the norm of Y is chosen so that S becomes an isometry, i.e., ‖u‖Y = ‖Su‖X.

(A2) Let W be an open ball in Y. Let A(·, ·) ∈ L(Y,X) be a function on [0, T ]×W into G(X, 1, β(y)) (defined
in section 2.1), where β(·) is a real number and is a constant for y ∈ W, i.e.,

∥∥∥e−sA(t,y)
∥∥∥
L(X,X)

≤ eβ (y)s , s ∈ [0,∞), t ∈ [0, T ], y ∈ W. (2.2)

(A3) For all t ∈ [0, T ] and y ∈ W, we have

SA(t,y)S−1 = A(t,y) + B(t,y), (2.3)

where

B(t,y) ∈ L(X,X) and ‖B(t,y)‖L(X,X) ≤ λ1(y), (2.4)

where λ1(y) > 0 is a constant for y ∈ W. Including the domain relation, (2.3) is satisfied in the strict sense.
That is, a function x ∈ X which is in D(A(t,y)) if and only if S−1x ∈ D(A(t,y)) with A(t,y)S−1x ∈ Y.

(A4) For all t ∈ [0, T ] and y ∈ W, we have A(t,y) ∈ L(Y,X) (in the sense that Y ⊂ D(A(t,y)) and the
restriction of A(t,y) to Y is in L(Y,X)) and

‖A(t,y)‖L(Y,X) ≤ λ2(y), (2.5)

where λ2(y) > 0 is a constant for y ∈ W. Also,

(i) for all y ∈ W, A(t,y) is continuous in the L(Y,X)−norm,

(ii) for all t ∈ [0, T ], A(t, ·) is Lipschitz continuous, that is,

‖A(t,y1)−A(t,y2)‖L(Y,X) ≤ µ(y1 ,y2)‖y1 − y2‖X, (2.6)

where µ(y1 ,y2) > 0 is a constant for y1 ,y2 ∈ W.

(A5) Let y0 be the center of W. Then A(t,y)y0 ∈ Y for all t ∈ [0, T ], y ∈ W, and

‖A(t,y)y0‖Y ≤ λ3(y), t ∈ [0, T ], y ∈ W, (2.7)

where λ3(y) > 0 is a constant for y ∈ W.

In (2.1), WH(·) is a cylindrical Wiener process in H, where H is a separable Hilbert space, and Φ is a
γ−radonifying operator (defined in section 2.1) in X with the following properties:

(i) Φ ∈ γ(H,X) with ‖Φ‖γ (H,X) < ∞,

(ii) SΦ ∈ γ(H,X) with ‖SΦ‖γ (H,X) < ∞,

(iii) S2Φ ∈ γ(H,X) with ‖S2Φ‖γ (H,X) < ∞,

c© 0 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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where γ(H,X) is the space of all γ−radonifying operators from H to X. If X is a Hilbert space, then γ(H,X) =
L2(H,X) isometrically, where L2(H,X) denotes the space of all Hilbert-Schmidt operators from H to X.

Remark 2.2 The theory discussed in this paper works for any reflexive UMD Banach space, with some
suitable modifications in the above properties (i)-(iii).

Definition 2.3 Let τ(ω) be a given stopping time and u0 ∈ W ⊂ Y, a.s. An (Ft)t∈[0,τ )−adapted stochastic
process {u(t), t ≥ 0} ∈ C(0, τ(ω);W), a.s., is a local pathwise mild solution in Y of the stochastic quasilinear
evolution equation (2.1) if

(i) {u(t), t ≥ 0} is jointly measurable with respect to (t, ω) and E

[
sup

0≤t≤τ (ω )

‖u(t)‖2Y

]
< ∞,

(ii) (Ft)t∈[0,τ )−adapted paths of u(·) are continuous,

(iii) for all t ∈ [0, τ(ω)),

u(t) = Uu(t, 0)u0 +Uu(t, 0)

∫ t

0

ΦdWH(t) +

∫ t

0

Uu(t, s)A(s,u(s))

(∫ t

s

ΦdWH(r)

)
ds, (2.8)

holds with probability one (in (2.8) Uu(·, ·) is the random evolution operator, see Section 2.3),

(iv) for a given 0 < δ < 1, P {τ(ω) > δ} ≥ 1 − δ2M, where M is a constant dependent of u0 and Φ, and
independent of δ.

A local pathwise mild solution (u(t))t∈[0,τ ) is called maximal pathwise mild solution in Y consisting of
C(0, τ(ω);W)−valued admissible processes, if for any other local pathwise mild solution (ũ(t))t∈[0,τ̃ ) in Y,
almost surely we have τ̃ ≤ τ and ũ ≡ u

∣∣
[0,τ̃ )

. Clearly, a maximal local mild solution in Y is always unique in Y.

We say that τ is an explosion time if for almost all ω ∈ Ω with τ(ω) < T ,

lim
t↑τ (ω )

[
sup

0≤s≤t
‖u(s, ω)‖Y

]
= ∞. (2.9)

The main theorem of this paper is

Theorem 2.4 Let (Ω,F , (Ft)t≥0 ,P) be a given filtered probability space. Let Assumption 2.1 be satisfied
and let u0 ∈ W ⊂ Y, a.s. Then, for the stopping time τN defined by

τN := inf
t≥0

{
t : β(u(t)) ∨ λ1(u(t)) ∨ λ2(u(t)) ∨ λ3(u(t)) ∨ µ(u(t)) ∨

∥∥∥∥∥

∫ t

0

SΦdWH(s)

∥∥∥∥∥
X

∨
∥∥∥∥∥

∫ t

0

S2ΦdWH(s)

∥∥∥∥∥
X
≥ N

}
, (2.10)

for N ∈ N, we have

(i) for t ∈ [0, T̃ ∧ τN ), T̃ ≤ T , there exists an (Ft)t∈[0,T̃ ∧τN )−adapted stochastic process u(·) having

continuous trajectories satisfying (2.8) with probability one in L2(Ω;C(0, T̃ ∧ τN ;W)),

(ii) E

[
sup

0≤t≤T̃ ∧τN

‖u(t)‖2Y

]
≤ 3e4N T̃

{
E
[
‖u0‖2Y

]
+N 2

(
1 + 4N 2 T̃

)}
,

(iii) for a given 0 < δ < 1,

P {τN (ω) > δ} ≥ 1− Cδ2
{
E
[
‖u0‖2Y

]
+ C

(
δ‖SΦ‖2γ (H,X) + 8‖SΦ‖2γ (H,X) + 8‖S2Φ‖2γ (H,X)

)}
,

where C is a positive constant independent of δ,

(iv) there exists a unique pathwise maximal solution (u(·), τ∞), where τ∞ = lim
N→∞

τN .

c© 0 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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4 M. T. Mohan and S. S. Sritharan: Stochastic quasilinear evolution equations

To establish the existence and uniqueness of local pathwise mild solution of (2.1), we proceed as follows:

1. For certain function t 7→ v(t) ∈ Y, we consider the stochastic linear evolution equation with random drift

du(t) + A(t,v(t))u(t)dt = ΦdWH(t), 0 ≤ t ≤ T,

u(0) = u0 .

}
(2.11)

2. We prove that (2.11) has a unique solution u = u(t) for u0 ∈ W ⊂ Y, a.s., where W is an open ball in
Y of radius R (throughout this manuscript), by constructing a random evolution operator to the problem
(2.11), and then we define a mapping v 7→ u = Ψ(v).

3. We show that the map Ψ(·) has a fixed point, which is the unique solution of (2.11), by using the contraction
mapping theorem.

2.1 Preliminaries

In this subsection, we give some basic concepts of UMD Banach spaces and stable family of generators of a
C0−semigroup.

Definition 2.5 Let (γn )∞n=1 be a sequence of independent standard Gaussian random variables on a probability
space (Ω̃, F̃ , P̃) (we use the notation (Ω,F ,P) for the probability space on which our process is defined). A
bounded linear operator R ∈ L(H,X) is said to be γ−radonifying if there exists an orthonormal basis (en )∞n=1

of H such that the Gaussian series
∞∑

n=1

γnRen converges in L2(Ω̃;X). Then, we define

‖R‖γ (H,X) :=


Ẽ

∥∥∥∥∥
∞∑

n=1

γnRen

∥∥∥∥∥

2

X




1
2

, (2.12)

and the number ‖R‖γ (H,X) does not depend on the sequence (γn )∞n=1 and the basis (en )∞n=1 . It defines a norm on
the space γ(H,X) of all γ−radonifying operators from H into X.

Definition 2.6 Let 1 ≤ p ≤ 2. A Banach space X is called of type p if there exists a constant α ≥ 0 such that
for all finite sequences (xn )

N
n=1 in X, we have

E

[∥∥∥∥∥
N∑

n=1

rnxn

∥∥∥∥∥

p

X

]
≤ αp

N∑

n=1

‖xn‖pX, (2.13)

where (rn )n≥1 be a Rademacher sequence, i.e., a sequence of independent random variables taking the values
±1 with probability 1/2.

