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Abstract

The constitutive relations traditionally used for finding shear stress and heat flux in a 

fluid become invalid in non-equilibrium flow. Their derivation from kinetic theory only 

demonstrates they are valid only for small deviations from equilibrium. Because it is 

fundamentally linked to non-equilibrium, entropy generation is used to investigate the 

limits of the continuum constitutive relations. However, the continuum equations are 

inherently limited to near equilibrium conditions due to the constitutive relations; thus 

kinetic theory may be used as a basis for comparison. Direct Simulation Monte Carlo 

(DSMC), a particle method alternative to continuum methods, is based on kinetic theory 

and is used to develop a flow solution for benchmark comparison.  

Solutions were obtained for hypersonic flow over two axi-symmetric geometries using 

both a continuum solver and DSMC. Formulations for entropy generation are presented 

for each method, and the two solutions are compared. The continuum solutions fail to 

capture regions of non-equilibrium as evidenced by thicker shocks in the DSMC solution. 

To extend the useful range of the continuum constitutive relations, the Lennard-Jones 

model is offered as an alternative to Sutherland’s Law for calculating viscosity and 

thermal conductivity. The two are compared, and parameters offering a good fit for these 

flows are suggested for the Lennard-Jones model.  
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QUANTIFYING NON-EQUILIBRIUM IN 
HYPERSONIC FLOWS USING ENTROPY 

GENERATION 
 

I. Introduction 

On November 10, 2006 a multi-national research partnership agreement was signed by 

top scientists from the United States Air Force and the Australian government in 

Canberra, Australia. The Hypersonic International Flight Research Experimentation 

program (HiFire) pledges $54 million dollars to research focused solely on observing and 

understanding hypersonic flows. According to a recent article in the Air Force Research 

Laboratory newsletter, this research will enable the Air Force to exploit speed and 

responsiveness for a multitude of applications, anywhere from air-breathing hypersonic 

cruise missiles in the near term to operational space access in the far term (Barr, 2006). 

Researchers from around the world will participate in computational and ground test 

research which will culminate in ten experimental flights.  

This program is evidence of the aerospace community’s increasing interest in hypersonic 

flight. The Air Force has a particular interest in developing hypersonic vehicles and 

weapons. According to the Chief Scientist of the Air Force, Mark Lewis, “In modern air 

warfare, speed is the critical issue. I think hypersonics holds the potential for giving us 

that capability.” (Honest Broker, 2007: 8). It is apparent from his statement that interest 

in hypersonics research reaches to the very top levels of defense planning. Despite this, 
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hypersonic flow is currently poorly understood, and in order to realize the dreams of the 

Air Force leadership, more research needs to be done. 

Unfortunately, it is very difficult and expensive to experimentally study hypersonic flow. 

For this reason, computational methods have played a prominent role in hypersonics 

research. These methods facilitate the early stages of design and analysis, reducing the 

need for extensive experimentation and decreasing the risk in actual flight tests. 

Understanding non-equilibrium flow is key in improving the experimental methods 

currently being used in hypersonics research. 

Non-Equilibrium Defined 

To begin a study of non-equilibrium flow, it is important to first properly understand 

what is meant by equilibrium. Classical thermodynamics deals principally with systems 

that are at equilibrium. Specifically, the properties of a system in thermodynamic 

equilibrium will not change with time. The system is at a steady state and remains 

unchanged unless disturbed by an applied force, temperature gradient, or chemical 

reaction. Equilibrium thermodynamics tells nothing about the rate the system will then 

change; it can only describe the state to which it will arrive after the system has once 

again reached equilibrium. As the system adjusts from one state of equilibrium to 

another, it is said to be at non-equilibrium.  

As an element of fluid at equilibrium travels through a flow field it experiences changes 

due to the field itself. This causes changes in the equilibrium state of the element. Often it 

is assumed the changes occur quickly compared to characteristic time scales of the flow, 
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and equilibrium may be assumed throughout the change. However, this is not a valid 

assumption when changes occur quickly and the characteristic time is small, such as in a 

shockwave standing off the body of a hypersonic vehicle. In this case, it is necessary to 

discard the assumption of equilibrium and develop a method of examining non-

equilibrium processes in a flow.   

To understand what is occurring as the system changes from one state of equilibrium to 

another, it is instructive to view the flow not as a continuum of mass, but rather as a 

collection of particles. Particles in a system at equilibrium constantly experience changes 

in translational and internal energy due to collisions with other particles. The collisions 

occur such that macroscopic variables like temperature and pressure, defined as an 

average of the energy or momentum of the molecules, experience no overall change. 

When an external process causes a change to occur to the molecules, the overall effect of 

the collisions is to cause the macroscopic variables to change. This occurs very quickly 

compared to the characteristic time of most flows.  

However, as mentioned, in a shockwave, the characteristic time is much smaller. A 

molecule encountering a shock experiences drastic changes very quickly due to the 

increased frequency of collisions with other molecules and the high amount of energy 

exchanged in those collisions. Traveling downstream, the molecule continues to transfer 

energy to other molecules in the flow through collisions. Thus the macroscopic variables 

continue to change downstream as the molecules redistribute their energy. If the time 

between collisions is on the same order of magnitude as the time it takes to travel through 
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the shock, non-equilibrium changes to the macroscopic variables are significant and 

equilibrium-based thermodynamics will not adequately describe the flow in this region.  

The thermodynamics normally used in the traditional continuum equations of fluid 

dynamics (Euler and Navier-Stokes) do little to compensate for non-equilibrium effects. 

The basic mechanics of the equations are correct; however, the constitutive relationships 

become invalid. These relationships seek to model bulk transfer of mass, momentum, or 

energy as a continuum rather than by a multitude of particle collisions. The shear stress 

tensor and the heat flux vector are two important constitutive relationships used to find 

closure for the Navier-Stokes equations. The previous discussion indicates these 

relationships are invalid for non-equilibrium flow. This point will be discussed further in 

conjunction with the Chapman-Enskog solution to the Boltzmann Equation in the Theory 

section of this work. 

Continuum Methods versus Particle Methods 

Because the continuum equations fail to properly model non-equilibrium phenomena, it is 

necessary to understand where in a flow these effects may be significant. Kinetic theory 

models fluids as a collection of particles rather than as a continuous mass. Therefore, it 

models the physics of non-equilibrium previously described. Many computational models 

base their development on this principle, especially as technological advances increase 

computing power. For example, one method known as Molecular Dynamics Simulation 

(MD) models each particle in a flow, tracking position, velocity, and internal energy. 

This method is computationally expensive due to the large number of particles required 
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to simulate most engineering applications. For this reason it is primarily limited to flows 

with few particles and collisions, such as flow over Micro Electro-Mechanical Systems 

(MEMS) or other very low-density flows. 

Another method of modeling a system as a collection of particles more appropriate for 

engineering analysis is known as Direct Simulation Monte Carlo. This method decreases 

the computational load of MD models by representing a large number of particles 

(~1x1012) by a single “virtual” particle. Collisions between virtual particles are 

determined statistically based on their position and velocity relative to one another. 

Translational energy is exchanged with internal energy during collisions. The specific 

details of choosing a collision pair, modeling energy transfer, and modeling wall 

collisions varies depending on the specific code. However, the post collision values of 

velocity and internal energy are normally drawn from a normal distribution. This method 

certainly introduces an assumption of equilibrium into the solution method. Nevertheless, 

a great deal of research indicates that DSMC is still able to capture non-equilibrium 

effects in a flow better than the Navier-Stokes equations (Ewin and others, 1989; Gallis 

and others, 2006).  

By modeling the actual physics of the particles within the flow, DSMC and MD directly 

reflect physical reality, whereas the continuum equations seek to model reality by solving 

differential equations.  However, the use of either particle method discussed here 

generally requires more computational effort than a continuum method. 
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Parameters Indicating Non-Equilibrium 

Because continuum methods generally require fewer CPU hours, it is desirable to use 

them whenever possible. The ideal method would combine the computational efficiency 

of a continuum method with the fundamental physics of a kinetic method. Codes that 

switch between the two methods, called hybrid codes, are currently under development 

(Schwartzentruber and others, 2006). To use these codes it is necessary to predict 

whether a continuum method is adequate for the specific flow. As discussed above, non-

equilibrium effects become important when the non-equilibrium relaxation time is on the 

same order as the characteristic time of the flow. This can also be analyzed in terms of 

length scales, i.e., when the distance between collisions is similar in magnitude to some 

characteristic length. The ratio of the two length scales is often given as the Knudsen 

number:  

 Kn
L
λ

=  (I.1) 

If the Knudsen number is much smaller than one, the characteristic length is large 

compared to the distance in which collisions occur and the flow relaxes to equilibrium. 

The flow can be thought of as a continuous mass. If the number is much greater than one, 

collisions are less common, and the relaxation distance will be longer than the 

characteristic length of the flow and non-equilibrium effects could be significant. At this 

point the flow should be considered on the molecular scale. Knudsen numbers near one 

fall into a sort of transition regime. The Knudsen number may be examined for any flow 

regardless of Mach number; however, hypersonic vehicles are much more likely to 
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exhibit high Knudsen numbers because of the conditions in which they typically operate 

(high altitude).  

Unfortunately the choice of the characteristic length scale is not clear. It could be based 

on a geometric structure like the nose of a hypersonic vehicle or a flow structure like the 

thickness of a normal shock. The choice of a length scale could result in a flow with 

Knudsen numbers ranging from very small (inviscid continuum limit) to very large 

(rarified gas – collisionless flow). For this reason, researchers have suggested other 

parameters to indicate the breakdown of the continuum assumption. Many of these mimic 

the Knudsen Number. Schrock gives an overview of these parameters in his thesis work 

(2005: 8-11). All of the parameters reviewed suggest the shear stress tensor and the heat 

flux vector are indicators of non-equilibrium. This is physically intuitive. A system which 

is truly at an equilibrium state will experience no shear or heat flux, as in, for example, a 

uniform flow field. Any shear or heat flux term will tend to change the state of the flow, 

thus causing it to experience some degree of non-equilibrium.  This concept will be 

discussed in more detail in context of the Chapman-Enskog expansion in chapter two.  

