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Abstract

Attitude control is a requirement for most satellites. Many schemes have been
devised over the years including control moment gyros, reaction wheels, spin stabi-
lization and gravity gradient stabilization. For low Earth orbits, the Earth’s atmo-
sphere can have an affect on a satellite’s orbit and attitude. Using the atmosphere
to control spacecraft attitude has been researched in the past however very little re-
search has been done using an active feedback control system to maintain spacecraft

attitude.

This research effort examines the feasibility of using the atmosphere to actively
control a spacecraft’s attitude using drag panels. Several variables affect the drag
force, of which, projected area is the only variable that can be changed easily. Adding
controllable drag panels to a satellite gives the ability to change the projected area as
well as the location of the projected area. The result of manipulating the projected
areas is a force that is not aligned with the center of gravity, resulting in an external
torque on the spacecraft. Although these torques are very small, on the scale of
micro-Newton meters and smaller, over time these torques can be used to change

the spacecraft’s attitude.

A linear computer model was created using a proportional controller. This
model was used to evaluate the effectiveness of using drag panels for attitude control.
Results from the simulation show that the spacecraft can recover from disturbance
torques that may cause a change in attitude very effectively especially at low altitudes
(200-300km). At 200km, the satellite is able to recover from a disturbance in less
than one hour. As the altitude increases, these settling times increase exponentially.

At 600km it takes approximately 2 weeks to stabilize. Other factors affect the settling

v



time such as mass, and the geometric dimensions of the satellite’s control panels and

control arms.
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SATELLITE ATTITUDE CONTROL

USING ATMOSPHERIC DRAG

1. Introduction

Over the last several decades since Sputnik became the first artificial satellite to
orbit the Earth in 1957, satellites have become an integral part of our lives. Satellites
serve many useful purposes such as communications, weather and remote sensing to
name a few. As their missions differ, so do their orbits. Many of these missions

require the spacecraft to be in a low Earth orbit (LEO)

Some advantages for putting a spacecraft in LEO are:

Higher resolution for Earth sensing satellites.

Allows for smaller /lower mass payloads.

Less costly to get to LEO.

Shorter orbital periods for rapid revisits.
e No fuel needed for placement into a graveyard orbit.

There are also disadvantages for putting spacecraft in LEO:

e Atmospheric drag.

e Finite orbit lifetime.

e Attitude control issues.

e Additional fuel for orbit/attitude maintenance.

The atmosphere is one of the dominating contributors to orbit and attitude

perturbations for spacecraft in LEO and accounts for most of the disadvantages.



The atmosphere is the dominating contributor to these perturbations from altitudes
ranging from 150-600 km [9, page 81]. The research presented here only focuses on

these altitudes where the Earth’s atmosphere has a significant effect on spacecraft.

Measurements show that atmospheric density tends to decrease exponentially
with increasing altitude and can be easily modeled (see Appendix C). Since the
atmosphere doesn’t end abruptly, there are fewer air molecules at LEO altitudes.
As the spacecraft orbits the Earth, it hits these molecules and loses some of its
orbital energy. Although the energy loss is extremely small, over time the losses add
up causing the orbit to decay thus leading to a finite orbital lifetime. There is no
way to stop orbit decay other than having onboard thrusters for orbit maintenance.
On the other hand, collisions with atmospheric particles can affect the spacecraft’s
attitude. If a satellite has a center of pressure that is not in line with it’s center of
mass or center of gravity (CG) a small torque will be produced. If the spacecraft
utilizes an attitude control system other than gravity gradient, it will most likely
use thrusters for attitude control or for momentum dumping of reaction wheels. The
torques caused by the atmosphere will increase the spacecraft’s fuel consumption
thus reducing it’s life. Gyros and reaction wheels can also be prone to failure which

can render a satellite useless.

1.1 Research Objectives

The exponential decay of the density of the atmosphere as a function of increas-
ing altitude is always figured into satellite design for LEO spacecraft. Most attitude
control systems used to overcome perturbations tend to be complex and expensive.
The mission specifies the altitude of the orbit, from which orbital velocity and at-
mospheric density can be calculated. The only variables we can easily control are
the projected areas and the location of the projected area relative to the spacecraft’s
center of gravity. By changing the size and location of the projected area, torques

can be produced from the drag the projected areas experience. This research looks



into the feasibility of using drag panels to produce torques on a spacecraft to damp
oscillations and control the spacecraft’s attitude. Since the forces on the drag panels
are very small, the drag panels can be as simple as having a piece of foil mounted to
a stiff lightweight frame, which will then be connected to an actuator. An attitude

control system using drag panels would be less complex and less prone to failure.



II. Background
2.1 Literature Review

Atmospheric drag has had an effect on most satellites starting with Sputnik.
Sputnik 1 was launched on 4 October 1957 with an initial apogee of approximately
950 km and a perigee of approximately 230 km. At its perigee, the atmosphere had
a significant affect on the satellite which eventually circularized its orbit (apogee was
approximately 600 km by 9 December 1957). Sputnik’s orbit eventually decayed to
the point of re-entry after 92 days in orbit on 4 January 1958. Since then, many
satellites, weather balloons, and sounding rockets have been launched to study the
atmosphere. Some of the studies that have been done include both active and passive
attitude stabilization techniques using atmospheric drag. Most of the research in
satellite aero stabilization deals with passive stabilization. Little research has been

done using active attitude stabilization using atmospheric drag.

2.1.1 Paddlewheel Satellites. By 1968, about a dozen satellites, such as
Explorer VI (see Figure 2.1), have been launched to study solar wind and the mag-
netosphere. While these satellites were in orbit, they revealed information about
the aerodynamic interaction of air molecules with the satellite surfaces. According
to the data, air molecules experience nearly diffuse reflections. Maxwell’s classi-
cal model best approximated this interaction. Maxwell’s model accounts for both
specular and diffuse reflections. Scientific analyses of the behavior of paddlewheel
satellites led to a good approximation of the accommodation coefficients from which

an approximated drag coefficient could be determined. [4]



Figure 2.1:  Explorer VI

2.1.2 Nanosatellite Passive Attitude stabilization. Psiaki performed a
study using passive attitude stabilization for a nanosatellite [5]. This satellite was
a cubesat with dimensions of 0.1 m for each side and mass of 1 kg. This satellite
was designed to use passive drag torques to stabilize the roll, pitch and yaw axes
and provide magnetic damping on both the pitch and yaw axes. The satellite resem-
bles a shuttlecock used in badminton (see Figure 2.2). The conclusion of this study

determined that the nanosatellite performed reasonably well in simulations.
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Figure 2.2:  Nanosatellite Passive Attitude Stabilization De-
sign
2.1.8  Shuttle Hitchhiker Passive Aerostabilization. — Another study focused

on purely passive stabilization with magnetic damping. This was a NASA study for
the feasibility for a low cost, low weight, and long life spacecraft for the gravity and
magnetic Earth surveyor (GAMES) mission . It is very similar to the satellite pic-
tured in Figure 2.2 as far as size, mass and method used for aero-stabilization. Both
use magnetic damping but the physical design is different. The shuttle hitchhiker is
a cylindrical design vs. a cubesat with “feathers” (see Figure 2.3). In this design,
the center of pressure (CP) is aft of the CG which tends to keep it pointed in the
direction tangent to the orbit. [7,8]
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Figure 2.3:  (a) Shuttle Hitchhiker schematic(b) Cross section view

2.1.4 Active Aerodynamic Attitude Stabilization. Very little research has
been done with active stabilization using atmospheric drag. Ravindran and Hughes
6] researched an Earth oriented satellite using drag panels for attitude control. Their
research was closely related to the research presented here, but their satellite design
was very different. Their design consisted of long cylindrical body where the axis
through the cylinder is aligned with the roll axis (see Figure 2.4). The panels are
turned so they are in the most streamlined position when no control is necessary.
For pitch and yaw controls, the appropriate panels would be rotated 90° to increase
the drag which is offset from the CG thus producing a torque. For roll control, they
would all be rotated a specified angle turning the spacecraft into a propeller like
configuration. Results from their analysis are similar to results obtained from this

research. [6]



Figure 2.4:  Active Control Design

2.2 The Atmosphere

The atmosphere has been studied for quite some time. Dozens of satellites,
weather balloons and sounding rockets have been launched to answer the question
“How does the pressure, temperature and density change as altitude changes?” An-
swers to this question have been crucial to the study of aeronautics and astronautics.
Most people believe that space is empty and void. The truth is, space is mostly void
and empty however there are particles flying around. According to the 1976 standard
atmospheric model [3], the atmospheric density can be approximated by using an
exponential model. See Appendix C for details on how the density was modeled. The
models used for atmospheric density only predict an average value based on solar
activity. Solar activity can have a significant affect on the actual density by heating
and expanding the atmosphere to higher altitudes. Although the atmospheric den-
sity model only approximates the density, the dynamic model should still accurately

predict the dynamic behavior of the linearized satellite.



2.8 Design Concepts

As progress was made with this research, the satellite design was altered to
simplify the linearization process for the torque equations. Three design iterations
were performed and the satellite evolved into the final version as presented in this
section as Design 3. This section summarizes these design variations and why they

changed.

2.3.1 Design 1: 4 Drag Panels to control Roll, Pitch and Yaw. The first
design had 4 drag panels, each on a control arm with two degrees of freedom for
each drag panel. This design enabled 3 axis control about the roll (by), pitch (by),
and yaw (bs) axes (See Figure 2.5). The panels could be rotated into the air stream
about the by axis for pitch control (top and bottom arms) and the by axis for yaw
control (left and right arms). For roll control, all control arms could be rotated
into the air stream and each panel rotated about each arm for left and right roll
control. See Figures 2.6 (a) and (b), and 2.7 (a) and (b). Design 1 is very similar
in design as the Explorer VI but with moveable panels. One drawback is that the
control actuators become more complex having to rotate about two different axes.
This design was abandoned since linearizing the equations of motino were became
unmanageable. The nonlinear equation derivations for this design are included in

Appendix F.



b,

Figure 2.5:  Roll (by), Pitch (by)and Yaw (bs) Axes

Figure 2.6:  (a) Panels retracted for normal flight.
(b) Panels extended and rotated for left rolling maneuver.

10



(a) (b)

Figure 2.7:  (a) Top panel extended for a pitch up maneuver.
(b) Left panel extended for a left yaw maneuver.
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2.3.2  Design 2: Ailerons to control Roll, / Drag Panels to Control Pitch and
Yaw.  Due to the complexity of the linearization of the torque equations in Design
1, a revision to the original design was made to simplify the equations. This design
was similar to the first design. Pitch and yaw were controlled using the same drag
panels. In this case, the control panels only had one degree of freedom and now
only control pitch and yaw. “Ailerons” for lack of a better term, were added for roll
control. If an actual satellite were to be built and tested, either this design or the
previous design would be the best choice. Figure 2.8 shows the addition of ailerons

to the sides of the spacecraft bus.

Figure 2.8: Satellite shown with ailerons in a right rolling
maneuver.

2.3.83 Design 3:  The third and final design was very similar to the previous
design using ailerons for roll control. The only difference between the two models
is that the ailerons were changed from flat plates to wedge shapes. This simplified

the linearization by eliminating negative angles for the aileron surfaces. This design

12



is shown in Figure 2.9. All simulations presented in this research are based on the

wedge shaped aileron design.

Figure 2.9:  Satellite shown with wedges for ailerons.
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III. Methodology

The equations of motion and torque equations depend on a satellite’s geometry,
physical dimensions and orbit. When deriving the equations, all terms were kept as

variables to give the model more flexibility while running simulations.

3.1 Coordinate Systems

Three reference frames are used for the rotational kinematic equations. The
“B frame”, a body fixed reference frame is aligned with the principal moments of
inertia, or the principal axes for the satellite, where by is the roll axis, b, is the pitch
axis and bs is the yaw axis. The “A frame” is the local vertical, local horizontal
(LVLH) frame aligned with the orbit where a; is along the orbit direction, as is
perpendicular to the orbit plane and as is toward the center of the Earth. Finally
the inertial “I frame” is an Earth fixed frame with its origin at the center of the

Earth. (See Figure 3.1) [10, page 366].

14



Figure 3.1: Coordinate frames for a rigid body in circular
orbit

3.2  Rotation Matrices Between Coordinate Frames

The first step in deriving the equations of motion is to derive the rotation
matrices. A 3-2-1 (yaw, pitch, roll) rotation sequence was used (see Figure 3.2)
where each elementary rotation has the following rotation matrices associated with
it. Note c(6;)= cos(6;), s(0;)= sin(6;), and 6; are the rotation angles for each of the

roll, pitch and yaw axes [10, page 309].

15



a, b,

Figure 3.2:  Euler Angle Rotations.

C3(03) = | —s(03) c(f3) O (3.1a)

Co(fo)=1 0 1 0 (3.1b)

Ci(01) = [0 () s(6) (3.1¢)
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The rotation matrix to the B frame from the A frame is defined as R4 = C(6,)Cy(65)C5(0s)

and when expanded becomes [10, page 311]:

c(62)c(03) c(62)s(0s) —5(0s)
RPA = | 5(601)s(0:)c(05) — c(61)s(05)  s(61)s(0:)s(03) + c(6:)c(85)  s(61)c(6:)

c(01)s(02)c(03) + s(01)s(03) c(01)s(02)s(03) — s(01)c(03)  c(01)c(0s)
(3.2)

To get the rotation matrix to the A frame from the B frame the transpose must be

taken since R4P= (RPA)~1 = (RBNT | [10, page 311]. RAZ becomes:

c(02)c(0s)  s(01)s(02)c(05) — c(01)s(03) c(601)s(02)c(03) + s(01)s(03)
R = | ¢(6,)s(03) 5(61)s(62)5(05) + c(81)c(B3)  c(61)5(62)s(03) — s(61)c(63)

—8(92) 8(01)0(02) 0(91)0(02)
(3.3)

Finally, to get to the B frame from the A frame, or to the A frame from the B frame,
the equations are as follows [10, pages 365-366].

b1 ay
by| = R |ay (3.4)
b is
_dl ?)1_
as| = R"P 62 (3.5)
s bs

Since a; contains only orthonormal unit vectors, a - @’ becomes the identity

matrix and equation 3.4 can be solved for RP4:

by biay biay bias

BA _ |3 A N PO I N N N

R = | by [al a2 a3} = |baay Dboay bza3 (3-6)
b3 bgdl bgdg 53&3
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3.8  FEquations of Motion of a Rigid Body in Circular Orbit

The next step was to derive the equations of motion (EOM). This derivation is
extracted from Wie [10, pages 365-369]. Several assumptions were made to simplify

the problem and these assumptions would have little impact on the problem.