The least admissible constant is denoted by αp,X.

Definition 2.7 Let (Mn )
N
n=1 be an X−valued martingale. The sequence (dn )

N
n=1 defined by dn := Mn −

Mn−1 with M0 = 0 is called the martingale difference sequence associated with (Mn )
N
n=1 .

We call (dn )Nn=1 an Lp−martingale difference sequence if it is the difference sequence of an Lp−martingale.

Definition 2.8 Let 1 ≤ p ≤ 2. A Banach space X is of martingale type p if there exists a constant κ ≥ 0 such
that for all all finite X−valued martingale difference sequences (dn )Nn=1 , we have

E

[∥∥∥∥∥
N∑

n=1

dn

∥∥∥∥∥

p

X

]
≤ κp

N∑

n=1

E [‖dn‖pX] . (2.14)

The least admissible κ is denoted by κp,X. Since every Gaussian sequence is a martingale difference sequence,
every Banach space of martingale type p is type p, with constant αp,X ≤ κp,X.

c© 0 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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Definition 2.9 A Banach space X is called a UMD−space (unconditional martingale differences) if for
some p ∈ (1,∞) (equivalently for all p ∈ (1,∞)), there exists a constant η ≥ 0 such that for all X−valued
Lp−martingale difference sequences (dn )Nn=1 and all signs (εn = ±1)Nn=1 , we have

E

[∥∥∥∥∥
N∑

n=1

εndn

∥∥∥∥∥

p

X

]
≤ ηpE

[∥∥∥∥∥
N∑

n=1

dn

∥∥∥∥∥

p

X

]
, (2.15)

for all N ≥ 1.

The least admissible constant in Definition 2.9 is called the UMDp−constant of X and is denoted by ηp,X.

Remark 2.10 Let 1 ≤ p ≤ 2 and X be a UMD Banach space with type p, then X is of martingale type p and
κp,X ≤ ηp,Xαp,X (see Proposition 5.3, [23]).

We now consider UMD Banach spaces of type 2. A Banach space X has type 2 if and only if we have the
inclusion

L2(0, T ; γ(H,X)) →֒ γ(L2(0, T ;H),X),

for any T > 0. Let WH be an H−valued cylindrical Wiener process on (Ω,F ,P). An H−strongly measurable
process Φ : [0, T ] × Ω → L(H,X) satisfying the equivalent conditions of Theorem 3.6, [20] will be called
Lp−stochastically integrable with respect to WH. The stochastic integral of Φ with respect to WH(·) is denoted

by
∫ T

0

Φ(t)dWH(t).

Theorem 2.11 Let X be a UMD−space and let p ∈ (1,∞). If X has type 2, then every H−strongly mea-
surable and adapted process Φ which belongs to Lp(Ω;L2(0, T ; γ(H,X))) is Lp−stochastically integrable with
respect to WH and we have

E

[∥∥∥∥∥

∫ T

0

Φ(t)dWH(t)

∥∥∥∥∥

p

X

]
≤ Cp,XE

[
‖Φ‖pL2 (0,T ;γ (H,X))

]
. (2.16)

P r o o f. See Corollary 3.10, [20], section 5, [24].

Hence if X is a UMD Banach space and has type 2, then for every adapted and strongly measurable Φ ∈
Lp(Ω;L2(0, T ; γ(H,X))), the non-anticipating stochastic integral process

(∫ t

0

Φ(s)dWH(s)

)

t∈[0,T ]

exists and

is pathwise continuous. Hence, for all p ∈ (1,∞) there exists a constant Cp,X independent of Φ(·) such that the
following one-sided estimate holds:

{
E

[
sup

t∈[0,T ]

∥∥∥∥
∫ t

0

Φ(s)dWH(s)

∥∥∥∥
p

X

]}1/p

≤ Cp,X



E

[∫ T

0

‖Φ(t)‖2γ (H,X) dt

]p/2




1/p

. (2.17)

For the Burkholder-Davis-Gundy inequality in UMDp Banach spaces, for 1 < p < ∞, see Theorem 4.4, [20]. For
more details on γ−radonifying operators and stochastic integration in UMD Banach spaces, interested readers
readers may look into [19, 20, 23].

Let G(X) denotes the set of all negative generators of C0−semigroup on X, i.e., a linear operator A in a
Banach space X is in G(X) if it generates a semigroup U = {U(t) = e−tA ; 0 ≤ t < ∞} of class C0 ([11]).
Following Kato [10], let us give some basic definitions:

Definition 2.12 Let G(X,M, β) denotes the set of all linear operators A in X such that −A generates a
C0−semigroup {e−tA} with

‖e−tA‖L(X,X) ≤ Meβt , 0 ≤ t < ∞, β ∈ R.

The operator A is m−accretive if A ∈ G(X, 1, 0), in which case {e−tA} is a contraction semigroup. A is said to
be quasi−m−accretive if A ∈ G(X, 1, β).

c© 0 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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6 M. T. Mohan and S. S. Sritharan: Stochastic quasilinear evolution equations

Definition 2.13 A family A = {A(t)} of elements of G(X), is said to be stable if there are constants M and
β such that

∥∥∥∥∥∥

k∏

j=1

(A(tj ) + λ)−1

∥∥∥∥∥∥
L(X,X)

≤ M(λ− β)−k , λ > β, (2.18)

for every finite family 0 ≤ t1 ≤ · · · ≤ tk ≤ T, k = 1, 2, · · · . The pair (M,β) is called the stability index for
{A(t)}. In (2.18), the operator product is time-ordered, i.e., if ti > tj , then the operator A(tj ) will be on the left
of the operator A(ti).

It can be shown that (2.18) is equivalent to ([8])
∥∥∥∥∥∥

k∏

j=1

e−sj A(tj )

∥∥∥∥∥∥
L(X,X)

≤ Meβ (s1+···+sk ) , (2.19)

for all tj such that 0 ≤ t1 ≤ · · · ≤ tk ≤ T, k = 1, 2, · · · and all sj ≥ 0, and the product on the left is
time-ordered. The family {A(t)} is trivially stable with stability index (1, β) if A(t) ∈ G(X, 1, β).

Definition 2.14 ([25, 6]) Let A be a linear operator in X such that −A generates a C0−semigroup and Y be
a subspace of X which is closed with respect to the norm ‖ · ‖Y. Then Y is called A−admissible if e−tAY ⊆ Y,
for t ≥ 0, i.e., Y is an invariant subspace of e−tA and the restriction of e−tA to Y is a C0−semigroup in Y, i.e.,
it is strongly continuous in the norm ‖ · ‖Y.

2.2 The Class S

Let us assume that u(0) = u0 ∈ W ⊂ Y, a.s., where W is an open ball in Y of radius R (here R is deterministic).
Since W is an open ball in Y containing u0 , we can choose the R > 0 such that ‖u0 − y0‖Y < R, a.s., where y0

is the center of the ball W. Let S be the set of all functions v(·, ·) from [0, T̃ ∧ τN ]× Ω to Y such that

(i) ‖v(t, ω)− y0‖Y ≤ R, a.s. so that v ∈ W, a.s., (2.20)

(ii) v(·, ·) is continuous from [0, T̃ ∧ τN ]× Ω to X, (2.21)

(iii) v(·, ·) is (Ft)t∈[0,T̃ ∧τN ] − adapted, (2.22)

where T̃ is a positive number and T̃ ≤ T , which will be determined later, and τN is the stopping time defined
below (see (2.25)).

For v ∈ S , let us denote Av(t) = A(t,v(t)) ∈ L(Y,X) for all t ∈ [0, T̃ ]. With this notation, one can reduce
(2.11) to

du(t) + Av(t)u(t)dt = ΦdWH(t), 0 ≤ t ≤ T̃ ,

u(0) = u0 ∈ W ⊂ Y,

}
(2.23)

for 0 < T̃ ≤ T . Since Φ ∈ γ(H,X), from (2.17), it can be easily seen that, for all p ∈ (1,∞), there exists a
constant Cp,X independent of Φ such that the following one-sided estimate holds:

E

[
sup

t∈[0,T̃ ]

∥∥∥∥
∫ t

0

ΦdWH(s)

∥∥∥∥
p

X

]
≤ Cp,X

∫ T̃

0

‖Φ‖pγ (H,X) dt = Cp,XT̃ ‖Φ‖pγ (H,X) . (2.24)

Also, it is clear that (2.23) is a stochastic linear evolution equation in u(t). But unlike the linear evolution system
described in [10] for the deterministic setting, here the drift is random due to the dependence of v(t, ω) and we
need to construct a random evolution operator in this context. Let us first define the sequence of stopping times
τN to be

τN := inf
t≥0

{
t : β(v(t)) ∨ λ1(v(t)) ∨ λ2(v(t)) ∨ λ3(v(t)) ∨ µ(v(t)) ∨

∥∥∥∥∥

∫ t

0

SΦdWH(s)

∥∥∥∥∥
X

c© 0 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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∨
∥∥∥∥∥

∫ t

0

S2ΦdWH(s)

∥∥∥∥∥
X
≥ N

}
, (2.25)

for N ∈ N.

