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AFIT/GA/ENY/07-M18 

Abstract 

 A Hall thruster uses ionized xenon as a propellant for space propulsion 

applications.  The heat produced by thruster components and the xenon plasma transfers 

to space and the spacecraft, impacting thruster and spacecraft design, as well as thruster 

efficiency and lifetime.  Therefore, thermal information was gathered and analyzed in 

order to better understand the thermal characteristics of an operating thruster and to 

provide data applicable to improving the thruster efficiency and lifetime.  

This paper contains analysis of thruster temperatures obtained using a 

commercially available FLIR A40M thermographic imager in order to characterize a 

Busek Inc. 200W Hall Effect Thruster operating in Chamber 6 at the Air Force Research 

Laboratory at Edwards AFB, CA.  This method is non-intrusive in that the thruster is 

viewed from outside the chamber through a zinc selenide window and provides 

temperature data on the entire visible area of the thruster for output to a computer for 

further processing.  Maximum temperatures observed were above 773 K on the alumina 

plasma sprayed portion of the cathode, the anode, and on the thruster body near the exit 

plane.  Magnet core winding temperature varied from 620 K near the exit plane to 475 K 

near the rear of the thruster.  If these temperatures are near the magnet core temperature, 

it suggests they are not near the Curie temperature for iron of 1043 K or the Curie 

temperature of 858 K of iron alloyed with nickel.  Initial heating rates of up to 138 K/min 

and initial cooling rates of up to 218 K/min were observed.  The steady state temperature 

images and the heating data indicated a possible interaction between xenon and the 

thruster components. 
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CHARACTERIZATION OF A HALL EFFECT THRUSTER USING THERMAL 
IMAGING 

 
I.  Introduction 

 The objective of this work was to use a commercially available thermal imager to 

gather thermal information on an operating space propulsion engine in order to provide 

designers with data applicable to improving engine efficiency and lifetime.  While many 

different means of space propulsion are available, studying and use of the 

electromagnetic Hall thruster is of current interest to the United States Air Force (USAF) 

and other agencies.  For example, a Hall thruster will undergo testing on the USAF Space 

Vehicles Directorate TacSat-2, launched December 16, 2006.  The Japanese/Korean 

MBSAT, launched in June 2004, used a Hall thruster for North-South station keeping, 

and the European Space Agency SMART-1 satellite shown in Figure 1 (1), launched in 

2003, also used a Hall thruster (1).   

 

Figure 1:  Hall Thruster on SMART-1 (1) 

The increasing interest and use of Hall thrusters stems from their performance 

characteristics.  Figure 2 (2:446) shows different propulsion technologies and their 

relation according to specific impulse and specific mass. 
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Figure 2:  Propulsion technology comparison (2:446) 

The area highlighted in green represents the Hall thruster technology with a specific 

impulse of 1600 to 2000 seconds and a specific mass of just under 10 kg/kW.  The 

specific impulse represents the efficiency of the thruster used by the spacecraft, which 

impacts the overall operational capability.  The Hall thruster is up to 5 times more 

efficient than chemical energy based thrusters using liquid propellant.  The benefit of a 

highly efficient thruster can be a longer operational lifetime, a larger payload, or a lower 

launch weight, which has the benefit of lowering launch cost.  Table 1 shows the specific 

impulse of several electric propulsion thrusters, and reveals the Hall thruster as a high 

performance option (3:702-708).   
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Table 1:  Electric Propulsion Specific Impulse Comparison 

 Specific Impulse (sec) 

Resistojet ~ 300 

Arcjet 480 - 800 

Pulsed Plasma Thruster 850 – 1200 

Hall Effect Thruster 1600 - 2000 

Ion Thruster 2500 - 3400 

 

With a specific impulse of 1600 seconds to 2000 seconds, these thrusters are not as 

efficient as ion thrusters, but they have a lower specific mass and a higher thrust to power 

ratio, as shown in Figure 3 with the Hall thrusters circled in green.   

 

Figure 3:  Electric propulsion performance comparison 
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Hall thrusters experience lifetime limitations above a specific impulse of 2500 (3:707).  

Different thruster performance characteristics taken as a whole indicate that no one 

thruster is “the best”, rather they are suited to a particular type of mission.  The 

capabilities of the Hall thruster best fit missions such as satellite station keeping or orbit 

apogee burn. 

Since these thrusters operate in the harsh environment of space, ground based 

study is restricted to facilities that have the capability to simulate the space environment 

as closely as possible, such as the vacuum chambers at the Air Force Space Propulsion 

Lab at Edwards Air Force Base in California.  Valuable research conducted at the Air 

Force Space Propulsion Lab contributed to improved understanding concerning the 

operation of electric propulsion devices, and work on individual components at other 

facilities exists.  Therefore, if data collected on the same types of thrusters currently in 

use is applied to improve thruster efficiency and lifetime, future missions will benefit.  In 

summary, the thermal information gathered and analyzed in this report will provide 

thruster designers with data applicable to improving engine efficiency and lifetime, which 

will in turn provide better thrusters for use on USAF satellites. 
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II.  Background 

 This section begins with a description of how a Hall thruster operates and how 

temperature plays a role in thruster efficiency and lifetime.  Next is a discussion of why 

thermal imaging was used and how thermal imaging works.  This will include a 

discussion on radiation and the various factors affecting the temperatures output by the 

imager.  While prior experimentation using a thermal imager to gather temperature data 

on an operating Hall thruster is not readily available, many applications find thermal 

imagers very useful and some examples will be reviewed.  Lastly, the approach taken to 

account for theoretical and experimental errors is covered. 

Hall Thruster Operation and Specifications 

While a more detailed explanation of Hall thruster operation is available (4:Ch 2), 

basic thruster operation involves an electric and magnetic field with ionized xenon 

particles acting as the propellant to develop thrust, T, as shown in Figure 4. 

 
Figure 4:  Hall thruster schematic (1) 

T = m ue 

ue ~ 15-18  
Km/sec 
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The cathode uses thermionic emission of electrons from a low work function material in 

order to produce an electric field between the cathode and the anode.  A radial magnetic 

field captures most of the electrons in order to keep them from being accelerated and 

forms a ring current (Hall current) near the exit plane of the thruster.  Some of the 

electrons produced by the cathode do not become a part of the Hall current, rather they 

act to neutralize the xenon as it exits the thruster.  The xenon gas injects from within the 

anode and electrons diffusing slowly from the Hall current to the anode ionize the xenon.  

The now positively charged xenon accelerates due to the force from the electric field to 

about 15 km/sec.  As the xenon ions exit the thruster, they recombine with electrons 

primarily when they hit the anode channel wall to form a neutral gas.  Figure 5 shows the 

exit plume of the Hall thruster while operating during this experiment.   

 

Figure 5:  Hall Thruster Firing in Vacuum Chamber 

The small point of light above the plume is the cathode tip, with the anode cone near the 

center of the image.  Hall thrusters using this technology are available over a wide range 

of specifications (5,6), including those listed in Table 2. 
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Table 2:  Busek Co. Inc Hall Thrusters Specifications 

 BHT-200 BHT-600 BHT-1000 BHT-1500 BHT-8000 BHT-20000 

Discharge Input 
Power (W) 

200 600 1000 1700 8000 20250 

Propellant Mass 
Flow Rate (mg/sec) 

0.94 2.6 3.4 5.6 27.4 40 

Thrust (mN) 12.8 39.1 58.5 102 512 1080 

Specific Impulse 
(sec) 

1390 1530 1750 1820 1900 2750 

Propulsive 
Efficiency (%) 

43.5 49.0 50.3 54.6 60.0 72.0 

 

Figure 6 shows an image of the actual thruster used for the experiment with a rear view, 

side view, and exit plane view. 

 
Figure 6:  200 Watt Hall thruster rear view (left), side view with exit plane facing right 

(middle), and exit plane view (right). 

Magnet temperature affects thruster efficiency and lifetime  

 As discussed earlier, Hall thrusters require a magnetic field to operate, and one of 

the factors effecting magnetic field strength is temperature.  As the temperature of a 

magnet increases, the magnetization of the material goes down as shown in Figure 7 (7) 

for Iron loaded with various amounts of silicate.   

Anode Cone 

Cathode 
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Figure 7:  Magnetization vs. Temperature (7) 

 
If the material reaches the Curie temperature, the magnetization becomes zero (8).   The 

magnetic circuit is usually iron, sometimes alloyed with cobalt or nickel (4).  Iron, for 

example, has a Curie temperature of 1043 K.  An increase in magnet temperature and the 

resulting decrease in the magnetic field strength would lead to a decrease in thruster 

efficiency, while a loss of the magnetic field would cause the thruster to fail.  This type of 

failure could be caused by erosion of the insulator walls and plasma shunting through the 

magnetic circuit (4).  Accordingly, magnet operating temperature should be kept low, and 

well below the Curie temperature for the magnet material.   

Temperature affects cathode lifetime  

 Knowledge of the cathode temperature is important because it impacts cathode 

lifetime.  Hollow cathodes employ a process known as thermionic emission.  In 

thermionic emission, a metal such as barium or a ceramic such as lanthanum hexaboride 

heats in order to allow the electrons’ vibrational energy to overcome the electrostatic 

forces holding the electrons to the surface (9).  The material has a low work function, 

which refers to the minimum energy needed to remove an electron from the material 

surface.  About 10% or less of the propellant used by the Hall thruster passes through the 
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cathode (see Figure 8) and ionized by the electrons produced by thermionic emission in 

order for the cathode to perform its function.    