Spacecraft is in a circular equatorial orbit (constant orbital rate).

Uniform gravitational field, (gravity gradient torques are neglected).

Spacecraft is in low Earth orbit (200-600 km)

Atmospheric density is taken as an average over the orbit (no fluctuations in

density).

3.3.1 Angular Velocity Vector.  From the coordinate system shown in Fig-
ure 3.1, the angular velocity between the B frame and the Earth frame I frame)

1s:

G =@l = @B 4 gt (3.7)
and written in the body frame
w1
& = wiby + waby + wsb; = [51 by 63} wo (3.8)
w3

Where @GB! is the angular velocity vector of the Earth fixed “I” frame to the body

Al'is the angular velocity of the I frame to the A frame, and @54 is the

frame, &
angular velocity from the A frame to the B frame.

I

Since the spacecraft is assumed to be in a circular orbit, @4 = —na,, and

therefore equation 3.7 becomes:

GB = 5B — na, (3.9)

18



where n is the constant orbital rate due to a circular orbit.

From equation 3.5, a, can be written as:

6(02)8(93)
Gy = (b by by | s(60)s(62)s(8s) + c(61)c(6) (3.10)
c(01)s(02)s(05) — s(61)c(63)

To find @54, a yaw, pitch, roll or 3-2-1 sequence was used. The first rotation about
the yaw (a3) axis goes from the A axis to the A’ axis. The second rotation about the
a’ axis takes us from the A’ to the A” axis and finally the third rotation about the af
axis goes from the A” to the B frame (See Fig. 3.2). From the rotations, the angular
velocity vector from the A frame to the B frame becomes [10, pages 324-326]:

wA/A = 9‘36_53 = 936& (311)
WA = 0, = 0oal (3.12)
CUBA” = 915&/ - 9151 (313)

Where 6; is the angular rate of the roll (i=1), pitch (i=2) and yaw (i=3) axes. The

total angular velocity vector then becomes:
GBA = GBA L G L G = Gaddly + Godl + 01y (3.14)

By substituting equations 3.11, 3.12, and 3.13 into 3.14, we get:

0, 0 0
@84 = [81 by 53} 0| +ci(61) [6y] +cr(f1)c2(62) | 0 (3.15)
0 0 0
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By combining equations 3.7 and 3.8, and substituting in equations 3.1b, 3.1c, 3.10,
and 3.15, the vector [?)1 by 83] cancels and the equation becomes [10, page 368|:

w1 10 —s(6) | |6 c(02)s(03)
wy| = [0 c(6h) s(6r)c(Ba)| |62| — 7 |5(61)5(62)s(63) + c(61)c(s) | (3.16)
ws 0 —s(6y) c(01)c(6y)| |65 c(01)s(02)s(05) — s(01)c(63)

By solving for 9:, the result is the kinematic differential equation for an orbiting

rigid body [10, page 368]:

él 0(02) 8(91)8(92) 0(01)8(92) w1 8(93)

bl = | 0 cl)el) —s0)cOs)| |wn| + 2 |clB)e(ts)| (3.17)
.2 0(92) 1 2 1 2 2 0(02) 2 3

03 0 S(‘gl) C(Gl) Ws 8(‘92)5(03)

The following equation is the equation 3.16 expanded:

w1 01 — 5(05)05 + c(62)s(03)n
wy | = | c(61)02 + 5(01)c(02)05 + ns(61)5(02)s(05) + ne(6y)c(6s) (3.18)
ws —5(61)02 + c(61)c(62)05 + nc(61)s(62)5(05) — ns(6y)c(6s)

Since 6; is very small, equation 3.18 can be linearized by letting cos(6;) = 1,

sin(6;) = 6;, sin(6;) sin(6;) ~ 0 and sin(6;)0; ~ 0. The linearized equation becomes

[10, page 369].
w1 91 — nbs
wo| = | 6, —n (3.19)
w3 93 + nb,
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Next we take the derivative of equation 3.19 to get ;.

d}l él - nég
wo | = 0, (3.20)
d)g ég + nél

3.8.2  Time Deriwatives of the Angular Momentum Vector.  This derivation
follows Wie [10, pages 340-342]. A rigid body has an angular momentum associated
with it, which is expressed as H=J- &8 By taking the derivative of H the

rotational equation motion can be found where:

dH dH .
{%} :{E} +C_U'BI><H (3.21)
I B

By using the transport theorem equation 3.21 becomes:

—

J G4+dxJ-d=M (3.22)

where J is the moment of inertia matrix (MOI), M is the external moment vector,
w is the angular rate vector and & is the angular acceleration vector. Equation 3.22

in matrix form becomes:

Jii Jiz Jis wi 0 —W3 W2 Ju Jiz Jis %1 M,
Jo1 Jaa Jos wo | + w3 0 —wi Jo1 Jao Jas wo | = | My (323)
J31 Jag Jsz| |ws —Wwy  Wq 0 J31 Jap Jsz| |ws M;
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Since it is assumed that the B frame is aligned to the principal axes, equation 3.23

becomes:
A 0 0 @1 0 —Ws3 (%) A 0 0 w1 M1
0 B 0 d)g + w3 0 —w 0 B 0 wWo | — MQ (324)
0o 0 C QJ5 —Wa w1 0 0 0 C W3 Mg

Where A is the MOI about the roll axis, B is the MOI about the pitch axis, C is the

MOI about the yaw axis, and when multiplied out becomes:

Ad)l — (B - C)WQLU;), M1
ijg — (C — A)wlwg - M2 (325>
ng - (A - B)wlwg M3

By substituting equations 3.19 and 3.20 into equation 3.25, linearizing and simplify-

ing, the equation becomes:

B0, = | My (3.26)
Cls + (C + A — B)nby + (B — A)n26s M,

Finally by solving for 6 and putting into matrix form, the equation becomes:

51 0 0 %ﬁ*n 91
0, = 0 0 0 - 10,
ég _B_é‘_c*n 0 0 93
(=82 g 0| [m
+ 0 0 0 0| + | (3.27)
0 0 4zB.n%| |6 A
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3.4 External Torques from Atmospheric Drag (Nonlinear)

Satellites in LEO experience an aerodynamic drag force given by [9, page 329]:
Lo
Fdrag = §pV CDAp (328)

where Fy,.,= drag force (N), p= atmospheric density (kg/m?), V= velocity (m/s),

Cp= drag coefficient and A,= projected area (m?).

Since the satellite is assumed to be in a circular orbit, the tangential velocity

V is constant which is given by [11, page 70]:

m

Torbit

V:

(3.29)

km?
52

and the orbital radius

where the standard gravitational parameter u= 398600
Torpit= 0378.135km + Altitude. Note, the velocity vector is in the —a; direction.

The density p depends on altitude and is calculated by the Mat1ab® code in
Appendix C. From Moe’s research, a good experimental approximation for Cp is
2.2 [4, page 4]. The projected areas A, and their locations with respect to the CG

are the only parameters that can be controlled after the spacecraft is in orbit.

Altitudes above 125 km are in the free molecular flow regime [1, page 316].
In the free molecular flow regime, particles are typically modeled either as specular
or diffuse reflections. A specular reflection assumes that molecules are perfectly
elastic where the tangential velocity is constant and the normal velocity is equal and
opposite before and after reflection. The diffuse model assumes the molecules are
reflected in a diffuse manner and have no memory of previous velocities. Either model
imparts a force normal to the surface and the reflections are wrapped up into the
drag coefficient which as stated earlier was determined experimentally. Spacecraft

in LEO always experience a small drag torque since it is not possible to construct a
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spacecraft that has its CG at the exact geometric center. Some assumptions made

for the following drag torque equations are:

e The drag panels are visible to the incoming molecules on the front/outward

facing surfaces.
e The drag coefficient was assumed to be constant at 2.2 [4, page 4].

e Atmospheric density is constant at a constant altitude and averaged over the

orbit.(neglecting solar effects and atmospheric perturbations).

e The incoming molecular velocity is equal and opposite the orbital velocity

(non-rotating atmosphere).

e The mass of the control panels and arms are negligible compared to the mass

of the satellite.

3.4.1  Spacecraft Configuration. The linearized model consists of a basic
cube shaped satellite bus with drag panels that can be extended into the airstream
for pitch and yaw control. Two wedges acting as “ailerons”, to produce torques about
the roll axis (See Figure 2.9). Wedges were chosen instead of flat panels to simplify
the linearization of the equations of motion. When linearizing the torque equations
about zero degrees for the ailerons, all variables would become higher order terms
since the projected areas and linearization angles were zero. Since Higher order terms
were to be neglected, there were no variables left in the equations. By modelling the
spacecraft with wedge shaped ailerons, the linearization problem goes away as does

the heaviside function in projected area equations.

3.4.2  Drag Effects from Spacecraft Body.  The spacecraft body doesn’t pro-
duce any torques due to drag unless the CG is not at the geometric center (assuming
a symmetric spacecraft). Although, in the linearized torque equations, the CG loca~
tion is taken to be at the geometric center thus drag effects from the spacecraft body

are neglected in the linearized model. In the nonlinear equations in Appendix F, the
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CG location can be moved off-center to produce small torques. No further analysis
was done with drag from the spacecraft body. The remaining analysis focused on

the control panels.

3.4.3 Drag Effects from Spacecraft Drag Panels. — The first step was to derive
the rotation matrix to transform the drag panel reference frames (the F; frame) to

the body frame. Each drag panel rotation was based on equation 3.30

1 0 0 o) 0 —s(pa)| | clds) s(p3) 0
R =10 c(¢) s@)|| 0 1 0 | |=s(gs) cl¢s) 0]  (330)
0 —s(¢1) c(o1)]| |s(¢2) 0 c(g) 0 0 1

Each drag panel has only one degree of freedom, therefore equation 3.30 is simplified
requiring one rotation per panel. Each panel’s rotation matrix contains a single
rotation about its respective axis. Figure 3.3 shows how each arm rotates with
respect to the satellite bus, ¢ is either the top, bottom, left, or right arm. Equation

3.30 for each panel simplifies to

C( - ¢TopArm) 0 —s ( - ¢TOpA7"m)

RFB,, = 0 1 0 (3.31a)

$(=broparm) 0 (- ¢T0pA'r’m)

C(¢BotA7"m) 0 _S(¢BotArm)

R gy = 0 1 0 (3.31b)
S<¢BotArm) 0 C(¢BotArm)
C(¢LeftArm) S (¢LeftArm) 0
RFBL@ft = _S<¢LeftArm) C(¢LeftArm) 0 (331C)
0 0 1
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c(=@rightarm)  S(—Prightarm) 0
RFBRight - _3(_¢RightArm) C(_¢RightArm> 0 (331d>
0 0 1

For the wedges, the angles of the faces are found by adding or subtracting the wedge

¢i_ Arm

Figure 3.3:  Angles for each control arm with respect to body
frame

angle to get the total angle. The angles are defined as follows:

¢LeftAz’lTop - ¢LeftAz’l - ¢Wedge (3328’)
OLeftAilBot = PLeftAil T OWedge (3.32Db)
ORight AilTop = PRight Ail — PWedge (3.32¢)
O Right AilBot = PRightAil + OWedge (3.32d)
where the aileron control angles are ¢rigntaii= —@restair, and Gy eqqe is half the wedge

angle. See Figure 3.4. The rotations for each surface then become

1 0 0 c(gbLeftAilTop) 0 _5(¢LeftAilTop) C(O> S(O) 0
R"P Lepiaarop = |0 ¢(0)  s(0) 0 1 0 —5(0) ¢(0) 0
10 —s(0) c(0)| |s(¢reseairop) O c(Preseairrop) 0 0 1

] T (3.33a)
1 0 0 c(refraiipot) 0 —S(Prefraiipot) c(0) s(0) O
R™P Lepaisor = [0 ¢(0)  s(0) 0 1 0 —s(0) ¢(0) 0
0 —s(0) c(0)| |s(¢reseaisot) O c(resraipor) 0 0 1

(3.33b)
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_1 0 0 ] _C(¢RightAilTop) 0 —5s(Prightairop)
R™P pightairop = |0 ¢(0)  s(0) 0 1 0

0 —s (0) C(O)_ E (Grightairop) 0 c(PrightairTop)

_1 0 0 | _C(CbRightAilBot) 0 —5(PrightAiBot)
R™P pighiaasor = [0 ¢(0)  s(0) 0 1 0

0 —s (0) C(O)_ B (OrightaitBot) 0 c(PrightaiBot)

c(0)  s(0)
—s(0) ¢(0)
0 0
(3.33¢)
c(0)  s(0)
—s(0) ¢(0)
0 0
(3.33d)

where the control arm angles ¢Arm are ¢TopArm7 ¢BotArma (bLeftArmu and ¢RightArmv

are the top, bottom, left and right arms that are connected to the drag panels. The

angles between the by direction and the arms range from 0 —90°. In equations 3.31a

and 3.31d, the arm angles have a negative sign so that all angles will be positive to

make it easier to remember that all angles to be input to the controller are positive.

Two of the rotation angles in each equation are always zero since there is only one

degree of freedom for each panel.

The rotations from the A frame to the I’ frame are used to determine normal

force for each panel due to the drag in the A frame. This is found by RF4 = RFERBA

and thus becomes:

FA FB BA
R Top — R TopR
FA FB BA
R Bot — R BotR
FA FB BA
R Left — R LeftR
FA FB BA
R Right — R RightR
FA FB BA
R LeftAilTop — R LeftAilTopR
FA FB BA
R™retaiBot = R LeptanBotl?

FA FB BA
R RightAilTop — R Rz’ghtAilTopR
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(3.342)
(3.34b)
(3.34¢)
(3.34d)
(3.34e)
(3.34f)

(3.34g)



FA FB BA
R" 7 gightaiiBot = I 7 RightaitBot I

(3.34h)

The angles between the incoming molecules and the inward normal directions

are:

COS(aTop) - (_dl : f3) - _RFATop(3,1)
cos(ape) = (—a1 - —f3) = R poyany
cos(arepe) = (=1 - fo) = =R o)
COS(OéRight) = (—dl : —f2) = RFARight(Q,l)
cos(aLefrairop) = (—a1 - f3) = =R [ prairopa.n)

~

cos(areraipor) = (—a1 - —f3) = R [epianpors)

A

cos(Qrightaitrop) = (—a1 + f3) = — R pigheairrop(s.)