Entropy Generation as an Indicator of Non-Equilibrium 

At this point it is convenient to introduce the formulation for entropy generation given by 

Camberos (2001: 6). A detailed discussion of this equation will be deferred to the theory 

section of this document: 

 2
ji ji

gen
j j

qu TS
T x T x
τ ∂ ∂

= −
∂ ∂

 (I.2) 
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Contained within are the shear stress tensor and heat flux vector, the two indicators of 

non-equilibrium. This agrees with the result understood from the second law of 

thermodynamics which states a system goes from one equilibrium state to another 

through the creation of entropy. Further evidence of this is given by Boltzmann’s famous 

H-Theorem, which relates entropy to a monotonically increasing function of the 

probability distribution of the velocity or energy state of a particle.   

Entropy generation represents non-equilibrium. For this reason it has been studied as a 

parameter similar in function to the Knudsen number, to indicate the range of validity in 

the continuum equations. Schrock concluded that it is not possible to use the continuum 

equations when attempting to predict non-equilibrium based on entropy generation, as 

they are inherently limited to near-equilibrium and fundamentally cannot capture non-

equilibrium effects. It is necessary to use a method based on kinetic theory. 

Unfortunately, a parameter used to determine the validity of continuum equations that 

can only be calculated using a method based on kinetic theory has little practical use. If 

the computationally expensive kinetic method has already been performed, there is little 

need to study the limits of validity of the continuum equations. For this reason, entropy 

generation is not immediately useful in a hybrid kinetic-continuum code. However, 

understanding non-equilibrium behavior in a flow is not uniquely a problem for hybrid 

codes. Every scientist or engineer seeking a computational solution to a specific problem 

must understand the limits of the tools used. Non-equilibrium is a poorly understood 

limitation to many of the tools available in computational fluid dynamics (CFD).   
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The current work will use entropy generation as a means of quantifying non-equilibrium. 

Because it is directly tied to perturbations from an equilibrium state, entropy generation 

gives a glimpse of where the flow is most active and where the traditional formulations 

for the constitutive relations are no longer valid. It will indicate where macroscopic 

variables are no longer changing according to the equations normally defined by 

equilibrium methods. By quantifying non-equilibrium, it may be possible to modify the 

relationships for the shear stress tensor and the heat flux vector to better capture non-

equilibrium, in somewhat the same way empirical models find closure in turbulent flows. 

Other research suggests this is possible, but has not benefited from an understanding of 

entropy generation as an indicator of non-equilibrium (Baganoff, 2002; Chen and others, 

2001).  

The above modifications in shear stress and heat flux will effectively extend the non-

equilibrium range of the Navier-Stokes equations. To do this, a method comprising five 

steps is suggested: 

1. Obtain a good solution using a kinetic-based solver. These types of solvers 

have traditionally been used to study non-equilibrium in the past, and have shown good 

results. Unfortunately, they require more computing resources than continuum solvers. 

The solution should match experimental data. 

2. Use the flow solution to generate the shear stress tensor and the heat flux vector 

using both kinetic and continuum formulations. Use these constitutive relations to 

calculate the entropy generation in the flow. The entropy generation is indicative of 

regions of non-equilibrium. 
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3. Tune the formulations for the continuum constitutive equations until the 

continuum entropy generation matches the kinetic entropy generation. Entropy generation 

provides a scalar measure of the nine components of the shear and heating. 

4. Use the new continuum formulations for shear and heating to resolve the 

flowfield. Compare the new solution with the previously attained kinetic flowfield using 

entropy generation. Check that the new solution predicts similar regions of non-

equilibrium as the kinetic solution. 

5. Apply the new continuum formulations to a number of other flow geometries 

and freestream conditions. Investigate the range of utility of the newly generated 

continuum formulations.  

Using the above method will extend the range of the continuum Navier-Stokes equations 

to accurately capture regions of non-equilibrium beyond the traditional limits of validity. 

This would serve as an extremely useful tool to cut down on the need to perform many 

DSMC calculations to investigate hypersonic flows. A single DSMC calculation could be 

run, and based on the results, many accurate CFD solutions could be found for similar 

flows.   

This research complements and follows the research done by Christopher Schrock 

(2005). Much of the theory necessary to understand the current study was presented in 

detail in Schrock’s thesis. In order to avoid duplicating the information presented there, 

subjects treated in his work will be presented in abbreviated form here. However, many 
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additional concepts require attention for the current work, and these will now be reviewed 

in greater depth.   
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II. Theory 

To understand non-equilibrium, it is instructive to review basic elements of kinetic 

theory. In kinetic theory, flow is not assumed to be a continuous mass, but rather a large 

collection of molecules. These molecules move about with some velocity, colliding with 

each other and exchanging momentum and energy. Because of the large amount of 

information that would be required to track each individual molecule, it is necessary to 

describe the state of these molecules probabilistically. This is done with the probability 

density function. 

The Probability Density Function 

Rather than attempting to track the exact position, velocity and internal energy of a 

particle, it is often convenient to instead speak of the probability a single particle will be 

found at a certain velocity or internal energy state. This can be described by a probability 

density function, f. It is possible to define a velocity space containing all three velocity 

vectors dVC = dC1dC2dC3. The probability of finding a molecule in a certain velocity in 

the range [VC to VC  + dVC ] can be expressed by the integral: 

 
C C

C

V V

V

d

CfdV
+

∫  (II.1) 

This means if the integral is over all the possible velocities of a particle, from negative to 

positive infinity, the resulting sum will be one: 
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 1CfdV
∞

−∞

=∫   (II.2) 

This integral defines the distribution function. In this case, the function f is the velocity 

distribution function (vdf). It is also possible to express the probability of finding a 

molecule at a specific internal energy state. This will be referred to as the internal energy 

(rotational, vibrational) probability distribution function (PDF). The summation over all 

internal energy states also applies to the internal energy PDFs. 

It is possible, using a distribution function, to define macroscopic quantities, as long as 

they are functions of the variable represented by the PDFs. In other words, if Q is some 

macroscopic variable and Q is a function of the molecular velocity, ci, then the average or 

expectation value, <Q>, is given as (Vincenti and Kruger, 1967: 29-31): 

  (II.3) CQ Qfd
∞

−∞

< > = ∫ V

The Boltzmann Equation 

With an understanding of probability density functions it is possible to define one of the 

fundamental equations of kinetic theory, the Boltzmann Equation. The generalized 

Boltzmann equation models the probability a single particle will be found in a certain 

position, velocity, and internal energy state space. It does so by balancing changes 

brought about by time, convection into a position, changes in velocity by body forces, 

and collisions with other particles. 
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 As mentioned, the Boltzmann equation models a single particle. The more generalized 

Liouville equation is actually an equation for the N-particle distribution function, a much 

more broad and exact representation of statistical mechanics. The Boltzmann equation is 

limited compared to the Liouville, namely that it is only appropriate for electrically 

neutral, low-density situations where only binary collisions are considered. For this 

reason, the Boltzmann equation is especially useful for low-density flows, such as dilute 

gases (Bird, 1994: 7). 

The Boltzmann equation simplifies further by limiting it to elastic collisions, reducing the 

complexity of the following theory. If internal energy modes were included, extra 

variables would be introduced to the distribution functions. Studying this simplified form 

of the Boltzmann equation with the Chapman-Enskog expansion gives a kinetic based 

explanation to the limits of the continuity equations. Internal energy effects significantly 

complicate this analysis, but the general concepts derived from the monatomic gas 

treatment still apply.  

It is appropriate to discuss the Boltzmann equation for position and velocity in some 

detail. It can be derived from the Liouville equation as (Vincenti and Kruger, 1967: 330): 

 [ ] [ ] [ ]( ) ( ) ( ) ( )i j i j i i
collj j

nf c c nf c F nf c nf c
t x c t

∂ ∂ ∂ ∂⎧ ⎫⎡ ⎤+ + = ⎨ ⎬⎣ ⎦∂ ∂ ∂ ∂⎩ ⎭
 (II.4) 

This equation models the distribution of molecules in a phase space defined by position 

and velocity. Molecules inside the phase space are denoted by ci. The first term on the 

left hand side represents the change in time of the distribution. The second term on the 
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left models the convection of particles into the phase space due to their own velocity. The 

third and last term on the left side represents the convection of particles into the velocity 

space due to an external force F. 

The integral on the right hand side of the equation sums the effects of intermolecular 

collisions. It gives the rate of increase in molecules in the position and velocity space. An 

additional assumption is made that only collisions involving two molecules are important. 

This rules out tertiary collisions and limits the use of the Boltzmann equation to a dilute 

gas. While a dense gas version of the collision integral can be derived, the present work 

requires only the simpler version (Chapman and Cowling, 1952: 275). It can be 

represented as (Vincenti and Kruger, 1967: 332):   

 [ ] 2 ' '( ) ( ) ( ) ( ) ( )
c

i i i i i
coll dP

nf c n f c f f c f gdP dV
t c ζζ ζ

∞

−∞

∂⎧ ⎫ ⎡= −⎨ ⎬ ⎣∂⎩ ⎭ ∫ ∫ ⎤⎦  (II.5) 

Here, the term ζi is the velocity of the collision partner and the terms  and  

are the post-collision particle distributions. The relative speed, g, is defined as |ζ

)( '
icf )( '

if ζ

i - ci |. 

The integral is summed over the differential cross-section dPc, which when integrated 

from zero to 4π is the area of a unit sphere. It is also integrated over dVζ, the phase 

volume of the collision partner being collided with.  This integral is difficult to use and 

simplifications on particle structure and interaction are often made to simplify it. 