 
Figure 8:  Hollow cathode operation. (10) 

The material undergoing thermionic emission in hollow cathodes is the insert, which is 

most commonly barium oxide.  If the insert does not function correctly, the cathode, and 

therefore the thruster cannot function.  Since insert lifetime is temperature dependent 

(11:4, 12), gathering temperature data on the cathode is important. 

Temperature affects anode lifetime  

Anode channel wall temperatures are increased by interaction with the xenon ions 

in the channel.  This increase in temperature may be due to radiation and ions impacting 

the channel wall.  Therefore, knowing chamber wall temperature will yield additional 

information on ion temperatures.  Higher ion temperature leads to greater erosion of the 

channel wall, and this erosion is the main mechanism of Hall thruster failure when the 

magnetic coils become exposed to the plasma flow (13).  Thus, knowing anode channel 

wall temperature will potentially allow researchers to relate operational temperature to 

erosion and eventual thruster failure. 

Heater Coils 

Neutral Xenon Atoms 

Insert – Low work function material 

Propellant Flow 

Cathode Tube 

Keeper Tube 

Discharge 
Plasma 

Xenon Ions 
Electrons 
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Thermal Imaging Option 

 Capturing thruster temperatures needed a non-intrusive means of collecting data 

due to the operation of the thruster within a vacuum chamber and the high cost of a 

thruster, along with the desire to collect temperature data over the entire visible surface of 

the thruster.  While thermocouples are an established means of capturing object 

temperatures, and are relatively simple to use, there are drawbacks to using them.  One 

drawback is the need to physically attach the thermocouples to the object, which is 

destructive to the item being monitored if a strong adhesive or welding is used.  This may 

also cause temperature inaccuracies due to their perturbation of local temperatures, 

particularly for small items.  Adhesives do not always provide the best thermal contact to 

the object, and the thermocouple may come loose if the adhesive fails.  Observing a Hall 

thruster operating in a vacuum chamber compounds the problem because repairs to the 

thermocouples or their attachment would require bringing the chamber back up to 

atmospheric pressure.  Bringing the chamber up to atmosphere and opening it can take 

about 8 hours, and once the thermocouple work is completed, the chamber must be 

depressurized back to vacuum, consuming eight additional hours.  Mechanically 

attaching the thermocouples might require physically altering the thruster, which may 

affect future experiments, or it might be somewhat destructive to the thruster, which is 

undesirable due to the high cost of the thruster.  In addition, thermocouples only provide 

temperature readings of the specific part of the thruster to which they are attached.  

Thermal imaging, however, would require no modification of the thruster, would not 

require vacuum chamber opening and closing to correct any imaging problems, and 

would provide temperature data over the entire visible surface of the thruster.  There are 
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drawbacks to thermal imaging, such as the complexity of correcting the raw data to actual 

temperatures, and the higher cost of operating a thermal imaging system.  However, 

thermal imager vendors have largely addressed the inherent data manipulation needed to 

obtain corrected temperatures, and the one time cost of the imager is lower than the cost 

of continuously replacing thrusters. 

Radiation and Thermal Imaging Basics   

 Since thermal imagers convert incident radiation to a temperature reading, a 

discussion of the pertinent topics concerning radiation is appropriate.  Radiation is energy 

emitted in the form of electromagnetic waves and is normally characterized over a band 

of wavelengths ranging from 10-8 µm to 1010 µm (14).  Thermal imagers are generally 

sensitive to the infrared band between 2 µm and 13 µm (15).  The radiation received by a 

thermal imager is dependent on several factors, including: distance between the camera 

and the object, object emissivity, transmissivity of intervening mediums, and temperature 

of any reflecting objects.  The distance between the camera and the object affects the 

radiation received because as radiation is emitted, it spreads out evenly and the power of 

the radiation is reduced.  If the power of the radiation emitted is high compared to the 

distance traveled, the affect will be small.  This assumes the radiation source is diffuse, 

which means the radiation emitted is equal in all directions.  The emissivity of an object 

refers to how well the object radiates energy as compared to a black body.  The radiation 

emitted by a black body is only a function of its temperature and thus has an emissivity of 

1, while real objects have an emissivity less than 1.  The emissivity, e, of an object 

depends on temperature, wavelength of emitted energy, and angle of emission (14:41).  

The transmissivity, t, of a medium refers to how much of the incident radiation is 
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transmitted through the medium.  A transmissivity of 1 indicates all of the incident 

radiation is transmitted, while a value of less than 1 indicates a fraction of the radiation 

was absorbed or scattered by the medium (14:423).  Objects other than the one studied 

emit radiation that is reflected off the studied object and received by the camera.  The 

camera temperature measured would increase due to this effect, thus creating a falsely 

high object temperature reading.   

 While the camera software accounts for a reflected temperature of the 

surroundings, the inside of the vacuum chamber in this case, it does not account for this 

type of interaction between the thruster components.  This invokes an introduction on the 

idea of “configuration factor” also known as “view factor”, which is the fraction of 

uniform diffuse radiation leaving a surface that directly reaches another surface (14: 156).  

For example, the radiation received by the camera from the cathode is a result of the 

cathode itself emitting radiation and radiation leaving the thruster body, being reflected 

off the cathode and finally reaching the camera.  Object geometry, relative orientation of 

the two objects, and the distance between the objects determine the view factor.  

Determining the view factor for the thruster components using the integral methods found 

in reference literature would be exceedingly complex due to the component geometry and 

orientation, and despite a number of existing derived configuration factors (14, 16), none 

closely matched the thruster component configuration.  Computer programs exist that 

may allow view factors to be accurately determined (17, 18), however, they were not 

used here due to time constraints and are suggested as a future work.  All of these factors 

affect the radiation received by the thermal imager and should be considered to obtain the 

most accurate object temperature data. 
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 At the most basic level, a thermal imager works by detecting incident thermal 

radiation and converting it to a temperature.  A thermistor bolometer, for example, 

consists of a material, usually carbon, germanium, or a mixture of metal oxides (19:148) 

whose resistance varies with temperature.  The temperature of the receiving material will 

depend on the amount of incident radiation energy absorbed from the source observed as 

shown in Figure 9.   

 

Figure 9:  Basic radiation schematic 

The intensity of the radiation received will depend on the temperature of the source, the 

emissivity, and the transmissivity as discussed earlier: 

4TReceived Instensity τεσ=   (1) 

The Steffan-Boltzmann constant, s, is needed for unit conversion.  The intensity received 

is radiation energy that changes the temperature and thus the resistance of the receiver 

material.  The camera electronics and software can then convert the change in resistance 

to a temperature reading.   

 The incident radiation, and therefore temperatures the camera measures actually 

come from several sources in practical situations.  The camera software can account for 

these factors as shown in Figure 10 (20:183). 

Receiver Intervening Medium 

Transmissivity, tt  

Radiation Source 

Temperature, T 
Emissivity, e 
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Figure 10:  Schematic of thermographic imager measurement (20:183) 

The three sources of radiation sensed by the camera are: the object, sources whose 

emitted radiation is reflected off the object, and the atmosphere between the camera and 

the object.  The total received radiation power is: 

atmreflobjtot WWWW )1()1( ττεετ −+−+=   (2) 

The radiation sensed, 4TW σ= , is converted to a voltage, U, within the camera, which is 

used to calculate the temperature of the object as shown in the following equation 

(20:186): 

 

atmlreftotobj UUUU *
1

*
1

*
1

ετ
τ

ε
ε

ετ
−

−
−

−=    (3) 

 
 

where Uobj is the calculated camera output voltage for a blackbody of temperature Tobj 

(i.e. a voltage directly converted into true requested object temperature).  Utot is the 

measured camera output voltage for the actual case.  Urefl is the theoretical camera output 

voltage for a blackbody of temperature Trefl according to the calibration.  Uatm is the 

theoretical camera output voltage for a blackbody of temperature Tatm according to the 

calibration, e is the emissivity, and t is the transmissivity.  The camera software accepts 
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input values for: distance between the camera and the object, object emissivity, 

transmissivity, temperature and humidity of the atmosphere and temperature of the 

reflecting object.  The resulting temperature data generated by the camera software 

exports to an output file for further post processing. 

Thermal Imager Used 

Several factors influenced camera selection, including camera cost, temperature 

and wavelength range, resolution, and viewing capabilities for the experimental setup.  

The wavelength range coverage required was 7.5 µm to 13 µm and a model with a higher 

resolution was more desirable if not cost prohibitive.  The viewing capabilities, to include 

the minimum focus distance, had to allow for the dimensions of the thruster and the 

distance between the camera and thruster in order to maximize the area of the screen 

taken up by the thruster.  Several cameras produced by FLIR, Inc were researched, and 

the two models fitting the need for the experiment were the ThermaCam Merlin and the 

ThermoVision A40M.  Table 3 shows a comparison of the two cameras. 
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Table 3:  Thermal Imaging camera comparison 

 Model 
 A40M Merlin 

Purchase Price 
(Researcher Software 

Included) 
$ 43,950 $ 73,500 

Rental Price = 10%  
(per month) $ 4,395 $ 7,350 

Lease Price  
(over 12 months) 

$ 11,964 X 4 payments =  
$ 47,856 

Or 
$ 1,510 X 36 payments =  

$ 54,360 

Not requested. 