COS(aRightAilBot) = (—a1 : —fs) = RFARz‘ghtAz‘lBot(S,l)

The projected areas from the panels become:
Arop = L*H (cos(0rop)) cos(arop)

Apoy = L*H(cos(ape)) cos(aupor)
Apesr = LQH(COS(aLeft)) cos(aueft)
Apignt = L*H (cos(apignt)) cos(apignt)
Aperiairop = LaaWauH (cos(Lefrairrop)) COS(QLeftairop)
Arcrtaisot = LaaWauH (cos(apefraipot)) COS(QLe fraiBot)
Aprightairop = LaaWaiuH (cos(rightairrop)) oS(Q right AirTop)

ApightaitBot = LaaW aiuH (cos(rightaiiBot)) COS(QRightAilBot)
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(3.354)
(3.35h)
(3.35¢)
(3.35d)
(3.35¢)
(3.35¢)
(3.35g)

(3.35h)

(3.36a)

(3.36h)
(3.36¢)
(3.36)
(3.36¢)
(3.36f)
(3.362)

(3.36h)



where L is the side length of each square drag panel, L,; is the length (span) of
each aileron and Wy, is the width of each aileron. Calculate forces from the drag

panels in the A frame:

1
Frop, = 5ODATO,,pV% (3.37a)
1 9
Fpota = §ODABotpV v (3.37b)
1 9
FLeftA = §ODALeft,0V v (337C)
1 9
FRightA = §CDARightpV (% (337(1)
1 9
FLeftAilTop A= §CDALeftAilToppv v (3-376)
1 9
FrefiaiBot 4 = §ODALeftAilBotpV v (3.37f)
1 9
FrightAitTop 4 = §ODARightAilToppv v (3.37g)
1 9
FRightAilBot 4= §CDARightAilBotpV v (3-37h)

where © = is the velocity unit vector and is defined as:

~1
i=1o0 (3.38)

Calculate force from drag panels in the F' frame and pull out the inward normal

component:

0
FTOPF - |:0 0 1:| RFATOpFTopA 0 (339&)
1
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0

Fpotp = [0 0 1] R ot Fpora |0 (3.39D)
1
0
FLeftF = |:O 1 0] RFALeftFLeftA 1 (339C)
0
0
Frightp = [0 1 0] R pignt Fright 5 | 1 (3.39d)
0
0
FlLestaatopp = [0 0 1] R LepiairopFreseaitops |0 (3.39¢)
1
0
FrepailBotp = [0 0 1} RFALeftAilBotFLeftAilBot 4]0 (3.39f)
1
0
FRightAilTopF = [0 0 ].:| RFARightAilTopFRightAilTopA 0 (339g)
1
0
FRightAilBot p = [0 0 1} R pightaasot Frightaitbot 5 | 0 (3.39h)
1

Convert the inward normal component of each surface in the F' frame to the B frame:

FTopB = (RFBTop)TFTopF (340&)

FBotB = (RFBBot)TFBotF (340b)
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FLeftB - (RFBLeft)TFLeftF
Frighig = (R right)" Fright 5
Freftaaropy = (R¥B Lettairop)” FreftainTop P
FLeftAilBotB = (RFBLeftAilBot)TFLeftAilBotF
FRightAilTopB - (RFBRightAilTop)TFRightAilTopF

FB T
FrightaiBotg = (R*° Rightaiibot)” FRightAilBot
B F

(3.40¢)
(3.40d)
(3.40¢)
(3.40f)
(3.40g)

(3.40h)

Find r from the CG to the center of pressure for each panel. (See Figure 3.4

for aileron details.) (Note: CG is at the geometric center for the linearized model,

ie. CG=0):

TTop =

T'Bot =

TLeft =

T'Right =

—0.5L — (LArm + 0-5LPanel> COS<¢TOPA7“WL)
0 - 0G

—05L - (LArm ‘I‘ 0-5Lpanel) Sin(¢TOpATm)

—0.5L — (LArm + O'5LPanel) COS(¢BotArm)
0 - CG

0.5L + (LA'rm + 0-5Lpanel) Sin(¢BotArm)

—0.5L — (LArm + 0-5LPcmel) COS(¢LeftArm>
—0.5L — (LArm + O-5Lpanel) Sin(¢LeftA7‘m) -G
0

—0.5L — (LArm + O-5LPanel) COS(¢RightArm)
0.5L + (LArm + 0-5Lpanel) Sin(¢RightArm) -G
0
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(3.41D)

(3.41c)

(3.41d)



—0.5W 441 SIN Py edge SIN G reprail

T'LeftAilTop = _0'5(LSide + LAil) - CG (3416)

—0.5W 441 SIn @y edge COS PLefiAil

0.5W 441 8in @wedge SIN Prefiai

T LeftAilBot = —0.5(Lsige + Laa) - CG (3.41f)

0.5W 441 SIn @y edge COS Prefi il

—0.5W 441 SIn Py edge SIN P Right Al

T'Right AilTop — 0-5<L5ide -+ LA’il) - CG (341g>

—0.5W 441 SIN QW edge COS P Right il

0.5W 441 8in @ edge SIN P Right Ail

T'Right AilBot = 0-5<LSide + LAil) -G (341h)
0.5W 441 SIn @y eage COS P Right Ail
where Lg;q. is the side length of the spacecraft body, L., is the length of the

LOCATION OF THE
CENTER OF PRESSURE
ALONG THE bl AND b3
DIRECTIONS

(W/2)sin22,.5°)sin(se

ROTATION
POINT

(W/2)sin(22.5%>cos(sp

(W/8>5i1n<88.5°)
f

/

Figure 3.4:  Aileron details
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control arm, Lpg,e is the side length of the square panels, ¢rarm, ®rArm, @BArm and
rarm are the angles of the arms from their retracted positions, ¢rcfiai and @rigneaa

are the angles of the ailerons, and ¢yyeqq4e is half the angle of the wedge.

Finally, the torque equations for the drag panels with all the substitutions

become:
Mrop = r10pXFropp (3.42a)
Mpot = 1BotXFBot (3.42b)
Mpepe = rrepixFLepip (3.42¢)
MRgight = 7 RightXFRight g (3.42d)
M. ftAilTop = TLe ftAilTopXF LeftAilTopp (3426)
MieriaiBot = TLeftAiBotXFLeftaitBot (3.42f)
MRightAirTop = T Right AT opXF Right AilTop (3.42g)
MRightAitBot = T Right AitBotXF Right Al Bot g (3.42h)

To get the total torques for the drag control panels, equations 3.42 a-h) are added:

MPanels = MTop + MBot + MLeft + MRight + MLeftAilTop

+ MrepiaiBot + Mpightairop + MRight AitBot (3.43)

If the torques from the body were included, they would be added here, however in

this case, MsqtBody = 0:

MTotal = MSatBody + MPcmels (344)

3.4.4 Linearized Torques from Control Panels. Linear analysis required

the nonlinear torque equations to be linearized. By having the ailerons as wedges
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and assuming small angles, the outward facing control surfaces were always facing
the incoming molecules. Thus, the heaviside function was no longer necessary for
the linear model. Each control arm for the pitch and yaw controls were linearized
about ¢q,, , which is the linearization angle of the control arms. The ailerons were
linearized about ¢q,,, where ¢y, = 0° (aligned with the by axis). After using
both MathCad and Matlab® symbolic solvers, the combined and linearized torque

equations were found:

M, Craitd@rightai + CLaid@resiair)
M2 = CBArm5¢BotArm + OTArm6¢TopArm + 002‘92 (345)
M3 CLArm5¢LeftArm + CRArmégbRightArm + 003 93

where Crai, Craits Crarms Caarm, Crarms Crarm, Co,, and Cy, are defined as follows:

Crai = [0.5L 40> Wai sin(dwedge)
+  0.5L 4y W ai1 L, sin(dwedge )

- 1-5LAil2WAil Sin(¢Wedge) COSQ(¢Wedge)

—  1.5LaaWai Lo, sin(dweage) c08*(dwedage) | CppV? (3.46a)
Crait = —Craa (3.46D)
CTArm = [O 5Lpanel2 Wpanel COs (¢0Arm ) Sin(¢0ATm )
+ Lpanel Wpanel LArm COS (¢0A7‘m ) Sin(gbOArm)

0' 75Lpanel Wpanel Lbl COS2 (gboArm ) Sln(¢0Arm )

— 0.75Lpanel WpanelLbs COS3 <¢0Arm)

+

+ 0.75LpaneleanelLb3 COS(¢OArm)

— 0.25LpanctWpanei Ly, sin(¢g,,,. )]CppV? (3.46¢)
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C’LArm

C1BA7°m = _CLArm

[—0.5 Lpanct*Wanet €08(Go,4,,,) sin(Po,.,,)
LpanetWpaner L arm cos(o,,.,.) sin(¢o 4., )
0.75 Lpanct Wpanet Lv, €08*(¢0,,,,,,) sin(¢o,,.,)
0.75 Lpanet Wpanet Lo, €08* (¢ ,,.,.)

0.75 Lipanct Wpanet Liv, c08(¢0 4,.,,)

0.25 LpanetWpanet Lo, sin(¢y,.,.)]CppV?

CRArm - _CLArm

[2L 4y Wai® cos® (dwedge) SIn(dwedge)

2L AaWair® cos(dwedge) SIN(Gryedge)
Lyanet®Whanet €08(¢o,4,,,.) sin(doy,.,,)

2 LpanetWpanet L arm €08(Po 4., ) sin(o ...
LpanaWpaner L, cos*(¢o,.... ) sin(do,,,..)
LpaneatWpanet L, c0s™(¢o.4,.,.)

Lpanel Wpanel ng COS(gbOArm )] C'D IOV2

[LpanetWpanet L, c0s* (¢ 4,.,.)

2 LpanetWyanet L arm €08(0o 4,.,.) sin(o ... )
Lpanel Woanet L, cos” (<Z50 Arm ) sin (¢0 Arm )
Liyanet®Wanet €08(¢o,4,,,.) sin(doy,.,,)

Lpanel Wpanel Lb3 COS(¢0A7‘m )] CD pV2
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L ; is the spanwise length of the aileron surface, Wy; is the chord length of the
aileron surfaces, Lyane is the length of the drag panels, Wy, is the width of the
drag panels, Ly, is the length of the satellite body in the by direction, L,,, is the
length of the satellite body in the by direction, and Ly,, is the length of the satellite

body in the bs direction.

3.5  Combined Linearized Equations of motion

The final step in deriving the EOM was to combine all the equations. By
plugging the linearized torque equations 3.45 into the overall equations of motion

3.27 and simplifying, the equations become:

5¢TopArm
- : 5¢ otArm
01 91 91 5¢ BotA
.. . eftArm
iyl =Cx, - o] +Cxy- 0y +Cxp - | (3.47)
.. . 5¢RightArm
03 03 03

5¢Le ftAil

i OO RightAil |

where 0¢; is the deflection angles for the respective control arms and ailerons;

0OToparm, OPBotArms OPLeftArms OPRightArm, OPrLeftails O0PRightai, and Cx,, Cx,, and

Cx, are defined as follows:

L0 0 0 0 (C+A—-B)n

Cx, =10 % 0 0 0 0 (3.48)
00 3 (B—A-C)n 0 0
L0 0 (C —B)n?0 0

Cx, =10 § 0 0 Cy, 0 (3.49)
0 0 & 0 0 (A—B)n?+ Cy,
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+ 0 0 0 0 0 0  Crai Crau
CXS =10 % 0 CYTArm C1BA1"m 0 0 0 0 (35())
0 0 % 0 0 C’LA?'m CRArm 0 0

Equation 3.47 with all the substitutions is the final equation to be modeled in
Simulink®.
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IV. Dynamic Model
4.1 Dynamic Model Overview

The linearized dynamic equations 3.47 were modeled in Simulink®. All terms
were left as variables. Inputs so different scenarios could be easily simulated by
changing the input variables. If more details of a satellite are known, such as it’s
dimensions, mass and orbital altitude, this model can be easily updated to simulate
a variety of satellites. The only restriction is that the satellite has to have the same

basic geometric design.

4.2 Dynamic Model Validation

The following is the validation of the open loop and closed loop model by using
eigenvalues and eigenvectors, where the eigenvalues are the frequencies (cycles/orbit)
of this system and the eigenvectors determine initial conditions that will predict
system response. The results of this analysis show how the general shape of the
response. Such responses could be pure oscillatory or exponential. In retrospect,
the eigenvectors could have been scaled so the amplitude of the responses remained
small, however, having a larger amplitude response does not alter the outcome of
this section. All simulations performed in this section were run at 300km altitude
and the density was set to zero for the no torque case and the density was calculated

for 300km altitude for the case with torques.

4.2.1 Dynamic Model Validation Without Torques. The first step was to

set all external torques of equation 3.27 to zero. The rest of equation 3.27 was
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rewritten in a state space (X = A - X) format as follows.

0, 0 0 0 1 0 0 0,
0, 0 0 0 0 1 0 0,
) 0 0 0 0 0 1 0
’l = 7 (4.1)
01 EEn?2 0 0 0 0 “==Bn| |6,
0y 0 0 0 0 0 0 0,
0] | 0 0 AEp? EACn o0 0 | [6s]

From the state space equation (equation 4.2), the pitch axis (65) has no influence on
the other axes, hence it is decoupled from the roll (#;) and yaw (f3) axes. 6, was
shown to be stable based on test simulations. Since 6, is stable and decoupled, all

references to #; were removed leaving the following equation.

6, 0 0 1 0 0,
) 0 0 0 1 0
’l = s (4.2)
01 %HQ 0 0 WTL 491
_9"3_ I 0 AE,B n? B_é,_cn 0 | _93_

The next step was to test the model with different combinations of major, minor
and intermediate axes for the principal moments of inertia. If the spacecraft is nadir
pointing, the pitch axis will always be rotating with the orbit. If the pitch axis is
either the minor or major axis of rotation, the spacecraft will be stable. If the pitch
axis is the minor axis, the spacecraft will be in an unstable configuration. Several
combinations of MOI were simulated where the moments of inertia about the roll,
pitch and yaw axes are A, B, and C respectively. For the first simulation, the by
axis was set as the minor axis, where A = 20, B = 10, and C' = 30. The calculated

eigenvalues \; are arranged in a diagonal matrix of eigenvalues (A) and the calculated
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eigenvectors are the columns of (¢).