However, because the intermolecular collisions largely determine the behavior of the 

flow, care should be made when applying any sort of assumptions.  
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The Maxwell-Boltzmann Equilibrium Distribution 

If the flow is in equilibrium, the collision integral in Equation (II.5) should equal zero 

because no changes are occurring to the distribution function over time. This is only 

possible if the integrand is equivalently zero, or: 

 ' '( ) ( ) ( ) ( )i i if c f f c f iζ ζ=  (II.6) 

This condition maintains equilibrium because each collision is exactly balanced. A 

general solution for f satisfying Equation  can be found in terms of thermal 

velocities using equilibrium kinetic theory (Vincenti and Kruger, 1967: 43-44). Thermal, 

or peculiar, velocity is a particle’s velocity with respect to the bulk motion of the flow, or 

(II.6)

C = (c – u). The equilibrium distribution, also known as the Maxwell-Boltzmann 

distribution, is given as: 

 
3
2 2( ) exp

2 2o i
m mf f C C
kT kTπ

⎛ ⎞ ⎛= = −⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

 (II.7) 

Equation  contain(II.7) s k, the Boltzmann constant, m, the mass of each individual 

molecule, and T, the temperature defined in terms of the expectation value of C2:   

 2

3
mT C
k

= < >

2
3

 (II.8) 

Where C2 is defined as: 

 2 2 2
1 2C C C C≡ + +  (II.9) 
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The Chapman-Enskog Solution to the Boltzmann Equation 

Because of the difficulty in attaining a solution to the Boltzmann equation, many attempts 

have been made to simplify the mathematics involved. Chapman and Enskog developed 

one such method independently (Chapman and Cowling, 1952: 107-133). A simplified 

version of this method appears here. The method begins by decomposing the distribution 

function into components: 

 1 2(1 ...)of f= + Φ + Φ  (II.10) 

Here fo represents the equilibrium Maxwellian distribution, and higher terms are 

perturbations from equilibrium. The rth approximation to the above distribution function 

can be written for any order: 

 1 2(1 ... )r o rf f= + Φ + Φ + + Φ  (II.11) 

The zeroth order distribution function is fo, the Maxwellian. Substituting the rth  

distribution into the Boltzmann equation and equating like terms produces formulations 

for the rth order perturbation term, Φr, for r > 0. The first order perturbation term, Φ1, can 

be found by substituting f1 = fo(1+Φ1) into Equation : (II.4)     

 ( )1
1 2 ln j

j j
j k

ckT A T B
n m x xk

⎡ ⎤∂∂
Φ = − +⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
 (II.12) 

 
2 /

i
i

CA A
kT m

=  (II.13) 

 21
3ij i j ijB B C C C δ⎛= −⎜

⎝ ⎠
⎞
⎟  (II.14) 
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The derivation of this perturbation term requires that mass, momentum, and energy are 

conserved for the fo distribution. It is not a simple derivation, and the reader should 

consult the references (Vincenti and Kruger, 1967: 386-390; Chapman and Cowling, 

1952: 118-121) for details. The above A and B are integral functions of thermal velocity 

and temperature obtained by an expansion in series of Sonine Polynomials (Burnett, 

1935: 385). Now, with formulations developed for fo and f1, it is possible to explore the 

effects a small perturbation from equilibrium has on a flow. Specifically, the shear stress 

tensor and the heat flux vector will be examined. As was indicated in the introduction of 

this work these two are good indicators of non-equilibrium. 

It is possible to write both the shear stress tensor and the heat flux vector for a monatomic 

gas in terms of quantities available through kinetic theory. The shear stress tensor is 

(Vincenti and Kruger, 1967: 325): 

 [ij i j ijC C p ]τ ρ δ= − < > −  (II.15) 

And the heat flux vector based on translation: 

 21
2i iq C Cρ= < >

0

 (II.16) 

By substituting the equilibrium distribution, fo, from equation (II.7) into equation (II.15) 

and (II.16), and including the definition of the expectation values as given in equation 

(II.3), the resulting shear stress and heat flux are: 

 (0) [ ]ij ij ijp pτ δ δ= − − =  (II.17) 

 (0) 0iq =  (II.18) 
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This gives conditions equivalent to an inviscid, adiabatic flow field, where viscosity and 

heat flux are completely absent. Using (II.17) and (II.18) in conjunction with 

conservation of mass, momentum, and energy it is possible to obtain the Euler Equations 

of fluid dynamics. This derivation gives information about the nature of the Euler 

Equations, namely, they describe purely equilibrium flow. Knowing this gives a more 

fundamental understanding of the limits of applicability of the Euler Equations. They are 

only valid in portions of a flow where changes in the fluid state are occurring at a very 

slow rate.  

It is also interesting to apply the same process to small perturbations from equilibrium. It 

is first necessary to realize that mass, momentum, and energy conservation are achieved 

through the equilibrium solution alone, and the perturbation term, Φ1, contributes nothing 

to conservation. In other words: 

 1 0o Cf dV
∞

−∞

Φ =∫  (II.19) 

 1 0i o Cc f dV
∞

−∞

Φ =∫  (II.20) 

 2
1 0o CC f dV

∞

−∞

Φ =∫  (II.21) 

The first order approximation is obtained by substituting f1 into (II.15) and (II.16): 

 ( )(1) 1[ 1ij o i j C ij ]f C C dV pτ ρ
∞

−∞

= − + Φ −∫ δ  (II.22) 

 2
(1) 1

1 (1 )
2i o iq f C Cρ

∞

−∞

= + Φ∫ CdV  (II.23) 
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Which, with a significant amount of manipulation and using equations (II.12), (II.19), 

(II.20), and (II.21), gives (Vincenti and Kruger, 1967: 391): 

 
( )

4

(1) 2
2 2
15 32 /

ji k
ij o C ij

j i k

cc ckT CB f dV
x x xkT m

τ δ
∞

−∞

⎧ ⎫⎛ ⎞∂ < >∂ < > ∂ < >⎪ ⎪= +⎜ ⎟⎨ ⎬⎜ ⎟∂ ∂ ∂⎪ ⎪⎝ ⎠⎩ ⎭
∫ −  (II.24) 

 
( )

2 4

(1) 2
2
3 2 /i

i

k T C Tq A f d
m xkT m

∞

−∞

⎧ ⎫
o CV ∂⎪= − ⎨

⎪
⎬ ∂⎪ ⎪⎩ ⎭

∫  (II.25) 

Now, if portions of the above equations are defined as: 

 
( )

4

2
2( , )
15 2 / o C
kT CC T B f dV

kT m
μ

∞

−∞

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭
∫  (II.26) 

 
( )

2 4

2
2( , )
3 2 / o C

k T CK C T A f dV
m kT m

∞

−∞

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭
∫  (II.27) 

Then equations (II.24) and (II.25) become: 

 (1)
2( , )
3

ji
ij ij

j i k

ccC T
x x x

kcτ μ δ
⎛ ⎞∂ < >∂ < > ∂ < >

= + −⎜⎜ ∂ ∂ ∂⎝ ⎠
⎟⎟  (II.28) 

 (1) ( , )i
i

Tq K C T
x

∂
= −

∂
 (II.29) 

These results have the same form as the shear stress tensor and heat flux vector contained 

in the Navier-Stokes equations (White, 2006: 66, 70). The viscosity, μ, and the thermal 

conductivity, K, are here given as functions of both temperature and thermal velocity. As 

has been noted, Sonine Polynomial expansions give a series solution for A and B. This 
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process is rather complicated and the interested reader is referred to the literature 

(Vincenti and Kruger, 1967: 397-402; Chapman and Cowling, 1952: 123-129; Burnett, 

1935). The infinite series expansions can be truncated to give approximate formulations 

for the viscosity and the thermal conductivity. The first approximation, which retains 

only the first expansion term, is given as: 

 

( )
2

(1)
4

7 4
0

5
8

4

mg
kT

mkT

m g g e d
kT μ

π
μ

σ
−

∞
=

⎛ ⎞
⎜ ⎟
⎝ ⎠ ∫ g

 (II.30) 

 

 (1) (1)15
4

kK
m

μ=  (II.31) 

 

It should be pointed out that the superscript on these two approximations is not the same 

as the order of the perturbation term included in the Chapman-Enskog solution. It is the 

approximation to the Sonine polynomials. In the above, g is the relative speed between 

two colliding molecules and σ is the collision cross-section of a molecule. The evaluation 

of these two parameters depends on the molecular model used. One common assumption 

is that molecules behave as hard spheres when colliding. To add more realistic physics an 

attractive force between molecules is added. The resulting viscosity relation, known as 

Sutherland’s formula, is given below (Chapman and Cowling, 1952: 223-224): 

 
3

'2'
'

T T S
T T S

μ μ +⎛ ⎞= ⎜ ⎟ +⎝ ⎠
 (II.32) 

TThe S in this equation, Sutherland’s constant, can be given for a gas within a specified 

temperature range and is a measure of the attractive force of the molecules. The μ’ 
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represents the viscosity at some characteristic temperature T’. This, coupled with 

equation  is a very common method of calculating viscosity and thermal 

conductivity, and is used in the CFD computations to follow. 

(II.31)

Due to the form of the Boltzmann equation used (equation (II.4)) the derivation of this 

result is strictly valid only for perfect monatomic gases, that is, only the translational 

energy mode is considered. It is possible to modify the preceding results to account for 

energy exchange between the translational and internal modes. However, the details are 

tedious and one can gather several interesting facts from the simpler monatomic version.  

First, no bulk viscosity (μB) has been predicted by the monatomic Chapman-Enskog 

solution, hinting that the bulk viscosity contained in the Navier-Stokes equations is 

somehow related to the internal energy modes. Experiments support this, suggesting the 

bulk viscosity is significant when dealing with the structure of shock waves where the 

increase of translational energy exchange between molecules causes the internal energy 

modes to activate (White, 2006: 67; Vincenti and Kruger, 1967: 407-412). The link 

between bulk viscosity and non-equilibrium is discussed in more detail in chapter IV.  

Second, the formulations for viscosity and thermal conductivity, which have been given 

purely as functions of temperature and thermal velocity, are only valid for small 

perturbations from equilibrium. Thus the constitutive relations found in the Navier-

Stokes equations have inherent assumptions limiting them to small perturbations from 

equilibrium. Flows exhibiting higher degrees of non-equilibrium are not adequately 

described by the constitutive relations given in equations (II.28) and (II.29). For these 

situations the continuum formulation is no longer adequate and a method that captures 
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more of the non-equilibrium effects is needed. The question remains: How does one 

determine when the continuum formulations are invalid?  

Boltzmann’s H-theorem 

The many parameters previously studied as possible indicators of non-equilibrium have 

already been mentioned in the introduction. The current work will use entropy generation 

to measure the extent of non-equilibrium. A more detailed justification of entropy 

generation as an indicator of non-equilibrium is appropriate here. 