Remark 2.15 Since v(·, ·) is random, the constants β, λ1 , λ2 , λ3 and µ in Assumption 2.1 depends not only
on the radius of the open ball W, but also on N , where N is given in the definition of the stopping time (2.25).
Hence, by making use of the stopping time, we have

(i)
∥∥e−sA(t,v(t))

∥∥
L(X,X) ≤ eN s , for all s ∈ [0,∞), v(·) ∈ W and t ∈ [0, T̃ ∧ τN ],

(ii) ‖A(t,v(t))‖L(Y,X) ≤ N , for all v(·) ∈ W and t ∈ [0, T̃ ∧ τN ],

(iii) ‖B(t,v(t))‖L(X,X) ≤ N , for all v(·) ∈ W and t ∈ [0, T̃ ∧ τN ],

(iv) ‖A(t,v1(t))−A(t,v2(t))‖L(Y,X) ≤ N‖y1 − y2‖X for all v1(·),v2(·) ∈ W and t ∈ [0, T̃ ∧ τN ],

(v) ‖A(t,v(t))y0‖Y ≤ N , for all v(·) ∈ W and t ∈ [0, T̃ ∧ τN ], where y0 is the center of the open ball W.

By Assumption 2.1−(A2), Av(t) ∈ G(X, 1, β(v)) and hence the family {Av(t)} is stable with stability index
(1, β(v)).

Lemma 2.16 Let τN be the stopping time defined in (2.25), then the map Av(·) : [0, T̃ ∧ τN ] → L(Y,X) is
continuous in its norm.

P r o o f. See Lemma 9.1, [10].

By Assumption 2.1−(A3), we have

SAv(t)S−1 = Av(t) + Bv(t), Bv(t) = B(t,v(t)) ∈ L(X,X), ‖Bv(t)‖L(X,X) ≤ N. (2.26)

Lemma 2.17 Let τN be the stopping time defined in (2.25), then the map Bv(·) : [0, T̃ ∧ τN ] → L(X,X) is
weakly continuous and hence strongly measurable.

P r o o f. See Lemma 9.2, [10].

2.3 Random Evolution Operator

Let us now construct the random evolution operator to the problem (2.11). We consider the homogeneous random
evolution equation

du(t)

dt
+A(t,v(t))u(t) = 0, 0 ≤ t ≤ T̃ ,

u(0) = u0 ,



 (2.27)

u0 ∈ W ⊂ Y, a.s., where u(t, ω) and v(t, ω) ∈ S are random. We construct the random evolution operator
with the help of Assumption 2.1 (A1)− (A4)(i), Lemma 2.16 and Lemma 2.17.

Theorem 2.18 Let τN be the stopping time defined in (2.25). Under Assumption 2.1 (A1) − (A4)(i), there
exists a unique evolution operator {Uv(t, s)} := {U(t, s, (v(r, ω))s≤r≤t)} defined on the triangle △̃ := 0 ≤
s ≤ t ≤ T̃ ∧ τN , with the following properties:

1. Uv(t, s) is strongly continuous on △̃ to L(X,X), with Uv(s, s) = I.

2. Uv(t, s)Uv (s, r) = Uv(t, r).

3. Uv(t, s)Y ⊂ Y, and Uv(t, s) is strongly continuous on △̃ to L(Y,Y).
4. For each y ∈ Y, Uv(·, ·)y satisfies the following:

Uv(t, s)y − y = −
∫ t

s

A(r,v(r))Uv (r, s)ydr, (2.28)
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Uv(t, s)y − y = −
∫ t

s

Uv(t, r)A(r,v(r))ydr, (2.29)

so that
∂Uv(t, s)

∂t
= −A(t,v(t))Uv (t, s),

∂Uv(t, s)

∂s
= Uv(t, s)A(s,v(s)) exist pointwise in Ω in the

strong sense in L(Y,X) and are strongly continuous on △̃ to L(Y,X).

P r o o f. Let us construct the piecewise constant families {An (t,v(t))}t∈[0,T̃ ] , n = 1, 2, · · · for approximating

the family {A(t,v(t))}t∈[0,T̃ ∧τN ] as follows: Let tnk =
k

n
(T̃ ∧ τN ), k = 0, 1, · · · , n and let

An (t,v(t)) = A(tnk ,v(t
n
k )) for tnk ≤ t ≤ tnk+1 , k = 0, 1, · · · , n− 1, (2.30)

An (T̃ ∧ τN ,v(T̃ ∧ τN )) = A(T̃ ∧ τN ,v(T̃ ∧ τN )). (2.31)

From these piecewise constant families, we can construct the random evolution approximations Uv
n (·, ·) to

Uv(·, ·) in [0, T̃ ∧ τN ] using the similar methods described in Theorem I, [9], Theorem 5.3.1, [25] such that

∂

∂t
Uv

n (t, s)y = −Av
n (t)U

v
n (t, s)y for t 6= tnk , k = 0, 1, · · · , n, (2.32)

∂

∂s
Uv

n (t, s)y = Uv
n (t, s)A

v
n (s)y for s 6= tnk , k = 0, 1, · · · , n, (2.33)

for y ∈ Y and

Uv(t, s)x = lim
n→∞

Uv
n (t, s)x, for x ∈ X, 0 ≤ s ≤ t ≤ T̃ ∧ τN , (2.34)

where Av
n (·) = An (·,v(·)) and Uv

n (t, s) = Uv
n (t, s, (v(r, ω))s≤r≤t).

Theorem 2.19 Let τN be the stopping time defined in (2.25). Under Assumption 2.1 (A1)−(A4)(i), let

{Uv(t, s)} := {U(t, s, (v(r, ω))s≤r≤t)}

be the unique evolution operator defined on the triangle △̃ := 0 ≤ s ≤ t ≤ T̃ ∧ τN with the properties described
in Theorem 2.18. Then, we have

sup
t,s∈△̃

‖Uv(t, s)‖L(X,X) ≤ eβ (v)T̃ ≤ eN T̃ , (2.35)

sup
t,s∈△̃

‖Uv(t, s)‖L(Y,Y) ≤ e(β (v)+λ1 (v))T̃ ≤ e2N T̃ . (2.36)

P r o o f. From Assumption 2.1−(A2), we know that {A(t,v(t))}t∈[0,T̃ ∧τN ] is a stable family of infinitesimal
generators in X with stability index (1, β(v)). Assumption 2.1−(A2) also implies that Y is A(t,v(t))−admissible
for every t ∈ [0, T̃ ∧ τN ] (Theorem 4.5.8, [25], Lemma 7.8.1, [6]). Let Ã(t,v(t)) be the part of A(t,v(t)) in
Y. Then by Theorem 4.5.5, [25], Ã(t,v(t)) is the infinitesimal generator in Y. By using Theorem 5.2.3, [25],
A(t,v(t))+B(t,v(t)) from (2.26) is quasi stable with a stability index (1, β(v) +λ1(v)) (Corollary 7.8.2, [6]).
Hence, by making use of Theorem 5.2.4, [25], Ã(t,v(t)) is quasi-stable with stability index (1, β(v) + λ1(v)).
The construction of the random evolution operator in Theorem 2.18 (Theorem I, [9], Theorem 5.3.1, [25]) and
the use of stopping time given in (2.25) yield the estimates (2.35) and (2.36).

Hence the (Ft)t∈[0,T̃ ∧τN ]−adapted solution of the problem (2.27) in [0, T̃ ∧ τN ] can be written as

u(t) = Uv(t, 0)u0

with u ∈ C(0, T̃ ∧ τN ;Y) a.s., since by using part (3) of Theorem 2.18 and

sup
0≤t≤T̃ ∧τN

‖u(t)‖Y = sup
0≤t≤T̃ ∧τN

‖Uv(t, 0)u0‖Y = sup
0≤t≤T̃ ∧τN

∥∥SUv(t, 0)S−1Su0

∥∥
X

c© 0 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

mn header will be provided by the publisher 9

≤ sup
0≤t≤T̃ ∧τN

∥∥SUv(t, 0)S−1
∥∥
L(X,X) ‖Su0‖X

≤ sup
0≤t≤T̃ ∧τN

‖S‖L(Y,X)‖Uv(t, 0)‖L(Y,Y)‖S−1‖L(X,Y)‖u0‖Y

≤ e2N T̃ ‖u0‖Y < ∞, (2.37)

where we used the fact that ‖S‖L(Y,X) = ‖S−1‖L(X,Y) = 1, since S is an isometric isomorphism from Y to X.