1-n 0 0 0
0 —2-n O 0
A =
0 0 1N 0
0 0 0 —i-n
—1 1 —0.8657  0.8651
1 1 1 1
6 =
n n 0.500n  0.500n
i-n —1-n 0.576n —0.576n

(4.4)

The initial conditions (¢; and 61) for the first and second complex conjugate

pair of eigenvectors can be found by:

0,
03
0
05

01
03
0,

s

= (1+1)

—1 7
N . 1
= (1+1) +(1—1)
n n
i-n —i-n
—0.8657 0.8657
1 , 1
+(1—1)
0.5n 0.5n
0.5767 - n —0.5767 - n

—1.156n

(4.5)

(4.6)

When using the initial conditions from equation 4.5 in the Mat1ab® code in Appendix

B, the response for each eigenvalue and associated eigenvectors should be purely

oscillatory (since it has only imaginary components) and have a period of 1 cycle

per orbit.
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Figures 4.1, 4.2 and 4.3, shows the angular position, angular rate and angular
acceleration of this system. The system response shows that the oscillations are

purely sinusoidal with a period equal to the orbital period of 5431 seconds. Recall

that the roll, pitch and yaw axes are #,, 6, and 65 respectively.

Roll, Pitch, & Yaw Position vs. Time

3 T T T
, — — —Roll
J Pitch
2L Yaw
/
/
/
/
1r / 1
!
/
he] /
g O ]
!
{
/
_1 - |
/
_2 L .
N2
_3 I I I I
0 2000 4000 6000 8000 10000 12000
Time, sec
Figure 4.1:  Angular Position or first pair of eigenvectors with

A=20,B=10,and C = 30
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x 1072 Roll, Pitch, & Yaw Angular Rate vs. Time

2
3
g
_4 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000
Time, sec
Figure 4.2:  Angular Rate for first pair of eigenvectors with
A =20, B=10, and C = 30
X 10‘6 Roll, Pitch, & Yaw Angular Acceleration vs. Time
4 T T T T
— — —Roll
Pitch
3r Yaw
2 L .
1 - .
N
2
5 0
o
_1 - .
_2 L .
_3 5 .
\
\ /
_4 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000

Time, sec

Figure 4.3:  Angular Acceleration for first pair of eigenvectors
with A =20, B =10, and C = 30
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For the second set of complex conjugate eigenvectors, there should be 0.576
cycles per orbital period. The period of oscillations is therefore 9429 seconds which

can be seen from Figures 4.4, 4.5 and 4.6.

Roll, Pitch, & Yaw Position vs. Time

3 T T T
— — —Roll
Pitch
2 Yaw
\
\|
1 L .
8 o
_1 L ,
_2 - .
h 0 2000 4000 6000 8000 10000 12000

Time, sec

Figure 4.4:  Angular Position for second pair of eigenvectors
with A =20, B =10, and C = 30
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, x 1072 Roll, Pitch, & Yaw Angular Rate vs. Time

rad/s

0 2000 4000 6000 8000 10000 12000
Time, sec

Figure 4.5:  Angular Rate for second pair of eigenvectors with

A =20, B=10, and C = 30

X 10‘6 Roll, Pitch, & Yaw Angular Acceleration vs. Time
1.5 T T T T

— — —Raoall
Pitch
Yaw

0 2000 4000 6000 8000 10000 12000
Time, sec

-15

Figure 4.6:  Angular Acceleration for second pair of eigenvec-
tors with A =20, B = 10, and C' = 30
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Another run was done with by as the intermediate axis, where A = 10, B = 20,
and C' = 30. In this configuration, the satellite will be unstable. This was tested

to evaluate different combinations of the MOI to test different possibilities. The

eigenvalues and eigenvectors for this particular MOI are:

1-n 0 0 0
0 —2-n 0 0
\ = (4.7)
0 0 0.576n 0
0 0 0 —0.576n
—1 1 —1.73 1.73
1 1 1 1
n n -n -n
i-n —i-n 0.576n —0.576n

Once again, the same procedure was done to obtain the initial conditions for this set

of eigenvalues and eigenvectors. The initial conditions become

0, —1 1 1
05 1 1 1
Sl =0+9) +(1—1) = (4.9)
0, n n n
93 1n —1-n -n
0, —-1.5 —1.5 -3
05 0.865 0.865 0
. I - (4.10)
0, —0.865n 0.865n 0
05 0.5n 0.5n n

The case where the initial conditions from equation 4.9 are used, the outputs for

0, and f3 in position, angular rate and angular acceleration should be sinusoidal
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oscillations at one cycle per orbit due to the eigenvectors containing only imaginary

components. The sinusoidal oscillations can be seen in Figures 4.7, 4.8, and 4.9

Roll, Pitch, & Yaw Position vs. Time
15
/ — — —Roll
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_15 1 1 1 1 1
2000 4000 6000 8000 10000 12000
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Angular Position for first pair of eigenvectors with

Figure 4.7:
A =10, B=20,and C' =30
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x 1072 Roll, Pitch, & Yaw Angular Rate vs. Time
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0 2000 4000 6000 8000 10000 12000
Time, sec
Figure 4.8:  Angular Rate for first pair of eigenvectors with
A =10, B=20, and C = 30
X 10‘6 Roll, Pitch, & Yaw Angular Acceleration vs. Time
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Figure 4.9:  Angular Acceleration for first pair of eigenvectors
with A =10, B = 20, and C = 30
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The second set of eigenvalues and eigenvectors have no imaginary parts, there-
fore the 0’s will grow exponentially. Exponential growth for the angles is due to the
spacecraft being in an unstable configuration since the pitch axis is the intermediate

MOT axis. The results of this run can be seen in Figures 4.10, 4.11, and 4.12.

Roll, Pitch, & Yaw Position vs. Time
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Figure 4.10:  Angular Position for second pair of eigenvectors
with A =10, B = 20, and C = 30
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Roll, Pitch, & Yaw Angular Rate vs. Time
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Figure 4.11:  Angular Rate for second pair of eigenvectors with
A =10, B=20, and C = 30
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Figure 4.12:  Angular Acceleration for second pair of eigenvec-
tors with A = 10, B = 20, and C' = 30
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4.2.2  Dynamic Model Validation With Torques.  The next step was to add
the atmospheric density to the model and perform a similar eigenvalue/eigenvector
analysis to see how the model responds. The same procedure was carried out as in
the previous section. Equation 3.47 including in state space format (X = A-x+B-u)

including torques is as follows:

G, 0 0 0 1 0 0 0,
0, 0 0 0 0 1 0 0,
05 0 0 0 0 0 1 05
0, €=Ep2 0 0 0 0 S=Bpl 14
0, 0 e 0 0 0 0 6,
6 0 0 UBrOn» poacy g 05
5¢T0pArm

0 0 0 0  Zrau Cray 09 Botarm

c c 4 0D LeftArm

+ | Faem Zaem 0 0 0 |- (4.11)
c 0O Right Arm
0 0 LArm Rarm 0 0

‘ ‘ 5¢LeftAil
L 5¢RightAil )

Once again, since 6 is totally decoupled from 6y, 65, 6, and 5 all references to

0, were removed leaving the following A matrix to do the eigenvalue/eigenvector

analysis.
0, 0 0 1 0 0
05 0 0 0 1 0
91 C%Brﬂ 0 0 WTL 91
_(9"3_ ] 0 (A—B)n254.414p\/2 n2 B_é_cn 0 | _9'3—

(4.12)
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The eigenvalues and eigenvectors from Equation 4.12 were calculated using the

Matlab® code in Appendix B. This simulation was also done at 300km altitude

however, atmospheric density was p = 2.4 x 1071} %. Note, the most stable satel-

lite configuration is with by as the major MOI axis, b as the minor axis and b; as

the intermediate axis. The following analysis was done with A = 20, B = 30, and

C = 10.

0.00116 -

0

0.00116 -2

0

0
—0.00116 -2
0

—0.00116 -2
0

0 0
0 0
00253-i 0
0 002534
0 0
1 1
0 0
0.0253 i —0.0253- |

(4.13)

(4.14)

Once again, by taking each complex conjugate pair of eigenvectors, the initial con-

ditions can be found.

0
03
0,
05

01
05
0,
03

1
0 .
+ (1+14)
0.00116 - ¢
0
0
1 .
+(1+1)
0
0.0253 -2
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1
0
—0.00116 -2

—0.0253 - ¢

2
0
0.00232

(4.15)

(4.16)



Upon running the Simulink® model with the initial conditions computed from equa-
tion 4.15, the results indicate that the model is correct since the frequency of oscil-

lation should again be one cycle per orbit. See Figures 4.13, 4.14, and 4.15
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Figure 4.13:  Angular Position with torque for first pair of
eigenvectors with A = 20, B = 30, and C' = 10
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. X 10 Roll, Pitch, & Yaw Angular Rate vs. Time
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The same analysis was done on the remaining set of initial conditions from
equation 4.16. Figures 4.16, 4.17, and 4.18, show that the cyclic period of oscillations
is reduced (higher frequency). Since the period is approximately 315s, the frequency

can be calculated from w = % = 0.0199%, which is close enough to the eigenvalue

0.0253 for model validation.
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Figure 4.16:  Angular Position with torque for second pair of
eigenvectors with A = 20, B = 30, and C' = 10
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Roll, Pitch, & Yaw Angular Rate vs. Time
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Figure 4.17: Angular Rate with torque for second pair of
eigenvectors with A = 20, B = 30, and C' = 10
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Figure 4.18:  Angular Acceleration with torque for second pair
of eigenvectors with A = 20, B = 30, and C' = 10
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4.8 Proportional Derivative Controller

Since the Simulink® model is linearized, the control deflections are kept rea-
sonably small. The controller is a proportional controller with the constants selected
in such a way that the control deflections remain small due to the linearized torque
equations. As discussed in chapter V, the control deflections do in fact remain small
thus giving a more realistic result. With the controller, the roll, pitch and yaw axes
will eventually settle down in the correct satellite orientation. Originally, the con-
troller was set up such that the control arm outputs were equal to some constant
multiplying the angular rates. The roll axis seemed to take a while to return to
zero degrees. The only reason the roll axis would return to zero was because it was
coupled with the yaw axis and the dynamics of the system forced both the roll and
yaw axis to work together to align the body frame to the orbit frame. Because of
the long settling time, the controller was modified so that each control arm inputs
for each axis was equal to a constant multiplying the angular rates plus another
constant multiplying the angle between the body and orbit reference frames (see
equation 4.17. Adding the constant times the anglular position brought the roll axis

back to zero degrees in a more reasonable time frame.

5 =CH+0.10 (4.17)
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V. Results
5.1 Altitude Variations

Based on equation 3.28, drag is proportional to the square of the velocity and
is proportional to the atmospheric density. A spacecraft in LEO will experience
orbital decay due to drag which will lower its orbit over time. As orbital altitude is
reduced, both the density and velocity increase thus having a significant increase on
the drag force. Therefore, the most significant variable that affects drag is altitude.
For the following subsections, the simulations were run at altitudes varying from
200km to 600km in 100km increments. At these altitudes, the density, velocity and
orbital rate were calculated and are shown in Table 5.1. Table 5.2 shows all the
inputs to the model for all the simulations where altitude is varied. The MOI used
for this section are shown in equation 5.1 (See Appendix D.3 for details on how this
was determined). Table 5.2 shows the inputs to the Simulink® model. Note, only a
few plots were included in this chapter, however, all the plots have been included in

Appendix E.

Table 5.1:  Density, velocity and orbital rate calculated from Simulink®.

Altitude (km) | Calculated Density (%) Velocity (=) | Orbital Rate (%’)
200 2.79x10~10 7784 0.001183
300 2.42x10~ 11 7726 0.001157
400 3.73x10712 7669 0.001131
500 6.97x10713 7613 0.001107
600 1.45x10~13 7558 0.001083
A 0 0 92 0 0
MOI=1|0 B o|l=10 107 0] kg-m? (5.1)
0 0 C 0 0 68

The proportional derivative controller constants multiplying the angular rates are 50

for roll, 20 for pitch and 20 for yaw. The constants multiplying the angle between the
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Table 5.2:  Variables input into the Simulink® model for all the altitude variation
simulations.

Variable | Value
LPanel Im
Wpanel 1Im
Larm Im
P04rm | 450

L ai Im
Wil 1m
Lb1 1m
Lb2 Im
Ly, 1m
¢Wedge 22.5°
Mass 500kg
Cp 2.2

body and orbit frames are 0.1. For the initial conditions, the angular displacement
of the satellite body with respect to the orbital frame are chosen to be offset 10°
and the angular rates set to O%l. The linearization angle for the control arms was
chosen to be 45°. Several factors were considered in selecting the angle. First, when
the panels are extended, only the windward facing sides are subject to being hit
by molecules. Since small angles are assumed, the back side of the panels will not
be exposed to the incoming molecules. The small angle assumption between the
orbit and body frames simplified the linearization since the heaviside function was
no longer needed. Another reason is that at smaller linearization angles, the wedge
shaped ailerons would shadow the left and right panels used for yaw control. The
ailerons for the nonlinear case would not have this problem since the ailerons would

consist of flat panels, not wedges.

5.1.1 Simulation at 200 km Altitude. For this simulation, the inputs to
the modeled are represented in Table 5.2 with an altitude of 200km. The density,
orbital velocity and orbital rate for this altitude are summarized in Table 5.1. The

first simulation only had the roll axis displaced, the 2nd was pitch and the 3rd was
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the yaw axis. Then a fourth simulation was run where all three axes of roll pitch
and yaw were displaced simultaneously. By comparing Figures 5.1, and 5.4, it can
be seen that roll and yaw are coupled and do have some affect on each other. When
both yaw and roll are offset simultaneously as shown in Figure 5.6, the coupling is

more pronounced.

5.1.1.1 200km Altitude, Roll Offset by 10°.  The first simulation was
done where roll was offset by 10°. To compare the settling times for the various

altitudes, the time constant must be found. The time constant 7 is the time it takes

for the amplitude to decay by @, where, Ampy is the initial amplitude or initial 6;
and e = 2.71. The time constant can be approximated directly from the plots once
the initial amplitude is known. For the simulations, the initial conditions determine
Ampg, and thus Ampy = 10° or 0.175rad. The amplitude for one time constant is

Ao — (.064.

Control Angle Deflections

Roll, Pitch, & Yaw Position vs. Time
T T

— — —Roll
Pitch | | 0.8
Yaw

— — —Right Aileron
— = - Left Aileron
Top Arm
Bottom Arm | .|

Figure 5.1:

Since the roll doesn’t oscillate, the time constant can be read from the plot

where 7 =~ 500s
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(a) Angular displacement with roll offset 10°.
(b) Control angles with roll 10°.
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5.1.1.2  200km Altitude, Pitch Offset by 10°.  The pitch is decoupled
from the roll and yaw axes therefore the only oscillations should be in the pitch axis.

Figure 5.2(a) shows this to be true.