It is first necessary to find a definition of entropy that is free of any equilibrium 

assumptions. This will be done by finding entropy as a function of the general velocity 

distribution function. Beginning with the famous Boltzmann’s relation: 

 lnS k= Ω  (II.33) 

This relation is a fundamental description of entropy as a measure of disorder. It relates 

entropy, a macroscopic thermodynamic variable, to the number of possible microstates in 

the system, Ω. Following the derivation given by Vincenti and Kruger (1967: Chap. 4), 

the number of microstates can be enumerated: 

 Cln lnjNΩ = 1j

j jN
⎛ ⎞

+⎜⎜
⎝ ⎠

∑ ⎟⎟  (II.34) 

The energy of the system resides in j energy levels, each containing a certain number of 

quantum energy levels. Here Nj is the number of particles contained within the jth energy 

grouping, and Cj is the number of quantum energy states in the jth group. For translational 
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energy, the number of particles in each group can be defined in terms of the distribution 

function:

 ( )j
C

N
f c dV

N
=  (II.35) 

Additionally, Cj is derived to be: 

 C
3

j
m V

= 3 CdV
h

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (II.36) 

With m as the particle mass, V as the volume and h is Planck’s constant. These two 

relations change the distribution from energy levels to using particle velocities. It can 

reasonably be assumed that the velocity levels are spaced very close together, thus 

turning the summation over all energy levels in equation (II.34) into an integration over 

all possible velocities. Combining equations (II.33)-(II.36) one obtains: 

 
3

( ) 1 ln m VS kN f c= + 3 ( ) CdV
h Nf c

∞

−∞

⎛ ⎞⎛ ⎞
⎜ ⎜ ⎟

⎝ ⎠⎝ ⎠
∫ ⎟  (II.37) 

The sum in the integrand can be separated into two integrals, and recalling the definition 

of the distribution function from equation (II.2), the sum of the first integral is equal to 

one. Rearranging and defining the particle density n = N/V: 

 
3

3ln C
hS kN kV nf nfdV
m

∞

−∞

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∫  (II.38) 

This expression for translational entropy is a function of the distribution of particle 

velocities and is free from assumptions of equilibrium. The change of entropy with time 

is found by taking the derivative of (II.38) with respect to time: 
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3 3

3 3

( )ln 1 lnC C
S h h nkV nf nfdV kV nf dV
t t m m t

∞ ∞

−∞ −∞

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= − = − +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ∫
f  (II.39) 

If a gas is assumed to have spherical molecules, with no external forces and uniform 

throughout, the Boltzmann equation from (II.4) and (II.5) reduces to (Chapman and 

Cowling, 1952: 69-70): 

 2 ' '( ) ( ) ( ) ( ) ( )
c

i i i i c
dP

nf n f c f f c f gdP dV
t ζζ ζ

∞

−∞

∂ ⎡= −⎣∂ ∫ ∫ ⎤⎦  (II.40) 

Substitute this simplified Boltzmann equation into (II.39) to obtain: 

 
3

2 ' '
31 ln ( ) ( ) ( ) ( )

c

i i i i c
dP

S hkV nf n f c f f c f gdP dV dV
t m ζζ ζ

∞ ∞

−∞ −∞

⎡ ⎤⎛ ⎞∂ ⎡ ⎤= − + −⎢ ⎥⎜ ⎟ ⎣ ⎦∂ ⎝ ⎠⎣ ⎦
∫ ∫ ∫ C  (II.41) 

In the reference by Chapman & Cowling an integral transformation is introduced:

 

( )

' '

' ' ' '

( ) ( ) ( ) ( )

1 ( ) ( ) ( ) ( )
4

c

c

C i i i i c C
dP

C C i i i i c
dP

f c f f c f gdP dV dV

Cf c f f c f gdP dV dV

ζ

ζ ζ ζ

φ ζ ζ

φ φ φ φ ζ ζ

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

⎡ ⎤−⎣ ⎦

⎡ ⎤= + − − −⎣ ⎦

∫ ∫ ∫

∫ ∫ ∫
 (II.42) 

Where φ is some function of the velocity distribution. Recognizing:

 
3

31 ln h nf
m

φ
⎛ ⎞

= + ⎜
⎝ ⎠

⎟  (II.43) 

And applying the integral transformation to equation (II.41) it follows that: 

2
' '

' '

( ) ( )ln ( ) ( ) ( ) ( )
4 ( ) ( )

c

i i
i i i i c

i idP

f c fS kVn
Cf c f f c f gdP dV dV

t f c f ζ
ζ ζ ζ
ζ

∞ ∞

−∞ −∞

⎛ ⎞∂ ⎡ ⎤= − −⎜ ⎟ ⎣ ⎦∂ ⎝ ⎠
∫ ∫ ∫  (II.44) 
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Inspection of the integrand reveals its sign does not depend on the respective signs of the 

two products, f(c)f(ζ) and f(c’)f(ζ’). If f(c)f(ζ) > f(c’)f(ζ’), the portion in the logarithm is 

positive, and the subtraction is negative, giving the integrand a negative sign. However, if 

f(c)f(ζ) < f(c’)f(ζ’), the portion in the logarithm is negative, and the subtraction is positive, 

again giving a negative sign to the integrand. Thus, the integral is always positive, 

meaning the change in entropy in time is strictly non-negative. The only way for this 

integral not to equal zero is if f(c)f(ζ) = f(c’)f(ζ’), which, as previously indicated, is the 

equilibrium condition. This means entropy will always increase unless it is at 

equilibrium. This lends support to the second law statement a system moves from one 

equilibrium state to another through the production of entropy. This is Boltzmann’s 

famous H-theorem, named for the function:

 ln CH f fdV= ∫  (II.45) 

Boltzmann showed the time rate of change of this function was monotonically 

decreasing. He also recognized the link between H and the monatomic gas expression for 

entropy (equation (II.38)), namely their time rates of change are related by a negative 

constant. In this way, Boltzmann provided support for the second law of thermodynamics 

based on kinetic theory. However, it should be pointed out many of Boltzmann’s 

contemporaries did not treat his H-theorem as a final word on the matter. They suggested, 

given the right conditions, the function would actually increase. This was done by 

imagining a system of molecules of known position and velocity behaving so dH/dt < 0. 

Next, reverse the velocity of every molecule so their paths are exactly retraced, making 

dH/dt > 0. This mental exercise seems to contradict the second law of thermodynamics. 

However, this paradox, named after Loschmidt, predates Heisenberg’s uncertainty 
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principle. This principle states one cannot actually know the position and velocity of 

every particle, and thus the original assumption of reversing every particle is not possible. 

Additionally, as is stated by one source, the probability a system would experience an 

exact reversal is extremely small. Thus, “The H-theorem is to be regarded as being 

statistical in nature and the best that we can say is that, first, the most probable state of a 

system in equilibrium is one for which H is a minimum, and second, for a system with a 

value of H greater than the minimum there is an overwhelming probability that H will 

decrease …” (Eyring and others, 1964: 117). In regards to the original purpose of this 

effort, the H-theorem provides statistical assurance that entropy will be generated as a 

system experiences non-equilibrium. In fact, we will use entropy generation as a tool to 

quantify deviations from equilibrium.  

Entropy Generation 

The Navier-Stokes equations are limited to small perturbations from non-equilibrium, 

and entropy generation results from these perturbations. In order to measure the 

magnitude of these deviations it is necessary to develop a formulation for entropy 

generation without inherent assumptions of equilibrium built in.  

The work on entropy generation by Schrock (2005) relied on a formulation for entropy 

derived using statistical mechanics and kinetic theory. The translational portion of this 

was given in equation (II.37). The left hand side of the moment of Boltzmann’s equation 

(II.4) was used to track changes in entropy, thus entropy production. The final 

expressions for entropy and entropy generation were given in terms of the distribution 
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functions of velocity, rotational energy, and vibrational energy. DSMC was used to 

generate these distribution functions. This method, although theoretically accurate, was 

computationally demanding and statistically difficult, due to the necessity of sorting 

particles to create the distribution functions. For this reason, a different approach to 

finding entropy generation has been taken here, one eliminating the need to sort particles 

into distribution functions. The subsequent derivation follows Comeaux (1995: 49-52) 

and Camberos (2001). 

The Gibbs equation from classical thermodynamics defines entropy in terms of 

thermodynamic variables. It is found by combining the definition of entropy for a 

reversible process with the first law of thermodynamics: 

 qds
T
δ

≡  (II.46) 

 1q de w de pdδ δ
ρ

⎛ ⎞
= + = + ⎜ ⎟

⎝ ⎠
 (II.47) 

thus giving the relation: 

 1Tds de pd
ρ

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
 (II.48) 

The above can be rewritten for a moving element in terms of the total derivatives: 

 Ds De p DT
Dt Dt Dt

ρρ ρ
ρ

= −  (II.49) 
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Conservation of mass, momentum (neglecting external forces), and energy (neglecting 

external heating) can be written (Tannenhill and others, 1997: 251-257): 

 0i

i

uD
Dt x

ρ ρ ∂
+ =

∂
 (II.50) 

 ( ij ij
j

DV p
Dt x

)ρ δ τ∂
= − +

∂
 (II.51) 

 j j i
ij

j j

u q uDe p
Dt x x x

ρ
j

τ
∂ ∂ ∂

+ = − +
∂ ∂ ∂

 (II.52) 

Substitution of the mass and energy equations into equation (II.49) yields: 

 2 0iji i i

i j

q u qDs TT
Dt x T T x T xi

τ
ρ ∂ ⎛ ⎞+ = − +⎜ ⎟∂ ∂ ∂⎝ ⎠

∂
≥  (II.53) 

The terms on the left hand side of this equation represent the transport of entropy in a 

flow. The right hand side of the relation is positive definite, and is identified as the 

irreversible entropy generation. Both sides of equation (II.53) should be greater than or 

equal to zero to satisfy the second law of thermodynamics. 

Because they are non-negative and associated with irreversibilities, the terms on the right 

hand side of the equality are the entropy generation density: 

 2
ij i i

gen
j i

u q TS
T x T x
τ ∂ ∂

= −
∂ ∂

 (II.54) 

It was mentioned at the beginning of this derivation that a formulation for entropy 

generation free from assumptions of equilibrium was needed. The mass, momentum, and 
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energy conservation equations (II.50) - (II.52) do not, of themselves, assume equilibrium. 