Temperature Range (K)  
273°K to 773°K 

 
Optional Up to 1773°K or 2273°K 

273°K to 623°K 
 

Optional 573°K to 1773°K 

Resolution 320 x 240 = 76,800 pixels 320 x 256 (5210 or 6% more 
pixels) 

Accuracy ±2°C or ±2% of reading ±2°C or ±2% of reading 

Wavelength Range (µm) 7.5 to 13 1.5 to 5.5 

PC connection RS232 and Firewire RS232 
Video Out Composite RS422, S-video 

Lens FOV / min focus 
distance 24° x 18° / 11.8 in 11° x 8° (50mm) / 20 in 

Additional Lens / min 
focus distance 12° / 47.2 in N/A 

 

The A40M had the advantage of covering a wider stock temperature range, 273 to 773 K 

vs. 273 to 623 K for the Merlin, while providing nearly the same resolution, and a cost of 

just under 50% of the Merlin.  Additional hardware in the form of filters would be 

required to accurately read temperatures above 773 K.  For these reasons, the A40M 

shown in Figure 11 was chosen for the experiment. 
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Figure 11:  FLIR, Inc, ThermoVision A40M (20) 

The camera provides for image capture control on the camera itself, and with the 

ThermaCam Researcher Software, discussed earlier.  The camera connects to a PC via 

fire wire in order to provide data output.  

Thermal imagers also used in industry 

In 1995, researchers studied a UK-10 grid type ion thruster using a 128 x 128 

pixel thermal imager (21).  In addition, thermal imagers today are used in a wide range of 

applications by many different industries (22), demonstrating a level of acceptance as an 

investigative technology.  One example is analyzing heat distribution in catalytic 

converters by major automotive manufacturers.  Another is the detection of plugged 

cooling fins on a heat exchanger, which is easily detectable based on the different 

temperatures of the fins represented by the different colors in Figure 12.   
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Figure 12:  Plugged cooling fins in a heat exchanger (23). 

The last example is fault detection in a component at a power station.  The fault is not 

detectable visually except when viewed with a thermal imager (see Figure 13). 

 
Figure 13:  Power plant component (left) and thermal image (right) showing fault in Ar2 

(24:3). 

These applications as well as a multitude of others can be found associated with camera 

manufacturers indicate heavy use of infrared camera technology. 

Error Analysis Approach 

A parametric approach determined error associated with factors such as camera 

accuracy, software number rounding of distance measurements, transmissivity for the 

window and the atmosphere, reflected temperature, and emissivity value used for the 

various materials.  The advantage was that each input value varied individually according 

to the band of values known for that parameter, and the output temperature changed from 
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the lowest possible value to the highest possible value as a result.  Once the resulting 

temperature band for each input value was found, an additional method was used to 

combine the errors in a way to reveal a combined affect.  Therefore, two sets of 

temperature data were produced for each material: one used all of the input values for 

each parameter resulting in the lowest temperature reading, and one used all of the input 

values for each parameter resulting in the highest temperature reading.  By comparing the 

temperature difference, an overall output temperature band of error, i.e. ± degrees K, was 

found based on the area of the thruster being analyzed.  A statistical approach used to 

find standard deviation included measuring any temperature changes at different points 

on the thermal images captured during the period with the thruster under steady state 

conditions.  A discussion with specific numbers used is contained in the Data Analysis 

section of the Methodology.   
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III.  Methodology 

Chapter Overview 

First in this chapter is a description of the specific components used in this 

experiment, including a discussion on the reasoning behind the values used as input for 

the camera software.  Next is a description of the laboratory setup followed by a 

summary of the data collected, with a breakdown of the different thruster operating 

conditions observed.  Last is the data analysis methodology followed by the error analysis 

completed. 

Hall thruster 

The Hall thruster used was the Busek BHT-200-X3 laboratory model, which is a 

200W Hall thruster of the same type shown in Figure 14 (5).   

 
Figure 14:  Busek BHT-200-X3 Hall Thruster (5) 
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The thruster used in this experiment was not new and had an unknown number of hours 

of use experienced.  The thruster showed evidence of use in its appearance as a result.  

There was a dark discoloring and iridescent appearance in the anode channel and all over 

the steel portions of the thruster as shown in Figure 15 and Figure 16. 

 
Figure 15:  Exit plane and anode chamber discoloration 

In Figure 16, the entire thruster shows a bronze discoloration, except for the mounting 

bracket on the left, cleaned after the experiment.   
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Figure 16:  Thruster discoloration. 

The discoloration was removed by lightly cleaning the mount with a wire brush.  Also, 

note the discoloration of the cathode in comparison to a brand new thruster seen in Figure 

6.  This discoloring is important since emissivity is, in part, a function of the coating of a 

surface with another material (14: Ch 4).  If there were an oxide layer present, this would 

increase emissivity by as much as five times (16: Ch 12).  This impacted the values used 

for the emissivity of the various parts of the thruster.  Reference values of emissivity for 

various types of steel are in Table 4 (14:836-838, 16:929-931). 
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Table 4:  Values of Emissivity for selected types of steel 

 Emissivity Temperature or 
Temperature Range (C)  

Stainless Steel 0.23 200 

Stainless Inconel X 
Polished 0.19 to 0.20 -183 to 486 

Stainless Inconel X 
Polished 0.19 to 0.22 -183 to 486 

Stainless 301 Polished 0.16 26 

Stainless 310 Smooth 0.39 817 

Stainless 316 Polished 0.24 to 0.31 707 to 1037 

Stainless Steel Lightly 
Oxidized 0.33 500 

Stainless Steel Highly 
Oxidized 0.67 500 

 

The large variation in values highlights the importance of knowing the actual emissivity 

of the material studied since this will produce a potentially large variation in temperature 

readings.  The value actually used was determined during the experiment as discussed in 

the Data Analysis section of this chapter.  The values of emissivity used for the boron 

nitride anode cone and the alumina plasma sprayed portion of the cathode tip and exit 

plane were those for an unused thruster as provided by the manufacturer since actual 

values could not be determined during experimentation.  The actual value determination 

was precluded due to the very high temperatures of the parts as compared to the 

capability of the thermocouples and additionally, in the case of the anode cone, the 

location within the plasma.  

Vacuum Chamber 

 The vacuum chamber used in the experiment was Chamber 6 at the Air Force 

Research Laboratory located at Edwards Air Force Base, California.  It is 1.8 m in 
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diameter and 3 m long with a measured pumping speed of ~ 32,000 l/s on xenon.  The 

initial vacuum is provided by a pump and blower system, while the final vacuum is 

provided by four single-stage cryopanels maintained at approximately 25 K and one 

two-stage cryopump maintained at roughly 12 K.  A top-down view of the chamber is 

shown in Figure 17. 

 
Figure 17:  Schematic top down view of vacuum chamber setup 

Thermal Imaging Camera 

 The lab setup included the FLIR, Inc ThermoVision A40M thermal imager 

outside the chamber and connected to a computer via fire wire.  A felt cover placed 

around the gap between the camera lens and the zinc-selenide window reduced the 

influence of outside sources of light. 

Window 

 Since the experiment took place with the thruster operating in a vacuum chamber, 

and the thermal imaging camera was placed outside the chamber, an appropriate viewing 
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window was needed.  The window needed to fit the existing chamber view ports and 

allow the 7.5 µm to 13 µm wavelength radiation to pass through.  The research lab 

already had a zinc-selenide (Zn-Se) window available, but a larger size 0.102 m (4 inch) 

view port was researched to allow for the possibility of accommodating larger diameter 

thermal imaging camera optics.  Larger windows of this type were cost prohibitive at 

approximately $3000 each and required extensive lead-time for delivery.  In addition, this 

cost covers only the window itself, so additional manufacturing would have been 

required to create a window housing useable in the vacuum chamber view ports.  For 

these reasons, the existing Zn-Se window was used.  The window is partially visible in 

the overexposed image in Figure 18. 

 

Figure 18:  Zinc Selenide Window During Thruster Operation 

Camera Software 

 ThermaCam Researcher was the software provided by the thermal imaging 

camera manufacturer, FLIR, Inc, interpreting the data coming from the camera and 

allowing for display of the image, as well as saving each frame of data in a proprietary 

format for later analysis.  The software also provided for real time data analysis and the 

Window 
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adjustments needed for the experiment.  The adjustments to the raw camera data include: 

object emissivity, distance between the camera lens and the object, reflected temperature, 

atmospheric temperature and humidity, and optics transmissivity.  Object emissivity 

refers to the thruster in this case, yet the emissivity varies for the different materials used 

for each thruster component.  While the user can identify different areas of the image and 

individual emissivity values can be set for those areas, when the entire image is output for 

data manipulation, the software uses only the “object emissivity” to calculate the 

resulting temperatures.  If only a selected area of the image is output for data 

manipulation, then the emissivity set for that area is used instead of the “object 

emissivity”.  Therefore, if a composite image showing the temperatures corrected for all 

of the different emissivity values over the entire thruster is desired, then post processing 

of the data is required.  Such post processing included data manipulation and error 

analysis by first creating composite images of the entire thruster.  These images were 

actually Matlab surface plots of the temperature data output by ThermaCam Researcher.  

