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Abstract

Attitude control is a requirement for most satellites. Many schemes have been

devised over the years including control moment gyros, reaction wheels, spin stabi-

lization and gravity gradient stabilization. For low Earth orbits, the Earth’s atmo-

sphere can have an affect on a satellite’s orbit and attitude. Using the atmosphere

to control spacecraft attitude has been researched in the past however very little re-

search has been done using an active feedback control system to maintain spacecraft

attitude.

This research effort examines the feasibility of using the atmosphere to actively

control a spacecraft’s attitude using drag panels. Several variables affect the drag

force, of which, projected area is the only variable that can be changed easily. Adding

controllable drag panels to a satellite gives the ability to change the projected area as

well as the location of the projected area. The result of manipulating the projected

areas is a force that is not aligned with the center of gravity, resulting in an external

torque on the spacecraft. Although these torques are very small, on the scale of

micro-Newton meters and smaller, over time these torques can be used to change

the spacecraft’s attitude.

A linear computer model was created using a proportional controller. This

model was used to evaluate the effectiveness of using drag panels for attitude control.

Results from the simulation show that the spacecraft can recover from disturbance

torques that may cause a change in attitude very effectively especially at low altitudes

(200-300km). At 200km, the satellite is able to recover from a disturbance in less

than one hour. As the altitude increases, these settling times increase exponentially.

At 600km it takes approximately 2 weeks to stabilize. Other factors affect the settling

iv



time such as mass, and the geometric dimensions of the satellite’s control panels and

control arms.
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Satellite Attitude Control

Using Atmospheric Drag

I. Introduction

Over the last several decades since Sputnik became the first artificial satellite to

orbit the Earth in 1957, satellites have become an integral part of our lives. Satellites

serve many useful purposes such as communications, weather and remote sensing to

name a few. As their missions differ, so do their orbits. Many of these missions

require the spacecraft to be in a low Earth orbit (LEO)

Some advantages for putting a spacecraft in LEO are:

• Higher resolution for Earth sensing satellites.

• Allows for smaller/lower mass payloads.

• Less costly to get to LEO.

• Shorter orbital periods for rapid revisits.

• No fuel needed for placement into a graveyard orbit.

There are also disadvantages for putting spacecraft in LEO:

• Atmospheric drag.

• Finite orbit lifetime.

• Attitude control issues.

• Additional fuel for orbit/attitude maintenance.

The atmosphere is one of the dominating contributors to orbit and attitude

perturbations for spacecraft in LEO and accounts for most of the disadvantages.
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The atmosphere is the dominating contributor to these perturbations from altitudes

ranging from 150-600 km [9, page 81]. The research presented here only focuses on

these altitudes where the Earth’s atmosphere has a significant effect on spacecraft.

Measurements show that atmospheric density tends to decrease exponentially

with increasing altitude and can be easily modeled (see Appendix C). Since the

atmosphere doesn’t end abruptly, there are fewer air molecules at LEO altitudes.

As the spacecraft orbits the Earth, it hits these molecules and loses some of its

orbital energy. Although the energy loss is extremely small, over time the losses add

up causing the orbit to decay thus leading to a finite orbital lifetime. There is no

way to stop orbit decay other than having onboard thrusters for orbit maintenance.

On the other hand, collisions with atmospheric particles can affect the spacecraft’s

attitude. If a satellite has a center of pressure that is not in line with it’s center of

mass or center of gravity (CG) a small torque will be produced. If the spacecraft

utilizes an attitude control system other than gravity gradient, it will most likely

use thrusters for attitude control or for momentum dumping of reaction wheels. The

torques caused by the atmosphere will increase the spacecraft’s fuel consumption

thus reducing it’s life. Gyros and reaction wheels can also be prone to failure which

can render a satellite useless.

1.1 Research Objectives

The exponential decay of the density of the atmosphere as a function of increas-

ing altitude is always figured into satellite design for LEO spacecraft. Most attitude

control systems used to overcome perturbations tend to be complex and expensive.

The mission specifies the altitude of the orbit, from which orbital velocity and at-

mospheric density can be calculated. The only variables we can easily control are

the projected areas and the location of the projected area relative to the spacecraft’s

center of gravity. By changing the size and location of the projected area, torques

can be produced from the drag the projected areas experience. This research looks
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into the feasibility of using drag panels to produce torques on a spacecraft to damp

oscillations and control the spacecraft’s attitude. Since the forces on the drag panels

are very small, the drag panels can be as simple as having a piece of foil mounted to

a stiff lightweight frame, which will then be connected to an actuator. An attitude

control system using drag panels would be less complex and less prone to failure.
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II. Background

2.1 Literature Review

Atmospheric drag has had an effect on most satellites starting with Sputnik.

Sputnik 1 was launched on 4 October 1957 with an initial apogee of approximately

950 km and a perigee of approximately 230 km. At its perigee, the atmosphere had

a significant affect on the satellite which eventually circularized its orbit (apogee was

approximately 600 km by 9 December 1957). Sputnik’s orbit eventually decayed to

the point of re-entry after 92 days in orbit on 4 January 1958. Since then, many

satellites, weather balloons, and sounding rockets have been launched to study the

atmosphere. Some of the studies that have been done include both active and passive

attitude stabilization techniques using atmospheric drag. Most of the research in

satellite aero stabilization deals with passive stabilization. Little research has been

done using active attitude stabilization using atmospheric drag.

2.1.1 Paddlewheel Satellites. By 1968, about a dozen satellites, such as

Explorer VI (see Figure 2.1), have been launched to study solar wind and the mag-

netosphere. While these satellites were in orbit, they revealed information about

the aerodynamic interaction of air molecules with the satellite surfaces. According

to the data, air molecules experience nearly diffuse reflections. Maxwell’s classi-

cal model best approximated this interaction. Maxwell’s model accounts for both

specular and diffuse reflections. Scientific analyses of the behavior of paddlewheel

satellites led to a good approximation of the accommodation coefficients from which

an approximated drag coefficient could be determined. [4]
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Figure 2.1: Explorer VI

2.1.2 Nanosatellite Passive Attitude stabilization. Psiaki performed a

study using passive attitude stabilization for a nanosatellite [5]. This satellite was

a cubesat with dimensions of 0.1 m for each side and mass of 1 kg. This satellite

was designed to use passive drag torques to stabilize the roll, pitch and yaw axes

and provide magnetic damping on both the pitch and yaw axes. The satellite resem-

bles a shuttlecock used in badminton (see Figure 2.2). The conclusion of this study

determined that the nanosatellite performed reasonably well in simulations.
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Figure 2.2: Nanosatellite Passive Attitude Stabilization De-
sign

2.1.3 Shuttle Hitchhiker Passive Aerostabilization. Another study focused

on purely passive stabilization with magnetic damping. This was a NASA study for

the feasibility for a low cost, low weight, and long life spacecraft for the gravity and

magnetic Earth surveyor (GAMES) mission . It is very similar to the satellite pic-

tured in Figure 2.2 as far as size, mass and method used for aero-stabilization. Both

use magnetic damping but the physical design is different. The shuttle hitchhiker is

a cylindrical design vs. a cubesat with “feathers” (see Figure 2.3). In this design,

the center of pressure (CP) is aft of the CG which tends to keep it pointed in the

direction tangent to the orbit. [7, 8]
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(a) (b)

Figure 2.3: (a) Shuttle Hitchhiker schematic(b) Cross section view

2.1.4 Active Aerodynamic Attitude Stabilization. Very little research has

been done with active stabilization using atmospheric drag. Ravindran and Hughes

[6] researched an Earth oriented satellite using drag panels for attitude control. Their

research was closely related to the research presented here, but their satellite design

was very different. Their design consisted of long cylindrical body where the axis

through the cylinder is aligned with the roll axis (see Figure 2.4). The panels are

turned so they are in the most streamlined position when no control is necessary.

For pitch and yaw controls, the appropriate panels would be rotated 90◦ to increase

the drag which is offset from the CG thus producing a torque. For roll control, they

would all be rotated a specified angle turning the spacecraft into a propeller like

configuration. Results from their analysis are similar to results obtained from this

research. [6]
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Figure 2.4: Active Control Design

2.2 The Atmosphere

The atmosphere has been studied for quite some time. Dozens of satellites,

weather balloons and sounding rockets have been launched to answer the question

“How does the pressure, temperature and density change as altitude changes?” An-

swers to this question have been crucial to the study of aeronautics and astronautics.

Most people believe that space is empty and void. The truth is, space is mostly void

and empty however there are particles flying around. According to the 1976 standard

atmospheric model [3], the atmospheric density can be approximated by using an

exponential model. See Appendix C for details on how the density was modeled. The

models used for atmospheric density only predict an average value based on solar

activity. Solar activity can have a significant affect on the actual density by heating

and expanding the atmosphere to higher altitudes. Although the atmospheric den-

sity model only approximates the density, the dynamic model should still accurately

predict the dynamic behavior of the linearized satellite.
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2.3 Design Concepts

As progress was made with this research, the satellite design was altered to

simplify the linearization process for the torque equations. Three design iterations

were performed and the satellite evolved into the final version as presented in this

section as Design 3. This section summarizes these design variations and why they

changed.

2.3.1 Design 1: 4 Drag Panels to control Roll, Pitch and Yaw. The first

design had 4 drag panels, each on a control arm with two degrees of freedom for

each drag panel. This design enabled 3 axis control about the roll (b̂1), pitch (b̂2),

and yaw (b̂3) axes (See Figure 2.5). The panels could be rotated into the air stream

about the b̂2 axis for pitch control (top and bottom arms) and the b̂3 axis for yaw

control (left and right arms). For roll control, all control arms could be rotated

into the air stream and each panel rotated about each arm for left and right roll

control. See Figures 2.6 (a) and (b), and 2.7 (a) and (b). Design 1 is very similar

in design as the Explorer VI but with moveable panels. One drawback is that the

control actuators become more complex having to rotate about two different axes.

This design was abandoned since linearizing the equations of motino were became

unmanageable. The nonlinear equation derivations for this design are included in

Appendix F.
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Figure 2.5: Roll (b̂1), Pitch (b̂2)and Yaw (b̂3) Axes

(a) (b)

Figure 2.6: (a) Panels retracted for normal flight.
(b) Panels extended and rotated for left rolling maneuver.
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(a) (b)

Figure 2.7: (a) Top panel extended for a pitch up maneuver.
(b) Left panel extended for a left yaw maneuver.
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2.3.2 Design 2: Ailerons to control Roll, 4 Drag Panels to Control Pitch and

Yaw. Due to the complexity of the linearization of the torque equations in Design

1, a revision to the original design was made to simplify the equations. This design

was similar to the first design. Pitch and yaw were controlled using the same drag

panels. In this case, the control panels only had one degree of freedom and now

only control pitch and yaw. “Ailerons” for lack of a better term, were added for roll

control. If an actual satellite were to be built and tested, either this design or the

previous design would be the best choice. Figure 2.8 shows the addition of ailerons

to the sides of the spacecraft bus.

Figure 2.8: Satellite shown with ailerons in a right rolling
maneuver.

2.3.3 Design 3: The third and final design was very similar to the previous

design using ailerons for roll control. The only difference between the two models

is that the ailerons were changed from flat plates to wedge shapes. This simplified

the linearization by eliminating negative angles for the aileron surfaces. This design
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is shown in Figure 2.9. All simulations presented in this research are based on the

wedge shaped aileron design.

Figure 2.9: Satellite shown with wedges for ailerons.
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III. Methodology

The equations of motion and torque equations depend on a satellite’s geometry,

physical dimensions and orbit. When deriving the equations, all terms were kept as

variables to give the model more flexibility while running simulations.

3.1 Coordinate Systems

Three reference frames are used for the rotational kinematic equations. The

“B frame”, a body fixed reference frame is aligned with the principal moments of

inertia, or the principal axes for the satellite, where b̂1 is the roll axis, b̂2 is the pitch

axis and b̂3 is the yaw axis. The “A frame” is the local vertical, local horizontal

(LVLH) frame aligned with the orbit where â1 is along the orbit direction, â2 is

perpendicular to the orbit plane and â3 is toward the center of the Earth. Finally

the inertial “I frame” is an Earth fixed frame with its origin at the center of the

Earth. (See Figure 3.1) [10, page 366].
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Figure 3.1: Coordinate frames for a rigid body in circular
orbit

3.2 Rotation Matrices Between Coordinate Frames

The first step in deriving the equations of motion is to derive the rotation

matrices. A 3-2-1 (yaw, pitch, roll) rotation sequence was used (see Figure 3.2)

where each elementary rotation has the following rotation matrices associated with

it. Note c(θi)= cos(θi), s(θi)= sin(θi), and θi are the rotation angles for each of the

roll, pitch and yaw axes [10, page 309].
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Figure 3.2: Euler Angle Rotations.

C3(θ3) =











c(θ3) s(θ3) 0

−s(θ3) c(θ3) 0

0 0 1
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




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(3.1a)

C2(θ2) =











c(θ2) 0 −s(θ2)

0 1 0

s(θ2) 0 c(θ2)











(3.1b)

C1(θ1) =











1 0 0

0 c(θ1) s(θ1)

0 −s(θ1) c(θ1)











(3.1c)
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The rotation matrix to the B frame from the A frame is defined as RBA = C1(θ1)C2(θ2)C3(θ3)

and when expanded becomes [10, page 311]:

RBA =











c(θ2)c(θ3) c(θ2)s(θ3) −s(θ2)

s(θ1)s(θ2)c(θ3) − c(θ1)s(θ3) s(θ1)s(θ2)s(θ3) + c(θ1)c(θ3) s(θ1)c(θ2)

c(θ1)s(θ2)c(θ3) + s(θ1)s(θ3) c(θ1)s(θ2)s(θ3) − s(θ1)c(θ3) c(θ1)c(θ2)











(3.2)

To get the rotation matrix to the A frame from the B frame the transpose must be

taken since RAB= (RBA)−1 = (RBA)T , [10, page 311]. RAB becomes:

RAB =











c(θ2)c(θ3) s(θ1)s(θ2)c(θ3) − c(θ1)s(θ3) c(θ1)s(θ2)c(θ3) + s(θ1)s(θ3)

c(θ2)s(θ3) s(θ1)s(θ2)s(θ3) + c(θ1)c(θ3) c(θ1)s(θ2)s(θ3) − s(θ1)c(θ3)

−s(θ2) s(θ1)c(θ2) c(θ1)c(θ2)











(3.3)

Finally, to get to the B frame from the A frame, or to the A frame from the B frame,

the equations are as follows [10, pages 365-366].
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




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




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
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
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

(3.4)
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




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
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(3.5)

Since âi contains only orthonormal unit vectors, â · â′ becomes the identity

matrix and equation 3.4 can be solved for RBA:

RBA =











b̂1

b̂2

b̂3











[

â1 â2 â3

]

=











b̂1â1 b̂1â2 b̂1â3

b̂2â1 b̂2â2 b̂2â3

b̂3â1 b̂3â2 b̂3â3











(3.6)
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3.3 Equations of Motion of a Rigid Body in Circular Orbit

The next step was to derive the equations of motion (EOM). This derivation is

extracted from Wie [10, pages 365-369]. Several assumptions were made to simplify

the problem and these assumptions would have little impact on the problem.