Control Angle Deflections
Roll, Pitch, & Yaw Position vs. Time 4
T T

— — _Roll — — —Right Aileron
Pitch sl — — — Left Aileron
vaw | | Top Arm
Bottom Arm
— — LeftArm
—— - Right Arm

I I - I I
500 1000 1500 0 500 1000 1500
Time, sec Time, sec

(a) (b)

Figure 5.2 (a) Angular displacement with pitch offset 10°.
(b) Control angles with pitch 10°.

The next step was to pick points on the plot, and fit them to a curve. The time
constant for the best fit can then be determined. Since the pitch axis oscillates, the
locations of the peaks were used for the curve fit algorithm in Appendix B. Assuming
an exponential decay, the plot should fit the following equation:

Y = [exp(_TT)] * @ (5.2)

The plot shown in Figure 5.3 closely approximates the data points and the time

constant is shown to be ~ 130s
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Curve fit for 200km altitude with pitch offset 10°

5.1.1.8 200km Altitude, Yaw Offset by 10°. The same procedure

performed in the previous section was applied to the simulation where the yaw was

offset by 10°. The results are shown in Figure 5.4 (a) and 5.5. Here, the time

constant is ~ 85s.
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Figure 5.4:  (a) Angular displacement with yaw offset 10°.

(b) Control angles with yaw 10°.
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5.1.1.4 200km Altitude, Roll, Pitch and Yaw Offset by 10°.  For this
simulation, all 3 axes were offset simultaneously which would be a more realistic
scenario. The reason for running them separately at first was to see how each
axis compared to the more realistic simulation where all three were off from the
orbital frame. Notice on all simulations, the control deflections are relatively small,
d0¢p; < 5°. It is important that these angles remain small since this is a linearized
model. At higher altitudes the maximum control angle deflections actually decrease
since the controller is a proportional controller. At higher altitudes with the same
initial conditions, the rotational rate decreases due to a smaller force imparted on

the control panels.

Control Angle Deflections
Roll, Pitch, & Yaw Position vs. Time 5
T T
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Time, sec Time, sec

(a) (b)

Figure 5.6:  (a) Angular displacement with roll, pitch and yaw offset 10°.
(b) Control angles with roll, pitch and yaw offset 10°.

5.1.2  Altitudes Above 200km.  Since we are interested in determining how
altitude affects the settling time, the same procedure was done for altitudes of 300km,
400km, 500km and 600km. See Appendix E for the plots not shown in this chapter.
For each simulation, the time constants were found and are summarized in Tables
5.3 and 5.4. Table 5.3 is the case where each axis was deflected separately and Table

5.4 is the case where all three axes were deflected simultaneously. In either case,
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there isn’t much difference between both tables.
curve fit algorithm as done in section 5.1.1.2, an exponential curve was fit to the

time constants in Table 5.4 for the roll, pitch and yaw axes. Figures 5.7, 5.8 and 5.9

By using the same exponential

show how the time constants grow exponentially with altitude.

Table 5.3:

Time constants for each axis at the various altitudes where roll, pitch

and yaw were offset separately.

Table 5.4:

Altitude (km) Time Constant (s)

Roll Axis | Pitch Axis | Yaw Axis
200 500 130 85
300 975 1550 950
400 6600 10200 6200
500 40000 55000 30000
600 275000 265000 260000

Time constants for each axis at the various altitudes where roll, pitch

and yaw were deflected simultaneously.

Altitude (km) Time Constant (s)

Roll Axis | Pitch Axis | Yaw Axis
200 481 130 85
300 960 1550 950
400 6800 10200 6000
500 40000 55000 30000
600 265000 265000 260000
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Figure 5.7:  Time constants for the roll axis increase exponen-
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nentially with increasing altitude.

5.2 Pitch as the Intermediate Moment of Inertia Axis

The satellite would be in its most stable configuration with the pitch axis as
the major or minor MOI axis. That may not always be the case, so the pitch axis was
set as the intermediate axis which would make the attitude unstable (see equation
5.3 for the MOI matrix). For this simulation, theta was offset by 1 degree for each
axis, the altitude was set to 400km and density was set to zero. This shows the

satellite’s attitude is unstable with pitch as the intermediate axis as can be seen in

Figure 5.10.

A 0 0 107 0 O
MOI=10 B 0|l=|0 92 0|kg-m? (5.3)
0 0 C 0 0 68

When the atmospheric density is put back into the simulation, the controller is able

to return the satellite back to flying at its intended attitude. See figure 5.11
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Figure 5.10:  Pitch as the intermediate MOI axis and atmo-
spheric density p = 0.

Roll, Pitch, & Yaw Position vs. Time

0.02 T T T T T T

— — —Roll

Pitch
0.015 Yaw

0.01 !

0.005 {f,

rad
o
.

-0.005

-0.01H

-0.015H| !

-0.02 1 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35 4 45 5
Time, sec 4

Figure 5.11:  Pitch as the intermediate MOI axis and atmo-
spheric density shown in Table 5.1.
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5.3 Roll, Pitch, and Yaw Having the Same MOI

Since the pitch and yaw axes have the same proportional constant for the
controller and are identical in dimensions, they should have the same time constant.
This is not the case as can be seen in Figure 5.12, where the amplitude of the yaw
oscillations end up being smaller than the pitch axis. This is due to the roll and yaw
axis being coupled. The yaw and roll axes work work together thus having more
control authority. Therefore the yaw axis decreases in amplitude at a faster rate

than the pitch axis.

Roll, Pitch, & Yaw Position vs. Time
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Figure 5.12:  Angular position and all three axes having the
same MOI.
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VI. Conclusions and Recommendations
6.1 Conclusions

To be able to launch a satellite to orbit, and have the spacecraft orient itself
automatically with a very simple attitude control system is very desirable and has
many advantages. A simple control system would be less costly and less prone
to failure than complex systems such as control moment gyros, reaction wheels or
thrusters. Since most satellites have Earth sensing missions, they are typically nadir
pointing and require some form of attitude control. These satellites typically have
their body reference frame aligned with the orbit reference frame and are usually in
LEO. Satellites are put in LEO for various reasons such as payload limitations and
cost issues and have to compensate for atmospheric effects. Using the atmosphere to
control a satellite’s attitude was investigated and the results presented here show that
it is a feasible alternative to the more expensive and complex methods mentioned

earlier for satellites in LEO.

The atmospheric density decreases exponentially with altitude and therefore
an atmospheric drag type control system has an altitude limitation where it no
longer has enough control authority to overcome disturbance torques. The effects of
increasing altitude can be seen by comparing the settling time at different altitudes.
When a satellite’s attitude is perturbed from its alignment with the orbital reference
frame, it takes time for the attitude control system to reduce the amplitude of
oscillations and bring it back to its proper attitude. At altitudes of 200 km, the
settling time is on the order of minutes as compared to a 600km altitude where
the settling time is on the order of weeks. Settling times are also affected by the
satellites physical dimensions and mass. An increase in drag panel area, lengthening
the control arms or decreasing mass will reduce settling time, however, the settling
times would still be approximately the same order of magnitude. The linear analysis

performed here has a small control angle limitation. A nonlinear analysis would
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allow the control panels to be fully extended so the projected areas were maximized

which will also reduce settling time.

According to the simulation results, the oscillations decay exponentially but
will never quite decay to zero. In reality, there is a limit to the accuracy of the
attitude sensors and how finely the drag panel angles can be controlled, therefore, it
can be expected that the satellite will continue to oscillate about the orbital reference
frame at plus or minus some small angle. Depending on the pointing requirements
of the payload, these oscillations may not be acceptable. If so, a stabilized payload

could be added to the spacecraft to counter these oscillations.

The bottom line is that atmospheric drag can effectively be used to control a
spacecraft attitude in LEO. Disturbances in attitude can be overcome resulting in a
stable attitude. The spacecraft’s control system would consist of a less costly, simple
control system with simple actuators less prone to failure. The research presented
here is the foundation for future study which can eventually lead to an actual flight

test of a drag controlled satellite.

6.2 Recommendations for Future Research

The research presented here can be very useful in several areas of continued
research. Future research should be built upon eventually leading to the flight test
of an actual aerodynamically controlled satellite. Below are several ideas to build

upon this research.

6.2.1 Higher Fidelity Nonlinear Computer Model. The next step with
this topic would be to add estimation algorithms into the model and eventually
do a nonlinear analysis. A nonlinear computer model would better represent the
dynamics of an actual aerodynamically controlled satellite system. The final step
would be to set the spacecraft in a tumble with the nonlinear model and see if

it can recover. Other factors should be added to the model such as a rotating
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atmosphere, elliptical orbits, non-equatorial orbits, drag panels with mass, random
external torques from solar winds, oblate Earth, and an orbit decay algorithm to
determine the approximate orbit lifetime for a satellite of a given mass, projected
area and altitude. This way, the optimum orbit could be selected based on lifetime
and payload capabilities/requirements. From this point, satellite dimensions could be
determined for the most effective control. The altitudes where the control authority
is not enough to overcome perturbations can also be determined. Note, orbit decay
calculations are only approximate since there are so many random variables that

affect the atmospheric density.

6.2.2 Solar Drag Panels. Since satellites usually have solar panels to
generate electrical power, the drag panels should be replaced with solar panels. In
this research, the mass of the panels was neglected however, a solar panel mass should
be included in the model. Including the mass of the panels in the model would also
require some vibrational analysis to determine potential problems with oscillations
of the panels. As the panels are being moved, toques will have an effect on the
satellites attitude and should be accounted for. Finally, research the feasibility of

tracking the sun with one or more panels while maintaining attitude.

6.2.3 Other Related Research.  Some students have done research on main-
taining satellite formations. This model could be used with their research to control
both the satellites attitude and station keeping at the same time. Other designs
using atmospheric drag for attitude control should be considered and compared with
this and other research to determine the best and most cost effective design. Finally,
research should be done to determine if drag panels could be used for momentum

dumping of reaction wheels.
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Appendiz A. MathCad Worksheets

A.1  MathCad Nonlinear Torque Calculation Worksheet
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Appendiz B. Mat1ab® Code

B.1 Mat1ab® Eigenvalues and Figenvectors with Torques

Listing B.1:  This Mat1ab® code calculates the eigenvalues and eigenvectors for
the model validation.
(appendix2/EigsEOMwTorques.m)

% D. Guettler

clc

clear all

Al1t=300; %km

syms A B C n Rho Vel

% MAT1=[0 0 01 0 0; 0 OO O10; 00O0O0OO0O0O1;...

% ((C-B)/A)*n"2 0 0 0 0 ((C+A-B)/A)*n;...
% 0 -4.621*Rho*Vel"2/B 0 0 O O;...
% 0 0 ((A-B)*n~"2-4.414xRho*Vel~2)/C ((B-A-C)/C)*n 0 0]

%MAT2 is the 4x4 matrix of MATI1
MAT2=[0 0 1 0; O O O 1;...
((C-B)/A)*n"2 0 0 ((C+A-B)/A)*n;...
0 ((A-B)*n"2-4.414%Rho*xVel~2)/C ((B-A-C)/C)*n 0]

%0rbital rate for 300km altitude in rad/sec
[n,T,freq,Vel] = OrbRate(Alt) %n = 0.001157 %for 300km alt

%Calculate Density
Rho = atmos_exp (Alt)
%Rho=0;

%“MOI B is always major axis, C is always minor axis
A=20.
B=30.
C=10.

% MAT1=[0 0 01 0 0; 0 OO O10; 00O0O0OO0OO1;...

pA ((C-B)/A)*n"2 0 0 0 0 ((C+A-B)/A)*n;..
% 0 -4.621*Rho*xVel~2/B 0 0 O O;...
yA 0 0 ((A-B)*n"2-4.414%Rho*Vel~2)/C ((B-A-C)/C)*n 0 0]

%MAT2 is the 4x4 matrix of MAT1
MAT2=[0 0 1 0; 0 O O 1;...
((C-B)/A)*n"2 0 0 ((C+A-B)/A)*n;...
0 ((A-B)*n"2-4.414%xRho*Vel~2)/C ((B-A-C)/C)*n 0]

% %From 6x6 Matrix
% [EigVecl ,EigValll=eig(MAT1);
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% EigVall = simplify(EigVall);
% EigVall = vpa(EigVall,3)
% EigVecl = simplify(EigVecl);
% EigVecl = vpa(EigVecl,3)

%From 4x4 matrix

[EigVec2 ,EigVal2]=eig (MAT2) ;
EigVal2 = simplify(EigVal2);
EigVal2 vpa(EigVal2,3)
EigVec2 = simplify(EigVec2);
EigVec2 = vpa(EigVec2,3)

%Find ICs for each run

EigValCasel=EigVal2(1,1)

IC1=(1+i)*[EigVec2(1,1) EigVec2(2,1) EigVec2(3,1) EigVec2(4,1)...
12+...
(1-i)*[EigVec2(1,2) EigVec2(2,2) EigVec2(3,2) EigVec2(4,2)]’

EigValCase2=EigVal2(3,3)

IC2=(1+i)*[EigVec2(1,3) EigVec2(2,3) EigVec2(3,3) EigVec2(4,3)...
17+, ..
(1-i)*[EigVec2(1,4) EigVec2(2,4) EigVec2(3,4) EigVec2(4,4)]’

B.2 Matlab® Curve Fit Algorithm

This algorithm uses a peak finding function to locate all the peaks of the os-
cillations of the angles between the orbit and body frame. Once the peaks were
located, the main code fit an exponential curve to the points based on an approxi-
mated time constant. The time constant was then varied until an exponential curve
closely matched the peaks. This code was used to fit an exponential curve to the

decaying oscillations for the time constant calculations in Chapter V.