Overall Lab Setup 

 The overall lab setup consisted of mounting the thruster at an optimum viewing 

position inside the vacuum chamber and viewing the thruster from outside the chamber 

through the Zn-Se window with the thermal imaging camera.  The setup as viewed from 

the chamber door is shown in Figure 19. 
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Figure 19:  Chamber and Test Setup 

The computer attached to the camera via fire wire was a standard Microsoft Windows 

based personal computer running the ThermaCam Researcher software.  The computer 

attached to the thermocouples used LabView® to monitor the thermocouple data.  The 

five thermocouples were attached at various points on the thruster and to the inner 

chamber wall in order to compare the temperature value output by the camera to a 

temperature measured by more conventional means (see Figure 20).   
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Figure 20:  Thruster and yellow thermocouple wires inside Chamber 6. 

Four thermocouples were attached directly to the thruster, with three fixed by epoxy and 

one by Kapton tape.  Epoxy fixed a fifth thermocouple to the inner vacuum chamber 

wall.  The exact thermocouple locations were: #1 on the metal axial support bar in the 

center of the thruster on the side opposite the camera, #2 on the metal support at the rear 

of the thruster on the side opposite the camera, #3 on the inner chamber wall 0.33 m (13 

in) below the Zn-Se window and 0.08m (3 in) further from the chamber door than the 

window centerline, #4 on the cathode support mount near the thruster/mount interface, 

and #5 on the metal support at the rear of the thruster on the side facing the camera.  Due 

to the need to protect the chamber walls while the thruster was firing directly toward the 

camera, mylar sheets were put in place to cover portions of the chamber wall as shown in 

Figure 20.   
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The thruster was placed at a distance of 0.673 m (26.5 in) from the Zn-Se window 

in order to maximize the number of camera pixels covering the thruster.  At this distance, 

the thruster took up approximately 44% of the 320 pixel x 240 pixel image area, or 

approximately 33,776 pixels.  Adding the window thickness of approximately 0.003m 

(0.1 in) and the distance between the window and the camera lens of approximately 

0.043m (1.7 in) meant the total distance between the camera lens the centerline of the 

thruster was 0.72 m. 

Data Collection 

Data was collected on September 26-27, 2006 and included thruster operation 

during start up, shut down, and steady state conditions.  The thruster was considered to 

have achieved thermal steady state when the temperature measured at several points on 

the thruster exhibited a one-degree temperature change in 30 minutes.  The thruster was 

also rotated from a position where it was viewed from the side with the exit plane facing 

the right, through 90° to a position where the exit plane was facing the camera.  The 

vacuum chamber pressure was approximately 4 x 10-5 Pa (3 x 10-7 Torr) while the 

thruster was firing.  The ThermaCam Researcher software captured each frame of 

temperature data for later analysis.  Table 5 shows a summary of the experimental 

thruster conditions for which data was captured. 
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Table 5: Data Collection Summary  

Date Time Thruster 
Condition 

Xenon Flow Rate 
(sccm) Duration (hrs) 

1234 - 1620 Start up to 
steady state 8.50 3.75 

26 Sept 2006 

1620 – 2120 Shut down 0 5.00 

0804 – 0830 Start up 8.50 0.50 

0830 – 0834 
Running with 

exit plane 
facing camera 

8.50 0.10 

0835 – 0948 Shut down 0 1.20 

0958 - 1330 Start up to 
steady state 7.00 3.50 

1331 - 1607 Running 10.0 2.60 

27 Sept 2006 

1610 - 2010 

Shut down 
with exit 

plane facing 
camera 

0 4.00 

 

Data Analysis 

Thruster side view heat up, steady state, and cool down 

 In the ThermaCam Researcher software, four spot temperature locations were 

chosen, and the temperature data for each location was output in order to determine the 

change in temperature over time as the thruster heated up.  The four locations along with 

the ThermaCam Researcher spot name and X and Y positions were: steel axial support 

bar near the exit plane (SP01, X1:145, Y1:161), boron nitride cone at the end of the 

anode channel (SP02, X1:159, Y1:155), upper steel portion of the cathode (SP03, 

X1:148, Y1:67), alumina plasma sprayed lower portion of the cathode (SP04, X1:169, 

Y1:105) (see Figure 21). 
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Figure 21:  Spot temperature locations on thruster 

The values used for “object parameters” shown in Table 6 include an emissivity value of 

0.2, determined by varying the emissivity setting within the Researcher software until the 

temperature displayed matched the thermocouple #5 in the same area.  Note this is twice 

the value of the stainless steel emissivity value provided by the manufacturer for a new 

thruster.  This is likely due to the discoloration and coating discussed earlier and suggests 

the emissivity values provided by the manufacturer, while correct for a new thruster, may 

be lower than the actual values on a thruster with accumulated operating time.  The 

emissivity for the anode cone was set to 0.45 under the settings for SP02.  The 0.45 

emissivity value represents a value for the boron nitride of a new thruster as provided by 
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the manufacturer.  The emissivity for the cathode tip was set to 0.23 for SP04, which also 

represents a value for the alumina plasma sprayed portion of the cathode of a new 

thruster as provided by the manufacturer. 

Table 6:  Object Parameter settings in ThermaCam Researcher 

 Value  Value 

Emissivity 0.20 External Optics 
Transmissivity 0.62 

Distance (m) 0.7 Atmosphere Temperature 
(C) 21 

Reflected Temperature 
(C) 18 Atmosphere Relative 

Humidity (%) 50 

External Optics 
Temperature (C) 21 Researcher Calculated 

Atmosphere Transmissivty 0.99 

 

Temperature and time values for 60 data points during the heat up and 71 data points for 

cool down were used to ensure enough data to capture the heating and cooling rates.  For 

the plots generated, the initial time was set to zero min and the number of minutes 

elapsed between each data point was noted and added to the time for the last data point.  

One image, ThermaCam Researcher file tc0501.fff, was chosen for steady state 

temperature analysis based on temperature trend analysis showing very small changes in 

temeperature.  Although this image contains temperature data for the entire thruster, 

analysis focused on the axial support bar near the exit plane, the cathode, the anode, and 

the magnet core area.    

Thruster exit plane view temperatures and cool down 

The rotation of the thruster allowed for a view of the cathode channel and exit 

plane.  An image containing the anode channel was captured with the exit plane at a 45° 

angle to the camera.  The values set within ThermaCam researcher are shown in Table 7. 
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Table 7:  Object Parameter settings in ThermaCam Researcher for Anode 

 Value  Value 

Emissivity 0.45 External Optics 
Transmissivity 0.62 

Distance (m) 0.7 Atmosphere Temperature 
(C) 21 

Reflected Temperature 
(C) 18 Atmosphere Relative 

Humidity (%) 50 

External Optics 
Temperature (C) 21 Researcher Calculated 

Atmosphere Transmissivty 0.99 

 

The emissivity was set to 0.45 to account for the boron nitride.   

A second image was taken with the exit plane directly facing the camera.  The 

temperature data from ThermaCam Researcher image tc1220.fff was corrected for the 

different material emissivity values.  The values set in ThermaCam Researcher are in 

Table 8. 

Table 8:  Object Parameter Settings in ThermaCam Researcher for Exit Plane Facing 
Camera 

 Value  Value 

Emissivity Varied External Optics 
Transmissivity 

0.62 

Distance (m) 0.7 Atmosphere Temperature 
(C) 21 

Reflected Temperature 
(C) 18 Atmosphere Relative 

Humidity (%) 50 

External Optics 
Temperature (C) 21 Researcher Calculated 

Atmosphere Transmissivity 0.99 

 

There were three images required to create a composite image with the corrections 

needed for the different emissivity values of the boron nitride, alumina plasma spray, and 

the steel.  This was necessary since the ThermaCam Researcher software does not display 

the emissivity corrected temperatures in the image when more than one emissivity is 

used, rather it shows the corrected values numerically in a separate text field.  It also will 

not output the corrected data containing temperatures with several emissivity corrections.  
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ThermaCam Researcher will not display in a composite image, or output composite data 

corrected with more than one emissivity set.  So in order to create a composite image 

displaying the temperatures in the image as corrected with different emissivity values, the 

numerical data from ThermaCam Researcher must be output with one emissivity set for 

the entire image.  Post processing the images assembled the different parts into a single 

image with corrected temperatures.  So first, the emissivity was set to .23 for the alumina 

plasma spray, and the data was output.  Next, the emissivity was set to 0.20 for the steel, 

and the data was output.  Last, the emissivity was set to 0.45 for the boron nitride, and the 

data was output.  This resulted in three data sets of temperature data in matrix form.  The 

matrix of temperature values from the image corrected for the alumina plasma spray was 

used as a base matrix since most of the image area contained thruster parts with the 

alumina plasma spray, namely the face of the exit plane and the cathode tip.  Next, the 

matrix data from the image corrected for the steel emissivity was copied and pasted over 

the data in the first matrix for the upper steel portion of the cathode.  Last, the matrix data 

from the image corrected for the boron nitride was copied and pasted over the data in the 

first matrix for the area of the anode channel and anode cone.  The result was a matrix of 

temperature values used to generate a surface plot so a composite image could be seen. 