• Spacecraft is in a circular equatorial orbit (constant orbital rate).

• Uniform gravitational field, (gravity gradient torques are neglected).

• Spacecraft is in low Earth orbit (200-600 km)

• Atmospheric density is taken as an average over the orbit (no fluctuations in

density).

3.3.1 Angular Velocity Vector. From the coordinate system shown in Fig-

ure 3.1, the angular velocity between the B frame and the Earth frame I frame)

is:

~ω ≡ ~ωBI = ~ωBA + ~ωAI (3.7)

and written in the body frame

~ω = ω1b̂1 + ω2b̂2 + ω3b̂3 =
[

b̂1 b̂2 b̂3

]











ω1

ω2

ω3











(3.8)

Where ~ωBI is the angular velocity vector of the Earth fixed “I” frame to the body

frame, ~ωAI is the angular velocity of the I frame to the A frame, and ~ωBA is the

angular velocity from the A frame to the B frame.

Since the spacecraft is assumed to be in a circular orbit, ~ωAI = −nâ2, and

therefore equation 3.7 becomes:

~ωBI = ~ωBA − nâ2 (3.9)
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where n is the constant orbital rate due to a circular orbit.

From equation 3.5, â2 can be written as:

â2 =
[

b̂1 b̂2 b̂3

]











c(θ2)s(θ3)

s(θ1)s(θ2)s(θ3) + c(θ1)c(θ3)

c(θ1)s(θ2)s(θ3) − s(θ1)c(θ3)











(3.10)

To find ~ωBA, a yaw, pitch, roll or 3-2-1 sequence was used. The first rotation about

the yaw (â3) axis goes from the A axis to the A′ axis. The second rotation about the

â′
2 axis takes us from the A′ to the A′′ axis and finally the third rotation about the â′′

1

axis goes from the A′′ to the B frame (See Fig. 3.2). From the rotations, the angular

velocity vector from the A frame to the B frame becomes [10, pages 324-326]:

ωA′A = θ̇3~a3 = θ̇3~a
′
3 (3.11)

ωA′′A′

= θ̇2~a
′
2 = θ̇2~a

′′
2 (3.12)

ωBA′′

= θ̇1~a
′′
1 = θ̇1

~b1 (3.13)

Where θ̇i is the angular rate of the roll (i=1), pitch (i=2) and yaw (i=3) axes. The

total angular velocity vector then becomes:

~ωBA = ~ωBA′′

+ ~ωA′′A′

+ ~ωA′A = θ̇3~a
′
3 + θ̇2~a

′′
2 + θ̇1

~b1 (3.14)

By substituting equations 3.11, 3.12, and 3.13 into 3.14, we get:

~ωBA =
[

b̂1 b̂2 b̂3

]
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











θ̇1

0

0











+ c1(θ1)











0

θ̇2

0











+ c1(θ1)c2(θ2)











0

0

θ̇3





















(3.15)
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By combining equations 3.7 and 3.8, and substituting in equations 3.1b, 3.1c, 3.10,

and 3.15, the vector
[

b̂1 b̂2 b̂3

]

cancels and the equation becomes [10, page 368]:











ω1

ω2

ω3











=











1 0 −s(θ2)

0 c(θ1) s(θ1)c(θ2)

0 −s(θ1) c(θ1)c(θ2)





















θ̇1

θ̇2

θ̇3











− n











c(θ2)s(θ3)

s(θ1)s(θ2)s(θ3) + c(θ1)c(θ3)

c(θ1)s(θ2)s(θ3) − s(θ1)c(θ3)











(3.16)

By solving for ~̇θ1, the result is the kinematic differential equation for an orbiting

rigid body [10, page 368]:











θ̇1

θ̇2

θ̇3











=
1

c(θ2)











c(θ2) s(θ1)s(θ2) c(θ1)s(θ2)

0 c(θ1)c(θ2) −s(θ1)c(θ2)

0 s(θ1) c(θ1)





















ω1

ω2

ω3











+
n

c(θ2)











s(θ3)

c(θ2)c(θ3)

s(θ2)s(θ3)











(3.17)

The following equation is the equation 3.16 expanded:











ω1

ω2

ω3











=











θ̇1 − s(θ2)θ̇3 + c(θ2)s(θ3)n

c(θ1)θ̇2 + s(θ1)c(θ2)θ̇3 + ns(θ1)s(θ2)s(θ3) + nc(θ1)c(θ3)

−s(θ1)θ̇2 + c(θ1)c(θ2)θ̇3 + nc(θ1)s(θ2)s(θ3) − ns(θ1)c(θ3)











(3.18)

Since θi is very small, equation 3.18 can be linearized by letting cos(θi) = 1,

sin(θi) = θi, sin(θi) sin(θi) ≈ 0 and sin(θi)θ̇i ≈ 0. The linearized equation becomes

[10, page 369].










ω1

ω2

ω3











=











θ̇1 − nθ3

θ̇2 − n

θ̇3 + nθ1











(3.19)
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Next we take the derivative of equation 3.19 to get ~̇ωi.











ω̇1

ω̇2

ω̇3











=











θ̈1 − nθ̇3

θ̈2

θ̈3 + nθ̇1











(3.20)

3.3.2 Time Derivatives of the Angular Momentum Vector. This derivation

follows Wie [10, pages 340-342]. A rigid body has an angular momentum associated

with it, which is expressed as ~H = Ĵ · ~ωBI . By taking the derivative of ~H the

rotational equation motion can be found where:

{

d ~H

dt

}

I

=

{

d ~H

dt

}

B

+ ~ωBI × ~H (3.21)

By using the transport theorem equation 3.21 becomes:

Ĵ · ~̇ω + ~ω × Ĵ · ~ω = ~M (3.22)

where Ĵ is the moment of inertia matrix (MOI), ~M is the external moment vector,

~ω is the angular rate vector and ~̇ω is the angular acceleration vector. Equation 3.22

in matrix form becomes:











J11 J12 J13

J21 J22 J23

J31 J32 J33





















ω̇1

ω̇2

ω̇3











+











0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0





















J11 J12 J13

J21 J22 J23

J31 J32 J33





















ω1

ω2

ω3











=











M1

M2

M3











(3.23)
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Since it is assumed that the B frame is aligned to the principal axes, equation 3.23

becomes:











A 0 0

0 B 0

0 0 C





















ω̇1

ω̇2

ω̇3











+











0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0





















A 0 0

0 B 0

0 0 C





















ω1

ω2

ω3











=











M1

M2

M3











(3.24)

Where A is the MOI about the roll axis, B is the MOI about the pitch axis, C is the

MOI about the yaw axis, and when multiplied out becomes:











Aω̇1 − (B − C)ω2ω3

Bω̇2 − (C − A)ω1ω3

Cω̇3 − (A − B)ω1ω2











=











M1

M2

M3











(3.25)

By substituting equations 3.19 and 3.20 into equation 3.25, linearizing and simplify-

ing, the equation becomes:











Aθ̈1 + (B − A − C)nθ̇3 + (B − C)n2θ1

Bθ̈2

Cθ̈3 + (C + A − B)nθ̇1 + (B − A)n2θ3











=











M1

M2

M3











(3.26)

Finally by solving for θ̈ and putting into matrix form, the equation becomes:











θ̈1

θ̈2

θ̈3











=











0 0 C+A−B
A

∗ n

0 0 0

B−A−C
C

∗ n 0 0











·











θ̇1

θ̇2

θ̇3











+











C−B
A

· n20 0

0 0 0

0 0 A−B
C

· n2











·











θ1

θ2

θ3











+











M1

A

M2

B

M3

C











(3.27)
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3.4 External Torques from Atmospheric Drag (Nonlinear)

Satellites in LEO experience an aerodynamic drag force given by [9, page 329]:

Fdrag =
1

2
ρV 2CDAp (3.28)

where Fdrag= drag force (N), ρ= atmospheric density (kg/m3), V = velocity (m/s),

CD= drag coefficient and Ap= projected area (m2).

Since the satellite is assumed to be in a circular orbit, the tangential velocity

V is constant which is given by [11, page 70]:

V =

√

µ

rorbit

(3.29)

where the standard gravitational parameter µ= 398600km3

s2 and the orbital radius

rorbit= 6378.135km + Altitude. Note, the velocity vector is in the −â1 direction.

The density ρ depends on altitude and is calculated by the Matlab
r code in

Appendix C. From Moe’s research, a good experimental approximation for CD is

2.2 [4, page 4]. The projected areas Ap and their locations with respect to the CG

are the only parameters that can be controlled after the spacecraft is in orbit.

Altitudes above 125 km are in the free molecular flow regime [1, page 316].

In the free molecular flow regime, particles are typically modeled either as specular

or diffuse reflections. A specular reflection assumes that molecules are perfectly

elastic where the tangential velocity is constant and the normal velocity is equal and

opposite before and after reflection. The diffuse model assumes the molecules are

reflected in a diffuse manner and have no memory of previous velocities. Either model

imparts a force normal to the surface and the reflections are wrapped up into the

drag coefficient which as stated earlier was determined experimentally. Spacecraft

in LEO always experience a small drag torque since it is not possible to construct a
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spacecraft that has its CG at the exact geometric center. Some assumptions made

for the following drag torque equations are:

• The drag panels are visible to the incoming molecules on the front/outward

facing surfaces.

• The drag coefficient was assumed to be constant at 2.2 [4, page 4].

• Atmospheric density is constant at a constant altitude and averaged over the

orbit.(neglecting solar effects and atmospheric perturbations).

• The incoming molecular velocity is equal and opposite the orbital velocity

(non-rotating atmosphere).

• The mass of the control panels and arms are negligible compared to the mass

of the satellite.

3.4.1 Spacecraft Configuration. The linearized model consists of a basic

cube shaped satellite bus with drag panels that can be extended into the airstream

for pitch and yaw control. Two wedges acting as “ailerons”, to produce torques about

the roll axis (See Figure 2.9). Wedges were chosen instead of flat panels to simplify

the linearization of the equations of motion. When linearizing the torque equations

about zero degrees for the ailerons, all variables would become higher order terms

since the projected areas and linearization angles were zero. Since Higher order terms

were to be neglected, there were no variables left in the equations. By modelling the

spacecraft with wedge shaped ailerons, the linearization problem goes away as does

the heaviside function in projected area equations.

3.4.2 Drag Effects from Spacecraft Body. The spacecraft body doesn’t pro-

duce any torques due to drag unless the CG is not at the geometric center (assuming

a symmetric spacecraft). Although, in the linearized torque equations, the CG loca-

tion is taken to be at the geometric center thus drag effects from the spacecraft body

are neglected in the linearized model. In the nonlinear equations in Appendix F, the
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CG location can be moved off-center to produce small torques. No further analysis

was done with drag from the spacecraft body. The remaining analysis focused on

the control panels.

3.4.3 Drag Effects from Spacecraft Drag Panels. The first step was to derive

the rotation matrix to transform the drag panel reference frames (the Fi frame) to

the body frame. Each drag panel rotation was based on equation 3.30

RFB =











1 0 0

0 c(φ1) s(φ1)

0 −s(φ1) c(φ1)





















c(φ2) 0 −s(φ2)

0 1 0

s(φ2) 0 c(φ2)





















c(φ3) s(φ3) 0

−s(φ3) c(φ3) 0

0 0 1











(3.30)

Each drag panel has only one degree of freedom, therefore equation 3.30 is simplified

requiring one rotation per panel. Each panel’s rotation matrix contains a single

rotation about its respective axis. Figure 3.3 shows how each arm rotates with

respect to the satellite bus, i is either the top, bottom, left, or right arm. Equation

3.30 for each panel simplifies to

RFB
Top =











c(−φTopArm) 0 −s(−φTopArm)

0 1 0

s(−φTopArm) 0 c(−φTopArm)











(3.31a)

RFB
Bot =











c(φBotArm) 0 −s(φBotArm)

0 1 0

s(φBotArm) 0 c(φBotArm)











(3.31b)

RFB
Left =











c(φLeftArm) s(φLeftArm) 0

−s(φLeftArm) c(φLeftArm) 0

0 0 1











(3.31c)
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RFB
Right =











c(−φRightArm) s(−φRightArm) 0

−s(−φRightArm) c(−φRightArm) 0

0 0 1











(3.31d)

For the wedges, the angles of the faces are found by adding or subtracting the wedge

Figure 3.3: Angles for each control arm with respect to body
frame

angle to get the total angle. The angles are defined as follows:

φLeftAilTop = φLeftAil − φWedge (3.32a)

φLeftAilBot = φLeftAil + φWedge (3.32b)

φRightAilTop = φRightAil − φWedge (3.32c)

φRightAilBot = φRightAil + φWedge (3.32d)

where the aileron control angles are φRightAil= −φLeftAil, and φWedge is half the wedge

angle. See Figure 3.4. The rotations for each surface then become

RFB
LeftAilTop =











1 0 0

0 c(0) s(0)

0 −s(0) c(0)





















c(φLeftAilTop) 0 −s(φLeftAilTop)

0 1 0

s(φLeftAilTop) 0 c(φLeftAilTop)





















c(0) s(0) 0

−s(0) c(0) 0

0 0 1











(3.33a)

RFB
LeftAilBot =











1 0 0

0 c(0) s(0)

0 −s(0) c(0)





















c(φLeftAilBot) 0 −s(φLeftAilBot)

0 1 0

s(φLeftAilBot) 0 c(φLeftAilBot)





















c(0) s(0) 0

−s(0) c(0) 0

0 0 1











(3.33b)
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RFB
RightAilTop =











1 0 0

0 c(0) s(0)

0 −s(0) c(0)





















c(φRightAilTop) 0 −s(φRightAilTop)

0 1 0

s(φRightAilTop) 0 c(φRightAilTop)





















c(0) s(0) 0

−s(0) c(0) 0

0 0 1











(3.33c)

RFB
RightAilBot =











1 0 0

0 c(0) s(0)

0 −s(0) c(0)





















c(φRightAilBot) 0 −s(φRightAilBot)

0 1 0

s(φRightAilBot) 0 c(φRightAilBot)





















c(0) s(0) 0

−s(0) c(0) 0

0 0 1











(3.33d)

where the control arm angles φArm are φTopArm, φBotArm, φLeftArm, and φRightArm,

are the top, bottom, left and right arms that are connected to the drag panels. The

angles between the b̂1 direction and the arms range from 0− 90◦. In equations 3.31a

and 3.31d, the arm angles have a negative sign so that all angles will be positive to

make it easier to remember that all angles to be input to the controller are positive.