Remark 2.20 Also from (2.37), for u0 ∈ W ⊂ Y, a.s., we have

E

[
sup

0≤t≤T̃ ∧τN

‖u(t)‖2Y

]
≤ e4N T̃ E

[
‖u0‖2Y

]
< ∞, (2.38)

which implies u ∈ L2(Ω;C(0, T̃ ∧ τN ;Y)).

2.4 Stochastic Linear Evolution Equation with Random Drift

Let us consider the non-homogenous evolution equation with random drift as

du(t) + A(t,v(t))u(t)dt = ΦdWH(t), 0 ≤ t ≤ T̃ ,

u(0) = 0,

}
(2.39)

where v(t) := v(t, ω) belongs to the class S defined in section 2.2. The random evolution operator {Uv(t, s)} :=
{U(t, s, (v(r, ω))s≤r≤t)} constructed in Theorem 2.18 is only Ft−measurable and not Fs−measurable. Hence

the solvability of (2.39) involves an anticipative stochastic convolution
∫ t

0

Uv(t, s)ΦdWH(s) and is not well de-

fined as an Itô stochastic integral. Then by using the integration by parts formula ([26]), we can write down this
stochastic integral as

∫ t

0

Uv(t, s)ΦdWH(s) = Uv(t, 0)

∫ t

0

ΦdWH(s) +

∫ t

0

Uv(t, s)A(s,v(s))

(∫ t

s

ΦdWH(r)

)
ds,

(2.40)

in Y. With the representation (2.40), the stochastic integral is well defined and (Ft)t∈[0,T̃ ∧τN ]−adapted. The
next proposition states that (2.40) satisfies (2.39) in X.

Proposition 2.21 If Φ ∈ L2(Ω;L2(0, T̃ ∧ τN ; γ(H,X))) is (Ft)t∈[0,T̃ ∧τN ]−adapted, then the representation
of u(t) given in (2.40) is adapted and satisfies

u(t) = −
∫ t

0

A(s,v(s))u(s)ds+

∫ t

0

ΦdWH(s), (2.41)

for 0 ≤ t ≤ T̃ ∧ τN .

P r o o f. See Proposition 4.2, [26] for the case of bounded A(·, ·) and a straightforward extension proves
Proposition 2.21.

Let us now consider the stochastic linear evolution equation with random drift

du(t) + A(t,v(t))u(t)dt = ΦdWH(t), 0 ≤ t ≤ T̃ ,

u(0) = u0 ,

}
(2.42)

u0 ∈ W ⊂ Y, a.s., and prove the existence and uniqueness of a pathwise mild solution.

Theorem 2.22 Assume that the condition (A1)−(A4) (i) of Assumption 2.1 are satisfied. Let τN be the
stopping time defined in (2.25) and u0 ∈ W ⊂ Y, a.s. Then there exists a unique pathwise mild solution of the
problem (2.42).

c© 0 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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P r o o f. Let τN be the stopping time defined in (2.25) and let u0 ∈ W ⊂ Y, a.s. We use the notation
Av(·) = A(·,v(·)) and Bv(·) = B(·,v(·)) in the rest of the proof. The (Ft)t∈[0,T̃ ∧τN )−adapted stochastic
process

u(t) = Uv(t, 0)u0 +Uv(t, 0)

∫ t

0

ΦdWH(s) +

∫ t

0

Uv(t, s)A(s,v(s))

(∫ t

s

ΦdWH(r)

)
ds,

(2.43)

in Y, where Uv(t, s) is the evolution system provided by Theorem 2.18, is the unique pathwise mild solution of
the problem (2.42). In order to prove u ∈ C(0, T̃ ∧ τN ;Y), a.s., we first estimate sup

0≤t≤T̃ ∧τN

‖u(t)‖Y as

sup
0≤t≤T̃ ∧τN

‖u(t)‖Y

= sup
0≤t≤T̃ ∧τN

∥∥∥∥Uv(t, 0)u0 +Uv(t, 0)

∫ t

0

ΦdWH(s) +

∫ t

0

Uv(t, s)Av (s)

(∫ t

s

ΦdWH(r)

)
ds

∥∥∥∥
Y

≤ sup
0≤t≤T̃ ∧τN

‖SUv(t, 0)u0‖X + sup
0≤t≤T̃ ∧τN

∥∥∥∥SUv(t, 0)

∫ t

0

ΦdWH(s)

∥∥∥∥
X

+ sup
0≤t≤T̃ ∧τN

∥∥∥∥S
∫ t

0

Uv(t, s)Av (s)

(∫ t

s

ΦdWH(r)

)
ds

∥∥∥∥
X
. (2.44)

The first term from the right hand side of the inequality (2.44) can be estimated using (2.36) as (see (2.37))

sup
0≤t≤T̃ ∧τN

‖Uv(t, 0)u0‖Y ≤ e2N T̃ ‖u0‖Y. (2.45)

For the second term from the right hand side of the inequality (2.44), we use (2.36) and (2.25) to get

sup
0≤t≤T̃ ∧τN

∥∥∥∥SUv(t, 0)

∫ t

0

ΦdWH(s)

∥∥∥∥
X

= sup
0≤t≤T̃ ∧τN

∥∥∥∥SUv(t, 0)S−1S

∫ t

0

ΦdWH(s)

∥∥∥∥
X

≤ sup
0≤t≤T̃ ∧τN

(
‖SUv(t, 0)S−1‖L(X,X)

∥∥∥∥S
∫ t

0

ΦdWH(s)

∥∥∥∥
X

)

≤ ‖S‖L(Y,X) sup
0≤t≤T̃ ∧τN

‖Uv(t, 0)‖L(Y,Y)‖S−1‖L(X,Y) sup
0≤t≤T̃ ∧τN

∥∥∥∥S
∫ t

0

ΦdWH(s)

∥∥∥∥
X

≤ e2N T̃ sup
0≤t≤T̃ ∧τN

∥∥∥∥
∫ t

0

SΦdWH(s)

∥∥∥∥
X
≤ Ne2N T̃ . (2.46)

The third term in the right hand side of the inequality (2.44) can be simplified using Assumption 2.1-(A2),
Hölder’s inequality, (2.4), (2.5), (2.36), and (2.25) as follows:

sup
t∈[0,T̃ ∧τN ]

∥∥∥∥
∫ t

0

SUv(t, s)Av (s)

(∫ t

s

ΦdWH(r)

)
ds

∥∥∥∥
X

= sup
t∈[0,T̃ ∧τN ]

∥∥∥∥
∫ t

0

SUv(t, s)Av (s)S−1

(∫ t

s

SΦdWH(r)

)
ds

∥∥∥∥
X

= sup
t∈[0,T̃ ∧τN ]

∥∥∥∥
∫ t

0

SUv(t, s)
[
S−1Av(s) + S−1Bv(s)

](∫ t

s

SΦdWH(r)

)
ds

∥∥∥∥
X
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≤ sup
t∈[0,T̃ ∧τN ]

∥∥∥∥
∫ t

0

SUv(t, s)S−1Av(s)

(∫ t

s

SΦdWH(r)

)
ds

∥∥∥∥
X

+ sup
t∈[0,T̃ ∧τN ]

∥∥∥∥
∫ t

0

SUv(t, s)S−1Bv(s)

(∫ t

s

SΦdWH(r)

)
ds

∥∥∥∥
X

≤
∫ T̃ ∧τN

0

∥∥∥∥SUv(t, s)S−1Av(s)

∫ t

s

SΦdWH(r)

∥∥∥∥
X
ds

+

∫ T̃ ∧τN

0

∥∥∥∥SUv(t, s)S−1Bv(s)

∫ t

s

SΦdWH(r)

∥∥∥∥
X
ds

≤
∫ T̃ ∧τN

0

‖SUv(t, s)S−1‖L(X,X)

∥∥∥∥Av(s)S−1

∫ t

s

S2ΦdWH(r)

∥∥∥∥
X
ds

+

∫ T̃ ∧τN

0

‖SUv(t, s)S−1‖L(X,X)

∥∥∥∥Bv(s)

∫ t

s

SΦdWH(r)

∥∥∥∥
X
ds

≤ sup
s,t∈[0,T̃ ∧τN ]

‖Uv(t, s)‖L(Y,Y)

∫ T̃ ∧τN

0

‖Av(s)S−1‖L(X,X)

∥∥∥∥
∫ t

s

S2ΦdWH(r)

∥∥∥∥
X
ds

+ sup
s,t∈[0,T̃ ∧τN ]

‖Uv(t, s)‖L(Y,Y)

∫ T̃ ∧τN

0

‖Bv(s)‖L(X,X)

∥∥∥∥
∫ t

s

SΦdWH(r)

∥∥∥∥
X
ds

≤ e2N T̃

[
sup

s∈[0,T̃ ∧τN ]

‖Av(s)‖L(Y,X)‖S−1‖L(X,Y)

∫ T̃ ∧τN

0

∥∥∥∥
∫ t

s

S2ΦdWH(s)

∥∥∥∥
X
dt

+ sup
s∈[0,T̃ ∧τN ]

‖Bv(s)‖L(X,X)