The last data analysis consisted of measuring the cooling rate with the exit plane 

facing the camera.  Four spot temperatures were set within ThermaCam Researcher: 

SP01 on the anode cone (X1:157,Y1:157), SP02 on the anode rear channel wall 

(X1:157,Y1:144), SP03 on alumina plasma sprayed portion of the exit plane 

(X1:186,Y1:156), and SP04 on the Cathode tip (X1:157,Y1:122) as shown in Figure 22.   
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Figure 22:  Spot Locations for Cool Down Data with Exit Plane Facing the Camera 

The ThermaCam Researcher settings are shown in Table 9. 

Table 9:  Object Parameter settings in ThermaCam Researcher for Cool Down with Exit 
Plane Facing Camera 

 Value  Value 

Emissivity 0.65 External Optics 
Transmissivity 0.62 

Distance (m) 0.7 Atmosphere Temperature 
(C) 

21 

Reflected Temperature 
(C) 18 Atmosphere Relative 

Humidity (%) 50 

External Optics 
Temperature (C) 21 Researcher Calculated 

Atmosphere Transmissivty 0.99 

 

The emissivity value of 0.65 was chosen to lower the temperatures of the image in an 

attempt to capture as much data as possible within the ~773 K maximum temperature 

capability of the camera.  Since the change in temperature values over time, rather than 
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actual temperature values, is needed for cooling rate data, this does not impact the result.  

In the plots, the initial time was set to zero min and the number of minutes elapsed 

between each data point was noted and added to the time for the last data point. 

Uncertainty Analysis 

 Many factors could introduce error.  The most notable include: camera accuracy, 

stated by FLIR, Inc. is ± 2 K, software number rounding of distance measurements, 

transmissivity for the window and the atmosphere, reflected temperature, and emissivity 

value used for the various materials.   

It was noted during analysis the ThermaCam Researcher software rounds values 

for distance to the nearest 0.1 m, which means any distance entered as 0.11 to 0.14 will 

be rounded down to 0.1 and any value entered as 0.15 to 0.19 will be rounded up to 0.2.  

Although the measured distance for this experiment was 0.72 m, the value of 0.7 m was 

used by the software.  The results were checked for sensitivity to this error by entering 

several values for distance and observing the resulting change in temperature.  It was 

noted the distance had to be set to 5.0 m before a one degree difference in temperature 

was observed, thus indicating the results were not sensitive to distance errors for this 

experiment.  This is probably due to the relatively small distance between the camera and 

the thruster compared to the thermal radiation emitted. 

Data provided by a Zn-Se window manufacturer indicated that a Zn-Se window 

had a transmissivity of 0.62 over the wavelength range of 7.5 µm to 13 µm to which the 

camera is sensitive.  Lab testing with a black body source indicated the window 

transmissivity used for the experiment may be as high as 0.68 in the temperature range of 

425 K to 725 K.  As such, window transmissivity varied between 0.56 and 0.68 in the 
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software resulted in a temperature change of ± 6 K.  The air transmissivity value depends 

on atmosphere temperature and humidity.  The calculated transmissivity of the 

atmosphere used in the experiment was 0.99 at 294 K and 50 % humidity.  With the 

temperature and humidity varied, the resulting change in transmissivity and temperature 

was observed.  With the humidity held constant at 50 % and the air temperature varied 

between 278 and 317 K, the transmissivity only varied between 0.99 and 1.0 and the 

resulting image temperature did not change.  With the air temperature held constant at 

297 K and the humidity varied between 20 % and 70 %, the transmissivity only varied 

between 0.99 and 1.0 and the resulting image temperature did not change. 

For the purposes of this experiment, the reflected temperature was the temperature 

of the inner vacuum chamber wall.  A thermocouple on the wall indicated a constant 

temperature of 291 K while the chamber was at vacuum with the thruster operating.  

However, due to the need to protect the chamber walls while the thruster was firing 

directly toward the camera, mylar sheets were put in place to cover portions of the 

chamber wall as shown in Figure 20.  In addition, the vacuum chamber cryo-coolers 

would also present a different reflected temperature.  For these reasons, the reflected 

temperature was varied between 283 and 299 K.  The resulting calculated thruster 

temperature was observed.  Based on the results and the thermocouple accuracy of ± 2 K, 

the potential error was ± 3 K. 

As noted earlier, emissivity varies based on the material in question.  It also varies 

based on other factors, including temperature, surface roughness, color, and whether or 

not the surface is a diffuse emitter.  As a result, the preferred method of finding the actual 

emissivity would be to attach a thermocouple and compare the temperature reading with 
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the camera as emissivity is varied.  When the temperatures match, the emissivity value 

can be noted.  While this was done for the steel axial support bar, it was not done on the 

other materials due to the very high temperatures of the parts as compared to the 

capability of the thermocouples and additionally, in the case of the anode cone, the 

location within the plasma.  In any case, the emissivity was varied for the three materials 

and the resulting temperature change was noted.  Variations in emissivity of ± 0.05 of the 

actual emissivity resulted in temperature changes of ± 37 K for steel, ± 81 K for the 

alumina plasma spray, and ± 52 K for the boron nitride.  The higher value for the alumina 

plasma spray over the value for the steel is due to the higher temperature of the alumina 

plasma spray.  The value for the boron nitride is higher than both the steel and the 

alumina plasma spray due to a higher emissivity and higher temperature of the boron 

nitride as compared to the steel and alumina plasma spray. 

As discussed earlier, an additional method was used to combine the errors in a 

way that would reveal a combined affect “worst case” temperature error range.  

Therefore, two sets of temperature data were produced for each material: one used the 

input values for each parameter resulting in the lowest temperature reading, and one used 

the input values for each parameter resulting in the highest temperature reading.  Table 

10 shows the input values used for the images. 
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Table 10:  Lowest and Highest Input Values 

Parameter Input value to get lowest 
temperature reading 

Input value to get highest 
temperature reading 

Object Emissivity 
Steel: 0.25 

Boron Nitride: 0.50 
Alumina Plasma Spray: 0.28 

Steel: 0.15 
Boron Nitride: 0.40 

Alumina Plasma Spray: 0.18 

Distance (m) 0.7 0.7 

Reflected Temperature (K)  299 283 

Window Transmissivity 0.68 0.56 

Atmosphere Transmissivity 0.99 0.99 

 

Although the distance measured during experimentation may vary by ± 0.006 m (0.25 

inch), the camera software rounds the input value to the nearest ± 0.1 m, therefore the 

input value for the distance remained constant.  Similarly, the atmospheric transmissivity 

calculated by the camera software did not vary over the range of atmospheric 

temperatures and humidity used, thus the input value was held constant.  The resulting 

minimum and maximum temperature was monitored for an area on the thruster 

containing each material.  Subtracting the minimum temperature from the maximum 

temperature and dividing by 2 determined the temperature error range.  With steel 

temperature reaching the 500 K range, and the boron nitride and alumina plasma sprayed 

parts of the thruster potentially above 700 K these values represent an 8 % to 12 % error 

shown in Table 11.  
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Table 11:  Maximum Temperature Error Using Combined Input Values 

Area Maximum Temperature Error (K) Maximum Temperature Error (%) 

Steel ± 47 10 

Boron Nitride ± 55 8 

Alumina Plasma Spray ± 83 12 

 
These numbers reasonably agree with a simple summation of the individual errors 

discussed earlier as shown in Table 12.   

 
Table 12:  Maximum Combined Temperature Error Using Simple Summation 

Error Source Temperature Error 
(K) 

Temperature Error 
(K) 

Temperature Error (K) 

Camera ± 2 ± 2 ± 2 

Window 
Transmissivity ± 6 ± 6 ± 6 

Reflected Temperature ± 3 ± 3 ± 3 

Emissivity ( Material ) ± 37 (Steel) ± 52 (Boron Nitride) ± 81 (Alumina Plasma Spray) 

Sum Steel: ± 48  Boron Nitride : ± 63 Alumina Plasma Spray: ± 92 

 
The statistical analysis of 60 temperature values for two points on the thruster during 

steady state operation revealed a standard deviation of less than 2 K.  The average 

temperature of the two points was 529 K and 498 K respectively.  Appendix B contains 

detailed data used in determining error. 
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IV.  Results and Discussion 

Chapter Overview 

 In this chapter, the first section contains the results of the side view heating rate 

analysis, followed by side view steady state image temperatures and the side view 

cooling rate analysis results.  The next section discusses the results of the steady state 

temperature analysis with the thruster exit plane at a 45 degree angle toward the camera, 

followed by the steady state temperature results of the thruster exit plane directly facing 

the camera.  The last section contains cooling rate results with the thruster exit plane 

directly facing the camera.  For reference, Figure 23 shows a picture of the thruster next 

to a raw thermal image with several components labeled. 