Two of the rotation angles in each equation are always zero since there is only one

degree of freedom for each panel.

The rotations from the A frame to the F frame are used to determine normal

force for each panel due to the drag in the A frame. This is found by RFA = RFBRBA

and thus becomes:

RFA
Top = RFB

TopR
BA (3.34a)

RFA
Bot = RFB

BotR
BA (3.34b)

RFA
Left = RFB

LeftR
BA (3.34c)

RFA
Right = RFB

RightR
BA (3.34d)

RFA
LeftAilTop = RFB

LeftAilTopR
BA (3.34e)

RFA
LeftAilBot = RFB

LeftAilBotR
BA (3.34f)

RFA
RightAilTop = RFB

RightAilTopR
BA (3.34g)
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RFA
RightAilBot = RFB

RightAilBotR
BA (3.34h)

The angles between the incoming molecules and the inward normal directions

are:

cos(αTop) = (−â1 · f3) = −RFA
Top(3,1) (3.35a)

cos(αBot) = (−â1 · −f3) = RFA
Bot(3,1) (3.35b)

cos(αLeft) = (−â1 · f2) = −RFA
Left(2,1) (3.35c)

cos(αRight) = (−â1 · −f2) = RFA
Right(2,1) (3.35d)

cos(αLeftAilTop) = (−â1 · f3) = −RFA
LeftAilTop(3,1) (3.35e)

cos(αLeftAilBot) = (−â1 · −f3) = RFA
LeftAilBot(3,1) (3.35f)

cos(αRightAilTop) = (−â1 · f3) = −RFA
RightAilTop(3,1) (3.35g)

cos(αRightAilBot) = (−â1 · −f3) = RFA
RightAilBot(3,1) (3.35h)

The projected areas from the panels become:

ATop = L2H(cos(αTop)) cos(αTop) (3.36a)

ABot = L2H(cos(αBot)) cos(αBot) (3.36b)

ALeft = L2H(cos(αLeft)) cos(αLeft) (3.36c)

ARight = L2H(cos(αRight)) cos(αRight) (3.36d)

ALeftAilTop = LAilWAilH(cos(αLeftAilTop)) cos(αLeftAilTop) (3.36e)

ALeftAilBot = LAilWAilH(cos(αLeftAilBot)) cos(αLeftAilBot) (3.36f)

ARightAilTop = LAilWAilH(cos(αRightAilTop)) cos(αRightAilTop) (3.36g)

ARightAilBot = LAilWAilH(cos(αRightAilBot)) cos(αRightAilBot) (3.36h)
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where L is the side length of each square drag panel, LAil is the length (span) of

each aileron and WAil is the width of each aileron. Calculate forces from the drag

panels in the A frame:

FTopA
=

1

2
CDATopρV 2v̂ (3.37a)

FBotA =
1

2
CDABotρV 2v̂ (3.37b)

FLeftA
=

1

2
CDALeftρV 2v̂ (3.37c)

FRightA
=

1

2
CDARightρV 2v̂ (3.37d)

FLeftAilTopA
=

1

2
CDALeftAilTopρV 2v̂ (3.37e)

FLeftAilBotA
=

1

2
CDALeftAilBotρV 2v̂ (3.37f)

FRightAilTopA
=

1

2
CDARightAilTopρV 2v̂ (3.37g)

FRightAilBotA
=

1

2
CDARightAilBotρV 2v̂ (3.37h)

where v̂ = is the velocity unit vector and is defined as:

v̂ =











−1

0

0











(3.38)

Calculate force from drag panels in the F frame and pull out the inward normal

component:

FTopF
=

[

0 0 1
]

RFA
TopFTopA











0

0

1











(3.39a)
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FBotF =
[

0 0 1
]

RFA
BotFBotA











0

0

1











(3.39b)

FLeftF
=

[

0 1 0
]

RFA
LeftFLeftA











0

1

0











(3.39c)

FRightF
=

[

0 1 0
]

RFA
RightFRightA











0

1

0











(3.39d)

FLeftAilTopF
=

[

0 0 1
]

RFA
LeftAilTopFLeftAilTopA











0

0

1











(3.39e)

FLeftAilBotF
=

[

0 0 1
]

RFA
LeftAilBotFLeftAilBotA











0

0

1











(3.39f)

FRightAilTopF
=

[

0 0 1
]

RFA
RightAilTopFRightAilTopA











0

0

1











(3.39g)

FRightAilBotF
=

[

0 0 1
]

RFA
RightAilBotFRightAilBotA











0

0

1











(3.39h)

Convert the inward normal component of each surface in the F frame to the B frame:

FTopB
= (RFB

Top)
T FTopF

(3.40a)

FBotB = (RFB
Bot)

T FBotF (3.40b)
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FLeftB
= (RFB

Left)
T FLeftF

(3.40c)

FRightB
= (RFB

Right)
T FRightF

(3.40d)

FLeftAilTopB
= (RFB

LeftAilTop)
T FLeftAilTopF

(3.40e)

FLeftAilBotB
= (RFB

LeftAilBot)
T FLeftAilBotF

(3.40f)

FRightAilTopB
= (RFB

RightAilTop)
T FRightAilTopF

(3.40g)

FRightAilBotB
= (RFB

RightAilBot)
T FRightAilBotF

(3.40h)

Find r from the CG to the center of pressure for each panel. (See Figure 3.4

for aileron details.) (Note: CG is at the geometric center for the linearized model,

i.e. CG=0):

rTop =











−0.5L − (LArm + 0.5LPanel) cos(φTopArm)

0

−0.5L − (LArm + 0.5Lpanel) sin(φTopArm)











− CG (3.41a)

rBot =











−0.5L − (LArm + 0.5LPanel) cos(φBotArm)

0

0.5L + (LArm + 0.5Lpanel) sin(φBotArm)











− CG (3.41b)

rLeft =











−0.5L − (LArm + 0.5LPanel) cos(φLeftArm)

−0.5L − (LArm + 0.5Lpanel) sin(φLeftArm)

0











− CG (3.41c)

rRight =











−0.5L − (LArm + 0.5LPanel) cos(φRightArm)

0.5L + (LArm + 0.5Lpanel) sin(φRightArm)

0











− CG (3.41d)
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rLeftAilTop =











−0.5WAil sin φWedge sin φLeftAil

−0.5(LSide + LAil)

−0.5WAil sin φWedge cos φLeftAil











− CG (3.41e)

rLeftAilBot =











0.5WAil sin φWedge sin φLeftAil

−0.5(LSide + LAil)

0.5WAil sin φWedge cos φLeftAil











− CG (3.41f)

rRightAilTop =











−0.5WAil sin φWedge sin φRightAil

0.5(LSide + LAil)

−0.5WAil sin φWedge cos φRightAil











− CG (3.41g)

rRightAilBot =











0.5WAil sin φWedge sin φRightAil

0.5(LSide + LAil)

0.5WAil sin φWedge cos φRightAil











− CG (3.41h)

where LSide is the side length of the spacecraft body, LArm is the length of the

Figure 3.4: Aileron details
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control arm, LPanel is the side length of the square panels, φLArm, φRArm, φBArm and

φTArm are the angles of the arms from their retracted positions, φLeftAil and φRightAil

are the angles of the ailerons, and φWedge is half the angle of the wedge.

Finally, the torque equations for the drag panels with all the substitutions

become:

MTop = rTopxFTopB
(3.42a)

MBot = rBotxFBotB (3.42b)

MLeft = rLeftxFLeftB
(3.42c)

MRight = rRightxFRightB
(3.42d)

MLeftAilTop = rLeftAilTopxFLeftAilTopB
(3.42e)

MLeftAilBot = rLeftAilBotxFLeftAilBotB
(3.42f)

MRightAilTop = rRightAilTopxFRightAilTopB
(3.42g)

MRightAilBot = rRightAilBotxFRightAilBotB
(3.42h)

To get the total torques for the drag control panels, equations 3.42 a-h) are added:

MPanels = MTop + MBot + MLeft + MRight + MLeftAilTop

+ MLeftAilBot + MRightAilTop + MRightAilBot (3.43)

If the torques from the body were included, they would be added here, however in

this case, MSatBody = 0:

MTotal = MSatBody + MPanels (3.44)

3.4.4 Linearized Torques from Control Panels. Linear analysis required

the nonlinear torque equations to be linearized. By having the ailerons as wedges
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and assuming small angles, the outward facing control surfaces were always facing

the incoming molecules. Thus, the heaviside function was no longer necessary for

the linear model. Each control arm for the pitch and yaw controls were linearized

about φ0Arm
, which is the linearization angle of the control arms. The ailerons were

linearized about φ0Ail
, where φ0Ail

= 0◦ (aligned with the b̂1 axis). After using

both MathCad and Matlab
r symbolic solvers, the combined and linearized torque

equations were found:











M1

M2

M3











=











CRAilδφRightAil + CLAilδφLeftAil)

CBArmδφBotArm + CTArmδφTopArm + Cθ2
θ2

CLArmδφLeftArm + CRArmδφRightArm + Cθ3
θ3











(3.45)

where CRAil, CLAil, CTArm, CBArm, CLArm, CRArm, Cθ2
, and Cθ3

are defined as follows:

CRAil = [0.5LAil
2WAil sin(φWedge)

+ 0.5LAilWAilLb2 sin(φWedge)

− 1.5LAil
2WAil sin(φWedge) cos2(φWedge)

− 1.5LAilWAilLb2 sin(φWedge) cos2(φWedge)]CDρV 2 (3.46a)

CLAil = −CRAil (3.46b)

CTArm = [0.5Lpanel
2Wpanel cos(φ0Arm

) sin(φ0Arm
)

+ LpanelWpanelLArm cos(φ0Arm
) sin(φ0Arm

)

+ 0.75LpanelWpanelLb1 cos2(φ0Arm
) sin(φ0Arm

)

− 0.75LpanelWpanelLb3 cos3(φ0Arm
)

+ 0.75LpanelWpanelLb3 cos(φ0Arm
)

− 0.25LpanelWpanelLb1 sin(φ0Arm
)]CDρV 2 (3.46c)
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CBArm = −CLArm (3.46d)

CLArm = [−0.5Lpanel
2Wpanel cos(φ0Arm

) sin(φ0Arm
)

− LpanelWpanelLArm cos(φ0Arm
) sin(φ0Arm

)

− 0.75LpanelWpanelLb1 cos2(φ0Arm
) sin(φ0Arm

)

+ 0.75LpanelWpanelLb2 cos3(φ0Arm
)

− 0.75LpanelWpanelLb2 cos(φ0Arm
)

+ 0.25LpanelWpanelLb1 sin(φ0Arm
)]CDρV 2 (3.46e)

CRArm = −CLArm (3.46f)

Cθ2
= [2LAilWAil

2 cos3(φWedge) sin(φWedge)

− 2LAilWAil
2 cos(φWedge) sin(φWedge)

− Lpanel
2Wpanel cos(φ0Arm

) sin(φ0Arm
)

− 2LpanelWpanelLArm cos(φ0Arm
) sin(φ0Arm

)

− LpanelWpanelLb1 cos2(φ0Arm
) sin(φ0Arm

)

+ LpanelWpanelLb3 cos3(φ0Arm
)

− LpanelWpanelLb3 cos(φ0Arm
)]CDρV 2 (3.46g)

Cθ3
= [LpanelWpanelLb2 cos3(φ0Arm

)

− 2LpanelWpanelLArm cos(φ0Arm
) sin(φ0Arm

)

− LpanelWpanelLb1 cos2(φ0Arm
) sin(φ0Arm

)

− Lpanel
2Wpanel cos(φ0Arm

) sin(φ0Arm
)

− LpanelWpanelLb3 cos(φ0Arm
)]CDρV 2 (3.46h)
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LAil is the spanwise length of the aileron surface, WAil is the chord length of the

aileron surfaces, Lpanel is the length of the drag panels, Wpanel is the width of the

drag panels, Lb1 is the length of the satellite body in the b̂1 direction, Lb2 , is the

length of the satellite body in the b̂2 direction, and Lb3 , is the length of the satellite

body in the b̂3 direction.