∫ T̃ ∧τN

0

∥∥∥∥
∫ t

s

SΦdWH(s)

∥∥∥∥
X
dt

]

≤ Ne2N T̃

[∫ T̃ ∧τN

0

∥∥∥∥
∫ t

s

S2ΦdWH(s)

∥∥∥∥
X
dt+

∫ T̃ ∧τN

0

∥∥∥∥
∫ t

s

SΦdWH(s)

∥∥∥∥
X
dt

]

≤ 2N 2 T̃ e2N T̃ . (2.47)

Finally, a substitution of (2.45), (2.46) and (2.47) in (2.44) yields

sup
0≤t≤T̃ ∧τN

‖u(t)‖Y ≤ e2N T̃
{
‖u0‖Y +N

(
1 + 2NT̃

)}
< ∞. (2.48)

By using (2.48), part (3) of Theorem 2.18, part (A4)-(i) of Assumption 2.1 and the pathwise continuity of the

stochastic integral
∫ t

0

ΦdWH(s), it can be easily seen that u(t) given in (2.43) is pathwise continuous in Y, and

is adapted to (Ft)t∈[0,T̃ ∧τN ] , by Proposition 2.21. Thus u(t) given in (2.43) is (Ft)t∈[0,T̃ ∧τN ]−adapted and

u ∈ C(0, T̃ ∧ τN ;Y) a.s. A similar calculation of (2.48) yields

E

[
sup

0≤t≤T̃ ∧τN

‖u(t)‖2Y

]
≤ 3e4N T̃

{
E
[
‖u0‖2Y

]
+N 2

(
1 + 4N 2 T̃

)}
< ∞, (2.49)

and hence u ∈ L2(Ω;C(0, T̃ ∧ τN ,Y)). The uniqueness of u is a consequence of the representation (2.43).

2.5 Existence and Uniqueness of the Pathwise Mild Solution of (2.1)

Let us first prove that the unique pathwise mild solution of the problem (2.42) lies in the class S (section 2.2).
From Theorem 2.22, it is clear that the solution (2.43) is (Ft)t∈[0,T̃ ∧τN ]−adapted and hence the condition (2.22)
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is satisfied. Let us now verify the condition (2.20). Let us set ũ = u−y0 , where y0 is the center of the open ball
W ⊂ Y. Then ũ satisfies the equation

dũ(t) + Av(t)ũ(t)dt = −Av(t)y0dt+ΦdWH(t), 0 ≤ t ≤ T̃ ∧ τN ,

ũ(0) = u0 − y0 ,

}
(2.50)

u0 − y0 ∈ W ⊂ Y, a.s. By using Theorem 2.22, the (Ft)t∈[0,T̃ ∧τN )−adapted unique pathwise mild solution of

(2.50) in 0 ≤ t ≤ T̃ ∧ τN can be written as

ũ(t) = Uv(t, 0)ũ0 −
∫ t

0

Uv(t, s)Av(s)y0ds+Uv(t, 0)

∫ t

0

ΦdWH(s)

+

∫ t

0

Uv(t, s)Av (s)

(∫ t

s

ΦdWH(r)

)
ds. (2.51)

Hence, from (2.51), we get

u(t)− y0 = Uv(t, 0)(u0 − y0)−
∫ t

0

Uv(t, s)Av (s)y0ds+Uv(t, 0)

∫ t

0

ΦdWH(s)

+

∫ t

0

Uv(t, s)Av (s)

(∫ t

s

ΦdWH(r)

)
ds, (2.52)

for t ∈ [0, T̃ ∧ τN ]. Now we prove that ‖u(t)− y0‖Y ≤ R a.s. so that u(t) ∈ W, a.s.

Proposition 2.23 Let τN be the stopping time defined in (2.25) and let u0 − y0 ∈ W ⊂ Y, a.s. Let the
Assumption 2.1 be satisfied and if u(t) satisfies (2.52), then u(·) ∈ W, a.s., and satisfies the condition (2.20).

P r o o f. In order to prove u ∈ W, a.s., we first estimate ‖u(t)− y0‖Y as

‖u(t)− y0‖Y ≤ ‖Uv(t, 0)(u0 − y0)‖Y +

∥∥∥∥
∫ t

0

Uv(t, s)Av (s)y0ds

∥∥∥∥
Y

+

∥∥∥∥Uv(t, 0)

∫ t

0

ΦdWH(s)

∥∥∥∥
Y
+

∥∥∥∥
∫ t

0

Uv(t, s)Av (s)

(∫ t

s

ΦdWH(r)

)
ds

∥∥∥∥
Y
.

(2.53)

The first term in the the right hand side of the inequality (2.53) can be evaluated by using (2.36) as

‖Uv(t, 0)(u0 − y0)‖Y ≤ ‖Uv(t, 0)‖L(Y,Y)‖u0 − y0‖Y ≤ e2N T̃ ‖u0 − y0‖Y. (2.54)

For the second term in the right hand side of the inequality (2.53), we use (2.36) and (2.7) to get

∥∥∥∥
∫ t

0

Uv(t, s)Av (s)y0ds

∥∥∥∥
Y
≤

∫ t

0

‖Uv(t, s)Av (s)y0‖Yds

≤
∫ t

0

‖Uv(t, s)‖L(Y,Y)‖Av(s)y0‖Yds

≤ sup
s,t∈△̃

‖Uv(t, s)‖L(Y,Y)

∫ T̃ ∧τN

0

‖Av(s)y0‖Yds ≤ T̃Ne2N T̃ . (2.55)

Let us apply (2.36) to the third term in the right hand side of the inequality (2.53) to find (see (2.46))

∥∥∥∥Uv(t, 0)

∫ t

0

ΦdWH(s)

∥∥∥∥
Y
≤ Ne2N T̃ . (2.56)
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By using (2.47), the final term in the right hand side of the inequality (2.53) can be estimated as
∥∥∥∥
∫ t

0

Uv(t, s)Av (s)

(∫ t

s

ΦdWH(r)

)
ds

∥∥∥∥
Y
≤ 2N 2 T̃ e2N T̃ . (2.57)

Now we substitute (2.54), (2.55), (2.56) and (2.57) in (2.53) to obtain

‖u(t)− y0‖Y ≤ e2N T̃
{
‖u0 − y0‖Y +N

(
T̃ [1 + 2N ] + 1

)}
, (2.58)

where N is from definition of the stopping time (2.25). For u(t) to be in W, a.s., the right hand side of the
inequality (2.58) should be less than or equal to R. Since ‖u0 − y0‖Y < R, a.s., this is possible if T̃ > 0

is chosen sufficiently small. Thus for sufficiently small T̃ , u ∈ W, a.s., and hence the condition (2.20) is
satisfied.

Using the fact that ‖u(t)‖X ≤ ‖u(t)‖Y, we have

sup
0≤t≤T̃ ∧τN

‖u(t)‖X ≤ sup
0≤t≤T̃ ∧τN

‖u(t)− y0‖Y + ‖y0‖Y ≤ R+ ‖y0‖Y, a.s. (2.59)

The condition (2.22) can be proved using Proposition 2.23, (2.59), strong continuity of Uv(·, ·) on △̃ to L(X,X)
(see Theorem 2.18, part (1)), continuity of t 7→ Av(t) in the L(Y,X) (see Assumption 2.1-(A4) (i)), and the

pathwise continuity of the stochastic integral
∫ t

0

ΦdWH(s). Hence, u(·, ·) is continuous from [0, T̃ ∧ τN ]×Ω to

X.
By choosing T̃ sufficiently small, the map v 7→ u = Ψ(v) sends S to S . Let us now make S into a

complete metric space by the distance function

Λ(v,w) = E

[
sup

0≤t≤T̃ ∧τN

‖v(t)−w(t)‖X
]
= E [d(v,w)] , (2.60)

where d(v,w) = sup
0≤t≤T̃ ∧τN

‖v(t)−w(t)‖X. Since a closed ball in Y is a closed ball in X (Lemma 7.3, [10]), the

function space S is a complete metric space. Now we show that the map Ψ(·) : S → S is a strict contraction
map if we choose T̃ sufficiently small.

Theorem 2.24 Let τN be the stopping time defined in (2.25). Let the Assumption 2.1 be satisfied and let
u0 ∈ W ⊂ Y, a.s. Then the map Ψ(·) : S → S is a strict contraction map.

P r o o f. Let Ψ(v1) = u1 and Ψ(v2) = u2 satisfy

du1(t) + Av1 (t)u1(t)dt = ΦdWH(t), u1(0) = u0 , (2.61)

and

du2(t) + Av2 (t)u2(t)dt = ΦdWH(t), u2(0) = u0 , (2.62)

respectively. Let us denote z(t) = u1(t)− u2(t) and take the difference between the equations (2.61) and (2.62)
to obtain

dz(t) + Av2 (t)z(t)dt = −(Av1 (t)−Av2 (t))u1(t)dt,

z(0) = 0.