 
Figure 23:  200W Thruster and Researcher raw thermal image.  (1. Kapton tape covering 

thermocouple #5. 2. Magnet core. 3. Steel portion of Cathode. 4. Anode cone. 5. 
Reflection from rear stand on thruster mount plate. 6. Power wire for anode. 7. Axial 

support bars 8. Alumina plasma sprayed portion of the Cathode.) 
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Heating rate results taken from thruster side view images 

The following heating rate results were taken from the data gathered following 

thruster start up to 8.5 sccm.  Figure 24 shows a plot of temperature change vs. time for 

the axial support bar near the exit plane, which was spot SP01 in Figure 21.  
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Figure 24:  Axial Support Heating Rate  

The time since start up indicates the amount of time elapsed after the cathode was 

conditioned and anode flow began.  The heating rate varies between 0 and 10 degree K 

per minute for the first 10 min, then varies between 10 and 20 degrees K per minute 

between 12 and 25 min after start up.  The apparent oscillation of the heating rate during 

the first 10 minutes was due to very small temperature changes over the time interval 

observed.  The heating rate is less than 1 degree K per minute about 42 min after start up.  

The increase in heating rate at the 10 min mark coincides with an increase in heating rate 
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of the anode cone (Figure 25).  This is probably due to the heating of the anode section 

from the xenon plasma and subsequent conduction from the higher temperature anode 

section outward to the other areas of the thruster.  Another possibility is that as the 

thruster begins to fire and plasma is formed at the exit, some of the xenon is impacting 

the alumina plasma sprayed portion of the exit plane of the thruster, which then conducts 

the heat to the axial support bars.   While radial xenon neutral velocity is nearly zero at 

the exit plane, the velocity increased to an average of 75 m/s just 10 mm (0.39 inch) from 

the exit plane (25).  Therefore, the increase in heating rate of the axial support bar may 

indicate xenon affecting thruster temperatures.  Figure 25 shows the heating rate for the 

anode cone, which was spot SP02 in Figure 21. 
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Figure 25:  Anode Cone Heating Rate 
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The heating rate appears to be insignificant until 10 min after start up, then increases 

sharply to 138 K/min before coming back down to less than 40 K/min at about 15 min 

after start up.  The heating rate lowers to about 3 K/min at 32 min after start up, then 

appears to go to 0 K/min after 30 min.  It does not actually reach 0 K/min at this point 

because the temperature reading reached ~ 773 K, which is the maximum value 

measurable by the camera.  Figure 26 shows the heating rate for the steel portion of the 

cathode, which was spot SP03 in Figure 21. 
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Figure 26:  Steel Portion of Cathode Heating Rate 

Here, the heating rate increases rapidly during the first 8 min following start up, then 

stabilized between 3 and 6 K/min between 10 and 25 min after start up.  The heating rate 

then decreased steadily to less than 1 K/min at about 35 min after start up.  The initial 

heating rate lags only slightly behind the heating rate for the alumina plasma sprayed 

portion of the cathode, indicating the conduction from the higher temperature alumina 
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plasma sprayed portion to the steel portion.  Interestingly, the heating rate stabilized 

during the same 10 to 25 min time frame as the anode cone and axial support bar, rather 

than continuing to decrease.  This may be further indication of interaction between the 

cathode and xenon as discussed earlier.  Figure 27 shows the heating rate for the alumina 

plasma sprayed portion of the cathode, which was SP04 in Figure 21. 
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Figure 27:  Alumina Plasma Sprayed Portion of the Cathode Heating Rate 

The cathode was conditioned and at a temperature of 353 K at the zero time point.  The 

heating rate increased rapidly over a span of 2 min to 60 K/min and remained between 50 

and 70 K/min until the 9 min mark.  The heating rate then reached negative values until 

the 13 minute mark.  This variation is likely due to keeper heating during the first 10 

minutes, followed by cathode flow start.  The inverse relationship between cathode flow 

and keeper temperature caused the cathode heating rate to reach negative values.  The 

heating rate is less than 1 K/min beginning with the 13 min mark.   
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Figure 28 shows Figure 25, Figure 26, and Figure 27 on one chart in order to 

further show the relation between the timing of the heating rates of the various 

components. 

 

Heating Rate Combined Chart
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Figure 28:  Component heating rates in single chart 

As expected, the heating rate of the steel part of the cathode follows the heating rate of 

the alumina plasma sprayed part of the cathode due to conduction.  However, as the 

anode heating rate increased, the heating rate of the steel part of the cathode stabilized 

instead of continuing to decrease as expected to follow the heating rate of the alumina 

plasma sprayed part of the cathode.  Since the anode and the cathode are not connected, 

and the heating rate of the anode increased when xenon flow was initiated, the heating 
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rate of the steel part of the cathode may be due to interaction with the xenon, as suggested 

earlier. 

Steady state results taken from thruster side view image 

Once the temperature of the thruster components had reached a steady state, a 

single ThermaCam Researcher Image, file tc0501.fff, was analyzed for steady state 

temperature values.  Although the anode cone was corrected for an emissivity of 0.45, the 

temperatures were still above the 773 K camera limit.  Similarly, when an emissivity of 

0.23 was applied to account for the alumina plasma sprayed portion of the cathode, the 

temperatures for the area were above 773 K.  Unfortunately, since the actual temperature 

is unknown, this does not directly yield the hollow cathode insert temperature, which is a 

factor affecting cathode life.  Since the anode cone and alumina plasma sprayed portions 

seen in the image were above the 773 K camera limit, the ThermaCam Researcher image 

in Figure 29 is shown with the object emissivity set to 0.20 for the steel portions of the 

thruster. 
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Figure 29:  Side View Steady State Temperature Image 

Temperatures on the upper constant diameter steel portion of the cathode are 

approximately 473 K near the center and 600 K near the edge.  The increase in 

temperature at the edges is due to metals exhibiting an increase in emissivity, and 

therefore temperature, at high angles of emission as shown in Figure 30 (4:119) for 

titanium.   
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Figure 30:  Emissivity and angle of emission (14:119) 

The data for a wavelength of 8.2 µm falls within the wavelength range of 7.5 µm to 13 

µm detected by the camera.  The area of the cathode that decreases in diameter as it nears 

the alumina plasma sprayed portion of the cathode had temperatures ranging from 563 K 

to above 773 K.  These temperatures are higher than the constant diameter steel section of 

the cathode, and may also be due to reflections or interaction with the xenon as it moved 

away from the exit plane and was obstructed by the cathode and thruster body.  This is 

also evident in other images discussed later.  The axial support bars decrease in 

temperature from 500 K near the exit plane to 420 K near the rear of the thruster.  The 

magnet core windings can also be seen in the image, even though the core is physically 

inside the wire mesh of the thruster body.  The core temperatures range from 620 K near 

the exit plane to 475 K near the rear of the thruster.  While these temperatures represent 

the magnet core windings, supposing the magnet core is near this temperature suggests 

that it is not near the Curie temperature for iron of 1043 K or the Curie temperature of 
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858 K of iron alloyed with nickel.  Still, reducing the temperature of the magnet core or 

using a material with a higher Curie temperature may increase the magnetic field strength 

and therefore increase the efficiency of the thruster.    

Cooling rate results taken from thruster side view images  

The next set of data shows the cooling rates during the 5 hours following thruster 

shut down from operation at 8.5 sccm.  For reference, the spot locations are identical to 

those used to collect heating rate data as shown in Figure 21.  Figure 31 shows the 

cooling rate data for the axial support bar near the exit plane, which is spot SP01 on 

Figure 21. 
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Figure 31:  Axial Support Bar Cooling Rate 

The initial cooling rate is 10 K/min and gradually decreases to less than one K/min at a 

time of 98 min after shut down.  Compared to the other areas of the thruster analyzed for 

cooling rate, this cooling rate is relatively low due a lower emissivity and the lower 
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temperature difference between the axial support bar and the surroundings.  Figure 24 

shows the cooling rate for the anode cone, which is spot SP02 in Figure 21. 
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Figure 32:  Anode Cone Cooling Rate 

The anode cone shows an initial cooling rate of 90 K/min with a gradual decrease to less 

than 1 K/min at a time of 118 min after shut down.  Compared to the other areas of the 

thruster analyzed for cooling rate, this cooling rate is the highest due a high emissivity 

and the higher temperature difference between the anode cone and the surroundings.  

Figure 33 shows the cooling rate for the steel portion of the cathode, which is spot SP03 

in Figure 21. 
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Steel Portion of the Cathode Cooling Rate
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Figure 33:  Steel Portion of the Cathode Cooling Rate 

The steel portion of the cathode shows an initial cooling rate of 8.0 K/min with a gradual 

decrease to less than one K/min at a time of 98 min after shut down.  Compared to the 

other areas of the thruster analyzed for cooling rate, this cooling rate is about the same as 

the axial support bar with the same emissivity and similar temperature difference between 

the steel and the surroundings.  Figure 34 shows the cooling rate for the alumina plasma 

sprayed portion of the cathode, which was spot SP04 in Figure 21. 
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Alumina Plasma Sprayed Portion of the Cathode Cooling Rate
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Figure 34:  Alumina Plasma Sprayed Portion of the Cathode Cooling Rate 

The alumina plasma sprayed portion of the cathode shows an initial cooling rate of nearly 

50 K/min with a gradual decrease to less than one K/min at a time of 108 min after shut 

down.  Compared to the other areas of the thruster analyzed for cooling rate, this cooling 

rate is relatively high due to the higher temperature difference between the alumina 

plasma sprayed portion of the cathode and the surroundings.   