3.5 Combined Linearized Equations of motion

The final step in deriving the EOM was to combine all the equations. By

plugging the linearized torque equations 3.45 into the overall equations of motion

3.27 and simplifying, the equations become:











θ̈1

θ̈2

θ̈3











= CX1
·











θ̇1

θ̇2

θ̇3











+ CX2
·











θ1

θ2

θ3











+ CX3
·





























δφTopArm

δφBotArm

δφLeftArm

δφRightArm

δφLeftAil

δφRightAil





























(3.47)

where δφi is the deflection angles for the respective control arms and ailerons;

δφTopArm, δφBotArm, δφLeftArm, δφRightArm, δφLeftAil, δφRightAil, and CX1
, CX2

, and

CX3
are defined as follows:

CX1
=











1
A

0 0

0 1
B

0

0 0 1
C











·











0 0 (C + A − B)n

0 0 0

(B − A − C)n 0 0











(3.48)

CX2
=











1
A

0 0

0 1
B

0

0 0 1
C











·











(C − B)n20 0

0 Cθ2
0

0 0 (A − B)n2 + Cθ3











(3.49)
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CX3
=











1
A

0 0

0 1
B

0

0 0 1
C











·











0 0 0 0 CLAil CRAil

CTArm CBArm 0 0 0 0

0 0 CLArm CRArm 0 0











(3.50)

Equation 3.47 with all the substitutions is the final equation to be modeled in

Simulink r©.
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IV. Dynamic Model

4.1 Dynamic Model Overview

The linearized dynamic equations 3.47 were modeled in Simulink r©. All terms

were left as variables. Inputs so different scenarios could be easily simulated by

changing the input variables. If more details of a satellite are known, such as it’s

dimensions, mass and orbital altitude, this model can be easily updated to simulate

a variety of satellites. The only restriction is that the satellite has to have the same

basic geometric design.

4.2 Dynamic Model Validation

The following is the validation of the open loop and closed loop model by using

eigenvalues and eigenvectors, where the eigenvalues are the frequencies (cycles/orbit)

of this system and the eigenvectors determine initial conditions that will predict

system response. The results of this analysis show how the general shape of the

response. Such responses could be pure oscillatory or exponential. In retrospect,

the eigenvectors could have been scaled so the amplitude of the responses remained

small, however, having a larger amplitude response does not alter the outcome of

this section. All simulations performed in this section were run at 300km altitude

and the density was set to zero for the no torque case and the density was calculated

for 300km altitude for the case with torques.

4.2.1 Dynamic Model Validation Without Torques. The first step was to

set all external torques of equation 3.27 to zero. The rest of equation 3.27 was

38



rewritten in a state space (Ẋ = A · X) format as follows.





























θ̇1

θ̇2

θ̇3

θ̈1

θ̈2

θ̈3





























=





























0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

C−B
A

n2 0 0 0 0 C+A−B
A

n

0 0 0 0 0 0

0 0 A−B
C

n2 B−A−C
C

n 0 0





























·





























θ1

θ2

θ3

θ̇1

θ̇2

θ̇3





























(4.1)

From the state space equation (equation 4.2), the pitch axis (θ2) has no influence on

the other axes, hence it is decoupled from the roll (θ1) and yaw (θ3) axes. θ2 was

shown to be stable based on test simulations. Since θ2 is stable and decoupled, all

references to θ2 were removed leaving the following equation.

















θ̇1

θ̇3

θ̈1

θ̈3

















=

















0 0 1 0

0 0 0 1

C−B
A

n2 0 0 C+A−B
A

n

0 A−B
C

n2 B−A−C
C

n 0

















·

















θ1

θ3

θ̇1

θ̇3

















(4.2)

The next step was to test the model with different combinations of major, minor

and intermediate axes for the principal moments of inertia. If the spacecraft is nadir

pointing, the pitch axis will always be rotating with the orbit. If the pitch axis is

either the minor or major axis of rotation, the spacecraft will be stable. If the pitch

axis is the minor axis, the spacecraft will be in an unstable configuration. Several

combinations of MOI were simulated where the moments of inertia about the roll,

pitch and yaw axes are A, B, and C respectively. For the first simulation, the b̂2

axis was set as the minor axis, where A = 20, B = 10, and C = 30. The calculated

eigenvalues λi are arranged in a diagonal matrix of eigenvalues (Λ) and the calculated
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eigenvectors are the columns of (ǫ).

Λ =

















i · n 0 0 0

0 −i · n 0 0

0 0 i · n 0

0 0 0 −i · n

















(4.3)

ǫ =

















−i i −0.865i 0.865i

1 1 1 1

n n 0.500n 0.500n

i · n −i · n 0.576n −0.576n

















(4.4)

The initial conditions (θi and θ̇i) for the first and second complex conjugate

pair of eigenvectors can be found by:

















θ1

θ3

θ̇1

θ̇3

















= (1 + i)

















−i

1

n

i · n

















+ (1 − i)

















i

1

n

−i · n

















=

















1

1

n

−n

















(4.5)

















θ1

θ3

θ̇1

θ̇3

















= (1 + i)

















−0.865i

1

0.5n

0.576i · n

















+ (1 − i)

















0.865i

1

0.5n

−0.576i · n

















=

















1.730

2

n

−1.156n

















(4.6)

When using the initial conditions from equation 4.5 in the Matlabr code in Appendix

B, the response for each eigenvalue and associated eigenvectors should be purely

oscillatory (since it has only imaginary components) and have a period of 1 cycle

per orbit.
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Figures 4.1, 4.2 and 4.3, shows the angular position, angular rate and angular

acceleration of this system. The system response shows that the oscillations are

purely sinusoidal with a period equal to the orbital period of 5431 seconds. Recall

that the roll, pitch and yaw axes are θ1, θ2, and θ3 respectively.
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Figure 4.1: Angular Position or first pair of eigenvectors with
A = 20,B = 10, and C = 30

41



0 2000 4000 6000 8000 10000 12000
−4

−3

−2

−1

0

1

2

3

4
x 10

−3

Time, sec

ra
d/

s

Roll, Pitch, & Yaw Angular Rate vs. Time

 

 
Roll
Pitch
Yaw

Figure 4.2: Angular Rate for first pair of eigenvectors with
A = 20, B = 10, and C = 30

0 2000 4000 6000 8000 10000 12000
−4

−3

−2

−1

0

1

2

3

4
x 10

−6

Time, sec

ra
d/

s2

Roll, Pitch, & Yaw Angular Acceleration vs. Time

 

 
Roll
Pitch
Yaw

Figure 4.3: Angular Acceleration for first pair of eigenvectors
with A = 20, B = 10, and C = 30
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For the second set of complex conjugate eigenvectors, there should be 0.576

cycles per orbital period. The period of oscillations is therefore 9429 seconds which

can be seen from Figures 4.4, 4.5 and 4.6.
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Figure 4.4: Angular Position for second pair of eigenvectors
with A = 20, B = 10, and C = 30
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Figure 4.5: Angular Rate for second pair of eigenvectors with
A = 20, B = 10, and C = 30

0 2000 4000 6000 8000 10000 12000
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−6

Time, sec

ra
d/

s2

Roll, Pitch, & Yaw Angular Acceleration vs. Time

 

 
Roll
Pitch
Yaw

Figure 4.6: Angular Acceleration for second pair of eigenvec-
tors with A = 20, B = 10, and C = 30
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Another run was done with b̂2 as the intermediate axis, where A = 10, B = 20,

and C = 30. In this configuration, the satellite will be unstable. This was tested

to evaluate different combinations of the MOI to test different possibilities. The

eigenvalues and eigenvectors for this particular MOI are:

λ =

















i · n 0 0 0

0 −i · n 0 0

0 0 0.576n 0

0 0 0 −0.576n

















(4.7)
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

(4.8)

Once again, the same procedure was done to obtain the initial conditions for this set

of eigenvalues and eigenvectors. The initial conditions become
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(4.10)

The case where the initial conditions from equation 4.9 are used, the outputs for

θ1 and θ3 in position, angular rate and angular acceleration should be sinusoidal
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oscillations at one cycle per orbit due to the eigenvectors containing only imaginary

components. The sinusoidal oscillations can be seen in Figures 4.7, 4.8, and 4.9
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Figure 4.7: Angular Position for first pair of eigenvectors with
A = 10, B = 20, and C = 30
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Figure 4.8: Angular Rate for first pair of eigenvectors with
A = 10, B = 20, and C = 30
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Figure 4.9: Angular Acceleration for first pair of eigenvectors
with A = 10, B = 20, and C = 30
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The second set of eigenvalues and eigenvectors have no imaginary parts, there-

fore the θ’s will grow exponentially. Exponential growth for the angles is due to the

spacecraft being in an unstable configuration since the pitch axis is the intermediate

MOI axis. The results of this run can be seen in Figures 4.10, 4.11, and 4.12.
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Figure 4.10: Angular Position for second pair of eigenvectors
with A = 10, B = 20, and C = 30
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Figure 4.11: Angular Rate for second pair of eigenvectors with
A = 10, B = 20, and C = 30
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Figure 4.12: Angular Acceleration for second pair of eigenvec-
tors with A = 10, B = 20, and C = 30
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4.2.2 Dynamic Model Validation With Torques. The next step was to add

the atmospheric density to the model and perform a similar eigenvalue/eigenvector

analysis to see how the model responds. The same procedure was carried out as in

the previous section. Equation 3.47 including in state space format (Ẋ = A·x+B ·u)

including torques is as follows:
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(4.11)

Once again, since θ2 is totally decoupled from θ̇1, θ̇3, θ̈1 and θ̈3 all references to

θ2 were removed leaving the following A matrix to do the eigenvalue/eigenvector

analysis.
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(4.12)
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The eigenvalues and eigenvectors from Equation 4.12 were calculated using the

Matlab
r code in Appendix B. This simulation was also done at 300km altitude

however, atmospheric density was ρ = 2.4 x 10−11 kg

m3 . Note, the most stable satel-

lite configuration is with b̂2 as the major MOI axis, b̂3 as the minor axis and b̂1 as

the intermediate axis. The following analysis was done with A = 20, B = 30, and

C = 10.

λ =














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0 −0.00116 · i 0 0

0 0 0.0253 · i 0

0 0 0 −0.0253 · i

















(4.13)
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(4.14)

Once again, by taking each complex conjugate pair of eigenvectors, the initial con-

ditions can be found.
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(4.16)
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Upon running the Simulink r© model with the initial conditions computed from equa-

tion 4.15, the results indicate that the model is correct since the frequency of oscil-

lation should again be one cycle per orbit. See Figures 4.13, 4.14, and 4.15
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Figure 4.13: Angular Position with torque for first pair of
eigenvectors with A = 20, B = 30, and C = 10
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Figure 4.14: Angular Rate with torque for first pair of eigen-
vectors with A = 20, B = 30, and C = 10
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Figure 4.15: Angular Acceleration with torque for first pair
of eigenvectors with A = 20, B = 30, and C = 10
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The same analysis was done on the remaining set of initial conditions from

equation 4.16. Figures 4.16, 4.17, and 4.18, show that the cyclic period of oscillations

is reduced (higher frequency). Since the period is approximately 315s, the frequency

can be calculated from ω = 2π
315s

= 0.0199 rad
s

, which is close enough to the eigenvalue

0.0253 for model validation.
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Figure 4.16: Angular Position with torque for second pair of
eigenvectors with A = 20, B = 30, and C = 10
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Figure 4.17: Angular Rate with torque for second pair of
eigenvectors with A = 20, B = 30, and C = 10
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Figure 4.18: Angular Acceleration with torque for second pair
of eigenvectors with A = 20, B = 30, and C = 10
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4.3 Proportional Derivative Controller

Since the Simulink r© model is linearized, the control deflections are kept rea-

sonably small. The controller is a proportional controller with the constants selected

in such a way that the control deflections remain small due to the linearized torque

equations. As discussed in chapter V, the control deflections do in fact remain small

thus giving a more realistic result. With the controller, the roll, pitch and yaw axes

will eventually settle down in the correct satellite orientation. Originally, the con-

troller was set up such that the control arm outputs were equal to some constant

multiplying the angular rates. The roll axis seemed to take a while to return to

zero degrees. The only reason the roll axis would return to zero was because it was

coupled with the yaw axis and the dynamics of the system forced both the roll and

yaw axis to work together to align the body frame to the orbit frame. Because of

the long settling time, the controller was modified so that each control arm inputs

for each axis was equal to a constant multiplying the angular rates plus another

constant multiplying the angle between the body and orbit reference frames (see

equation 4.17. Adding the constant times the anglular position brought the roll axis

back to zero degrees in a more reasonable time frame.

δφ = Cθ̇ + 0.1θ (4.17)
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V. Results

5.1 Altitude Variations

Based on equation 3.28, drag is proportional to the square of the velocity and

is proportional to the atmospheric density. A spacecraft in LEO will experience

orbital decay due to drag which will lower its orbit over time. As orbital altitude is

reduced, both the density and velocity increase thus having a significant increase on

the drag force. Therefore, the most significant variable that affects drag is altitude.

For the following subsections, the simulations were run at altitudes varying from

200km to 600km in 100km increments. At these altitudes, the density, velocity and

orbital rate were calculated and are shown in Table 5.1. Table 5.2 shows all the

inputs to the model for all the simulations where altitude is varied. The MOI used

for this section are shown in equation 5.1 (See Appendix D.3 for details on how this

was determined). Table 5.2 shows the inputs to the Simulink r© model. Note, only a

few plots were included in this chapter, however, all the plots have been included in

Appendix E.

Table 5.1: Density, velocity and orbital rate calculated from Simulink r©.

Altitude (km) Calculated Density ( kg
m3 ) Velocity (m

s
) Orbital Rate ( rad

s
)

200 2.79x10−10 7784 0.001183
300 2.42x10−11 7726 0.001157
400 3.73x10−12 7669 0.001131
500 6.97x10−13 7613 0.001107
600 1.45x10−13 7558 0.001083

MOI =











A 0 0

0 B 0

0 0 C




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=
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

92 0 0

0 107 0

0 0 68











kg · m2 (5.1)

The proportional derivative controller constants multiplying the angular rates are 50

for roll, 20 for pitch and 20 for yaw. The constants multiplying the angle between the
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Table 5.2: Variables input into the Simulink r© model for all the altitude variation
simulations.