Listing B.2: This Mat1lab® code fits the peak amplitudes to an exponentially
decaying function.
(appendix2/TimeConstCalc.m)

% peaks = function peakfinder (roll,time)

% D. Guettler

clear;clc;

load thetaout.mat

%% 3k sk sk sk sk sk ok sk sk sk ok ok ok ok ok ok ok ok ok sk sk ok ok sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok
%“Pick tau as time constant compare plot

% 3k sk sk sk sk sk ok ok sk sk ok ok sk sk ok ok ok ok ok ok sk sk sk sk sk sk ok sk ok ok ok sk sk ok ok ok ok ok ok ok sk sk sk sk sk ok ok ok ok ok
tau=38000
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nA*>|<>|<>|<**********>|<*>|<>|<>|<>|<*****>l<****>|<*>|<>|<>|<>|<*****>l<****>|<*>|<>|<
O sk sk sk sk sk sk ok ok sk 3k 3k ok ok ok ok ok ok ok ok ok ok sk sk sk ok ok sk ok ok 3k 3 ok ok ok ok ok ok ok sk sk sk ok sk sk ok ok ok
% ROLL

%hpeaks = peakfinder (theta(2,:)’,theta(l,:)’);

% PITCH

%peaks = peakfinder (theta(3,:)’,theta(l,:)’);

% YAW

peaks = peakfinder (theta(4,:)’,theta(l,:)’);

O sk sk sk sk ok ok ok ok ok 3k 3k sk ko o ok ok ok ok sk ok ok ok ok ok ok ok ok ok 3k 3k ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok
9% 3k sk sk sk ok ok ok ok ok 3k 3k ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok 3k 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
9% 3k sk sk sk ok ok ok ok ok ok 3k ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
%Create vectors for time calculation

O sk sk sk sk sk sk sk ok sk 3k 3k sk ok ok ok ok ok ok ok sk ok sk sk sk sk ok ok ok ok 3k ok ok ok ok ok ok ok sk ok sk ok ok ok sk ok ok ok
t=peaks (:,1)

y=peaks (:,2)

%% 3k sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 3k o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
hcreate plot

O sk sk sk sk sk sk ok ok sk 3k 3k sk ko ok ok ok ok ok ok sk sk sk sk sk ok sk ok ok 3k ok ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok
X = [exp(-t/tau)]l;

% Calculate model coefficients

a = X\y
T = (0:1:200000) *;
Y = [exp(-T/tau)lx*a;

% Create figure

figurel = figure;

% Create axes

axesl = axes(’Parent’,figurel);

box(’on’);

grid(’on’);

hold(’all’);

% Create plot

plotl = plot(T,Y,’Parent’,axesl), grid on

% Create plot

plot2 = plot(t,y,’LineStyle’,’none’,’Marker’,’o0’,...
’Parent’,axesl) ;

% Create xlabel

xlabel (’Time (s)’);

% Create ylabel

ylabel (’Amplitude (rad)’);

% Create legend

legendl = legend(axesl ,{’Exponential Curve Fit’,...
’Peak Locations’},’Position’,...
[0.5827 0.8245 0.3232 0.1002]) ;

Listing B.3:  This Mat1ab® code determines the positive peak amplitudes of oscil-

lation.
(appendix2/PeakFinder.m)
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% peakfinder.m
% D. Guettler

function peaks = peakfinder (roll,time)

%Need roll, time as column vectors of equal dimension
%Includes initial and final points

[cols,rows]=size(roll);

if roll(1,1)>0
rollpeaknums (1) =1;
j=2;

else j=1;

end

for i=2:(cols-1)
if roll(i,1)>roll(i-1,1) & roll(i,1)>roll(i+1,1)...

& roll(i,1)>0
rollpeaknums (j)=1i;
j=3+1;

end
end

rollpeaknums (j)=cols;

for i=1:j
peaks(i,1)=time(rollpeaknums (i) ,1);
peaks (i,2)=roll(rollpeaknums (i) ,1);
end

88



Appendiz C. The Atmosphere

C.1 Altitude vs Density Plot (NASA) [3, page 62]

1000 | | T I T T | I I 1 I 1 I | ]
e COESA (1976)
900 — COESA (1962) -
————— Minzner et al. (1959)
B {cossn {1958) 7
300 Minzner and Ripley (1956) ~ —
ooooooo Rocket Panel (1952)
— o-0-0—-0 Warfield (1947) -1
700 |~ —
— 600 — —~
E
=
] E o
. g~ _
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& i
H L
]
@ a0 - —
300 — -
B Upper Limit of \\ 7]
COESA {1958) %)
200 [~ Standard - —
100 -
1 | 1 ] |
1018 1013 1011 10°? 107 10° 103 10" o0 10’

Atmospheric Density (kg m'3|

Figure C.1:  Atmospheric Density /Altitude plot

C.2 Matladb® Density Calculations)

For the computer simulations (see Appendix C), an exponential atmospheric
model was used. This model was tested at the following altitudes and compared
to the density plot, Figure C.1. The results are displayed in Table C.1 exponential

atmospheric density calculations in Mat1lab® compare with those found in the plot.
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Table C.1:  Altitude and Density Results from Mat1lab® .

Altitude | Calculated Density | Density from Figure C.1
150 2.07x107? 2x10~
200 2.79x10~10 2x10~10
250 7.25x10~ 1 7x10~ 11
300 2.42x10~ 1 1x10~ 11
350 9.52x10~ 12 7x10712
400 3.73x1012 3x10712
450 1.59x1012 1x10~12
500 6.97x10~13 5x10~13
550 3.18x10~ 13 2x10~13
600 1.45x10713 1x10~13
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Appendiz D.  Simulink® Model

D.1  Simulink® Model Top Level

The following figures illustrate the computer model used to simulate the dy-
namics of using atmospheric drag for attitude control. The software used is Simulink®.
Figure D.1 is the overall Simulink® model. It is laid out such that the inputs are
along the left side, the outputs are on the right. This model represents equation
3.47 with all the variables on the input side. The model outputs the control angles,
angular accelerations, angular rates and attitude angle with respect to the orbital
frame. All satellite dimensions are input as meters, angles are input as degrees and

altitude is input as km. All the outputs containing angles are in degrees.
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D.2  Function: Orbit.m

Listing D.1:  This Matlab® function calculates the approximate density of the
atmosphere at a given altitude, tangential orbital velocity for a circular orbit, orbital
rate, orbital period and orbital frequency.

(appendix4/Orbit.m)

function [rho, Vel,n,T,freql=0rbit(Alt)

%» Exponential Atmospheric Model

% Accepts as INPUT the orbital radius of the

% satellite; OUTPUTS the atmospheric density

% for that altitude based on the mean equatorial
% radius of Earth (density units: kg/m~3).

% NOTE: really only valid for altitudes less than
% 1000 km. Taken from Vallado, pg 537.

% Distances in km

%*****************************************************

% Calculate Orbit properites (D. Guettler)
%*****************************************************

mu = 3.986*x10°14 ; %(km~3/s”2) Standard Gravitational
%Parameter

REarth = 6378135 ; %»(km) Radius of Earth in

ROrbit = REarth+Al1t*1000 ; %Radius from Earth’s

%center to orbit

OrbRate = sqrt(mu/ROrbit~3); %O0rbRate is the orbital
%rate in rad/sec

Vel = sqrt(mu/ROrbit) ; %0rbit Velocity

n = OrbRate ; %0rbital rate (rad/sec)
T = 2*pi*(1/0rbRate) ; %T=orbital (s)

freq=1/T ; hFrequency (orbits/sec)

O % % sk ok ok ok ok ok ok ok %k ok ok ok ok ok ok ok Kk ok ok ok ok ok ok ok ok k k ok ok ok ok ok ok K sk ok ok ok ok ok ok ok ok ok ok ok k
% Calculate Density (B. Hajovsky)

% % % ok ok ok ok ok ok ok K ok ok ok ok ok ok K ok ok ok ok ok ok K ok ok ok ok ok ok K o K ok ok ok ok ok ok K K K ok ok ok ok k
% Term Definitions:

% hO = Base Altitude (km)

% rhoO = Nominal Density (kg/m~3)

% H = Scale Height (km)

% Define the Earth radius to calculate the altitude:

R=A1t;

r = R;

rho0=0;

h0=0;

H=0;

if r>=0 & r<25
hO = 0;
rho0 = 1.225;
H = 7.249;
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elseif r>=25 & r<30

hO = 25;
rho0 = 3.899e-2;
H = 6.349;

elseif r>=30 & r<40
hO = 30;
rho0 = 1.774e-2;
H = 6.682;

elseif r>=40 & r<50
hO = 40;
rho0 = 3.972e-3;
H = 7.554;

elseif r>=50 & r<60
hO = 50;
rho0 = 1.057e-3;
H = 8.382;

elseif r>=60 & r<70
hO = 60;
rho0 = 3.206e-4;
H=7.714;

elseif r>=70 & r<80
hO = 70;
rho0 = 8.770e-5;
H = 6.549;

elseif r>=80 & r<90
hO = 80;
rho0 = 1.905e-5;
H = 5.799;

elseif r>=90 & r<100
hO = 90;
rho0 = 3.396e-6;
H = 5.382;

elseif r>=100 & r<110
hO = 100;
rho0 = 5.297e-7;
H = 5.877;

elseif r>=110 & r<120
hO = 110;
rho0 = 9.661e-8;
H = 7.263;

elseif r>=120 & r<130
hO = 120;
rho0 = 2.438e-8;
H = 9.473;

elseif r>=130 & r<140
hO = 130;
rho0 = 8.484e-9;
H = 12.636;

elseif r>=140 & r<150
hO = 140;

rho0 = 3.845e-9;
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H = 16.149;
elseif r>=150 & r<180

hO = 150;

rho0 = 2.070e-9;

H = 22.523;
elseif r>=180 & r<200

hO = 180;

rho0 = 5.464e-10;

H = 29.740;
elseif r>=200 & r<250

hO = 200;

rho0 = 2.789e-10;

H = 37.105;
elseif r>=250 & r<300

hO = 250;

rho0 = 7.248e-11;

H = 45.546;
elseif r>=300 & r<350

hO = 300;

rho0 = 2.418e-11;

H = 53.628;
elseif r>=350 & r<400

hO = 350;

rho0 = 9.518e-12;

H = 53.298;
elseif r>=400 & r<450

hO = 400;

rho0 = 3.725e-12;

H = 58.515;
elseif r>=450 & r<500

hO = 450;

rho0 = 1.58be-12;

H = 60.828;
elseif r>=500 & r<600

hO = 500;

rho0 = 6.967e-13;

H = 63.822;
elseif r>=600 & r<700

hO = 600;

rho0 = 1.454e-13;

H = 71.835;
elseif r>=700 & r<800

hO = 700;

rho0 = 3.614e-14;

H = 88.667;
elseif r>=800 & r<900

hO = 800;

rho0 = 1.170e-14;

H = 124.64;
elseif r>=900 & r<1000

hO = 900;
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rho0 = 5.245e-15;
H = 181.05;
elseif r>1000
hO = 1000;
rho0 = 3.019e-15;
H = 268.00;
else
end

rho = rhoO*exp(-(r-h0)/H);
%hrho=0;

D.3 Function: Constants.m

Listing D.2:  This Mat1ab® function calculates the constants in equations 3.46 and
also calculates the MOI matrix based on a given satellite mass.
(appendix4/Constants.m)

function [CTArm,CBArm,CLArm,CRArm,CLAil,CRAil,InvMOI,...
CTheta2 ,CTheta3 ,M0I] = Constants(SatDims)

% This block calculates the constants for the

% linearized torques and contains all the satellite

% dimensions. See MathCad File for explanation.

% D. Guettler
%% 3k sk sk sk ok ok ok ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK ok
% Delcare Variables
O sk sk sk sk sk sk ok ok sk 3k 3k sk ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk ok ok 3k s ok ok ok ok ok ok ok ok ok sk ok ok sk sk ok ok ok 3k k % K
Lpanel= SatDims (1) ;%Length of drag panel

% (front to back when retracted) (m)
Wpanel= SatDims (2);%Width of panel (m)
LArm = SatDims(3);%Length of control arm (m)
PhiOArm = SatDims (4)*pi/180; %Linearization angle for

%arms (radians)

LAil = SatDims(5);%Length of Aileron spanwise (m)
WAil = SatDims(6) ;%Width of Aileron chordwise (m)

Lbl = SatDims (7) ;%cubesat length along bl axis (m)
Lb2 = SatDims (8) ;%Cubesat width along b2 axis (m)
Lb3 = SatDims (9) ;%cubesat Height along b3 axis (m)

PhiWedge = SatDims (10)*pi/180; %one half the total
%wedge angle (Radians)

Mass = SatDims (11); %Mass of sat in kg
%(used to calc MOI matrix)
CD = SatDims (12); %Drag Coefficient

Rho = SatDims (13);
V = SatDims (14) ;

%% 3 sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK
% Calculate Constants

96



35

40

45

50

55

60

65

70

75

80

U ok K ok ok ok ok ok K oK ok K K ok K oK ok K oKk K oK kK ok koK oK K oK ok K K oK K K oK K K K K Kk K KOk K KOk K Kk K
% Const multiplying deltaPhiTopArm
CTArm=(.5* Lpanel "2*Wpanel*cos(PhiOArm)*sin(PhiOArm)
+ Lpanel*Wpanel*LArm*cos (PhiOArm) *sin(PhiOArm)
+ .75*%xLpanel*Wpanel*Lbl *cos(PhiOArm) "2*sin (PhiOArm)
- .2bxLpanel*Wpanel*Lbl*sin(PhiOArm)
+ .75xLpanel*Wpanel*Lb3*cos (PhiOArm)
- .75xLpanel*Wpanel*Lb3*cos (PhiOArm) "3) *CD*Rho*V~2;
% Const multiplying deltaPhiBotArm
CBArm=-CTArm;
% Const multiplying deltaPhiLeftArm
CLArm=(.25 xLpanel*Wpanel*Lbl*sin(PhiOArm)
-.75+«Lpanel*Wpanel*Lb2*cos (PhiOArm) ...
+.75xLpanel*xWpanel*Lb2*cos (PhiOArm) "3. ..
-1xLpanel*Wpanel*LArm*cos (PhiOArm) *sin (PhiOArm) ...
-.bxLpanel "2*xWpanel*cos (PhiOArm)*sin (PhiOArm) ...

-.75xLpanel*Wpanel*Lbl*cos (PhiOArm) "2*sin (PhiOArm))*CD*Rho*V...