}
(2.63)

Note that (2.63) is a stochastic linear evolution equation in z(t) with random drift Av2 (t) = A(t,v2(t)). The
unique pathwise mild solution of (2.63) is given by

z(t) = −
∫ t

0

Uv2 (t, s) [Av1 (s)−Av2 (s)]u1(s)ds, (2.64)
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for t ∈ [0, T̃ ∧ τN ]. Hence by using (2.35), (2.6), and Theorem 2.22, we have

d(Ψ(v1),Ψ(v2)) = sup
0≤t≤T̃ ∧τN

‖Ψ(v1)−Ψ(v2)‖X

= sup
0≤t≤T̃ ∧τN

∥∥∥∥
∫ t

0

Uv2 (t, s) [Av1 (s)−Av2 (s)]u1(s)ds

∥∥∥∥
X

≤
∫ T̃ ∧τN

0

‖Uv2 (t, s) [Av1 (s)−Av2 (s)]u1(s)‖X ds

≤
∫ T̃ ∧τN

0

‖Uv2 (t, s)‖L(X,X) ‖[Av1 (s)−Av2 (s)]u1(s)‖X ds

≤ sup
s,t∈△̃

‖Uv2 (t, s)‖L(X,X)

∫ T̃ ∧τN

0

‖Av1 (s)−Av2 (s)‖L(Y,X) ‖u1(s)‖Y ds

≤ NeN T̃ sup
0≤t≤T̃ ∧τN

‖u1(s)‖Y
∫ T̃ ∧τN

0

‖v1(s)− v2(s)‖X ds

≤ T̃ e3N T̃ N
{
‖u0‖Y +N

(
1 + 2NT̃

)}
sup

0≤t≤T̃ ∧τN

‖v1(t)− v2(t)‖X

≤ T̃ e3N T̃ N
{
‖u0‖Y +N

(
1 + 2NT̃

)}
d(v1 ,v2), (2.65)

Taking expectation on both sides of (2.65), we find

Λ(Ψ(v1),Ψ(v2)) ≤ T̃ e3N T̃ N
{
R+N

(
1 + 2NT̃

)}
Λ(v1 ,v2), (2.66)

since u0 ∈ W ⊂ Y, a.s. Now by choosing T̃ sufficiently small, we get Ψ(·) is a contraction map.

Theorem 2.25 Let τN be the stopping time defined by

τN := inf
t≥0

{
t : β(u(t)) ∨ λ1(u(t)) ∨ λ2(u(t)) ∨ λ3(u(t)) ∨ µ(u(t)) ∨

∥∥∥∥∥

∫ t

0

SΦdWH(s)

∥∥∥∥∥
X

∨
∥∥∥∥∥

∫ t

0

S2ΦdWH(s)

∥∥∥∥∥
X
≥ N

}
, (2.67)

for N ∈ N. Let the Assumption 2.1 be satisfied and let u0 ∈ W ⊂ Y, a.s. Then there exists a unique local
pathwise mild solution (u(t))t∈[0,T̃ ∧τN ) of the problem (2.1) in C(0, T̃ ∧ τN ;W) a.s.

P r o o f. From Theorem 2.24, by choosing T̃ sufficiently small, we obtain the map Ψ(·) as a contraction map.
By an application of the contraction mapping theorem, it follows that Ψ(·) has a unique fixed point. Hence for
the stopping time τN defined by (2.67) there exists an (Ft)t∈[0,T̃ ∧τN )−adpated unique pathwise mild solution of
the problem

du(t) + A(t,u(t))u(t)dt = ΦdWH(t),

u(0) = u0 ,

}
(2.68)

u0 ∈ W ⊂ Y, a.s., which is given by the stochastic process

u(t) = Uu(t, 0)u0 +Uu(t, 0)

∫ t

0

ΦdWH(t) +

∫ t

0

Uu(t, s)A(s,u(s))

(∫ t

s

ΦdWH(r)

)
ds.

(2.69)

c© 0 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

mn header will be provided by the publisher 15

From Theorem 2.22 and Proposition 2.23, we have u ∈ C(0, T̃ ∧ τN ;W) a.s., and the estimate

E

[
sup

0≤t≤T̃ ∧τN

‖u(t)‖2Y

]
≤ 3e4N T̃

{
E
[
‖u0‖2Y

]
+N 2

(
1 + 4N 2 T̃

)}
, (2.70)

implies in u ∈ L2(Ω;C(0, T̃ ∧ τN ;W)).

Theorem 2.26 Let 0 < δ < 1 be given. Then, we have

P {τN > δ} ≥ 1− Cδ2
{
E
[
‖u0‖2Y

]
+ C

(
δ‖SΦ‖2γ (H,X) + 8‖SΦ‖2γ (H,X) + 8‖S2Φ‖2γ (H,X)

)}
,

(2.71)

for some positive constant C independent of δ.

P r o o f. Let u0 ∈ W ⊂ Y, a.s. For the given 0 < δ < 1, there exists a positive integer N such that

1

N + 1
≤ δ <

1

N
.

Then, (u, T̃ ∧ τN ) is a local mild solution of (2.68) for the stopping time given by

τN := inf
t≥0

{
t : β(u(t)) ∨ λ1(u(t)) ∨ λ2(u(t)) ∨ λ3(u(t)) ∨ µ(u(t)) ∨

∥∥∥∥∥

∫ t

0

SΦdWH(s)

∥∥∥∥∥
X

∨
∥∥∥∥∥

∫ t

0

S2ΦdWH(s)

∥∥∥∥∥
X
≥ N

}
.

Also it can be easily seen that

P {τN > δ} ≥ P
{

sup
0≤t≤δ

(β(u(t ∧ τN )) ∨ λ1(u(t ∧ τN )) ∨ λ2(u(t ∧ τN )) ∨ λ3(u(t ∧ τN ))

∨µ(u(t ∧ τN )) ∨
∥∥∥∥∥

∫ t∧τN

0

SΦdWH(s)

∥∥∥∥∥
X
∨
∥∥∥∥∥

∫ t∧τN

0

S2ΦdWH(s)

∥∥∥∥∥
X

)
< N

}

≥ P
{

sup
0≤t≤δ

‖u(t ∧ τN )‖Y < KN

}
, (2.72)

where K is a positive constant defined by

K =sup
{
C ∈ R+

∣∣∣C (β(u(t)) ∨ λ1(u(t)) ∨ λ2(u(t)) ∨ λ3(u(t)) ∨ µ(u(t))

∨
∥∥∥∥∥

∫ t

0

SΦdWH(s)

∥∥∥∥∥
X
∨
∥∥∥∥∥

∫ t

0

S2ΦdWH(s)

∥∥∥∥∥
X

)
≤ ‖u(t)‖Y, for all u ∈ Y

}
. (2.73)

Now, we consider E

[
sup

0≤t≤T̃ ∧τN

‖u(t)‖2Y

]
and use (2.44) to get

E

[
sup

0≤t≤T̃ ∧τN

‖u(t)‖2Y

]

≤ 3

{
E

[
sup

0≤t≤T̃ ∧τN

‖SUv(t, 0)u0‖2X

]
+ E

[
sup

0≤t≤T̃ ∧τN

∥∥∥∥SUv(t, 0)

∫ t

0

ΦdWH(s)

∥∥∥∥
2

X

]
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+E

[
sup

0≤t≤T̃ ∧τN

∥∥∥∥S
∫ t

0

Uv(t, s)Av (s)

(∫ t

s

ΦdWH(r)

)
ds

∥∥∥∥
2

X

]}
. (2.74)

Using (2.45), the first term from the right hand side of the inequality (2.74) can be estimated as

E

[
sup

0≤t≤T̃ ∧τN

‖Uv(t, 0)u0‖2Y

]
≤ e4N T̃ E

[
‖u0‖2Y

]
. (2.75)

The second term from the right hand side of the inequality (2.74) can be simplified using (2.24), (2.46) as

E

[
sup

0≤t≤T̃ ∧τN

∥∥∥∥SUv(t, 0)

∫ t

0

ΦdWH(s)

∥∥∥∥
2

X

]
≤ e4N T̃ E

[
sup

0≤t≤T̃ ∧τN

∥∥∥∥
∫ t

0

SΦdWH(s)

∥∥∥∥
2

X

]

≤ e4N T̃ T̃‖SΦ‖2γ (H,X) . (2.76)

The third term from the right hand side of the inequality (2.74) can be evaluated using (2.47) as

E

[
sup

t∈[0,T̃ ∧τN ]

∥∥∥∥
∫ t

0

SUv(t, s)Av (s)

(∫ t

s

ΦdWH(r)

)
ds

∥∥∥∥
2

X

]

≤ 2N 2e4N T̃

{
E

[∫ T̃ ∧τN

0

∥∥∥∥
∫ t

s

S2ΦdWH(s)

∥∥∥∥
2

X
dt

]
+ E

[∫ T̃ ∧τN

0

∥∥∥∥
∫ t

s

SΦdWH(s)

∥∥∥∥
2

X
dt

]}
.