The constitutive relations for the shear and heating found in the conservation equations 

are where equilibrium assumptions are normally made. However, since these two have 

not yet been defined, they do not make any assumption of equilibrium.  

The other component of concern in this derivation is the Gibbs equation (II.48). The 

derivation assumes this equation is valid for non-equilibrium situations, but there is 

substantial debate as to the truthfulness of this assumption (Comeaux, 1995: 74). This 

debate is the foundation of Extended Irreversible Thermodynamics (EIT), in which the 

Gibbs equation is modified for non-equilibrium by introducing the shear and heating as 

new thermodynamic variables.  This discipline is relatively new, and beyond the scope of 

this document. One consolation given by Comeaux is the Gibbs equation is valid at least 

to second order in the Knudsen number. For this research it will be assumed the Gibbs 

equation holds for high enough orders of accuracy to produce meaningful results, while 

recognizing it has some equilibrium limitations. Future analysis will seek to implement a 

formulation able to remove these limitations.  

The next task is to find expressions for the shear stress tensor, τij, and the heat flux vector, 

qi, free from equilibrium assumptions. Traditionally, as found in the Navier-Stokes 

equations for a continuum, they can be expressed as follows: 

 i i i
ij ij

j i i

u u u
x x x

τ μ λ
⎛ ⎞∂ ∂ ∂

= + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
δ  (II.55) 

 i
i

Tq K
x

∂
= −

∂
 (II.56) 
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These forms are quite similar to the expressions found using the Chapman-Enskog 

solution to the Boltzmann equation (the bulk viscosity is related to the second viscosity 

coefficient by the definition λ ≡ μB – 2/3 μ) valid only for small deviations from 

equilibrium. Many researchers have proposed methods to extend the continuum equations 

to be valid for higher levels of non-equilibrium. Although it is not useful to list them all 

here, a few will be mentioned to demonstrate how they seek to extend the range of 

validity of the continuum equations, but unfortunately introduce added complications. 

One way of extending the validity of continuum relations is to use the Chapman and 

Enskog method, but include higher order perturbation terms. By including the second 

order, a complicated set of equations called the Burnett equations results. The Burnett 

equations can be thought of as the next step after the Euler and Navier-Stokes equations. 

Some evidence has shown the Burnett equations do indeed extend the limits of non-

equilibrium (Fiscko and Chapman, 1989; Pham-Van-Diep and others, 1991). However, 

some researchers found these equations lead to instabilities, and negative entropy 

generation (Comeaux, 1995: 37-39, 53-56).  

Another method of extending the range of validity of the continuum equations was 

developed by Grad after realizing the closure relations found by the Chapman-Enskog 

solution to the Boltzmann Equation are limited by approximating the velocity distribution 

functions with only two thermodynamic variables (1963). According to Grad, this did not 

allow the system to capture a wide range of distribution functions, inherently limiting 

such a system to near-equilibrium. His solution was to introduce new variables to 

describe the distribution functions. He expanded the distributions to higher moments, and 
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thus obtained as new thermodynamic variables the components of the shear and the 

heating. These, instead of being represented by constitutive relations, now helped to 

define the thermodynamic state of the system. With the added relaxation equations for 

these new variables, Grad constructed 13 equations. Although this method proved 

initially successful at capturing additional non-equilibrium effects, it too proved unstable 

for certain situations (Comeaux, 1995: 119-120).  

An different way of obtaining the shear stress tensor and heat flux vector is to completely 

abandon the continuum formulations and instead resort to a particle method. Although 

any computational must rely on some equilibrium assumptions, particle methods seek to 

attain a greater physical realism by simulating molecular interactions. A great deal of 

research has shown that DSMC is a valid tool for capturing non-equilibrium in a flow 

(Schwartzentruber and others, 2006; Erwin and others, 1989, Boyd, 1989; Gallis and 

others) The particle interactions in DSMC are based on kinetic theory, and it is not 

difficult to generate shear and heating terms. The kinetic definitions for these two 

constitutive relations are provided in equations (II.15) and (II.16). They are given in 

terms of the thermal velocity and internal energy of each particle, both known when 

using the DSMC method.  
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III. Numerical Methods and Implementation 

Changes to Previous Entropy Generation Calculations 

In the previous chapter, it was explained that although the method used in the preceding 

work by Schrock is theoretically accurate, it was computationally undesirable. Particles 

had to be sorted into the probability distribution functions (PDFs); a time consuming 

process. The values of entropy and entropy generation were highly sensitive to the 

number of particles collected into each PDF. It was also necessary to calculate the 

gradient of the entropy flux, a process which introduces numerical error, particularly for 

the unstructured grid. Finally, the modifications made to the code to implement these 

calculations limited it to serial computations. 

Schrock’s work was purely one dimensional, making the calculations relatively simple, 

so the above limitations were not an issue (2005). However, two and three-dimensional 

problems require much larger grid sizes, and thus many more particles. Increasing the 

number of particles used has a detrimental effect on computational time as will be 

demonstrated later in this section. Although the author parallelized the code to run on 

multiple processors, the PDF sorting routines made the code almost unusable because of 

the great amount of computation time needed.  

In addition to these problems, the entropy generation obtained by integrating over the 

PDFs was statistically poor. Increasing the number of particles collected into each PDF 

improved the quality of the solution, but it was difficult to achieve sufficient numbers 
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with large grids. Although the method of finding entropy generation using the 

distribution functions is interesting because it reveals information about the shape of the 

distributions themselves and thus links directly to Boltzmann’s H-Theorem, it was finally 

discarded for the current method. 

The preceding chapter ended with an alternate formulation for entropy generation valid 

for non-equilibrium flows. This method is superior because it does not rely on a sorting 

routine to evaluate PDFs. Instead, it matches the original structure of the DSMC code by 

summing moments and using the sums to calculate macroscopic expectation values. This 

decreases the computing time and decreases the statistical sensitivity of results.   

Problem Setup 

It is desirable to compare the continuum formulation with the DSMC formulation to 

ensure they are compatible. To do this, two experimental cases performed at the Calspan-

University of Buffalo Research Center (CUBRC) were modeled using Navier-Stokes 

based CFD and DSMC. The geometries of the two experiments, a hollow cylinder flare 

(run 5) and a double cone (run 7) are pictured in Figs. 1 and 2 (Holden and Wadhams, 

2007). All measurements are given in inches for both figures. 
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Figure 1: Hollow Cylinder-Flare Geometry (run 5), taken from Holden and Wadhams (2007) 
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Figure 2: Double Cone Geometry (run 7), Holden and Wadhams (2007) 

 

The flow conditions of runs 5 and 7 are described in Table 1. The low freestream 

Reynolds Numbers ensure both flows remain laminar.  
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Table 1: Flow Properties 

Run Mach Re Tinf   (K) Pinf   (Pa) ρinf  (m^3/kg) Vinf  (m/s)
5 15.3 3.20E+04 52.28 2.523 0.00016 2252.47
7 15.6 4.19E+04 42.611 2.227 0.000176 2072.64  

An investigation Knudsen number gives an idea of what type of flow may be involved 

with these particular cases. For run 5, the freestream mean free path is 3.096x10-4 m.  To 

find the freestream Knudsen number, use the length along the x-axis of the geometry, L, 

as the characteristic length. By equation (I.1) this gives Kn∞ = 0.0014. The freestream Kn 

is well within the accepted limits of continuum flow (Kn << 1.0).  

The local Knudsen number for a shock is quite different however. If the thickness of a 

shock is used as the characteristic length, the Kn is more in the range of 0.3. This cannot 

be seen as a continuum. As discussed in the introduction to this document, the choice of 

the characteristic length is somewhat arbitrary.  

Other research groups have previously used these test cases to validate DSMC and CFD 

codes (Harvey, 2003). Codes are validated comparing the solution at the wall to the 

experimental data. This relies on two parameters, the coefficient of pressure and the 

Stanton number, defined as: 

 1 2
2

p pCp
Vρ

∞

∞

−
=  (III.1) 

 1 2
2

qSt
Vρ ∞

=  (III.2) 
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CFD–Based Analysis 

The CFD software used in this analysis was FLUENT, a standard fluid dynamics package 

(FLUENT, 2004). Although this software has the ability to make some compensation for 

real gas effects, for this research the fluid was modeled as an ideal perfect gas. This was 

done to illustrate the limitations of a CFD solution not taking into account real gas effects 

as compared to the particle based DSMC. The solutions are not expected to agree well 

with the experimental data.  

Unstructured grids were adapted to flow gradients in preliminary solutions. Three 

adaptive iterations were performed to ensure that the cell sizing was adequate to capture 

the shock zones and the boundary layers. Figure 3 and Figure 4 show the final grids used. 

 
Figure 3. Run 5, FLUENT adapted grid 
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Figure 4. Run 7, FLUENT adapted grid 

Perfect gas laminar solutions were obtained using a 2nd order upwind scheme for the 

fluxes and Sutherland’s law for the viscosity. The residuals of the two runs did not 

converge, perhaps because of the low pressure of the flow. However, the wall data, 

compared to experimental data, provides a validation for the solution.  

To calculate entropy generation for the CFD simulations, equations (II.55) and (II.56) for 

the shear stress and heat flux were used in equation (II.54) for the entropy generation. 

Recall this formulation of the constitutive relations, τij and qi, assumes only small 

deviations from equilibrium.   

The viscosity, μ, and the thermal conductivity, K, are calculated using Sutherland’s 

formulas, which are kinetic models based on a rigid sphere assumption and empirical 

constants (White, 2006: 28-30; Tannehill and others, 1997: 259, Vincenti and Kruger, 
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1967: 21-23).  These formulas, while valid for simple gases at moderate temperatures, are 

probably not valid for highly non-equilibrium flows. The bulk viscosity term, μB, is 

assumed to be zero, which is the same as Stokes’s hypothesis of 3λ + 2μ = 01. Although 

this is a common assumption, it is likely invalid for the high-speed flows with shocks 

(White, 2006: 67). According to the work by Schrock, good CFD results for his normal 

shock calculations were obtained by assuming λ = 0, or μB = (2/3)μ. 