~o:
% Const multiplying deltaPhiRightArm
CRArm=-CLArm;
% Const multiplying deltaPhilLeftAileron
CLAil=(1.5%LAil1"2*WAil*cos (PhiWedge) "2 *sin(PhiWedge)
-.5xLAil1*WAil*Lb2*sin(PhiWedge)
+1.5%LAi1*WAil*Lb2*cos (PhiWedge) "2 *sin(PhiWedge)
-.5*%LAi1"2+WAil*sin(PhiWedge) ) *CD*Rho*V~2;
% Const multiplying deltaPhiRightAileron
CRAil=-CLAil;
%» Const multiplying Theta 2 term
CTheta2=(-1 *Lpanel*Wpanel *Lbl*cos(PhiOArm) "2*sin (PhiOArm)
-1 *Lpanel "2*xWpanel*cos (PhiOArm) *sin (PhiOArm)
+1 *Lpanel*Wpanel*Lb3*cos(PhiOArm) "3
-2 *WAil"2*LAil*cos (PhiWedge)*sin(PhiWedge)
-2 *Lpanel*Wpanel*LArm *cos (PhiOArm)*sin(PhiOArm)
+2 *WAil"2xLAil*cos (PhiWedge) "3*sin(PhiWedge)
-1 *Lpanel*Wpanel*Lb3*cos (PhiOArm))*CD*Rho*V~2;
% Const multiplying Theta 2 term
CTheta3=(-1 *Lpanel "2xWpanel*cos (PhiOArm)*sin(PhiOArm)
-2 *Lpanel*Wpanel*LArm*cos (PhiOArm)*sin(PhiOArm)
+1 *Lpanel*Wpanel*Lb2*cos (PhiOArm) "3
-1 *Lpanel*Wpanel*Lbl*cos(PhiOArm) "2*sin (PhiOArm)
-1 *Lpanel*Wpanel*Lb2*cos (PhiOArm))*CD*Rho*V~2;

%, 5k % ok % sk sk k 5k %k 5k % >k %k >k % * 5k >k % >k 5k >k 5 * %k 5k 5k % >k % >k 5 * %k * 5k % >k % >k K * %k * *k % *k % k K *k Kk ¥
% Calc MOI Where pitch is major, Roll is intermediate,
% Yaw is minor

Y, ok %k ok %k sk ok k ok %k ok %k ok %k ok ok k ok ok ok %k ok K ok ok ok %k ok Kk 3 ok ok K ok %k ok K k ok K ok K ok K ok Kk kK
Length = 1;

Width .8;

Height = 1.25;

Iroll=(1/12) *Mass*(Width " 2+Height "2) ;

Ipitch=(1/12) *Mass*(Length " 2+Height "2) ;
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Iyaw=(1/12) *Mass*(Length " 2+Width~2) ;

XXX XXXXXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XX XXX

%MO0I=[Iroll 0 0;0 Ipitch 0;0 0 Iyaw]; %(kg*m~2)

MOI=[10 0 0;0 20 0;0 O 30];

X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXXX

Y ok K ok K kK ok K ok K Kk Kk Kk Kk K kK ok K ok K ok K ok K ok K ok K ok K K K K K K K K K K K K K Kk Kk KOk
% Calc Inv MOI

U, ok ok ok ok ok ok koK ok ok K ok ok ok o ok ok K kK R ok Kk K K ok K ok ok K kK R ok Kk oK K kK R ok kK R ok Kk K K
InvMOI=MOI"-1;

D.}  Function: ControlTorques.m

Listing D.3:  This Mat1ab® function calculates Cy, (equation 3.50)and multiplies
it with the deflections of the control surfaces.
(appendix4/ControlTorques.m)

function [Angles,CX3dPhi] = ControlTorques (CTArm,CBArm,CLArm, ...
CRArm ,CLAil ,CRAil ,InvMOI,C,ThetaDot ,Theta)

%» This block calculates the torques a satellite

%» experiences when in LEO, from Theta (the angles

% between the B-frame and the A-frame), PhiArms

% (the angle of each control arm from the sat

% body) and PhiFlaps (the angle of the flaps

% rotating about the arms). it is assumed the

% inward pointing normal direction for the panels

% never sees the wind.

%D. Guettler

XXX XXX XXX XXX XXXXXXXXXXXXXXXXXXXXXXXX
%EIG TEST Comment out for control

% RollControl=0;

% PitchControl=0;

% YawControl=0;

%Uncomment for control
RollControl=C(1)*ThetaDot (1) ;
PitchControl=C(2)*ThetaDot (2) ;
YawControl=C(3)*ThetaDot (3) ;

XXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXX
dPhiRightAil=RollControl;
dPhiLeftAil=-RollControl;

dPhiTopArm=-PitchControl;
dPhiBotArm=PitchControl;

dPhiLeftArm=YawControl;

dPhiRightArm=-YawControl;
Angles=[dPhiRightAil dPhiLeftAil dPhiTopArm dPhiBotArm...
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dPhilLeftArm dPhiRightArm]*180/pi’;

35 CX3dPhi=InvMOI*[CLAil*dPhiLeftAil+CRAil*dPhiRightAil;
CTArm*dPhiTopArm+CBArm*dPhiBotArm;
CLArm*dPhiLeftArm+CRArm*dPhiRightArm];

D.5 Function: CalcMat.m

Listing D.4:  This Mat1ab® function calculates the matrices C'y, and C', in equa-
tions 3.48 and 3.49.
(appendix4/CalcMat.m)

function [CX1,CX2] = CalcMat (MOI,n,CTheta2,CTheta3)
% This block calculates the matrix multiplied by
%» the ThetaDot vector. See the help menu for details.

5 %**********************************************************

% Calc Inv MOI
%5 % sk sk sk sk sk ok sk sk ok ok sk ok ok ok ok ok ok ok ok sk ok sk ok sk ok sk ok ok sk ok ok ok sk ok ok ok sk k ok sk sk ok ok sk ok ok ok sk ok ok ok ok ok K ok ok ok

InvMOI=MOI"-1;

%Calculate the matrix that multiplies the ThetaDot Vector
%% 3k sk sk sk sk sk ok ok sk sk ok ok sk sk ok ok ok ok ok ok sk sk sk sk sk sk ok sk sk sk ok ok sk ok ok ok ok ok ok sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
CX1 = InvMOI*[O O (MOI(3,3)+M0OI(1,1)-M0OI(2,2));
0 0 0; (MOI(2,2)-MOI(1,1)-MOI(3,3)) O Ol*n;
15
% sk sk sk sk sk ok ok ok sk sk ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok ok ok ok ok ok ok ok ok o ok ok ok K

%Calculate the matrix that multiplies the ThetaDot Vector
% 3k sk sk sk sk sk sk ok sk sk ok sk sk ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk ok ko sk sk ok ok ok ok ok ok sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok

CX2 = InvMOI*[(MOI(3,3)-M0OI(2,2))*n"2 0 0;
20 0 CTheta2 O0;
0 0 (MOI(1,1)-M0OI(2,2))*n"2+CThetald];

D.6  Function: InitCond.m

Listing D.5:  This Mat1ab® function inputs the initial conditions that were calcu-
lated from the eigenvector analysis for model validation. Once the model has been
validated, these can be turned off so the actual simulations can be run.

(appendix4 /InitCond.m)

function [ThetaDot,Theta] = InitCond(n)
% this block is to test the model by the eigenval
% eigenvec method. See the help menu for details.
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% D. Guettler

h*x*kx*x*xxFor the Linear no torques case***kx*x

% For the cases where A=20 B=10 C=30 using the

% 4x4 matrix to get eigvecs

%“Case 1: The first pair of complex conj eigvecs
%Theta=[2 0 2] ’;

%ThetaDot=[2*n 0 -2*n]’;

%Case 2 The second pair of complex conj eigvecs
%Theta=[1.734 0 2] ’;

%ThetaDot=[n 0 -1.156%*n]’;

hx*kx*x*xxFor the Linear no torques case****x*x

% For the cases where A=10 B=20 C=30 using the

% 4x4 matrix to get eigvecs

%Case 1: The first pair of complex conj eigvecs
%#Theta=[1 0 1]°;

%hThetaDot=[n 0 -n]’;

%Case 2 The second pair of complex conj eigvecs
Theta=[-3 0 0] ’;

ThetaDot=[0 0 n]’;

%»Theta=[2 0 0]’;
%ThetaDot=[.00232 0 0]’ ;
%Theta=[0 0 2]°;
%ThetaDot=[0 0 .00232]’;
%Theta=[1.414 0 1.414]°;
%ThetaDot=[.00163599 0
%Theta=[-1.31 0 1.512];
%ThetaDot=[.000874 0 .101]°;

.00163599] ’;

% For the cases where A=20 B=10 C=30 using the

% 6x6 matrix to get eigvecs

%Case 1: The first pair of complex conj eigvecs
%sTheta=[2 0 2]1°;

%ThetaDot=[2*n 0 -2*n]’;

%Case 2 The second pair of complex conj eigvecs
%Theta=[-3/n 0 3.46/n]’;

%ThetaDot=[1.73 0 2]°;

%hTheta=[0 2 2] 7;

%ThetaDot=[-2%*n 0 0] ’;

%For the linear with torques case

%A=20, B=30, C=10 and using the 4x4 matrix to get
%Case 1 (first pair of complex conj eigvecs)
»Theta=[2 0 0]’;

%ThetaDot=[.00232 0 0] ’;

%Case 2 (2nd pair of complex conj eigvecs)
sTheta=[0 0 2]°;

%»ThetaDot=[0 0O .0506]7;
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Appendiz E. Stmulation Plots
E.1 Altitude Variation plots

This Appendix contains all the plots for angular displacement, angular rate,
angular acceleration, and control angles for the simulations determine the effects
altitude has on attitude stabilization. All inputs are summed up in the following

tables.

Table E.1:  Density, velocity and orbital rate calculated from Simulink®.

Altitude (km) | Calculated Density (%) Velocity () | Orbital Rate (%)
200 2.79x10~10 7784 0.001183
300 2.42x10~ 11 7726 0.001157
400 3.73x1012 7669 0.001131
500 6.97x10713 7613 0.001107
600 1.45x10713 7558 0.001083

Table E.2:  Variables input into the Simulink® model for all the altitude variation
simulations.

Variable | Value

Lpane Im

WPanel Im

LArm 1im

¢0Arm 450

L 43 Im

W ail Im

Lb1 1m

Ly, im

ng 1m

¢Wedge 22.5°

Mass 500kg

Cp 2.2
A 0 0 92 0 0

MOI=|0 B 0|=1]0 107 0]kg m’ (E.1)

0o 0 C 0 0 68
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Roll, Pitch, & Yaw Angular Acceleration vs. Time
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Roll, Pitch, & Yaw Position vs. Time
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Figure E.6:  Angular rate at 200km with pitch offset 10°.
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Figure E.9:  Angular displacement at 200km with yaw offset
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Figure E.10:  Angular rate at 200km with yaw offset 10°.
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Roll, Pitch, & Yaw Angular Acceleration vs. Time
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Roll, Pitch, & Yaw Position vs. Time
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and yaw offset 10°.
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offset 10°.
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Figure E.20:  Control angle deflections 300 km with roll offset
10°.
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Roll, Pitch, & Yaw Position vs. Time
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Figure E.21:  Angular displacement at 300km with pitch offset
10°.
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Figure E.22:  Angular rate at 300km with pitch offset 10°.
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Figure E.23:  Angular Acceleration at 300km with pitch offset
10°.
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Figure E.24:  Control angle deflections 300 km with pitch off-
set 10°.
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Roll, Pitch, & Yaw Position vs. Time
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Figure E.25:  Angular displacement at 300km with yaw offset
10°.
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Figure E.26:  Angular rate at 300km with yaw offset 10°.
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X 10‘5 Roll, Pitch, & Yaw Angular Acceleration vs. Time
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Figure E.27:  Angular Acceleration at 300km with yaw offset
10°.
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Figure E.28: Control angle deflections at 300km with yaw
offset 10°.
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Roll, Pitch, & Yaw Position vs. Time
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Figure E.29:  Angular displacement at 300km with roll, pitch
and yaw offset 10°.
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Figure E.30:  Angular rate at 300km with roll, pitch and yaw
offset 10°.
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Figure E.31:  Angular Acceleration at 300km with roll, pitch
and yaw offset 10°.
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Figure E.32:  Control angle deflections at 300km with roll,
pitch and yaw offset 10°.
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Roll, Pitch, & Yaw Position vs. Time
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Angular displacement at 400km with roll offset

10°.
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118

Angular rate at 400km with roll offset 10°.



Roll, Pitch, & Yaw Angular Acceleration vs. Time
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Control angle deflections 400 km with roll offset
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Roll, Pitch, & Yaw Position vs. Time
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Figure E.37:  Angular displacement at 400km with pitch offset
10°.
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Figure E.38:  Angular rate at 400km with pitch offset 10°.
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x10° Roll, Pitch, & Yaw Angular Acceleration vs. Time
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Figure E.39:  Angular Acceleration at 400km with pitch offset
10°.
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Figure E.40:  Control angle deflections 400 km with pitch off-
set 10°.
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Roll, Pitch, & Yaw Position vs. Time
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Figure E.41:  Angular displacement at 400km with yaw offset
10°.
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Figure E.42:  Angular rate at 400km with yaw offset 10°.
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Roll, Pitch, & Yaw Position vs. Time
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Figure E.45:  Angular displacement at 400km with roll, pitch

and yaw offset 10°.
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Figure E.46:  Angular rate at 400km with roll, pitch and yaw
offset 10°.
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X 10*6 Roll, Pitch, & Yaw Angular Acceleration vs. Time
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Figure E.47:  Angular Acceleration at 400km with roll, pitch
and yaw offset 10°.
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Figure E.48:  Control angle deflections 400 km with roll, pitch
and yaw offset 10°.
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Roll, Pitch, & Yaw Position vs. Time
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Figure E.49:  Angular displacement at 500km with roll offset
10°.
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Figure E.50:  Angular rate at 500km with roll offset 10°.
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Roll, Pitch, & Yaw Angular Acceleration vs. Time
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Figure E.51:  Angular Acceleration at 500km with roll offset
10°.
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Figure E.52:  Control angle deflections 500 km with roll offset
10°.
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Roll, Pitch, & Yaw Position vs. Time
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Figure E.53:  Angular displacement at 500km with pitch offset
10°.
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Figure E.54:  Angular rate at 500km with pitch offset 10°.
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Figure E.56:  Control angle deflections 500 km with pitch off-
set 10°.
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Roll, Pitch, & Yaw Position vs. Time
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Figure E.57:  Angular displacement at 500km with yaw offset
10°.
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Figure E.58:  Angular rate at 500km with yaw offset 10°.
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x 107" Roll, Pitch, & Yaw Angular Acceleration vs. Time
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Figure E.59:  Angular Acceleration at 500km with yaw offset
10°.
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Figure E.60:  Control angle deflections 500 km with yaw offset
10°.
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Roll, Pitch, & Yaw Position vs. Time
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Figure E.61:  Angular displacement at 500km with roll, pitch
and yaw offset 10°.
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Figure E.62:  Angular rate at 500km with roll, pitch and yaw
offset 10°.
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x 10" Roll, Pitch, & Yaw Angular Acceleration vs. Time
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Figure E.63:  Angular Acceleration at 500km with roll, pitch
and yaw offset 10°.
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Control Angle Deflections
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Figure E.64:  Control angle deflections 500 km with roll, pitch

and yaw offset 10°.
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Roll, Pitch, & Yaw Position vs. Time
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Figure E.65:  Angular displacement at 600km with roll offset
10°.
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Figure E.66:  Angular rate at 600km with roll offset 10°.
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x 10 Roll, Pitch, & Yaw Angular Acceleration vs. Time
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Figure E.67:  Angular Acceleration at 600km with roll offset
10°.
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Figure E.68:  Control angle deflections 600 km with roll offset

10°.
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Roll, Pitch, & Yaw Position vs. Time
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Figure E.70:

Angular rate at 600km with pitch offset 10°.
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Roll, Pitch, & Yaw Angular Acceleration vs. Time
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Figure E.71:  Angular Acceleration at 600km with pitch offset
10°.
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Figure E.72:  Control angle deflections 600 km with pitch off-
set 10°.
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Roll, Pitch, & Yaw Position vs. Time
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Figure E.73:  Angular displacement at 600km with yaw offset
10°.
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Figure E.74:  Angular rate at 600km with yaw offset 10°.
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Roll, Pitch, & Yaw Angular Acceleration vs. Time
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Figure E.76:  Control angle deflections 600 km with yaw offset
10°.
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Roll, Pitch, & Yaw Position vs. Time
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Figure E.77:  Angular displacement at 600km with roll, pitch
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Figure E.78:  Angular rate at 600km with roll, pitch and yaw
offset 10°.