Variable Value

LPanel 1m

WPanel 1m

LArm 1m

φ0Arm
45◦

LAil 1m

WAil 1m

Lb1 1m

Lb2 1m

Lb3 1m

φWedge 22.5◦

Mass 500kg

CD 2.2

body and orbit frames are 0.1. For the initial conditions, the angular displacement

of the satellite body with respect to the orbital frame are chosen to be offset 10◦

and the angular rates set to 0 rad
s

. The linearization angle for the control arms was

chosen to be 45◦. Several factors were considered in selecting the angle. First, when

the panels are extended, only the windward facing sides are subject to being hit

by molecules. Since small angles are assumed, the back side of the panels will not

be exposed to the incoming molecules. The small angle assumption between the

orbit and body frames simplified the linearization since the heaviside function was

no longer needed. Another reason is that at smaller linearization angles, the wedge

shaped ailerons would shadow the left and right panels used for yaw control. The

ailerons for the nonlinear case would not have this problem since the ailerons would

consist of flat panels, not wedges.

5.1.1 Simulation at 200 km Altitude. For this simulation, the inputs to

the modeled are represented in Table 5.2 with an altitude of 200km. The density,

orbital velocity and orbital rate for this altitude are summarized in Table 5.1. The

first simulation only had the roll axis displaced, the 2nd was pitch and the 3rd was
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the yaw axis. Then a fourth simulation was run where all three axes of roll pitch

and yaw were displaced simultaneously. By comparing Figures 5.1, and 5.4, it can

be seen that roll and yaw are coupled and do have some affect on each other. When

both yaw and roll are offset simultaneously as shown in Figure 5.6, the coupling is

more pronounced.

5.1.1.1 200km Altitude, Roll Offset by 10◦. The first simulation was

done where roll was offset by 10◦. To compare the settling times for the various

altitudes, the time constant must be found. The time constant τ is the time it takes

for the amplitude to decay by Amp0

e
, where, Amp0 is the initial amplitude or initial θi

and e ≈ 2.71. The time constant can be approximated directly from the plots once

the initial amplitude is known. For the simulations, the initial conditions determine

Amp0, and thus Amp0 = 10◦ or 0.175rad. The amplitude for one time constant is

Amp0

e
= 0.064.
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Figure 5.1: (a) Angular displacement with roll offset 10◦.
(b) Control angles with roll 10◦.

Since the roll doesn’t oscillate, the time constant can be read from the plot

where τ ≈ 500s
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5.1.1.2 200km Altitude, Pitch Offset by 10◦. The pitch is decoupled

from the roll and yaw axes therefore the only oscillations should be in the pitch axis.

Figure 5.2(a) shows this to be true.
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Figure 5.2: (a) Angular displacement with pitch offset 10◦.
(b) Control angles with pitch 10◦.

The next step was to pick points on the plot, and fit them to a curve. The time

constant for the best fit can then be determined. Since the pitch axis oscillates, the

locations of the peaks were used for the curve fit algorithm in Appendix B. Assuming

an exponential decay, the plot should fit the following equation:

Y = [exp(
−T

τ
)] ∗ a (5.2)

The plot shown in Figure 5.3 closely approximates the data points and the time

constant is shown to be ≈ 130s
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Figure 5.3: Curve fit for 200km altitude with pitch offset 10◦

5.1.1.3 200km Altitude, Yaw Offset by 10◦. The same procedure

performed in the previous section was applied to the simulation where the yaw was

offset by 10◦. The results are shown in Figure 5.4 (a) and 5.5. Here, the time

constant is ≈ 85s.
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Figure 5.4: (a) Angular displacement with yaw offset 10◦.
(b) Control angles with yaw 10◦.
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Figure 5.5: Curve fit for 200km altitude with yaw offset 10◦
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5.1.1.4 200km Altitude, Roll, Pitch and Yaw Offset by 10◦. For this

simulation, all 3 axes were offset simultaneously which would be a more realistic

scenario. The reason for running them separately at first was to see how each

axis compared to the more realistic simulation where all three were off from the

orbital frame. Notice on all simulations, the control deflections are relatively small,

δφi < 5◦. It is important that these angles remain small since this is a linearized

model. At higher altitudes the maximum control angle deflections actually decrease

since the controller is a proportional controller. At higher altitudes with the same

initial conditions, the rotational rate decreases due to a smaller force imparted on

the control panels.
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Figure 5.6: (a) Angular displacement with roll, pitch and yaw offset 10◦.
(b) Control angles with roll, pitch and yaw offset 10◦.

5.1.2 Altitudes Above 200km. Since we are interested in determining how

altitude affects the settling time, the same procedure was done for altitudes of 300km,

400km, 500km and 600km. See Appendix E for the plots not shown in this chapter.

For each simulation, the time constants were found and are summarized in Tables

5.3 and 5.4. Table 5.3 is the case where each axis was deflected separately and Table

5.4 is the case where all three axes were deflected simultaneously. In either case,
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there isn’t much difference between both tables. By using the same exponential

curve fit algorithm as done in section 5.1.1.2, an exponential curve was fit to the

time constants in Table 5.4 for the roll, pitch and yaw axes. Figures 5.7, 5.8 and 5.9

show how the time constants grow exponentially with altitude.

Table 5.3: Time constants for each axis at the various altitudes where roll, pitch
and yaw were offset separately.

Altitude (km) Time Constant (s)
Roll Axis Pitch Axis Yaw Axis

200 500 130 85
300 975 1550 950
400 6600 10200 6200
500 40000 55000 30000
600 275000 265000 260000

Table 5.4: Time constants for each axis at the various altitudes where roll, pitch
and yaw were deflected simultaneously.

Altitude (km) Time Constant (s)
Roll Axis Pitch Axis Yaw Axis

200 481 130 85
300 960 1550 950
400 6800 10200 6000
500 40000 55000 30000
600 265000 265000 260000
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Figure 5.7: Time constants for the roll axis increase exponen-
tially with increasing altitude.
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Figure 5.8: Time constants for the pitch axis increase expo-
nentially with increasing altitude.
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Figure 5.9: Time constants for the yaw axis increase expo-
nentially with increasing altitude.

5.2 Pitch as the Intermediate Moment of Inertia Axis

The satellite would be in its most stable configuration with the pitch axis as

the major or minor MOI axis. That may not always be the case, so the pitch axis was

set as the intermediate axis which would make the attitude unstable (see equation

5.3 for the MOI matrix). For this simulation, theta was offset by 1 degree for each

axis, the altitude was set to 400km and density was set to zero. This shows the

satellite’s attitude is unstable with pitch as the intermediate axis as can be seen in

Figure 5.10.

MOI =











A 0 0

0 B 0

0 0 C











=











107 0 0

0 92 0

0 0 68











kg · m2 (5.3)

When the atmospheric density is put back into the simulation, the controller is able

to return the satellite back to flying at its intended attitude. See figure 5.11
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Figure 5.10: Pitch as the intermediate MOI axis and atmo-
spheric density ρ = 0.
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Figure 5.11: Pitch as the intermediate MOI axis and atmo-
spheric density shown in Table 5.1.

67



5.3 Roll, Pitch, and Yaw Having the Same MOI

Since the pitch and yaw axes have the same proportional constant for the

controller and are identical in dimensions, they should have the same time constant.

This is not the case as can be seen in Figure 5.12, where the amplitude of the yaw

oscillations end up being smaller than the pitch axis. This is due to the roll and yaw

axis being coupled. The yaw and roll axes work work together thus having more

control authority. Therefore the yaw axis decreases in amplitude at a faster rate

than the pitch axis.
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Figure 5.12: Angular position and all three axes having the
same MOI.
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VI. Conclusions and Recommendations

6.1 Conclusions

To be able to launch a satellite to orbit, and have the spacecraft orient itself

automatically with a very simple attitude control system is very desirable and has

many advantages. A simple control system would be less costly and less prone

to failure than complex systems such as control moment gyros, reaction wheels or

thrusters. Since most satellites have Earth sensing missions, they are typically nadir

pointing and require some form of attitude control. These satellites typically have

their body reference frame aligned with the orbit reference frame and are usually in

LEO. Satellites are put in LEO for various reasons such as payload limitations and

cost issues and have to compensate for atmospheric effects. Using the atmosphere to

control a satellite’s attitude was investigated and the results presented here show that

it is a feasible alternative to the more expensive and complex methods mentioned

earlier for satellites in LEO.

The atmospheric density decreases exponentially with altitude and therefore

an atmospheric drag type control system has an altitude limitation where it no

longer has enough control authority to overcome disturbance torques. The effects of

increasing altitude can be seen by comparing the settling time at different altitudes.

When a satellite’s attitude is perturbed from its alignment with the orbital reference

frame, it takes time for the attitude control system to reduce the amplitude of

oscillations and bring it back to its proper attitude. At altitudes of 200 km, the

settling time is on the order of minutes as compared to a 600km altitude where

the settling time is on the order of weeks. Settling times are also affected by the

satellites physical dimensions and mass. An increase in drag panel area, lengthening

the control arms or decreasing mass will reduce settling time, however, the settling

times would still be approximately the same order of magnitude. The linear analysis

performed here has a small control angle limitation. A nonlinear analysis would
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allow the control panels to be fully extended so the projected areas were maximized

which will also reduce settling time.

According to the simulation results, the oscillations decay exponentially but

will never quite decay to zero. In reality, there is a limit to the accuracy of the

attitude sensors and how finely the drag panel angles can be controlled, therefore, it

can be expected that the satellite will continue to oscillate about the orbital reference

frame at plus or minus some small angle. Depending on the pointing requirements

of the payload, these oscillations may not be acceptable. If so, a stabilized payload

could be added to the spacecraft to counter these oscillations.

The bottom line is that atmospheric drag can effectively be used to control a

spacecraft attitude in LEO. Disturbances in attitude can be overcome resulting in a

stable attitude. The spacecraft’s control system would consist of a less costly, simple

control system with simple actuators less prone to failure. The research presented

here is the foundation for future study which can eventually lead to an actual flight

test of a drag controlled satellite.

6.2 Recommendations for Future Research

The research presented here can be very useful in several areas of continued

research. Future research should be built upon eventually leading to the flight test

of an actual aerodynamically controlled satellite. Below are several ideas to build

upon this research.

6.2.1 Higher Fidelity Nonlinear Computer Model. The next step with

this topic would be to add estimation algorithms into the model and eventually

do a nonlinear analysis. A nonlinear computer model would better represent the

dynamics of an actual aerodynamically controlled satellite system. The final step

would be to set the spacecraft in a tumble with the nonlinear model and see if

it can recover. Other factors should be added to the model such as a rotating
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atmosphere, elliptical orbits, non-equatorial orbits, drag panels with mass, random

external torques from solar winds, oblate Earth, and an orbit decay algorithm to

determine the approximate orbit lifetime for a satellite of a given mass, projected

area and altitude. This way, the optimum orbit could be selected based on lifetime

and payload capabilities/requirements. From this point, satellite dimensions could be

determined for the most effective control. The altitudes where the control authority

is not enough to overcome perturbations can also be determined. Note, orbit decay

calculations are only approximate since there are so many random variables that

affect the atmospheric density.

6.2.2 Solar Drag Panels. Since satellites usually have solar panels to

generate electrical power, the drag panels should be replaced with solar panels. In

this research, the mass of the panels was neglected however, a solar panel mass should

be included in the model. Including the mass of the panels in the model would also

require some vibrational analysis to determine potential problems with oscillations

of the panels. As the panels are being moved, toques will have an effect on the

satellites attitude and should be accounted for. Finally, research the feasibility of

tracking the sun with one or more panels while maintaining attitude.

6.2.3 Other Related Research. Some students have done research on main-

taining satellite formations. This model could be used with their research to control

both the satellites attitude and station keeping at the same time. Other designs

using atmospheric drag for attitude control should be considered and compared with

this and other research to determine the best and most cost effective design. Finally,

research should be done to determine if drag panels could be used for momentum

dumping of reaction wheels.
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Appendix A. MathCad Worksheets

A.1 MathCad Nonlinear Torque Calculation Worksheet
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Appendix B. Matlab
r Code

B.1 Matlab
r Eigenvalues and Eigenvectors with Torques

Listing B.1: This Matlab
r code calculates the eigenvalues and eigenvectors for

the model validation.
(appendix2/EigsEOMwTorques.m)

% D. Guettler

clc

clear all

Alt =300; %km

5 syms A B C n Rho Vel

% MAT1 =[0 0 0 1 0 0; 0 0 0 0 1 0; 0 0 0 0 0 1;...

% ((C-B)/A)*n^2 0 0 0 0 ((C+A-B)/A)*n;...

% 0 -4.621* Rho*Vel ^2/B 0 0 0 0;...

10 % 0 0 ((A-B)*n^2 -4.414* Rho*Vel ^2)/C ((B-A-C)/C)*n 0 0]

%MAT2 is the 4x4 matrix of MAT1

MAT2 =[0 0 1 0; 0 0 0 1;...

((C-B)/A)*n^2 0 0 ((C+A-B)/A)*n;...

15 0 ((A-B)*n^2 -4.414* Rho*Vel ^2)/C ((B-A-C)/C)*n 0]

%Orbital rate for 300km altitude in rad/sec

[n,T,freq ,Vel ] = OrbRate(Alt) %n = 0.001157 % for 300km alt

20 %Calculate Density

Rho = atmos_exp(Alt)

%Rho =0;

%MOI B is always major axis , C is always minor axis

25 A=20.

B=30.

C=10.

% MAT1 =[0 0 0 1 0 0; 0 0 0 0 1 0; 0 0 0 0 0 1;...

30 % ((C-B)/A)*n^2 0 0 0 0 ((C+A-B)/A)*n;...

% 0 -4.621* Rho*Vel ^2/B 0 0 0 0;...

% 0 0 ((A-B)*n^2 -4.414* Rho*Vel ^2)/C ((B-A-C)/C)*n 0 0]

%MAT2 is the 4x4 matrix of MAT1

35 MAT2 =[0 0 1 0; 0 0 0 1;...

((C-B)/A)*n^2 0 0 ((C+A-B)/A)*n;...