DSMC–Based Analysis 

Compared to Molecular Dynamics (MD), which models all molecules in a flow, DSMC 

reduces computational time by statistically representing a large number of actual particles 

with a single simulated particle. The velocity and internal energy state of each simulated 

particle is tracked as it moves about the flow, colliding with surfaces and other simulated 

particles. One important assumption made by DSMC is that the movement of the 

molecule and the effects of a collision can be uncoupled within a small time step. In other 

words, the position of each simulated molecule is calculated based on the time step and 

velocity, and afterwards collisions are allowed to take place within that same time step, 

independent of how the particles have moved. There are many sources available 

describing the mathematics involved in DSMC; one excellent reference is the book by 

Bird (1994).  

The statistical modeling performed by DSMC also makes use of computational 

approximations. As noted by Bird (1994: 214), in a real gas it is possible a relative few 

                                                 
1 λ ≡ μB – (2/3) μ. B
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molecules at extreme positions in a distribution may have significant effects on the flow. 

These few particles will not be represented in the distribution formed by the virtual 

particles, and the effects will not be captured in the flow. For this reason, it is best to keep 

the ratio of simulated particles to the number of actual particles as low as possible. Also, 

in order to capture collisions, the time step and cell size should tend toward zero, and be 

much less than the mean collision time and mean free path, respectively. Acceptable 

values of these parameters will vary depending on the flow.  

This research makes use of the DSMC code MONACO created, developed, and 

maintained at the University of Michigan (Boyd and Wang, 2001). The simulations used 

the variable hard sphere model of Bird (1994: 40-41). 

 There are many parameters potentially affecting the accuracy of the results of a DSMC 

run. Some are specific to the gas species, such as those used to compute energy 

exchanges during collisions. Table 2 shows the species parameters for diatomic nitrogen. 

Schrock used these values in the previous work, and they appear in various sources in the 

literature (2005: 52). Schrock indicates the choice of these parameters may impact the 

solution. It is reasonable to assume that some of the discrepancy between the 

experimental data and the simulation results is due to one or more of these values. Future 

studies should investigate the effects these parameters may have on a solution.  
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Table 2.  DSMC Diatomic Nitrogen Parameters 

Molecular Weight (g/mol) 28.01
VHS Exponent ω 0.24
VHS Reference Diameter (pm) 407
VHS Reference Temperature (K) 273
Rotational degrees  of freedom 2
Vibrational degrees  of freedom 1.8
Θrot  (K) 2.88
Θvib  (K) 3371
Max Rotational Collis ion # 15.7
T ref  in Rot. Model (K) 80
Probability of Vibrational Exchange 0.01
Equilibrium Separation (pm) 109.769
Oscillating Frequency (Hz) 7.071 x 1013

 

In addition to parameters corresponding to the flow species, the DSMC user must have 

knowledge of how time step size, the ratio of actual particles to virtual particles, grid cell 

size compared to the mean free path, number of particles per cell, and the total sampling 

time affect the solution. In order to gain an insight into the variation of these parameters, 

three studies were performed. The total runtime, the size of the grid, and the number of 

particles used were varied and compared. 

Total Runtime Studies 

One of the basic assumptions behind DSMC is the particle movement may be uncoupled 

from the collision occurring within a small time step. The validity of this assumption will 

depend on the ratio of the time step size to the mean time between collisions. For this 

reason, the time steps used in all simulations was adjusted so this ratio would be no 

greater than 0.1. Experience showed, at least for these cases, a lower ratio did not 

improve the solution, but did significantly increase the total computation time.  
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Unlike the residual convergence in CFD, DSMC has no simple parameter like residual 

convergence to determine how long to run a simulation. Statistically, the more particles 

sampled over time, the better the solution. In order to determine the total simulation time 

required for each run, data was taken for both runs 5 and 7 over a span of many time 

steps. The coefficient of pressure and Stanton number along the wall were used to 

calculate the RMS error between data sets. Convergence is indicated as the solution 

ceases to change with runtime, or as the RMS error approaches zero. For run 5, this is 

plotted on a log-log scale as shown in Figure 5 and Figure 6. The trend is logarithmic, 

meaning longer runtimes improve the solution less. A good cutoff is indicated when the 

RMS for the maximum Cp and St values reaches 10–3, requiring about 30,000 time steps 

for run 5 and 50,000 time steps for run 7.

 
Figure 5. Run 5 RMS of Cp and St 

 
Figure 6. Run 7 RMS of Cp and St 

 

Grid Studies 

Three different grids were used for each run to observe the dependence of the solution on 

the cell sizes. The initial grids were uniformly coarse, the medium grids remained 
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uniform spacing but with a decreased cell size. The third grid was refined using the 

solution obtained on the medium grid. Cells are refined based on the mean free path to 

ensure the ratio of the cell size per mean free path is less than 1.0. Table 3 shows the 

number of cells for each grid, the processor hours to finish the solution to 200,000 time 

steps, and the average cell size per mean free path. Investigation of the solutions as 

compared to the experimental data revealed the average cell-size per mean free path 

needed to be less than 1.0.  

Table 3. Grid Study 

Grid Number of Cells Processor Hours Ave cell-size/mfp 

Run 5 Coarse 53,248 832 1.82 

Run 5 Medium 332,743 969 1.71 

Run 5 Refined 215,800 976 0.92 

Run 7 Coarse 70,727 576 3.14 

Run 7 Medium 442,102 736 1.18 

Run 7 Refined 472,168 728 0.998 
 

Particle Studies 

The solutions are also dependent on the ratio of actual particles to virtual particles. A 

lower ratio gives a higher number of virtual particles used in the simulation, and 

theoretically better results. However, using more particles in the simulation significantly 

increases the processor hour demands. Four levels of variation were used for run 5 to 

determine the correct number of particles to use.  
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Table 4. Particle Ratio Study 

Run Particle Ratio # of Particles Processor Hours 

Run 5 Least 8×1012 2,100,000 88 

Run 5 Less 5×1012 3,356,000 176 

Run 5 Middle 1012 16,749,000 512 

Run 5 More 8×1011 20,930,000 618 

 

Figure 7 and Figure 8 show the variation of the coefficient of pressure and the Stanton 

number with the number of virtual particles used in the simulation. The jump from 

1×1012 and 8×1011 in particle ratio gives no visible improvement on the solution. 

However, there is a marked difference between 1×1012, 5×1012, and 8×1012. This 

indicates that using 1012 actual particles per virtual particle is sufficient. A similar process 

for run 7 determined a sufficient particle ratio of 5×1012. 
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Figure 7. Run 5 - Variation of Cp with number of simulated particles 

 

 

 

 

Figure 8. Run 5, Variation of St with number of simulated particles 

 

 45



Calculating Shear and Heating 

Because the constitutive relations given in equation (II.55) and (II.56) are based on 

equilibrium assumptions, it is necessary to use other methods to compute entropy 

generation. A method such as DSMC, based on kinetic theory, does not make the same 

assumptions of near equilibrium made in the Navier-Stokes constitutive relations. When 

using DSMC the velocities (ci) and internal energy state (εrot, εvib) of each virtual-particle 

is known. The shear tensor and heat flux vector for a diatomic gas with rotational and 

vibrational energy can be given in terms of the thermal velocities (Ci = ci - ui), where ui = 

< ci >, the average molecular velocity, and internal energies as (Vincenti and Kruger, 

1967: 325-326):  

 [ij i j ijC C p ]τ ρ δ= − < > −  (III.3) 

 21
2i i i rot iq C C n C n Cρ ε= < > + < > + < vibε >  (III.4) 

The heat flux vector in equation (III.4) differs from the monatomic gas version from 

equation (II.16) by including the flux contributions from the rotational and vibrational 

energy modes. Entropy generation is found by substituting equations (III.3) and (III.4) 

into equation (II.54):  

2
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( ) ( )i j ij i i i rot i vib
gen

j i

C C p C C n C n C TS
T x T x

ρ δ μ ρ ε ε< > − ∂ < > + < > + < > ∂
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∂ ∂
 (III.5) 

Kinetic theory defines temperature, T, pressure, p, and density, ρ, as: 
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p Cρ= < >  (III.7) 

 nmρ =  (III.8) 

where k is the Boltzmann constant, m is the mass of each particle, and n is the particle 

density, or number of particles per unit volume.  

The remaining expectation values (<CiCj>, <CiC2>, <Ciεrot>, and <Ciεvibj>) are found 

by summing up the products within the brackets over all particles and dividing by the 

number of particles, N. A few examples of how this is done are helpful. The average 

velocity in the x-direction, is calculated as follows: 

 1 1
1

1 N

k
k

u c c
N =

= < > = 1,∑ 2 (III.9) 

The DSMC program calculates the velocity and internal energy of each virtual-particle 

during each time step, and then stores summations like the above, allowing the user to 

extract expectation quantities based on these summations. Another example is the shear 

stress. The three-dimensional shear stress tensor, τij, contains nine components. Because 

it is symmetrical only six are distinct. Each of the components contains the expectation 

value <CiCj>. For the example, let us look at <C1C2>: 

                                                 
2 The k here is used to denote that the summation is performed over all particles, 1 to N. This notation will 
be dropped in the following equations.  
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The expectation values within the heat flux vector (<CiC2>, <Ci εrot>, and <Ci εvib>) 

may be calculated in a similar fashion to equation . The first value, representing 

the translational contribution to the heat flux, expands to:

(III.10)

  (III.11) 2 2 2 2 2 2 2
1 2 3 1 2 3i i i i i i iC C C C C C C C C C C C C C< > = < + + > = < > + < > + < >

Each of the individual expectation values separately are: 

2 2
1 12 2

1 1 1 1 1 1 1
1 ( )( )( ) 2 2i i

i i i i

c c c c c
C C c c u c u u u u u

N N N
μ< > = − − − = − + − 1

i N
∑ ∑ ∑∑  (III.12) 

2 2
2 22 2

2 2 2 2 2 2 2
1 ( )( )( ) 2 2i i

i i i i

c c c c c
C C c u c u c u u u u u

N N N
< > = − − − = − + − 2

i N
∑ ∑ ∑∑  (III.13) 

2 2
3 32 2

3 3 3 3 3 3 3
1 ( )( )( ) 2 2i i

i i i i

c c c c c
C C c u c u c u u u u u

N N N
< > = − − − = − + − 3

i N
∑ ∑ ∑∑  (III.14) 

The above values each represent a contribution to the ith direction of the translational heat 

flux. 