Temperature results with exit plane facing camera 

 The image from ThermaCam Researcher shown in Figure 35 shows the exit plane 

at a 45° angle to the camera. 
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Figure 35:  ThermaCam Researcher Image of Thruster at 45° Angle to Camera 

The emissivity for the entire image was set to 0.45 for the boron nitride anode cone and 

anode channel since these are the areas of interest for this image.  Unfortunately, the 

temperatures of the anode cone and the majority of the anode channel appear to exceed 

the capability of the camera to read temperatures over 773 K.  The material in this section 

of the anode channel appears different from the material of a small ring near the exit 

plane (see Figure 6).  The small ring within the anode channel nearest the exit plane is not 

above 773 K, and the temperatures there range from 664 K to 708 K as shown in the 

figure.  It is interesting to note the temperature pattern on the upper steel portion of the 

cathode shown in Figure 36 with the 45 degree view on the left and the side view on the 

right.  
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Figure 36:  Temperature Pattern on Upper Steel Portion of the Cathode 

If the xenon neutral interaction suggested earlier is feasible, the pattern might be 

explained by a flow field of the xenon around the cathode.  The xenon flow may come up 

from the anode channel area and be blocked by the thruster body or have a free path to 

the upper portion of the cathode causing the different temperature in area 1 and area 2 

respectively as shown in the figure. The lower temperature in area 3 may be due to partial 

flow blockage by the alumina plasma sprayed portion of the cathode.  Accurate 

determination of the flow patterns in this area is complicated and beyond the scope of this 

work, but may be beneficial as a future project.  While the actual temperatures in the 

upper steel portion of the cathode are not as critical as others, determining that the flow 
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patters found match the flow patterns observed here may further add weight to the idea of 

xenon neutral flow in this area.    

 The surface plot of the temperatures for the composite image with the thruster exit 

plane facing the camera is shown in Figure 37.   

 
Figure 37:  Surface Plot of Temperatures with Exit Plane Facing Camera 

Temperatures of the alumina plasma sprayed portion of the cathode and the anode area 

shown in dark red exceed the 773 K limit capability of the camera.  The upper steel 

portion of the cathode ranges in temperature of 725 K near the alumina plasma sprayed 

portion to a temperature of 575 K near the cathode mount.  In addition, the steel portion 

of the cathode decreasing in diameter as it nears the alumina plasma sprayed portion of 

the cathode shows the sides are hotter than the center, while the constant diameter 
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portions of the steel cathode show the opposite.  As discussed earlier, this may be due to 

reflections not accounted for in the analysis or due to interaction with the xenon as it 

moves away from the exit plane.  A ThermaCam image with emissivity set to 0.23 is 

shown in Figure 38 for a visual comparison. 

 
Figure 38:  ThermaCam Researcher Image of Exit Plane of Thruster Facing Camera 

The small dark spot in the upper right quadrant of the alumina plasma sprayed portion of 

the exit plane is a camera anomaly, not an actual spot on the thruster. 

Cooling rate results taken from images with thruster exit plane facing camera  

The cooling rate data included here originates in the ThermaCam Researcher data 

files from tc1220.fff to tc3349.fff.  The cooling rate for the anode cone is shown in 

Figure 39, which is SP01 from Figure 22. 
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Anode Cone Cooling Rate
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Figure 39:  Exit Plane Anode Cone Cooling Rate 

The cooling rate was between 188 K/min and 112 K/min in the first two minutes.  The 

cooling rate of the anode cone taken from the side view data was not taken from the exact 

same spot on the cone and was only 90 K/min suggesting this area of the anode cone was 

hotter.  The cooling rate gradually decreased to about 20 K/min and then remained less 

than 3 K/min at the 23 min mark.  The cooling rate for the rear of the anode channel is 

shown in Figure 40, which was SP02 in Figure 22. 
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Rear Anode Channel Cooling Rate
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Figure 40:  Rear Anode Channel Cooling Rate 

The cooling rate began at 92 K/min and fell rapidly to about 14 K/min in the first eight 

minutes.  This cooling rate is lower than the cooling rate of the anode cone, suggesting 

the anode cone was at a higher temperature.  The cooling rate gradually decreased to 

about 20 K/min and then remained less than 3 K/min at the 27 min mark.  The cooling 

rate data for the rear of the alumina plasma sprayed portion of the exit plane is shown in 

Figure 41, which was SP03 in Figure 22. 
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Alumina Plasma Sprayed Portion of Exit Plane Cooling Rate
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Figure 41:  Alumina Plasma Sprayed Portion of Exit Plane Cooling Rate 

The cooling rate appears to vary between 8 K/min and 12 K/min during the first 30 

minutes of observation.  The apparent variation in cooling rate during this period is due to 

the change in temperature of only 2 K during one 15 second period to 3 K during the next 

15 second period, and back to 2 K during the next 15 second period.  Therefore, due to 

the small temperature changes, it is more accurate to view the cooling rate as 10 K/min.  

Afterward, the cooling rate decreased steadily to less than 3 K/min at the 56 min mark.  

The cooling rate data for the cathode tip is shown in Figure 42, which was SP02 in Figure 

22. 
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Cathode Tip Cooling Rate
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Figure 42:  Cathode Tip Cooling Rate 

The cooling rate began at 218 K/min then rapidly decreased to 20 K/min.  The cathode 

tip is likely the hottest area on the thruster and thus had the highest cooling rate.  The 

cooling rate was less than 3 K/min at the 25 min mark.   
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V.  Conclusions and Recommendations 

Conclusions 

 Temperature is an important factor impacting thruster design and lifetime, so it is 

beneficial to obtain temperature data.  The temperature data for this work was gathered 

using a thermal imaging camera and a zinc selenide window as a non-intrusive means to 

view an operating Hall thruster inside a vacuum chamber.  The following discussion 

reveals conclusions concerning the benefits and difficulty of using a thermal imager 

including knowledge of the actual emissivity, the temperature of the magnet as it relates 

to thruster efficiency and lifetime, and the possibility of xenon interaction with the 

thruster components. 

The benefits of using thermal imaging are: it does not require modification of the 

thruster, does not require vacuum chamber opening and closing to correct any imaging 

problems, and it provides temperature data over the entire visible surface of the thruster.  

There are drawbacks to thermal imaging, such as the complexity of correcting the raw 

temperature data to a more correct temperature, camera temperature limitations, and an 

increased cost of operating a thermal imaging system over the use of conventional means, 

such as thermocouples.  Values such as object emissivity, distance between the object 

and the camera, optics temperature and transmissivity, atmospheric temperature and 

humidity, and reflected temperature can be entered directly into the camera software to 

correct the image.  The largest difficulty of using a thermal imager comes from the need 

to know specific emissivity values for the actual object components and accounting for 

the different emissivity values to create a single image with corrected temperatures.  

While some values can be obtained from reference material, these values may not be 
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accurate if the material has undergone any changes since being manufactured, as was the 

case for this experiment.  In addition, obtaining emissivity values by adjusting the camera 

input emissivity value was possible for the steel parts of the thruster, but this method is 

not always practical due to the very high temperatures of the parts as compared to the 

capability of the thermocouples and additionally, in the case of the anode cone, the 

location within the plasma.  The impact of emissivity ambiguity on measured temperature 

caused a worst-case variation of ± 48 K for the steel, ± 63 K for the boron nitride, and ± 

92 K for the alumina plasma spray.  With steel temperature reaching the 500 K range, and 

the boron nitride and alumina plasma sprayed parts of the thruster potentially above 700 

K these values represent a 8 % to 12 % error in values.  These benefits and limitations 

must be kept in mind when considering the use of thermal imaging. 

Heating rate and cooling rate values were obtained for the axial support bars, the 

steel and alumina plasma sprayed portions of the cathode, and the anode cone.  The 

heating rate for the axial support bars and steel portion of the cathode were less than 20 

K/min while the alumina plasma sprayed portion of the cathode experienced a heating 

rate between 60 K/min and 70 K/min and the anode cone saw the largest peak heating 

rate of 136 K/min.  The heating rate for all the parts was less than 5 K/min within 30 min 

after thruster start up.  The cooling rate of the axial support bar and the steel portion of 

the cathode were less than 12 K/min while the alumina plasma sprayed portion of the 

cathode experienced an initial peak cooling rate of 47 K/min and the anode cone saw 

initial peak cooling rate of 90 K/min.  These heating and cooling rates are indicative of 

the operating conditions experienced by the thruster following a start up and shut down.  

A comparison of the heating rate data of the individual components suggested possible 
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interaction of the xenon with the thruster components.  It is also possible the steady state 

data supports this idea, but there was no direct indication of the interaction. 

Steady state temperatures on the alumina plasma sprayed portion of the cathode 

and on the anode cone and anode channel walls exceeded the 773 K limit of the thermal 

imager since filters were not used to increase the maximum temperature to the actual 

limit of 2275 K.  While knowing these temperatures exceed 773 K is useful, it would be 

more helpful if the actual temperatures were known.  The ability to learn the actual 

temperatures also depends on knowing the actual emissivity of the alumina plasma 

sprayed portion of the cathode and the anode cone and channel walls, as discussed earlier.  