142



x 10"

Roll, Pitch, & Yaw Angular Acceleration vs. Time

15

-15

14 13

il

!)'\ I

T T T T T

— — —Roll
Pitch
Yaw

\(\‘I‘l“ AANHAAN A e ,
,w‘l‘mﬁmm%‘ra.a".h,!‘.n« VANV

Figure E.79:

4 5 6 7 8 9
Time, sec

Angular Acceleration at 600km with roll, pitch
and yaw offset 10°.

Control Angle Deflections

2 T T T
— — — Right Aileron
1.5 — — — Left Aileron i
Top Arm
m‘i |l Bottom Arm
b it —— Left Arm
1 \ | ,
| M‘ W e Right Arm

Ity ‘i, h M il

1

5 ‘;\l ‘Ji“‘ ‘

i
Nl

, f“swi“ir‘

‘l“!;im“ww}"vﬂ‘,b,u‘o‘ﬂg‘ AT PTRD

Figure E.80:

4 5 6 7 8 9
Time, sec

Control angle deflections 600 km with roll, pitch
and yaw offset 10°.

143



Appendiz F. Original Design Nonlinear Drag Equations
F.1  Ezternal Torques from Atmospheric Drag (Nonlinear)

Satellites in LEO (LEO)(between 130 km to 600 km) experience an aerody-

namic drag force which is given by:

1
Firag = 5pVZ(JDA (6.1)

Where F,q, =drag force (N), p =atmospheric density (kg/m?), V =velocity (m/s),
Cp = 2 drag coefficient and A =projected area (m?). Altitudes above 125 km
altitude are in the free molecular flow regime [1, page 318]. In the free molecular
flow regime, particles are typically modeled either as specular or diffuse reflections. A
specular reflection assumes that molecules are perfectly elastic where the tangential
velocity is constant and the normal velocity is reversed. The diffuse model assumes
the molecules are reflected in a diffuse manner and have no memory of previous
velocities. Either model imparts a force normal to the surface. Spacecraft in LEO
will always experience a small drag torque since it’s not possible to locate the CG to
the exact geometric center and therefore will need some way to control it’s attitude.

Assumptions that were made for the following drag torque equations are:

e The drag panels are only visible to the incoming wind only on the front/out-

ward facing sides.
e The drag coefficient was chosen to be between 1.5 < Cp < 2.5 .

e Atmospheric density is constant and averaged over the orbit.(neglecting solar

effects and atmospheric perturbations).

F.1.1 Drag Torque Equations.  The basic design being modeled as a cube
shaped spacecraft that has arms with 4 drag panels controlling pitch, roll and yaw.

To pitch up or down, the top or bottom panel will be swung out into the air stream.
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For yaw, the left and right panels are used. To roll left and right, all panels will be
extended and rotated with respect to the arms in a “propeller” configuration. To
determine the drag effects on both the cube and the panels, the velocity must be
known and is given by [11, page 70]

m

Torvit

V:

(6.2)

where the standard gravitational parameter p = 398600’%3 and the orbital radius
Torbit = 0378.135km + Altitude, and the velocity vector is in the —ay direction. The
density must also be determined and based on the altitude range being modeled, the

density p varies between 107% to 107124 for LEO orbits.

F.1.2  Drag Effects from Spacecraft Body. The spacecraft body doesn’t
produce any torques unless the CG is not at the geometric center. In this model, the
CG location can be moved off center to produce small torques for modelling purposes.
First the roll, pitch, yaw rotation matrix is used to go from the A frame to the B
frame as in equation 3.2. The angle of the incoming molecules and the inward normal
directions n for the cube surfaces can be found by using the dot product of the two
vectors and since we are dealing with unit vectors, cos(a) = v - n. Since the inward
normal vectors are aligned with the principal axes, and from equation 3.6 the dot

products for each cube surface become:

COS(O[Left> = (—(Il . bg) = _RBA(le) (63&)
COS(aRight) = (—(11 . —bg) = RBA(271) (63b)
COS(OéBot> = (—a1 . —bg) = RBA(gvl) (63C)
cos(arey) = (—ay - by) = —RP4 3 (6.3d)
cos(pront) = (—ay - —by) = RBA(M) (6.3¢)
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cos(apaer) = (—ay - by) = —RBA(M) (6.3f)

To find the drag force on each exposed surface, the projected area must be known
and is found by A, £ [[ H(cos(a)) cos(a)dA [2, page 251]. where H is the Heaviside
function and cos(«) is from equations 6.3, a-f. The Heaviside function is used so
that only the areas the see the incoming molecules are taken into account. Since
the areas of the faces are the side of a cube, the integral becomes L?, where L is the

length of the side of the spacecraft body. The projected areas for each side become:

Apest = LQH(COS(ozLeft)) cos(areft) (6.4a)
ARight = LQH(COS(ozRight)) cos(right) (6.4b)
Apot = L*H (cos(aper)) cos(apor) (6.4c)
Arop = L*H(cos(arep)) cos(arep) (6.4d)
Apront = L*H (cos(pront)) cOS(Qpront) (6.4e)
Aack = L*H(cos(aacr)) cos(apack ) (6.4f)

By using equation 6.1 and substituting in equations 6.13, the drag forces for each

face in the A frame become:

1 N
Frepe, = 5cDALeﬁpv% (6.5a)
1 9.
Fright 4 = §CDARight)0V v (6.5b)
1 5.
Fpota = §CDABotpV 0 (6.5¢)
1 9.
FTOpA == §ODAT0ppV v (65(:1)
1 9 n
FFrontA - §ODAFrontpV v (656)
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1 )
Fpacka = §CDABackpv2U (6.5f)

By using the rotation matrix 3.2 the force in the B frame can be calculated
by substituting equations 6.5 and 3.2 into the following equations (note, we are only

interested in the inward normal force).

0
Frefig = [0 1 0] RPAFpe, |1 (6.6a)
0
0
Fright; = [0 1 0] RPA Fpignia |1 (6.6b)
0
0
Fpotp = [0 0 1] RP4Fpoia |0 (6.6¢)
1
0
Fropg = [0 0 1] RP4Fro,, |0 (6.6d)
1
1
FFrontB: |:1 0 O] RBAFFTontA 0 (668)
0
1
FBackB: [1 0 0] RBAFBackA 0 (66f)
0

Once the drag force is calculated in the B frame, the torques can be calculated

by T' = rxF' |2, page 251 where r is the vector from the CG to the center of pressure
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for each surface and F' is the drag force in the B frame. For the cube surfaces, r

becomes:

Treft = | —0.5L| —CG

0
TRight = 0.5L -CG

TTop = 0 -G

T'Front = 0 - CG

—0.5L

TBack = 0 - Cd

(6.7a)

(6.7b)

(6.7¢)

(6.7d)

(6.7¢)

(6.7f)

Substituting in equations 6.6 and 6.17, the torque equations for each surface

of the spacecraft body in the B frame become:

Mrpest = TreftXFLefip
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MRight = TRightXFRightB (6-8b>

Mpot = rpoaxFBotp (6.8¢)
Mrop = rropXFropg (6.8d)
MFront = TFrontXFFront B (6.8e)
Mpack = rBackXFBack B (6.8f)

And finally the total torques (equations 6.8 a-f) from the spacecraft body are added
to get:
MSatBody = MLeft + MRight + MBot + MTop + MFront + MB(zck (69>

F.1.3  Drag Effects from Spacecraft Drag Panels. By going through a similar
process, the torques from the drag panels can be found. The drag panels adds some
complexity to the problem since there are two sets of rotations, one going from the
A frame to the B frame (equation 3.2) and the other going from the B frame to the

F' frame which by using the roll, pitch, yaw rotation sequence results in:

1 0 0 c(p2) 0 —s(pa2)| | clos) s(#3) O
RP =10 c(¢)) sl 0 1 0 —s(¢3) c(¢s) 0 (6.10)
0 —s(¢1) c(¢1)] [s(¢2) 0 c(¢2) 0 0 1

To get from the A frame to the F frame for each drag panel, Rf4 = RFBRBA
where RP4 is from equation 3.2 and each panel has its specific rotation matrix and

set of angles from the B frame to the F' frame:
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-1 0 0 | -C(_¢TArm) 0 _3<_¢TArm> C(O) S<O)
R0 =10 c(drpran)  S(Orpan) 0 1 0 —5(0) ¢(0)
0 —s (ngPan) C(¢TPan> S ( - ¢TArm) 0 C( - ¢TA7‘m) 0 0

i - (6.11a)

1 0 0 C(¢BArm) 0 _S(¢BArm) C(O) S(O> 0

R0 =10 c(dppa) S(OBpan) 0 1 0 —5(0) ¢(0) 0
0 _S(¢BPan) C(¢BPan) S(¢BA7‘m) 0 C(¢BArm) 0 0 1

] o (6.11b)

1 0 0 c(0) 0 —s(0) c(prarm)  s(Prarm) 0

RFBL@ft: 0 c(¢LPan) S(QbLPan) 0 1 0 _S<¢LArm) C<¢LArm) 0
0 —8(drpan) cldrpan)| [5(0) 0 ¢(0) 0 0o 1

(6.11c)

1 0 0 c(0) 0 —=s(0)| | c(=PrArm) 8(—PrArm)

RFB Right — 0 C(¢RPan) S (¢RPan) 0 1 0 —S$ ( - QbRArm) C( _¢RArm)
0 _3(¢RPan) C(¢RPan) 8(0) 0 C(O) 0 0

(6.11d)

where ¢1pad, OBPad, PLPad; a0 Grpaq, are the top, bottom, left and right drag panel
angles used for roll control and range from £+45°. ¢7arm, OB Arms OLArm, aNd ORArm,
are the top, bottom, left and right arms that are connected to the drag panels. The
angles between the b' direction and the arms range from 0 — 90°. In equations 6.11a
and 6.11d, the arm angles have a negative sign so that all angles will be positive so
the controller will only have to input positive angles. One of the rotation angles in
each equation are always zero, this is due to the fact that there are only two degrees

of freedom for each panel.

The rest of the torque equations follow the same process as before (see equa-
tions 6.3), the angles between the incoming molecules and the inward normal direc-

tions are
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cos(Qrer) = (—ay - fo) = _RFA(ZI)
COS(O&Right) = (—(11 : _f2) - RFA(QJ)
cos(apo) = (—ay - —f3) = RFA(S,l)

COS(aTop) = (—al : f3) = —RFA(3,1)

The projected areas from the panels become:

ALeft = L2H(COS(OéLeft)) COS(aLeft)
Apighe = L*H (cos(arignt)) cos(atrignt)
Aot = L2H(cos(0430t)) cos(apot)

Arop = L*H(cos(arop)) cos(arep)

where L is the side length of each square drag panel.

Calculate forces from the drag panels in the A frame:

1 R
FLeftA = §CDALeftIOV2U
1 9
Frignt, = §CDAR7;ghtpV 0
1 9.
Fpota = §CDABotpV v

1 .
FTopA - §CDATOppV2U
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(6.12D)
(6.12¢)

(6.12d)

(6.13a)
(6.13b)
(6.13¢)

(6.13d)

(6.14a)
(6.14b)
(6.14c)

(6.14d)



Calculate force from drag panels in the F' frame and pull out the inward normal

component:
0
Frepip = [0 1 0] RFALeftFLeftA 1 (6.15a)
0
0
FRrightp = [0 1 0] R pignt Frignt 4 | 1 (6.15Db)
0
0
Fpotp = [0 0 1] R 5 Fpoa |0 (6.15¢)
1
0
FTOPF - |:O 0 1} RFATOpFTopA 0 (615(:1)
1

Convert the inward normal component of each surface in the F' frame to the

B frame.

Frepig = (R™P Lept) Frepip (6.16a)
Frigntg = (R"" right)" Fright (6.16Db)
Fpotp = (R"" pot)" Fpotr (6.16¢)
Fropp = (R 10p)" Propp (6.16d)

Find r from the CG to the center of pressure for each panel:
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—0.5L — (LArm + O-5LPanel) COS((bLArm)
Trest = | —=0.5L — (L arm + 0.5 Lpanct) Sin(@pam) | — CG (6.17a)
0

—0.5L — (LArm + 0-5LPanel) COS(QbRArm)
TRight = | 0.5L + (L apm + 0.5Lpaner) sin(drarm) | — CG (6.17b)
0

_05L - (LArm + 0.5LPanel) COS(¢BATm>
" Bot = 0 yole (6.17¢)

0.5L + (LArm + 0-5Lpanel) Sin(¢BArm)

—0.5L — (LArm + 0-5LPanel) COS(¢TArm)
TTop = 0 - CG (617d>

_05[/ - (LArm + O'5Lpanel> Sin(¢TArm)

where L is the side length of the spacecraft body, L .., is the length of the control
arm, Lpgne is the side length of the square panels, 1 arm, @rArm, @BArm a0d OT Arm

are the angles of the arms from their retracted positions.

Finally, the torque equations for the drag panels with all the substitutions

become:
Mpept = rrepixFLefip (6.18a)
MRight = 7 RightXFRight g (6.18b)
Mpot = rpotXFpotp (6.18c)
Mrop = T70pXFrop g (6.18d)
(6.18e)
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And finally the total torques (equations 6.8 a-f) from the spacecraft body are
added to get:
MPanels - MLeft + MRight + MBot + MTop (619>

And the total torques are:

MTotal - MSatBody + MPanels (62())
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