The internal energy contributions to the heating are calculated similarly: 
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The DSMC code was modified to calculate the above expectation quantities. These 

calculations match the method used by the original code to find macroscopic quantities 

such as temperature and pressure from microscopic particle data. As mentioned 

previously, this method is less computationally demanding and statistically cleaner than 

sorting particles into PDFs.  

One interesting result of the above formulations is it is possible to separate the 

contributions to the entropy generation into translational, rotational, and vibrational 

components. The translational entropy generation formulation is given below: 
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The contributions from the internal energy are only found within the heat flux, and are 

expressed as follows: 
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MonacoGui 

In addition to the above modifications made to the code, a program was written to help 

with the setup, submission, and monitoring of DSMC jobs. The inputs and feedback from 

the DSMC program are done entirely with text files. To handle the many input 

parameters needed to be set for each run, the MonacoGui program enables the user to use 

a graphical interface to quickly make modifications to the inputs. It also allows the user 

to submit jobs to the clusters, and monitor their progress based on a variety of output 

parameters. The details of this program are included in the appendix.  
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IV. Results 

Run 5 Analysis 

To validate the solutions, coefficient of pressure and Stanton number are compared to 

experimental data provided by the CUBRC hypersonic wind tunnel facility (Holden and 

Wadhams, 2004). The wall data in Figure 9 and Figure 10 reveals some difference in the 

DSMC and CFD solutions. The DSMC solution matches the data ahead of x/L = 0.6 

better. Behind this value both solutions diverge from the experimental data. This region 

corresponds to a shock-boundary layer interaction that is very difficult to model. This 

region will be described in more detail in regards to run 7. The DSMC solution somewhat 

under-predicts the pressure rise in the interaction region. The cause of this is unknown.  

The lack of perfect agreement between the experimental and computational wall data 

does not indicate the DSMC method is in error. Other authors have provided somewhat 

better solutions to these same cases (Harvey, 2003). Unfortunately, these solutions are 

often the result of a great deal of “knob turning”. As was described in the Numerical 

Methods section of this document, there are many parameters the DSMC user must 

understand and wisely control. The amount of experience required may also depend on 

the level of sophistication of the code. According to one code developer, an elegant code 

allows a user with little basic knowledge of the exact mechanics of DSMC to obtain a 

good solution. The solution loses the dependence on the choice of the wide range of run 

parameters as the code becomes increasingly automated. Many DSMC codes are not yet 

developed to this level (Bird, 2006). 

 51



 
Figure 9. Run 5 Coefficient of pressure comparison 

 

 
Figure 10. Run 5 Stanton number comparison 
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Figure 11 and Figure 12 show contour plots of temperature and entropy generation 

obtained by DSMC for case 5. The entropy generation shown in Figure 12 is non-

dimensionalized to represent a ratio between microscopic and macroscopic time scales, 

similar to the Knudsen number from equation (I.1), a ratio between length scales. 

 gen
S

S
Kn

Rρ ν∞ ∞

=  (IV.1) 

Here, genS /ρR, the entropy density generation divided by the gas constant and the density, 

can be interpreted as the macroscopic time scale, while ν, the molecular collision 

frequency, represents the microscopic time scale. Entropy-generation density is used (as 

opposed to simply entropy generation) as a direct result of the units in equation (II.54).  

The contour plots offer a qualitative analysis of the flow. Standing off the horizontal 

surface of the cylinder is a shock somewhat like an oblique shock found standing off an 

inclined surface. The hypersonic boundary layer creates this shock. The high amount of 

kinetic energy in the freestream transfers to internal energy due to viscosity at the wall. 

This results in high temperatures, and thus lower densities. The boundary layer grows 

more rapidly in order to pass the required mass flow. As the displacement thickness in the 

boundary layer rapidly increases, the effective body seen by the incoming flow 

correspondingly increases, creating a shock standing off the leading edge of the cylinder.  

Immediately following the leading edge, the boundary layer grows quickly due to 

feedback effects from the freestream. Because the viscous boundary layer and generated 

shock strongly affect the flow, researchers characterize this region as having strong 
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viscous interaction. Non-equilibrium effects dominate this region. These effects lessen 

farther along down the cylinder; the rate of boundary layer growth slows, affecting the 

freestream much less. The shock also ceases to curve as internal energy relaxation has 

had time to occur. This region has weak viscous interaction (Anderson, 1989: 15-16, 302-

306).  

Visual inspection of these two contours indicates the entropy generation occurs in the 

vicinity of the shocks, as expected. The non-equilibrium in the strong viscous interaction 

region at the leading edge is also seen.  

 

Figure 11. Run 5, Ratio of local temperature to freestream temperature contour 
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Figure 12. Run 5, Entropy generation contour 

The viscous shock eventually impinges onto the surface of the flare resulting in a sharp 

increase in surface pressure and especially heating at the wall around x/L = 0.65 (Figure 9 

and Figure 10).  This impingement affects the boundary layer and shock forming on the 

surface of the flare. The oblique shock on the surface of the flare originates from this 

point of impingement. Run 7 shows an even stronger shock-boundary layer interaction 

and will be studied in more detail later in this document. 

Data from the run 5 solutions was extracted vertically from the wall at x/L = 0.2 and x/L = 

0.7 as shown by the dashed lines in Figure 12. Figure 13 shows the two temperature 

profiles.  
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Figure 13. Run 5, Temperature profile comparison at x/L = 0.2 and x/L = 0.6 

As seen in the figure, there are differences between the solution generated using CFD, 

and the solution generated using DSMC. Approaching the wall vertically down from the 

freestream at x/L = 0.2, the CFD solution predicts a rise in temperature before DSMC. 

However, the opposite is true at x/L = 0.7, where the DSMC solution predicts an earlier 

rise in temperature. The difference in these two locations is an oblique shock standing off 

of the flare (x/L = 0.7), while there is only a weak shock triggered by the viscous 

boundary layer standing off of the surface of the cylinder (x/L = 0.2). 

Further insight can be gained by investigating the entropy generation profile. Figure 14 

shows the profile at both x/L = 0.2 and x/L = 0.7. This figure shows the dramatic 
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difference between the two locations in magnitude of entropy generated. The entropy 

generated due to the oblique shock standing off the flare is much greater than the entropy 

generated by the weak viscous shock. This indicates the flow passing through the oblique 

shock experiences strong non-equilibrium, while the flow in the region of the fore-body 

does not. An enlarged view of the x/L  = 0.2 profile shows the peak magnitude of the 

entropy generation here is roughly ten times less than for the oblique shock. 

Figure 14 highlights the differences between the CFD and DSMC solutions. The DSMC 

solution predicts the oblique shock to stand further from the surface and also predicts a 

much thicker shock. These trends appear in other recent research (Lofthouse and others, 

2006; Schwartzwelder and others, 2006; Schrock, 2005). The CFD peak entropy 

generation at x/L = 0.7 is much greater than the DSMC. This is probably because CFD 

predicts a thin shock, so the entropy must climb through steep gradients within the shock 

to satisfy jump conditions. To achieve this, CFD predicts a very high peak of entropy 

generation in the thin shock.  
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Figure 14. Run 5, Entropy generation profile comparison for x/L = 0.2 and x/L = 0.7 

 

 
Figure 15. Run 5, Entropy generation profile comparison for x/L =0.2 
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The previous figures all compared a solution obtained using DSMC with a solution 

obtained using CFD. It is interesting to compare these solutions, but it is not correct to 

state all differences are due to non-equilibrium effects modeled in the DSMC solution. 

Although it is tempting to say this, there are too many differences between the two 

solution methods to make such a general statement.  

However, the goal is to understand how non-equilibrium might affect a solution; 

particularly how non-equilibrium affects the values of the shear and heating and where 

the non-equilibrium effects are manifest. Unfortunately comparing the values of shear 

and heating obtained with the CFD solution with the values obtained by the DSMC 

solution is a bit like comparing apples to oranges. The flow fields themselves are distinct 

between the two solutions, so the values of the constitutive relations, dependent on flow 

field parameters, will thus be correspondingly different and it will be impossible to see 

where the constitutive relations differ in terms of non-equilibrium.  

For this reason, another method of comparison is proposed. It is possible to calculate the 

shear stress and heat flux from parameters obtained via the DSMC solution using the 

Navier-Stokes constitutive relations, equation (II.55) and equation (II.56). These then 

could be compared to the shear and heating values generated by the kinetic theory 

method in equations (III.3) and (III.4). To state it simply: use the same solution field 

(from DSMC), use different constitutive relations (continuum and kinetic). This will 

enable a look at the differences between the two methods of computing the constitutive 

relations. Because the shear stress tensor has six distinct components and the heat flux 
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vector has three, the entropy generation, a convenient scalar quantity which is made up of 

both shear and heating, will be used to make this comparison.  

Continuum and kinetic KnS profiles are shown in Figure 16 and Figure 17 for the two 

vertical extractions. These figures display large spikes in entropy generation coinciding 

with shock locations. The most obvious trend is that in the shock, the kinetic method 

predicts a higher peak value of entropy generation with a thicker shock. The thicker 

shock signifies the kinetic method predicts a larger region of non-equilibrium than 

predicted by the constitutive relations. Also, the higher peak entropy generation indicates 

a greater degree of non-equilibrium. The continuum method underestimates the total 

amount of entropy generated. These results corroborate observations by Schrock that 

DSMC in general predicts that non-equilibrium effects are more widespread in the flow 

than when calculated by the Navier-Stokes equations. The constitutive relations used in 

the Navier-Stokes equations to calculate shear and heating break down in the presence of 

non-equilibrium.  
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Figure 16. Run 5, Entropy generation by kinetic and continuum methods for x/L = 0.2 

 

 
Figure 17. Run 5, Entropy generation by kinetic and continuum methods for x/L = 0.7
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It is also possible to investigate the contributions of the rotational and vibrational modes 

to the entropy generation. Figure 18 and Figure 19 show these contributions for both 

locations. As would be expected, the translational entropy generation contributes the 

most to the total. The peak value of the translational entropy generation is greater than the 

value predicted by the continuum approach as seen in Figure 16 and Figure 17. This 

difference is due purely to non-equilibrium in the translational energy. The vibrational 

mode contributes almost nothing, as the characteristic temperature of vibration is 3,390 

K, well above any temperature in this flow.  