The magnet core winding temperatures range from 620 K near the exit plane to 475 K 

near the rear of the thruster.  While these temperatures represent the magnet core 

windings, supposing the magnet core is near this temperature suggests it is not near the 

Curie temperature for iron of 1043 K or the Curie temperature of 858 K of iron alloyed 

with nickel.  Still, reducing the temperature of the magnet core or using a material with a 

higher Curie temperature may increase the magnetic field strength and therefore increase 

the efficiency of the thruster.     

Recommendations for Future Research 

 Since the emissivity of the various parts of the thruster differs from reference 

values, and it has been shown that the largest temperature error resulted from uncertainty 

of the exact value, it is recommended the actual emissivity values be obtained 

experimentally.  If possible, artificial heating of the components and comparison of 

thermocouple temperatures to those obtained with a thermal imager with the emissivity 

value varied until the temperatures are the same would increase accuracy.  This would 
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allow for future temperature monitoring on the thruster and enable the data in this work 

to be revised with the new emissivity values in order to obtain more accurate results, as 

long as the revised temperatures fall below the maximum temperature limit of the 

camera.  The data taken during the thruster start up at 7 sccm followed by steady state at 

7 sccm and a flow increase to 10 sccm followed by thruster rotation should also be 

analyzed with the revised emissivity values.  If this is not possible due to inability to raise 

the component temperature to a level near operating temperature or at least show that the 

emissivity is no longer changing with increasing temperature, an alternate method of 

cleaning the thruster before testing to remove the discolored film could restore the 

emissivity to a value closer to reference values.  For example, removing the film on the 

steel mount of the thruster was easily done by using very light pressure on a wire brush 

after the experiment.  While this is not as desirable as obtaining the actual emissivity by 

experiment, it is better than leaving the thruster as it is. 

 Future experiments using thermal imaging should include the use of filters to 

allow the camera to display temperatures above 773 K.  This was a limiting factor for 

determining the temperature of the alumina plasma sprayed portion of the cathode and 

the anode cone and channel walls if the emissivity values were correct. 

 The view factor between thruster components and between the thruster and the 

vacuum chamber components was not determined.  Finding the view factor using 

computer modeling would further increase the accuracy of the temperature data. 
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Appendix A – Data Collection Experime ntal Log 

 
Data was collected on September 26-27, 2006 and included thruster operation 

during start up, shut down, steady state conditions as follows in the following sections.  

The ThermaCam Researcher software captures each frame of temperature data naming 

the file appropriately for experiment start/event/stop times, and is placed after the clock 

time for reference purposes  

 

Thruster start up to 8.5 sccm followed by shut down and 5 hour cool down 

On the first day, the thruster position, side view with the exit plane facing to the 

right, allowed data capture during start up to steady state, then to capture the cool down 

after the thruster shut down with little plume interference.  The thruster cathode was 

conditioned, taking three hours and is required any time the thruster has been exposed to 

atmosphere.  The thruster start-up procedure achieved a flow of 85%, which is 8.5 

standard cubic centimeters per minute (sccm).  At 1234 hrs (tc0137.fff), the data capture 

rate on ThermaCam Researcher was set to capture one frame every 30 sec.  The 

thermocouples were set to record temperature every second.  The thruster operated until 

the temperature measured at several points on the thruster appeared to reach steady state.  

Steady state was one-degree temperature change in 30 minutes.  At 1620 hrs (tc0586.fff), 

the thruster was shutdown and data collection was continued at a rate of one frame per 

minute for five hours until 2122 (tc0886.fff) in order to capture cooling rate data. 

Thruster start-up to 8.5 sccm, 90° rotation, and cool down 

On the second day of testing, the ThermaCam Researcher data capture rate was 

set to one frame per two seconds and the thruster was started at 0804 hrs to a flow rate 
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8.5 sccm.  At 0830 hrs, the thruster was rotated at 15° increments such that the exit plane 

rotated from its normal right facing position to a position where the exit plane was 

directly facing the camera.  At 0834 hrs, the thruster was shut down and data was 

recorded until 0948 hrs. 

Thruster startup to 7.0 sccm and steady state 

At 0958 hrs, the ThermaCam Researcher data capture rate was set to one frame 

per 30 seconds beginning with frame tc4083.fff, and the thruster started to flow at 7.0 

sccm.  At 1245 hrs, it was noted researcher software indicated “no connection” with 

camera.  The fire wire connection between the camera and the computer was checked, but 

there were no problems with the connection.  Next, it was attempted to reconnect using 

the ThermaCam Researcher software, but a “device not present” error was received.  

Since the computer did not seem to be malfunctioning, the fire wire connection was 

disconnected and reconnected and a second attempt to reconnect using researcher 

software was made, but again the “device not present” error was received.  It appeared 

the ThermaCam Researcher software was functional, but it would not connect with the 

camera.  As a result, data after 1113 hrs was lost.  The computer was rebooted, and upon 

start up of the ThermaCam Researcher software, the camera was recognized and showed 

as “connected”.  Since a different computer recorded the thermocouple data, there was no 

thermocouple data lost.  It appeared the temperature of the thruster had reached steady 

state by 1245 hrs according to a visual inspection of the data for thermocouple #2.  At 

1304 hrs, with the ThermaCam Researcher data capture rate remaining at one frame per 

30 seconds, data was collected with the thruster at steady state at 7.0 sccm until 1330 hrs. 
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Thruster flow increase from 7.0 sccm to 10.0 sccm 

At 1331 hrs, the flow rate was increased from 7.0 sccm to 10.0 sccm, and the 

thruster was allowed to operate until 1607 hrs.  The variation in flow rate was meant to 

capture thruster temperatures while at the low and high end of thruster operation. 

Thruster rotation and shutdown 

At 1610 hrs, the ThermaCam Researcher data capture rate was set to one frame 

per sec and thruster was rotated at 15° increments such that the exit plane rotated from its 

normal right facing position to a position where the exit plane was directly facing the 

camera.  The thruster was shut down at 1611 hrs.   

Thruster cool-down with exit plane facing camera 

 
After the thruster shutdown as 1611 hrs, with the exit plane of the thruster facing 

the camera, the ThermaCam Researcher data capture rate was set to one frame per 

minute.  The thruster cooled down until 1729 hrs.  At 1732 hrs, the chamber coolers 

stopped to allow the chamber to pressurize slowly, to prevent moisture formation on the 

coolers.  Data was still recorded for four hours during the pressurization process.  The 

chamber was not fully pressurized and opened until the following day at 1039 hrs.  
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Appendix B – Tabular Data Used for Error Analysis 

Table 13:  Steel Temperature Error Due to Emissivity 

Steel Spot Location in ThermaCam 
Researcher X = 70, Y = 161 

Emissivity Temperature (K) Delta T (K) 
0.1 495 23 
0.12 472 18 
0.14 454 14 
0.16 440 12 
0.18 428 9 
0.2 419 9 
0.22 410 7 
0.24 403 6 
0.26 397 5 
0.28 392 5 
0.3 387 NA 

 
Table 14:  Boron Nitride Temperature Error Due to Emissivity 

Boron Nitride Spot Location in ThermaCam 
Researcher X = 161, Y = 157 

Emissivity Temperature (K) Delta T (K) 
0.37 812 17 
0.39 795 15 
0.41 780 14 
0.43 766 14 
0.45 752 12 
0.47 740 12 
0.49 728 10 
0.51 718 11 
0.53 707 NA 
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Table 15:  Alumina Plasma Spray Temperature Error Due to Emissivity 

Alumina Plasma Spray Spot Location in ThermaCam 
Researcher X = 169, Y = 105 

Emissivity Temperature (K) Delta T (K) 
0.15 764 35 
0.17 729 30 
0.19 699 25 
0.21 674 21 
0.23 653 19 
0.25 634 16 
0.27 618 14 
0.29 604 13 
0.31 591 NA 

 

Table 16:  Air Transmissivity Temperature Error 

Input Humidity 
(%) 

Input Temperature 
(C) 

Calculated 
Transmissivity 

Calculated Temperature 
(K) 

20 297 1.00 419 
30 297 1.00 419 
40 297 0.99 419 
50 297 0.99 419 
60 297 0.99 419 
70 297 0.99 419 
50 278 1.00 419 
50 288 1.00 419 
50 293 0.99 419 
50 297 0.99 419 
50 303 0.99 419 
50 308 0.99 419 
50 317 0.99 419 

 

Table 17:  Window Transmissivity Temperature Error 

 Window 
Transmissivity 

(%) 

Calculated 
Temperature 

(K) 

Delta T (K) 

0.58 424 1 
0.59 423 2 
0.60 421 1 
0.61 420 1 
0.62 419 2 
0.63 417 1 
0.64 416 1 
0.65 415 1 
0.66 414 NA 
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Table 18:  Distance Temperature Error 

Distance 
(m) 

Calculated 
Temperature 

(K) 
0.50 419 
0.55 419 
0.60 419 
0.65 419 
0.72 419 
0.80 419 
1.00 419 
2.00 419 
4.00 419 
5.00 420 

 

Table 19:  Reflected Temperature and Temperature Error 

Reflected Temperature 
(K) 

Calculated 
Temperature 

(K) 
Delta T (K) 

283 430 2 
285 428 3 
287 425 3 
289 422 3 
291 419 3 
293 416 4 
295 412 3 
297 409 4 
299 405 NA 
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