(2.77)

Let us consider the term E

[∫ T̃ ∧τN

0

∥∥∥∥
∫ t

s

S2ΦdWH(s)

∥∥∥∥
2

X
dt

]
from (2.77), and use Hölder’s inequality and (2.24)

to obtain

E

[∫ T̃ ∧τN

0

∥∥∥∥
∫ t

s

S2ΦdWH(s)

∥∥∥∥
2

X
dt

]

= E

[∫ T̃ ∧τN

0

∥∥∥∥
∫ t

0

S2ΦdWH(s)−
∫ s

0

S2ΦdWH(s)

∥∥∥∥
2

X
dt

]

≤ 2E

[∫ T̃ ∧τN

0

∥∥∥∥
∫ t

0

S2ΦdWH(s)

∥∥∥∥
2

X
dt

]
+ 2E

[∫ T̃ ∧τN

0

∥∥∥∥
∫ s

0

S2ΦdWH(s)

∥∥∥∥
2

X
dt

]

≤ 2T̃E

[
sup

t∈[0,T̃ ∧τN ]

∥∥∥∥
∫ t

0

S2ΦdWH(s)

∥∥∥∥
2

X

]
+ 2T̃E

[∥∥∥∥
∫ s

0

S2ΦdWH(s)

∥∥∥∥
2

X

]

≤ 2CT̃E

[∫ T̃ ∧τN

0

‖S2Φ‖2γ (H,X)dt

]
+ 2CT̃E

[∫ T̃

0

‖S2Φ‖2γ (H,X)dt

]

≤ 4CT̃ 2‖S2Φ‖2γ (H,X) , (2.78)

where C is a positive constant independent of T̃ . Similarly one can prove that

E

[∫ T̃ ∧τN

0

∥∥∥∥
∫ t

s

SΦdWH(s)

∥∥∥∥
2

X
dt

]
≤ 4CT̃ 2‖SΦ‖2γ (H,X) . (2.79)

Substituting (2.78) and (2.79) in (2.77), we get

E

[
sup

t∈[0,T̃ ∧τN ]

∥∥∥∥
∫ t

0

SUv(t, s)Av (s)

(∫ t

s

ΦdWH(r)

)
ds

∥∥∥∥
2

X

]
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≤ 8CT̃ 2N 2e4N T̃
[
‖S2Φ‖2γ (H,X) + ‖SΦ‖2γ (H,X)

]
. (2.80)

Finally, a substitution of (2.75), (2.76) and (2.80) in (2.74) yields

E

[
sup

0≤t≤T̃ ∧τN

‖u(t)‖2Y

]

≤ e4N T̃
{
E
[
‖u0‖2Y

]
+ CT̃

[(
1 + 8T̃N 2

)
‖SΦ‖2γ (H,X) + 8T̃N 2‖S2Φ‖2γ (H,X)

]}
. (2.81)

From (2.81), it can be easily seen that

E
(

sup
0≤t≤δ

‖u(t ∧ τN )‖2Y
)

≤ e4N δ
{
E
[
‖u0‖2Y

]
+ C

(
δ‖SΦ‖2γ (H,X) + 8δ2N 2‖SΦ‖2γ (H,X) + 8δ2N 2‖S2Φ‖2γ (H,X)

)}
, (2.82)

for all t ∈ [0, T̃ ]. Then by using Markov’s inequality and (2.82), we obtain

P {τN > δ} ≥ P
{

sup
0≤t≤δ

‖u(t ∧ τN )‖Y < KN

}

= P
{

sup
0≤t≤δ

‖u(t ∧ τN )‖2Y < K2N 2

}

≥ 1− 1

K2N 2
E
(

sup
0≤t≤δ

‖u(t ∧ τN )‖2Y
)

≥ 1− e4N δ

K2N 2

{
E
[
‖u0‖2Y

]
+ C

(
δ‖SΦ‖2γ (H,X) + 8δ2N 2‖SΦ‖2γ (H,X) + 8δ2N 2‖S2Φ‖2γ (H,X)

)}

≥ 1− Cδ2
{
E
[
‖u0‖2Y

]
+ C

(
δ‖SΦ‖2γ (H,X) + 8‖SΦ‖2γ (H,X) + 8‖S2Φ‖2γ (H,X)

)}
, (2.83)

where C is a positive constant independent of u(t) and δ.

Similar ideas for proving the positivity of stopping time can be found in [14, 16, 15, 18].
A characterization of the maximal pathwise mild solution for the stochastic quasilinear evolution equation of

hyperbolic type (2.1) is given in the next theorem (Theorem 2.27).

Theorem 2.27 Let the Assumption 2.1 be satisfied and let u0 ∈ W ⊂ Y, a.s. Then there exists a unique
maximal pathwise mild solution (u(t))[0,τ∞) in C(0, τ∞;W), a.s. of (2.68).

P r o o f. Let us denote by L, the set of all stopping times such that τ ∈ L if and only if there exists a process
u(·) such that (u, τ) is a local mild solution the problem (2.68). It can be easily seen that

τ1 , τ2 ∈ L ⇒ τ1 ∨ τ2 , τ1 ∧ τ2 ∈ L. (2.84)

For each k ∈ N, let us take τk ∈ L such that (uk , τk ) be the unique local mild solution of (2.68). Then for each
τk , the process uk (·) having continuous paths such that (uk , τk ) is a local mild solution of (2.68) with

τk = inf
t≥0

{t : β(uk (t)) ∨ λ1(uk (t)) ∨ λ2(uk (t)) ∨ λ3(uk (t)) ∨ µ(uk (t))

∨
∥∥∥∥∥

∫ t

0

SΦdWH(s)

∥∥∥∥∥
X
∨
∥∥∥∥∥

∫ t

0

S2ΦdWH(s)

∥∥∥∥∥
X
≥ k

}
∧ T, k ∈ N,

for some T > 0. Let us now show that for n > k, τn > τk , a.s. For n > k, let us define a sequence of stopping
times τk,n such that

τk,n = inf
t≥0

{t : β(un (t)) ∨ λ1(un (t)) ∨ λ2(un (t)) ∨ λ3(un (t)) ∨ µ(un (t))
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∨
∥∥∥∥∥

∫ t

0

SΦdWH(s)

∥∥∥∥∥
X
∨
∥∥∥∥∥

∫ t

0

S2ΦdWH(s)

∥∥∥∥∥
X
≥ k

}
∧ T, k, n ∈ N.

Since (un , τn ) is also a local mild solution, where

τn = inf
t≥0

{t : β(un (t)) ∨ λ1(un (t)) ∨ λ2(un (t)) ∨ λ3(un (t)) ∨ µ(un (t))

∨
∥∥∥∥∥

∫ t

0

SΦdWH(s)

∥∥∥∥∥
X
∨
∥∥∥∥∥

∫ t

0

S2ΦdWH(s)

∥∥∥∥∥
X
≥ n

}
∧ T, n ∈ N,

it is clear from the definition of τn that τk,n ≤ τn , a.s., for n > k. Thus (un , τk,n ) is also a local mild solution
of (2.68). If τk < τk,n , a.s., then from above, we have τk < τk,n ≤ τn , a.s., and hence we are done. Let us
now assume that τk > τk,n , a.s. Since (uk , τk ) and (un , τn,k ) are both local mild solutions of (2.68), by the
uniqueness of local mild solution, we have uk (t) = un (t), a.s., for all t ∈ [0, τk ∧ τk,n ) = [0, τk,n ). Thus, τk,n
is the first exit time for uk (·) at k with τk,n < τk , a.s., which is a contradiction. Hence τk < τn , a.s., for all
k < n. Thus {τk : k ∈ N} is an increasing sequence in L and hence it has a limit in L. Let us denote the limit by
τ∞ := lim

k→∞
τk . By letting k → ∞, let {u(t), 0 ≤ t < τ∞} be the stochastic process defined by

u(t) = uk (t), t ∈ [τk−1 , τk ), k ≥ 1, (2.85)

where τ0 = 0. By making use of uniqueness results, we have u(t ∧ τk ) = uk (t ∧ τk ) for any t > 0. As k → ∞,
we are thus justified to define a process (u, τ∞) such that (u, τ∞) is a local mild solution of (2.68) on the set
{ω : τ∞(ω) < T} and hence we have

lim
t↑τ∞

[
sup

0≤s≤t
‖u(s)‖Y

]
≥ lim

k↑∞

[
sup

0≤s≤τk

‖u(s)‖Y
]
= lim

k↑∞

[
sup

0≤s≤τk

‖uk (s)‖Y
]

≥ K lim
k↑∞

[
sup

0≤s≤τk

(β(uk (t)) ∨ λ1(uk (t)) ∨ λ2(uk (t)) ∨ λ3(uk (t)) ∨ µ(uk (t))

∨
∥∥∥∥∥

∫ t

0

SΦdWH(s)

∥∥∥∥∥
X
∨
∥∥∥∥∥

∫ t

0

S2ΦdWH(s)

∥∥∥∥∥
X

)]
= ∞, (2.86)

where K is defined in (2.73). Thus τ∞(ω) is an explosion time of u(t) ∈ C(0, τ∞;W), a.s.