0 ((A-B)*n^2 -4.414* Rho*Vel ^2)/C ((B-A-C)/C)*n 0]

% %From 6x6 Matrix

40 % [EigVec1 ,EigVal1 ]=eig(MAT1);
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% EigVal1 = simplify(EigVal1);

% EigVal1 = vpa(EigVal1 ,3)

% EigVec1 = simplify(EigVec1);

% EigVec1 = vpa(EigVec1 ,3)

45

%From 4x4 matrix

[EigVec2 ,EigVal2 ]=eig(MAT2);

EigVal2 = simplify(EigVal2);

EigVal2 = vpa(EigVal2 ,3)

50 EigVec2 = simplify(EigVec2);

EigVec2 = vpa(EigVec2 ,3)

%Find ICs for each run

EigValCase1=EigVal2 (1,1)

55 IC1 =(1+i)*[ EigVec2 (1,1) EigVec2 (2,1) EigVec2 (3,1) EigVec2 (4,1)...

]’+...

(1-i)*[ EigVec2 (1,2) EigVec2 (2,2) EigVec2 (3,2) EigVec2 (4,2)]’

EigValCase2=EigVal2 (3,3)

IC2 =(1+i)*[ EigVec2 (1,3) EigVec2 (2,3) EigVec2 (3,3) EigVec2 (4,3)...

]’+...

60 (1-i)*[ EigVec2 (1,4) EigVec2 (2,4) EigVec2 (3,4) EigVec2 (4,4)]’

B.2 Matlab
r Curve Fit Algorithm

This algorithm uses a peak finding function to locate all the peaks of the os-

cillations of the angles between the orbit and body frame. Once the peaks were

located, the main code fit an exponential curve to the points based on an approxi-

mated time constant. The time constant was then varied until an exponential curve

closely matched the peaks. This code was used to fit an exponential curve to the

decaying oscillations for the time constant calculations in Chapter V.

Listing B.2: This Matlab
r code fits the peak amplitudes to an exponentially

decaying function.
(appendix2/TimeConstCalc.m)

% peaks = function peakfinder(roll ,time)

% D. Guettler

clear;clc;

load thetaout.mat

5 %**************************************************

%Pick tau as time constant compare plot

%**************************************************

tau =38000
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%**************************************************

10 %**************************************************

% ROLL

%peaks = peakfinder(theta (2,:) ’,theta (1,:) ’);

% PITCH

%peaks = peakfinder(theta (3,:) ’,theta (1,:) ’);

15 % YAW

peaks = peakfinder(theta (4,:) ’,theta (1,:) ’);

%**************************************************

%**************************************************

%**************************************************

20 %Create vectors for time calculation

%**************************************************

t=peaks (:,1)

y=peaks (:,2)

%**************************************************

25 %create plot

%**************************************************

X = [ exp(-t/tau)];

% Calculate model coefficients

a = X\y

30

T = (0:1:200000) ’;

Y = [ exp(-T/tau)]*a;

% Create figure

35 figure1 = figure;

% Create axes

axes1 = axes(’Parent ’,figure1);

box(’on’);

grid(’on’);

40 hold(’all’);

% Create plot

plot1 = plot(T,Y,’Parent ’,axes1), grid on

% Create plot

plot2 = plot(t,y,’LineStyle ’,’none’,’Marker ’,’o’ ,...

45 ’Parent ’,axes1);

% Create xlabel

xlabel(’Time (s)’);

% Create ylabel

ylabel(’Amplitude (rad)’);

50 % Create legend

legend1 = legend(axes1 ,{’Exponential Curve Fit’ ,...

’Peak Locations ’},’Position ’ ,...

[0.5827 0.8245 0.3232 0.1002]) ;

Listing B.3: This Matlabr code determines the positive peak amplitudes of oscil-
lation.
(appendix2/PeakFinder.m)
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% peakfinder.m

% D. Guettler

function peaks = peakfinder(roll ,time)

5

%Need roll , time as column vectors of equal dimension

%Includes initial and final points

[cols ,rows]=size(roll);

10

if roll (1,1) >0

rollpeaknums (1) =1;

j=2;

15 else j=1;

end

for i=2:(cols -1)

if roll(i,1)>roll(i-1,1) & roll(i,1)>roll(i+1,1)...

20 & roll(i,1) >0

rollpeaknums(j)=i;

j=j+1;

end

end

25 rollpeaknums(j)=cols;

for i=1:j

peaks(i,1)=time(rollpeaknums(i) ,1);

peaks(i,2)=roll(rollpeaknums(i) ,1);

30 end
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Appendix C. The Atmosphere

C.1 Altitude vs Density Plot (NASA) [3, page 62]

Figure C.1: Atmospheric Density/Altitude plot

C.2 Matlab
r Density Calculations)

For the computer simulations (see Appendix C), an exponential atmospheric

model was used. This model was tested at the following altitudes and compared

to the density plot, Figure C.1. The results are displayed in Table C.1 exponential

atmospheric density calculations in Matlab
r compare with those found in the plot.
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Table C.1: Altitude and Density Results from Matlab
r .

Altitude Calculated Density Density from Figure C.1

150 2.07x10−9 2x10−9

200 2.79x10−10 2x10−10

250 7.25x10−11 7x10−11

300 2.42x10−11 1x10−11

350 9.52x10−12 7x10−12

400 3.73x10−12 3x10−12

450 1.59x10−12 1x10−12

500 6.97x10−13 5x10−13

550 3.18x10−13 2x10−13

600 1.45x10−13 1x10−13
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Appendix D. Simulink r© Model

D.1 Simulink r© Model Top Level

The following figures illustrate the computer model used to simulate the dy-

namics of using atmospheric drag for attitude control. The software used is Simulink r©.

Figure D.1 is the overall Simulink r© model. It is laid out such that the inputs are

along the left side, the outputs are on the right. This model represents equation

3.47 with all the variables on the input side. The model outputs the control angles,

angular accelerations, angular rates and attitude angle with respect to the orbital

frame. All satellite dimensions are input as meters, angles are input as degrees and

altitude is input as km. All the outputs containing angles are in degrees.
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D.2 Function: Orbit.m

Listing D.1: This Matlab
r function calculates the approximate density of the

atmosphere at a given altitude, tangential orbital velocity for a circular orbit, orbital
rate, orbital period and orbital frequency.
(appendix4/Orbit.m)

function [rho , Vel ,n,T,freq]= Orbit(Alt)

% Exponential Atmospheric Model

% Accepts as INPUT the orbital radius of the

5 % satellite ; OUTPUTS the atmospheric density

% for that altitude based on the mean equatorial

% radius of Earth ( density units: kg/m^3).

% NOTE: really only valid for altitudes less than

% 1000 km. Taken from Vallado , pg 537.

10 % Distances in km

%*****************************************************

% Calculate Orbit properites (D. Guettler)

%*****************************************************

15 mu = 3.986*10^14 ; %(km^3/s^2) Standard Gravitational

%Parameter

REarth = 6378135 ; %(km) Radius of Earth in

ROrbit = REarth+Alt *1000 ; %Radius from Earth ’s

%center to orbit

20

OrbRate = sqrt(mu/ROrbit ^3); %OrbRate is the orbital

%rate in rad/sec

Vel = sqrt(mu/ROrbit) ; %Orbit Velocity

n = OrbRate ; %Orbital rate (rad/sec)

25 T = 2*pi*(1/ OrbRate) ; %T=orbital (s)

freq =1/T ; %Frequency ( orbits/sec)

%*****************************************************

% Calculate Density (B. Hajovsky)

%*****************************************************

30 % Term Definitions:

% h0 = Base Altitude (km)

% rho0 = Nominal Density (kg/m^3)

% H = Scale Height (km)

% Define the Earth radius to calculate the altitude:

35 R=Alt;

r = R;

rho0 =0;

h0=0;

H=0;

40 if r >=0 & r<25

h0 = 0;

rho0 = 1.225;

H = 7.249;
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elseif r >=25 & r<30

45 h0 = 25;

rho0 = 3.899e-2;

H = 6.349;

elseif r >=30 & r<40

h0 = 30;

50 rho0 = 1.774e-2;

H = 6.682;

elseif r >=40 & r<50

h0 = 40;

rho0 = 3.972e-3;

55 H = 7.554;

elseif r >=50 & r<60

h0 = 50;

rho0 = 1.057e-3;

H = 8.382;

60 elseif r >=60 & r<70

h0 = 60;

rho0 = 3.206e-4;

H = 7.714;

elseif r >=70 & r<80

65 h0 = 70;

rho0 = 8.770e-5;

H = 6.549;

elseif r >=80 & r<90

h0 = 80;

70 rho0 = 1.905e-5;

H = 5.799;

elseif r >=90 & r<100

h0 = 90;

rho0 = 3.396e-6;

75 H = 5.382;

elseif r >=100 & r<110

h0 = 100;

rho0 = 5.297e-7;

H = 5.877;

80 elseif r >=110 & r<120

h0 = 110;

rho0 = 9.661e-8;

H = 7.263;

elseif r >=120 & r<130

85 h0 = 120;

rho0 = 2.438e-8;

H = 9.473;

elseif r >=130 & r<140

h0 = 130;

90 rho0 = 8.484e-9;

H = 12.636;

elseif r >=140 & r<150

h0 = 140;

rho0 = 3.845e-9;
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95 H = 16.149;

elseif r >=150 & r<180

h0 = 150;

rho0 = 2.070e-9;

H = 22.523;

100 elseif r >=180 & r<200

h0 = 180;

rho0 = 5.464e-10;

H = 29.740;

elseif r >=200 & r<250

105 h0 = 200;

rho0 = 2.789e-10;

H = 37.105;

elseif r >=250 & r<300

h0 = 250;

110 rho0 = 7.248e-11;

H = 45.546;

elseif r >=300 & r<350

h0 = 300;

rho0 = 2.418e-11;

115 H = 53.628;

elseif r >=350 & r<400

h0 = 350;

rho0 = 9.518e-12;

H = 53.298;

120 elseif r >=400 & r<450

h0 = 400;

rho0 = 3.725e-12;

H = 58.515;

elseif r >=450 & r<500

125 h0 = 450;

rho0 = 1.585e-12;

H = 60.828;

elseif r >=500 & r<600

h0 = 500;

130 rho0 = 6.967e-13;

H = 63.822;

elseif r >=600 & r<700

h0 = 600;

rho0 = 1.454e-13;

135 H = 71.835;

elseif r >=700 & r<800

h0 = 700;

rho0 = 3.614e-14;

H = 88.667;

140 elseif r >=800 & r<900

h0 = 800;

rho0 = 1.170e-14;

H = 124.64;

elseif r >=900 & r <1000

145 h0 = 900;

95



rho0 = 5.245e-15;

H = 181.05;

elseif r >1000

h0 = 1000;

150 rho0 = 3.019e-15;

H = 268.00;

else

end

155 rho = rho0*exp(-(r-h0)/H);

%rho =0;

D.3 Function: Constants.m

Listing D.2: This Matlabr function calculates the constants in equations 3.46 and
also calculates the MOI matrix based on a given satellite mass.
(appendix4/Constants.m)

function [CTArm ,CBArm ,CLArm ,CRArm ,CLAil ,CRAil ,InvMOI ,...

CTheta2 ,CTheta3 ,MOI] = Constants(SatDims)

% This block calculates the constants for the

% linearized torques and contains all the satellite

5 % dimensions . See MathCad File for explanation.

% D. Guettler

%******************************************************

% Delcare Variables

10 %******************************************************

Lpanel = SatDims (1);%Length of drag panel

%(front to back when retracted) (m)

Wpanel = SatDims (2);%Width of panel (m)

LArm = SatDims (3);%Length of control arm (m)

15 Phi0Arm = SatDims (4)*pi /180; %Linearization angle for

%arms ( radians)

LAil = SatDims (5);%Length of Aileron spanwise (m)

WAil = SatDims (6);%Width of Aileron chordwise (m)

Lb1 = SatDims (7);%cubesat length along b1 axis (m)

20 Lb2 = SatDims (8);%Cubesat width along b2 axis (m)

Lb3 = SatDims (9);%cubesat Height along b3 axis (m)

PhiWedge = SatDims (10)*pi /180; %one half the total

%wedge angle ( Radians)

Mass = SatDims (11); %Mass of sat in kg

25 %(used to calc MOI matrix)

CD = SatDims (12); %Drag Coefficient

Rho = SatDims (13);

V = SatDims (14);

30 %******************************************************

% Calculate Constants
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%******************************************************

% Const multiplying deltaPhiTopArm

CTArm =(.5* Lpanel ^2* Wpanel*cos(Phi0Arm)*sin(Phi0Arm) ...

35 + Lpanel*Wpanel*LArm*cos(Phi0Arm)*sin(Phi0Arm) ...

+ .75* Lpanel*Wpanel*Lb1 *cos(Phi0Arm)^2* sin(Phi0Arm) ...

- .25* Lpanel*Wpanel*Lb1*sin(Phi0Arm) ...

+ .75* Lpanel*Wpanel*Lb3*cos(Phi0Arm) ...

- .75* Lpanel*Wpanel*Lb3*cos(Phi0Arm)^3)*CD*Rho*V^2;

40 % Const multiplying deltaPhiBotArm

CBArm=-CTArm;

% Const multiplying deltaPhiLeftArm

CLArm =(.25 * Lpanel*Wpanel*Lb1*sin(Phi0Arm) ...

-.75* Lpanel*Wpanel*Lb2*cos(Phi0Arm)...

45 +.75* Lpanel*Wpanel*Lb2*cos(Phi0Arm)^3...

-1*Lpanel*Wpanel*LArm*cos(Phi0Arm)*sin(Phi0Arm)...

-.5* Lpanel ^2* Wpanel*cos(Phi0Arm)*sin(Phi0Arm)...

-.75* Lpanel*Wpanel*Lb1*cos(Phi0Arm)^2* sin(Phi0Arm))*CD*Rho*V...

^2;

% Const multiplying deltaPhiRightArm

50 CRArm=-CLArm;

% Const multiplying deltaPhiLeftAileron

CLAil =(1.5* LAil ^2* WAil*cos(PhiWedge)^2 * sin(PhiWedge) ...

-.5*LAil*WAil*Lb2*sin(PhiWedge) ...

+1.5* LAil*WAil*Lb2*cos(PhiWedge)^2 * sin(PhiWedge) ...

55 -.5*LAil ^2* WAil*sin(PhiWedge))*CD*Rho*V^2;

% Const multiplying deltaPhiRightAileron

CRAil=-CLAil;

% Const multiplying Theta 2 term

CTheta2 =(-1 * Lpanel*Wpanel *Lb1*cos(Phi0Arm)^2* sin(Phi0Arm) ...

60 -1 * Lpanel ^2* Wpanel*cos(Phi0Arm)*sin(Phi0Arm) ...

+1 * Lpanel*Wpanel*Lb3*cos(Phi0Arm)^3 ...

-2 *WAil ^2* LAil*cos(PhiWedge)*sin(PhiWedge) ...

-2 * Lpanel*Wpanel*LArm *cos(Phi0Arm)*sin(Phi0Arm) ...

+2 * WAil ^2* LAil*cos(PhiWedge)^3* sin(PhiWedge) ...

65 -1 * Lpanel*Wpanel*Lb3*cos(Phi0Arm))*CD*Rho*V^2;

% Const multiplying Theta 2 term

CTheta3 =(-1 * Lpanel ^2* Wpanel*cos(Phi0Arm)*sin(Phi0Arm) ...

-2 * Lpanel*Wpanel*LArm*cos(Phi0Arm)*sin(Phi0Arm) ...

+1 * Lpanel*Wpanel*Lb2*cos(Phi0Arm)^3 ...

70 -1 * Lpanel*Wpanel*Lb1*cos(Phi0Arm)^2* sin(Phi0Arm) ...

-1 * Lpanel*Wpanel*Lb2*cos(Phi0Arm))*CD*Rho*V^2;

%******************************************************

% Calc MOI Where pitch is major , Roll is intermediate ,

75 % Yaw is minor

%******************************************************

Length = 1;

Width = .8;

Height = 1.25;

80 Iroll =(1/12)*Mass*( Width ^2+ Height ^2);

Ipitch =(1/12)*Mass*( Length ^2+ Height ^2);
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Iyaw =(1/12)*Mass*( Length ^2+ Width ^2);

%xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

%MOI=[ Iroll 0 0;0 Ipitch 0;0 0 Iyaw ]; %(kg*m^2)

85 MOI =[10 0 0;0 20 0;0 0 30];

%xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

%******************************************************

% Calc Inv MOI

%******************************************************

90 InvMOI=MOI^-1;

D.4 Function: ControlTorques.m

Listing D.3: This Matlabr function calculates CX3
(equation 3.50)and multiplies

it with the deflections of the control surfaces.
(appendix4/ControlTorques.m)

function [Angles ,CX3dPhi ] = ControlTorques (CTArm ,CBArm ,CLArm ,...

CRArm ,CLAil ,CRAil ,InvMOI ,C,ThetaDot ,Theta)

% This block calculates the torques a satellite

% experiences when in LEO , from Theta (the angles

5 % between the B-frame and the A-frame), PhiArms

% (the angle of each control arm from the sat

% body) and PhiFlaps (the angle of the flaps

% rotating about the arms). it is assumed the

% inward pointing normal direction for the panels

10 % never sees the wind.

%D. Guettler

%xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

15 %EIG TEST Comment out for control

% RollControl =0;

% PitchControl =0;

% YawControl =0;

%Uncomment for control

20 RollControl=C(1)*ThetaDot (1);

PitchControl=C(2)*ThetaDot (2);

YawControl=C(3)*ThetaDot (3);

%xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

dPhiRightAil=RollControl;

25 dPhiLeftAil=-RollControl;

dPhiTopArm=-PitchControl;

dPhiBotArm=PitchControl;

30 dPhiLeftArm=YawControl;

dPhiRightArm=-YawControl;

Angles =[ dPhiRightAil dPhiLeftAil dPhiTopArm dPhiBotArm ...
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dPhiLeftArm dPhiRightArm ]*180/pi ’;

35 CX3dPhi=InvMOI *[ CLAil*dPhiLeftAil+CRAil*dPhiRightAil;

CTArm*dPhiTopArm+CBArm*dPhiBotArm;

CLArm*dPhiLeftArm+CRArm*dPhiRightArm ];

D.5 Function: CalcMat.m

Listing D.4: This Matlabr function calculates the matrices CX1
and CX1

in equa-
tions 3.48 and 3.49.
(appendix4/CalcMat.m)

function [CX1 ,CX2 ] = CalcMat(MOI ,n,CTheta2 ,CTheta3)

% This block calculates the matrix multiplied by

% the ThetaDot vector . See the help menu for details.

5 %**********************************************************

% Calc Inv MOI

%**********************************************************

InvMOI=MOI^-1;

10 %**********************************************************

%Calculate the matrix that multiplies the ThetaDot Vector

%**********************************************************

CX1 = InvMOI *[0 0 ( MOI(3,3)+MOI(1,1)-MOI(2,2));

0 0 0; ( MOI(2,2)-MOI(1,1)-MOI(3,3)) 0 0]*n;

15

%**********************************************************

%Calculate the matrix that multiplies the ThetaDot Vector

%**********************************************************

CX2 = InvMOI *[( MOI(3,3)-MOI(2,2))*n^2 0 0;

20 0 CTheta2 0;

0 0 ( MOI(1,1)-MOI(2,2))*n^2+ CTheta3 ];

D.6 Function: InitCond.m

Listing D.5: This Matlabr function inputs the initial conditions that were calcu-
lated from the eigenvector analysis for model validation. Once the model has been
validated, these can be turned off so the actual simulations can be run.
(appendix4/InitCond.m)

function [ThetaDot ,Theta ] = InitCond(n)

% this block is to test the model by the eigenval

% eigenvec method . See the help menu for details.
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5 % D. Guettler

%****** For the Linear no torques case ******

% For the cases where A=20 B=10 C=30 using the

% 4x4 matrix to get eigvecs

%Case 1: The first pair of complex conj eigvecs

10 %Theta =[2 0 2] ’;

%ThetaDot =[2*n 0 -2*n]’;

%Case 2 The second pair of complex conj eigvecs

%Theta =[1.734 0 2] ’;

%ThetaDot =[n 0 -1.156*n]’;

15

%****** For the Linear no torques case ******

% For the cases where A=10 B=20 C=30 using the

% 4x4 matrix to get eigvecs

%Case 1: The first pair of complex conj eigvecs

20 %Theta =[1 0 1] ’;

%ThetaDot =[n 0 -n]’;

%Case 2 The second pair of complex conj eigvecs

Theta =[ -3 0 0] ’;

ThetaDot =[0 0 n]’;

25

%Theta =[2 0 0] ’;

%ThetaDot =[.00232 0 0] ’;

%Theta =[0 0 2] ’;

%ThetaDot =[0 0 .00232] ’;

30 %Theta =[1.414 0 1.414] ’;

%ThetaDot =[.00163599 0 -.00163599] ’;

%Theta =[ -1.31 0 1.512] ’;

%ThetaDot =[.000874 0 .101] ’;

35 % For the cases where A=20 B=10 C=30 using the

% 6x6 matrix to get eigvecs

%Case 1: The first pair of complex conj eigvecs

%Theta =[2 0 2] ’;

%ThetaDot =[2*n 0 -2*n]’;

40 %Case 2 The second pair of complex conj eigvecs

%Theta =[-3/n 0 3.46/n]’;

%ThetaDot =[1.73 0 2] ’;

%Theta =[0 2 2] ’;

%ThetaDot =[-2*n 0 0] ’;

45

%For the linear with torques case

%A=20, B=30, C=10 and using the 4x4 matrix to get eigs

%Case 1 ( first pair of complex conj eigvecs)

50 %Theta =[2 0 0] ’;

%ThetaDot =[.00232 0 0] ’;

%Case 2 (2nd pair of complex conj eigvecs)

%Theta =[0 0 2] ’;

%ThetaDot =[0 0 .0506] ’;
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Appendix E. Simulation Plots

E.1 Altitude Variation plots

This Appendix contains all the plots for angular displacement, angular rate,

angular acceleration, and control angles for the simulations determine the effects

altitude has on attitude stabilization. All inputs are summed up in the following

tables.

Table E.1: Density, velocity and orbital rate calculated from Simulink r©.

Altitude (km) Calculated Density ( kg
m3 ) Velocity (m

s
) Orbital Rate ( rad

s
)

200 2.79x10−10 7784 0.001183
300 2.42x10−11 7726 0.001157
400 3.73x10−12 7669 0.001131
500 6.97x10−13 7613 0.001107
600 1.45x10−13 7558 0.001083

Table E.2: Variables input into the Simulink r© model for all the altitude variation
simulations.

Variable Value

LPanel 1m

WPanel 1m

LArm 1m

φ0Arm
45◦

LAil 1m

WAil 1m

Lb1 1m

Lb2 1m

Lb3 1m

φWedge 22.5◦

Mass 500kg

CD 2.2

MOI =











A 0 0

0 B 0

0 0 C











=











92 0 0

0 107 0

0 0 68











kg · m2 (E.1)
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Figure E.1: Angular displacement at 200km with roll offset
10◦.
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Figure E.2: Angular rate at 200km with roll offset 10◦.
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Figure E.3: Angular Acceleration at 200km with roll offset
10◦.
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Figure E.4: Control angle deflections 200 km with roll offset
10◦.
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Figure E.5: Angular displacement at 200km with pitch offset
10◦.
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Figure E.6: Angular rate at 200km with pitch offset 10◦.
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Figure E.7: Angular Acceleration at 200km with pitch offset
10◦.
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Figure E.8: Control angle deflections 200 km with pitch offset
10◦.
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Figure E.9: Angular displacement at 200km with yaw offset
10◦.
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Figure E.10: Angular rate at 200km with yaw offset 10◦.
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Figure E.11: Angular Acceleration at 200km with yaw offset
10◦.
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Figure E.12: Control angle deflections 200 km with yaw offset
10◦.
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Figure E.13: Angular displacement at 200km with roll, pitch
and yaw offset 10◦.
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Figure E.14: Angular rate at 200km with roll, pitch and yaw
offset 10◦.
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Figure E.15: Angular Acceleration at 200km with roll, pitch
and yaw offset 10◦.
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Figure E.16: Control angle deflections 200 km with roll, pitch
and yaw offset 10◦.
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Figure E.17: Angular displacement at 300km with roll offset
10◦.
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Figure E.18: Angular rate at 300km with roll offset 10◦.
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Figure E.19: Angular Acceleration at 300km with roll offset
10◦.
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Figure E.20: Control angle deflections 300 km with roll offset
10◦.
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Figure E.21: Angular displacement at 300km with pitch offset
10◦.
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Figure E.22: Angular rate at 300km with pitch offset 10◦.
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Figure E.23: Angular Acceleration at 300km with pitch offset
10◦.
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Figure E.24: Control angle deflections 300 km with pitch off-
set 10◦.
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Figure E.25: Angular displacement at 300km with yaw offset
10◦.
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Figure E.26: Angular rate at 300km with yaw offset 10◦.
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Figure E.27: Angular Acceleration at 300km with yaw offset
10◦.
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Figure E.28: Control angle deflections at 300km with yaw
offset 10◦.
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Figure E.29: Angular displacement at 300km with roll, pitch
and yaw offset 10◦.
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Figure E.30: Angular rate at 300km with roll, pitch and yaw
offset 10◦.
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Figure E.31: Angular Acceleration at 300km with roll, pitch
and yaw offset 10◦.
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Figure E.32: Control angle deflections at 300km with roll,
pitch and yaw offset 10◦.
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Figure E.33: Angular displacement at 400km with roll offset
10◦.
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Figure E.34: Angular rate at 400km with roll offset 10◦.
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Figure E.35: Angular Acceleration at 400km with roll offset
10◦.
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Figure E.36: Control angle deflections 400 km with roll offset
10◦.
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Figure E.37: Angular displacement at 400km with pitch offset
10◦.
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Figure E.38: Angular rate at 400km with pitch offset 10◦.
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Figure E.39: Angular Acceleration at 400km with pitch offset
10◦.
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Figure E.40: Control angle deflections 400 km with pitch off-
set 10◦.
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Figure E.41: Angular displacement at 400km with yaw offset
10◦.
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Figure E.42: Angular rate at 400km with yaw offset 10◦.
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Figure E.43: Angular Acceleration at 400km with yaw offset
10◦.
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Figure E.44: Control angle deflections 400 km with yaw offset
10◦.
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Figure E.45: Angular displacement at 400km with roll, pitch
and yaw offset 10◦.
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Figure E.46: Angular rate at 400km with roll, pitch and yaw
offset 10◦.
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Figure E.47: Angular Acceleration at 400km with roll, pitch
and yaw offset 10◦.
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Figure E.48: Control angle deflections 400 km with roll, pitch
and yaw offset 10◦.
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Figure E.49: Angular displacement at 500km with roll offset
10◦.
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Figure E.50: Angular rate at 500km with roll offset 10◦.
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Figure E.51: Angular Acceleration at 500km with roll offset
10◦.
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Figure E.52: Control angle deflections 500 km with roll offset
10◦.
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Figure E.53: Angular displacement at 500km with pitch offset
10◦.
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Figure E.54: Angular rate at 500km with pitch offset 10◦.
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Figure E.55: Angular Acceleration at 500km with pitch offset
10◦.
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Figure E.56: Control angle deflections 500 km with pitch off-
set 10◦.
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Figure E.57: Angular displacement at 500km with yaw offset
10◦.
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Figure E.58: Angular rate at 500km with yaw offset 10◦.
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Figure E.59: Angular Acceleration at 500km with yaw offset
10◦.
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Figure E.60: Control angle deflections 500 km with yaw offset
10◦.
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Figure E.61: Angular displacement at 500km with roll, pitch
and yaw offset 10◦.
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Figure E.62: Angular rate at 500km with roll, pitch and yaw
offset 10◦.
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Figure E.63: Angular Acceleration at 500km with roll, pitch
and yaw offset 10◦.
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Figure E.64: Control angle deflections 500 km with roll, pitch
and yaw offset 10◦.
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Figure E.65: Angular displacement at 600km with roll offset
10◦.
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Figure E.66: Angular rate at 600km with roll offset 10◦.
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Figure E.67: Angular Acceleration at 600km with roll offset
10◦.
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Figure E.68: Control angle deflections 600 km with roll offset
10◦.
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Figure E.69: Angular displacement at 600km with pitch offset
10◦.
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Figure E.70: Angular rate at 600km with pitch offset 10◦.
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Figure E.71: Angular Acceleration at 600km with pitch offset
10◦.
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Figure E.72: Control angle deflections 600 km with pitch off-
set 10◦.
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Figure E.73: Angular displacement at 600km with yaw offset
10◦.
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Figure E.74: Angular rate at 600km with yaw offset 10◦.
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Figure E.75: Angular Acceleration at 600km with yaw offset
10◦.
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Figure E.76: Control angle deflections 600 km with yaw offset
10◦.
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Figure E.77: Angular displacement at 600km with roll, pitch
and yaw offset 10◦.
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Figure E.78: Angular rate at 600km with roll, pitch and yaw
offset 10◦.
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Figure E.79: Angular Acceleration at 600km with roll, pitch
and yaw offset 10◦.
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Figure E.80: Control angle deflections 600 km with roll, pitch
and yaw offset 10◦.
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Appendix F. Original Design Nonlinear Drag Equations