Similar ideas of proving maximal local solutions can be found in [5, 2, 16, 15]. Let us now give an example
for which the abstract theory we discussed above is applicable.

Example 2.28 Let us apply the abstract theory to the Euler and Navier-Stokes equations for incompressible
fluids. We write the combined stochastic Euler and Navier-Stokes equation as

du(t)− νP∆u(t)dt+ P(u(t) · ∇)u(t)dt = ΦdWH(t), t ∈ (0, T ],

u(0) = u0 ,

}
(2.87)

where u(t) := (u1(t, x, ω), · · · , un (t, x, ω)), (t, x, ω) ∈ [0, T ] × Rn × Ω, is the velocity field, ν ≥ 0 is the
coefficient of kinematic viscosity, and P is the Helmholtz-Hodge projection operator (see [16]). The operator
P annihilates gradients and maps into divergence free vector fields. P is a bounded operator on Lp , 1 < p < ∞,
into itself, and commutes with translation. Hence it is also bounded on Lp

s := J−sLp(Rn ), where J := (I−∆)1/2 ,
for any real s. Let us now choose the basic spaces H, X and Y, and the isomorphism S as

H = PL2 ,X = PLp
s−2 ,Y = PLp

s ⊂ W1,∞,S = J2 = I−∆, 1 < p < ∞, s > 1 +
n

p
. (2.88)

Note that X and Y consisting of divergence free vector fields are closed subspaces of vector-valued Lp
s−2 and Lp

s

respectively, and inherits their norms ‖ · ‖s−2,p and ‖ · ‖s,p . Thus X and Y are UMD Banach spaces of type 2
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(see Theorem 4.5.2, [1], Corollary A.6, [3]) with ‖u‖s,p = ‖Su‖s−2,p and hence verifying the condition (A1) of
Assumption 2.1.

For each w ∈ Y, we define the operator A(w) by

A(w)z = −νP∆z+ P(w · ∇)z = −νP∆z+ P∇ · (w ⊗ z). (2.89)

The operator A(w) is quasi−m−accretive with S# as a core, where S# denotes the subset of the Schwartz space
S consisting of divergence free vector fields (see Proposition 3.3, [13]), and hence it verifies the condition (A2)
of Assumption 2.1.

Using Proposition 3.3, [13], we obtain the operator C(w) ∈ L(Y,X) with ‖C(w)‖L(Y,X) ≤ C‖w‖Y such that

[J2 ,A(w)]ψ = C(w)ψ, for all ψ ∈ S# , [J
2 ,A(w)]ψ = J2(A(w)ψ)−A(w)J2ψ, (2.90)

where A(w) = P(w·∇) and [·, ·] is the commutator. Thus (2.90) implies that J2A(w)ψ = A(w)J2ψ+C(w)ψ.
Let us take φ = J2ψ and an application of S−1 = J−2 yields

A(w)S−1φ = S−1A(w)φ+ S−1B(w)φ, for all φ ∈ S# , (2.91)

where B(w) = C(w)J−2 ∈ L(X,X) with

‖B(w)‖L(X,X) ≤ C‖w‖Y. (2.92)

Since, S# is the core of A(w) in X, (2.91) verifies the condition (A3) of Assumption 2.1.
By using the algebra property of Lp

s norm for s > n/p and Hölder’s inequality, for all v ∈ Y, we have

‖A(w)v‖X ≤ ‖P∆v‖s−2,p + ‖P∇ · (w ⊗ v)‖s−2,p ≤ (1 + ‖w‖s−1,p) ‖v‖Y, (2.93)

and

‖(A(w1)−A(w2))v‖X ≤ ‖P((w1 −w2) · ∇)v‖s−2,p ≤ ‖w1 −w2‖s−2,p‖∇v‖L∞

≤ C‖w1 −w2‖X‖v‖Y, (2.94)

for s > n/p+ 1, verifying the condition (A4) of Assumption 2.1.
By taking the center of the open ball W ⊂ Y as the origin, the condition (A5) of Assumption 2.1 follows

easily. Thus, we can apply our abstract theory to the problem (2.87) for ν ≥ 0. Hence, for u0 ∈ Y, a.s., there
exists a unique local pathwise mild solution to the problem (2.87) in L2(Ω;C(0, T̃ ∧ τN ;Y)), where τN is the

stopping time given by τN := inf
t≥0

{
t : ‖u(t)‖Y ≥ N

}
. The Lp−theory for stochastic Navier-Stokes equations

perturbed by Lévy noise is established in [17] and this method establishes the Lp
s−theory in the case of Gaussian

noise.

Remark 2.29 If we consider the problem

du(t) + A(t)u(t)dt = ΦdWH(t), 0 ≤ t ≤ T,

u(0) = u0 ,

}
(2.95)

where {A(t)}0≤t≤T is a deterministic stable family of generators in G(X) with the stability index M and β,
then one can establish a global pathwise mild solution for this problem. The deterministic evolution operator
U(t, s) ∈ L(X,X) defined on the triangle △ := 0 ≤ s ≤ t ≤ T can be constructed same as in Theorem I, [10]
under the assumption (i)-(iii), page 29, [10], satisfying

sup
s,t∈△

‖U(t, s)‖L(X,X) ≤ MeβT and sup
s,t∈△

‖U(t, s)‖L(Y,Y) ≤ ‖S‖L(Y,X)‖S−1‖L(Y,X)MeβT +MV ,

where V =

∫ T −

0

‖B(t)‖L(X,X)dt, with SA(t)S−1 = A(t) + B(t), B(t) ∈ L(X,X), 0 ≤ t ≤ T.
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Then the unique global mild solution u(t) of (2.95) is given by

u(t) = U(t, 0)u0 +

∫ t

0

U(t, s)ΦdWH(s), (2.96)

and

(i) if u0 ∈ L2(Ω;X), then u ∈ L2(Ω;C(0, T ;X)),
(ii) if u0 ∈ L2(Ω;Y), then u ∈ L2(Ω;C(0, T ;Y)).

Also, we have

(i) E
[

sup
0≤t≤T

‖u(t)‖2X
]
≤ 2M 2e2βT

[
E
[
‖u0‖2X

]
+ CT ‖Φ‖2γ (H,X)

]
,

(ii) E
[

sup
0≤t≤T

‖u(t)‖2Y
]
≤ 2M 2e2(βT +MV )

[
E
[
‖u0‖2Y

]
+ CT‖S‖4L(Y,X)‖S−1‖4L(X,Y) ‖SΦ‖

2
γ (H,X)

]
.
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ted for Journal Publication.

[19] J. M. A. M. van Neerven, γ−radonifying pperators-a survey, In the AMSI-ANU workshop on spectral theory and
harmonic analysis, volume 44 of Proc. Centre Math. Appl. Austral. Nat. Univ., Austral. Nat. Univ., Canberra, 01–61,
2010.

[20] J. M. A. M. van Neerven, M. C. Veraar and L. Weis, Stochastic integration in UMD Banach spaces, Annals of Probabil-
ity, 35 (4) (2007), 1438–1478.

[21] J. M. A. M. van Neerven, M. C. Veraar and L. Weis, Stochastic evolution equations in UMD Banach spaces, Journal of
Functional Analysis 255 (2008) 940–993.

[22] J. M. A. M. van Neerven, M. C. Veraar and L. Weis, Maximal Lp−regularity for stochastic evolution equations, SIAM
Journal on Mathematical Analysis 44 (3) (2012), 1372–1414.

[23] J. M. A. M. van Neerven, M. C. Veraar and L. Weis, Stochastic Integration in Banach Spaces - a Survey, Stochastic
Analysis: A Series of Lectures, Volume 68 of the series Progress in Probability, 297–332, Springer-Verlag, (2015),
1372–1414.

[24] M. Ondreját, Uniqueness for stochastic evolution equations in Banach spaces, Dissertationes Mathematicae (Rozprawy
Mat.) 426 (2004), 63 pp.

[25] A. Pazy, Semigroup of linear operators and applications to partial differential equations, Applied Mathematical Sci-
ences, 44, Springer-Verlag, New York, 1983.

[26] M. Pronk and M. Veraar, A New Approach to Stochastic Evolution Equations with Adapted Drift, Journal of Differential
Equations, 256 (2015), 3634–3683.

[27] M. Veraar, Non-autonomous stochastic evolution equations and applications to stochastic partial differential equations,
Journal of Evolution Equations 10 (1) (2010), 85–127.

c© 0 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com


	Stochastic Quasilinear Evolution Equations in UMD Banach Spaces
	Recommended Citation

	Stochastic quasilinear evolution equations in UMD Banach spaces