F.1 External Torques from Atmospheric Drag (Nonlinear)

Satellites in LEO (LEO)(between 130 km to 600 km) experience an aerody-

namic drag force which is given by:

Fdrag =
1

2
ρV 2CDA (6.1)

Where Fdrag =drag force (N), ρ =atmospheric density (kg/m3), V =velocity (m/s),

CD = 2 drag coefficient and A =projected area (m2). Altitudes above 125 km

altitude are in the free molecular flow regime [1, page 318]. In the free molecular

flow regime, particles are typically modeled either as specular or diffuse reflections. A

specular reflection assumes that molecules are perfectly elastic where the tangential

velocity is constant and the normal velocity is reversed. The diffuse model assumes

the molecules are reflected in a diffuse manner and have no memory of previous

velocities. Either model imparts a force normal to the surface. Spacecraft in LEO

will always experience a small drag torque since it’s not possible to locate the CG to

the exact geometric center and therefore will need some way to control it’s attitude.

Assumptions that were made for the following drag torque equations are:

• The drag panels are only visible to the incoming wind only on the front/out-

ward facing sides.

• The drag coefficient was chosen to be between 1.5 < CD ≤ 2.5 .

• Atmospheric density is constant and averaged over the orbit.(neglecting solar

effects and atmospheric perturbations).

F.1.1 Drag Torque Equations. The basic design being modeled as a cube

shaped spacecraft that has arms with 4 drag panels controlling pitch, roll and yaw.

To pitch up or down, the top or bottom panel will be swung out into the air stream.
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For yaw, the left and right panels are used. To roll left and right, all panels will be

extended and rotated with respect to the arms in a “propeller” configuration. To

determine the drag effects on both the cube and the panels, the velocity must be

known and is given by [11, page 70]

V =

√

µ

rorbit

(6.2)

where the standard gravitational parameter µ = 398600km3

s2 and the orbital radius

rorbit = 6378.135km + Altitude, and the velocity vector is in the −a1 direction. The

density must also be determined and based on the altitude range being modeled, the

density ρ varies between 10−8 to 10−1 kg

m3 for LEO orbits.

F.1.2 Drag Effects from Spacecraft Body. The spacecraft body doesn’t

produce any torques unless the CG is not at the geometric center. In this model, the

CG location can be moved off center to produce small torques for modelling purposes.

First the roll, pitch, yaw rotation matrix is used to go from the A frame to the B

frame as in equation 3.2. The angle of the incoming molecules and the inward normal

directions n for the cube surfaces can be found by using the dot product of the two

vectors and since we are dealing with unit vectors, cos(α) = v · n. Since the inward

normal vectors are aligned with the principal axes, and from equation 3.6 the dot

products for each cube surface become:

cos(αLeft) = (−a1 · b2) = −RBA
(2,1) (6.3a)

cos(αRight) = (−a1 · −b2) = RBA
(2,1) (6.3b)

cos(αBot) = (−a1 · −b3) = RBA
(3,1) (6.3c)

cos(αTop) = (−a1 · b3) = −RBA
(3,1) (6.3d)

cos(αFront) = (−a1 · −b1) = RBA
(1,1) (6.3e)
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cos(αBack) = (−a1 · b1) = −RBA
(1,1) (6.3f)

To find the drag force on each exposed surface, the projected area must be known

and is found by Ap ,
∫∫

H(cos(α)) cos(α)dA [2, page 251]. where H is the Heaviside

function and cos(α) is from equations 6.3, a-f. The Heaviside function is used so

that only the areas the see the incoming molecules are taken into account. Since

the areas of the faces are the side of a cube, the integral becomes L2, where L is the

length of the side of the spacecraft body. The projected areas for each side become:

ALeft = L2H(cos(αLeft)) cos(αLeft) (6.4a)

ARight = L2H(cos(αRight)) cos(αRight) (6.4b)

ABot = L2H(cos(αBot)) cos(αBot) (6.4c)

ATop = L2H(cos(αTop)) cos(αTop) (6.4d)

AFront = L2H(cos(αFront)) cos(αFront) (6.4e)

ABack = L2H(cos(αBack)) cos(αBack) (6.4f)

By using equation 6.1 and substituting in equations 6.13, the drag forces for each

face in the A frame become:

FLeftA
=

1

2
CDALeftρV 2v̂ (6.5a)

FRightA
=

1

2
CDARightρV 2v̂ (6.5b)

FBotA =
1

2
CDABotρV 2v̂ (6.5c)

FTopA
=

1

2
CDATopρV 2v̂ (6.5d)

FFrontA =
1

2
CDAFrontρV 2v̂ (6.5e)
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FBackA =
1

2
CDABackρV 2v̂ (6.5f)

By using the rotation matrix 3.2 the force in the B frame can be calculated

by substituting equations 6.5 and 3.2 into the following equations (note, we are only

interested in the inward normal force).

FLeftB
=

[

0 1 0
]

RBAFLeftA











0

1

0











(6.6a)

FRightB
=

[

0 1 0
]

RBAFRightA











0

1

0











(6.6b)

FBotB =
[

0 0 1
]

RBAFBotA











0

0

1











(6.6c)

FTopB
=

[

0 0 1
]

RBAFTopA











0

0

1











(6.6d)

FFrontB =
[

1 0 0
]

RBAFFrontA











1

0

0











(6.6e)

FBackB =
[

1 0 0
]

RBAFBackA











1

0

0











(6.6f)

Once the drag force is calculated in the B frame, the torques can be calculated

by T = rxF [2, page 251] where r is the vector from the CG to the center of pressure
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for each surface and F is the drag force in the B frame. For the cube surfaces, r

becomes:

rLeft =











0

−0.5L

0











− CG (6.7a)

rRight =











0

0.5L

0











− CG (6.7b)

rBot =











0

0

0.5L











− CG (6.7c)

rTop =











0

0

−0.5L











− CG (6.7d)

rFront =











0.5L

0

0











− CG (6.7e)

rBack =











−0.5L

0

0











− CG (6.7f)

Substituting in equations 6.6 and 6.17, the torque equations for each surface

of the spacecraft body in the B frame become:

MLeft = rLeftxFLeftB
(6.8a)
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MRight = rRightxFRightB
(6.8b)

MBot = rBotxFBotB (6.8c)

MTop = rTopxFTopB
(6.8d)

MFront = rFrontxFFrontB (6.8e)

MBack = rBackxFBackB (6.8f)

And finally the total torques (equations 6.8 a-f) from the spacecraft body are added

to get:

MSatBody = MLeft + MRight + MBot + MTop + MFront + MBack (6.9)

F.1.3 Drag Effects from Spacecraft Drag Panels. By going through a similar

process, the torques from the drag panels can be found. The drag panels adds some

complexity to the problem since there are two sets of rotations, one going from the

A frame to the B frame (equation 3.2) and the other going from the B frame to the

F frame which by using the roll, pitch, yaw rotation sequence results in:

RFB =











1 0 0

0 c(φ1) s(φ1)

0 −s(φ1) c(φ1)





















c(φ2) 0 −s(φ2)

0 1 0

s(φ2) 0 c(φ2)





















c(φ3) s(φ3) 0

−s(φ3) c(φ3) 0

0 0 1











(6.10)

To get from the A frame to the F frame for each drag panel, RFA = RFBRBA

where RBA is from equation 3.2 and each panel has its specific rotation matrix and

set of angles from the B frame to the F frame:
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RFB
Top =











1 0 0

0 c(φTPan) s(φTPan)

0 −s(φTPan) c(φTPan)





















c(−φTArm) 0 −s(−φTArm)

0 1 0

s(−φTArm) 0 c(−φTArm)





















c(0) s(0) 0

−s(0) c(0) 0

0 0 1











(6.11a)

RFB
Bot =











1 0 0

0 c(φBPan) s(φBPan)

0 −s(φBPan) c(φBPan)





















c(φBArm) 0 −s(φBArm)

0 1 0

s(φBArm) 0 c(φBArm)





















c(0) s(0) 0

−s(0) c(0) 0

0 0 1











(6.11b)

RFB
Left =











1 0 0

0 c(φLPan) s(φLPan)

0 −s(φLPan) c(φLPan)





















c(0) 0 −s(0)

0 1 0

s(0) 0 c(0)





















c(φLArm) s(φLArm) 0

−s(φLArm) c(φLArm) 0

0 0 1











(6.11c)

RFB
Right =











1 0 0

0 c(φRPan) s(φRPan)

0 −s(φRPan) c(φRPan)





















c(0) 0 −s(0)

0 1 0

s(0) 0 c(0)





















c(−φRArm) s(−φRArm) 0

−s(−φRArm) c(−φRArm) 0

0 0 1











(6.11d)

where φTPad, φBPad, φLPad, and φRPad, are the top, bottom, left and right drag panel

angles used for roll control and range from ±45◦. φTArm, φBArm, φLArm, and φRArm,

are the top, bottom, left and right arms that are connected to the drag panels. The

angles between the b1 direction and the arms range from 0− 90◦. In equations 6.11a

and 6.11d, the arm angles have a negative sign so that all angles will be positive so

the controller will only have to input positive angles. One of the rotation angles in

each equation are always zero, this is due to the fact that there are only two degrees

of freedom for each panel.

The rest of the torque equations follow the same process as before (see equa-

tions 6.3), the angles between the incoming molecules and the inward normal direc-

tions are
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cos(αLeft) = (−a1 · f2) = −RFA
(2,1) (6.12a)

cos(αRight) = (−a1 · −f2) = RFA
(2,1) (6.12b)

cos(αBot) = (−a1 · −f3) = RFA
(3,1) (6.12c)

cos(αTop) = (−a1 · f3) = −RFA
(3,1) (6.12d)

The projected areas from the panels become:

ALeft = L2H(cos(αLeft)) cos(αLeft) (6.13a)

ARight = L2H(cos(αRight)) cos(αRight) (6.13b)

ABot = L2H(cos(αBot)) cos(αBot) (6.13c)

ATop = L2H(cos(αTop)) cos(αTop) (6.13d)

where L is the side length of each square drag panel.

Calculate forces from the drag panels in the A frame:

FLeftA
=

1

2
CDALeftρV 2v̂ (6.14a)

FRightA
=

1

2
CDARightρV 2v̂ (6.14b)

FBotA =
1

2
CDABotρV 2v̂ (6.14c)

FTopA
=

1

2
CDATopρV 2v̂ (6.14d)
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Calculate force from drag panels in the F frame and pull out the inward normal

component:

FLeftF
=

[

0 1 0
]

RFA
LeftFLeftA











0

1

0











(6.15a)

FRightF
=

[

0 1 0
]

RFA
RightFRightA











0

1

0











(6.15b)

FBotF =
[

0 0 1
]

RFA
BotFBotA











0

0

1











(6.15c)

FTopF
=

[

0 0 1
]

RFA
TopFTopA











0

0

1











(6.15d)

Convert the inward normal component of each surface in the F frame to the

B frame.

FLeftB
= (RFB

Left)
T FLeftF

(6.16a)

FRightB
= (RFB

Right)
T FRightF

(6.16b)

FBotB = (RFB
Bot)

T FBotF (6.16c)

FTopB
= (RFB

Top)
T FTopF

(6.16d)

Find r from the CG to the center of pressure for each panel:
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rLeft =











−0.5L − (LArm + 0.5LPanel) cos(φLArm)

−0.5L − (LArm + 0.5Lpanel) sin(φLArm)

0











− CG (6.17a)

rRight =











−0.5L − (LArm + 0.5LPanel) cos(φRArm)

0.5L + (LArm + 0.5Lpanel) sin(φRArm)

0











− CG (6.17b)

rBot =











−0.5L − (LArm + 0.5LPanel) cos(φBArm)

0

0.5L + (LArm + 0.5Lpanel) sin(φBArm)











− CG (6.17c)

rTop =











−0.5L − (LArm + 0.5LPanel) cos(φTArm)

0

−0.5L − (LArm + 0.5Lpanel) sin(φTArm)











− CG (6.17d)

where L is the side length of the spacecraft body, LArm is the length of the control

arm, LPanel is the side length of the square panels, φLArm, φRArm, φBArm and φTArm

are the angles of the arms from their retracted positions.

Finally, the torque equations for the drag panels with all the substitutions

become:

MLeft = rLeftxFLeftB
(6.18a)

MRight = rRightxFRightB
(6.18b)

MBot = rBotxFBotB (6.18c)

MTop = rTopxFTopB
(6.18d)

(6.18e)
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And finally the total torques (equations 6.8 a-f) from the spacecraft body are

added to get:

MPanels = MLeft + MRight + MBot + MTop (6.19)

And the total torques are:

MTotal = MSatBody + MPanels (6.20)
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