 

 
Figure 18. Run 5, Internal energy contributions to entropy generation, x/L = 0.2 

 



 
Figure 19. Run 5, Internal energy contributions to entropy generation, x/L = 0.7

The internal energy contributions to entropy generation may be a useful tool to extend the 

usefulness of the constitutive relations. The bulk viscosity, sometimes known as the 

dilatation viscosity because of its connection with expanding or contracting gases, could 

provide a means to do this. As previously mentioned, the bulk viscosity makes no 

contribution for a dilute monatomic gas. However, non-equilibrium in the distribution of 

internal energy can cause the bulk viscosity to become non-zero (Vincenti and Kruger, 

1967: 407- 412). With knowledge of non-equilibrium for both rotation and vibration, it 

may be possible to develop a formulation for the bulk viscosity which can be applied to 

the constitutive relation for shear. An example of how the inclusion of bulk viscosity can 

improve the shear is given later in this chapter. 
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Run 7 Analysis 

The wall data comparisons between DSMC, CFD, and experimental data are displayed 

for run 7 in Figure 20 and Figure 21. Again, both solvers have difficulty calculating the 

region where the shock from the fore-body impinges upon the boundary layer of the rear 

cone.  

 
Figure 20. Run 7, Coefficient of pressure comparison 
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Figure 21. Run 7, Stanton number comparison 

Temperature and entropy generation contours of run 7 are displayed in Figure 22 and 

Figure 23. The geometry here is similar to case 5; however, the oblique shock standing 

off the 25-degree angle fore-body of the cone for case 7 is stronger than the viscous 

induced shock standing off the surface of the cylinder in run 5. Again, a pocket of 

entropy generation exists at the leading edge due to transfer of kinetic energy to internal 

modes. This curves the shock at the leading edge because internal energy modes are 

activated and must relax as the flow travels downstream. The angle of the shock at the 

leading edge should correspond to a theoretical “frozen” prediction, meaning the reaction 

rates are essentially zero. Further downstream, the shock angle will correspond to an 

equilibrium prediction, meaning the reaction rates are infinite. The actual shock angle 

curves from the frozen to the equilibrium value. This same behavior appears in the 

oblique shock standing off the second angle of the cone.  
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Figure 22. Run 7, Non-dimensional temperature contours 

 

 
Figure 23. Run 7, Entropy production (KnS) contour lines 

 66



 

Another interesting feature of this flow is the impingement of the oblique shock from the 

25-degree fore-body cone upon the wall of the second 55-degree cone. The incident 

shock wave interacts with the viscous boundary layer. The abrupt pressure change from 

the shock is an adverse pressure gradient potentially causing the flow to separate from the 

surface of the cone, occurring ahead of the impingement site. This phenomenon is 

observed in run 7 in the magnified picture in Figure 24.  

 
Figure 24. Streamlines showing separation caused by shock impingement on a boundary layer 

The separation induces a shockwave, which combines with a reattachment shock wave to 

form a single oblique shock standing off the surface of the second cone. This flow 

scenario is very complicated, but important to understand due to the high thermal loads 
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transferred to the wall at the point of impingement as seen in the wall x/L = 0.5. This type 

of impingement has caused structural damage to hypersonic vehicles in the past 

(Anderson, 1989: 321-322).  

Data was extracted vertically at x/L = 0.2 and at x/L = 0.6 as shown by the dashed lines in 

Figure 23. Figure 25 and Figure 26 show temperature and entropy generation profiles for 

the two extractions.  

 
Figure 25. Run 7, Temperature profile at x/L = 0.2 and x/L = 0.6 
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Figure 26. Run 7, Magnified temperature profiles for x/L = 0.2

The temperature profiles suggest the shock generated by DSMC stands further from the 

surface of the double cone. Also, the CFD shock is much thinner at x/L = 0.6.  Figure 27 

shows the entropy generation profiles for x/L = 0.2 and x/L = 0.6, while Figure 28 shows 

an enlarged view of the profile at x/L = 0.2.  
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Figure 27. Run 7, Entropy generation profiles for x/L = 0.2 and x/L = 0.6 

 

The DSMC shock stands further from the surface than the CFD shock for both profiles; 

however, the difference is much greater for the case of x/L = 0.6. This corresponds to a 

greater peak value of entropy generation. The amount of difference in the standoff from 

the surface between the DSMC and CFD solutions increases with x/L, showing the shock 

angles are different. The DSMC code predicts a greater angle between the shock and the 

wall of the cone.  Again, the DSMC shock is much thicker and the high entropy 

generation peak in the CFD data is due to the thin shock. Even if the two shocks centered 
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in the same y/L location, the DSMC solution would predict non-equilibrium before the 

CFD, as evidenced in the difference in widths.  

 

Figure 28. Run 7, Magnified entropy generation profiles for x/L = 0.2 

 

Similar to the analysis of run 5, the same flow field (DSMC) is used to compare the 

kinetic and the continuum formulations of calculating the entropy generation,. The 

resulting entropy generation profiles for x/L = 0.2 and x/L = 0.6 are shown in Figure 29 

and Figure 30. Again, note the shock thickness calculated by the kinetic method is greater 

than the shock thickness calculated by the continuum method, even when using the same 

solution field. It is likely that the equilibrium limitation in the continuum constitutive 

relations leads to the thin shocks in the CFD solution.  
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Figure 29. Run 7, Comparison of kinetic and continuum entropy generation, x/L = 0.2 

 

 
Figure 30. Run 7, Comparison of kinetic and continuum entropy generation, x/L = 0.6 
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It is also possible to investigate the effect that each of the energy modes has on the 

entropy generation. For x/L = 0.2, Figure 31 indicates that the translation entropy 

generation (including the shear terms) contributes the most to the overall total and again 

the vibrational mode is barely activated. Figure 32 shows the contributions for x/L = 0.6. 

These figures give a unique perspective on the extent to which the internal energy modes 

activate. Any formulation using the perfect gas assumption could not be expected to 

model the effects from the internal energy modes. 

 

 
Figure 31. Comparison of internal energy contributions to the entropy generation, x/L = 0.2 
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Figure 32. Internal energy contributions, x/L = 0.6 

Modifications to Viscosity, Thermal Conductivity, and Bulk Viscosity 

The difference between the continuum constitutive relations and the kinetic model results 

partially from assumptions made in modeling the viscosity and thermal conduction 

coefficients. Although the limits with these models are normally associated with high 

temperature activation of internal energy states, it is conceivable that different 

approximations need to be stated at low temperature. Sutherland’s viscosity model given 

in equation (II.32) assumes hard spheres with an attraction potential. The Lennard-Jones 

model offers increased temperature flexibility by introducing a strong repulsive potential 

at short distances. This introduces an extra parameter into Sutherland’s Law (Chapman 
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and Cowling, 1952: 227-229; Bird, 1994: 43; Bird and others, 1960: 22; Hirschfelder and 

others, 1954: 22):
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The term ν gives an extra knob to turn, allowing a larger range of temperatures. The S 

term has taken on a slightly new meaning, now being a measure of both attractive and 

repulsive potential. Thermal conductivity is modeled similarly based on its relation to 

viscosity given in equation (II.31). For ν = ∞, this equation returns the Sutherland’s 

viscosity given by equation (II.32). This model has been implemented for both viscosity 

and thermal conductivity. 

For both run 5 and 7, the Lennard-Jones model for the viscosity coefficient leads to a 

better fit with the kinetic data. The choice of ν and S vary depending on the temperature 

and type of gas in the flow. It was found that, as compared to Sutherland’s law, an 

improved fit to the kinetic data was found using ν = 4.0 and -32 < S < -12. The optimal 

value of S is slightly lower for run 7 than it is for run 5. This is not surprising because 

although the geometry and the freestream conditions of the two runs are similar, there are 

substantial differences in the flows. The temperature range of run 7 is about twice that of 

run 5, as observed by compariring Figure 13 and Figure 25.  

It is interesting that the best fit was found for negative values of S. Differing from 

Sutherland’s model, this constant has become a measure of the attractive-repulsive force 

between molecules. The negative values indicate the repulsive force has become 
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important in the flow. Figure 33 and Figure 34 show these fits at x/L = 0.6 for run 7 for a 

single component of the shear stress tensor and the heat flux vector, respectively. 

.  

Figure 33. Run 7, comparison of kinetic, Sutherland's Law, and Lennard-Jones models for the shear 

stress in the x-x direction at x/L = 0.6 
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Figure 34. Run 7, comparison of kinetic, Sutherland's Law, and Lennard-Jones models for the heat 

flux in the x-direction at x/L = 0.6 

 

The fit has been improved substantially by the use of the Lennard-Jones model. Other 

combinations of ν and S may also yield good results, indicating the need for more trial 

iterations using this model. Inspection of Figure 34 shows a positive, dispersion-like 

second peak in heat flux just downstream of the shock. This can be damped out by 

addition of the internal energy contribution to heat flux as acquired by the kinetic 

formulation (as well as improving the fit in the main shock portion). In other words, this 

effect is due to not properly including internal energy effects into the continuum model. 

In addition to quantifying non-equilibrium, entropy generation combines all of the 

components of the shear and heating into a single convenient scalar. A final look at the 

entropy generation in Figure 35 shows the Lennard-Jones model does indeed improve the 

continuum solution. The improvements are not as marked as what is seen for the 
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individual components of shear and heating. This is because the dispersion wave seen in 

the heating terms seems to decrease the Lennard-Jones entropy generation peak and shift 

the entire shock toward the wall. This shift indicates that failing to adequately predict 

internal energy in the thermal conductivity delays the prediction of non-equilibrium in the 

flow. It was mentioned that the dispersion could be damped somewhat by including the 

internal energy contributions found from the kinetic solution to the heat flux. This 

damping improves the entropy generation fit. Unfortunately, the rotational energy 

activation is not available when computing continuum data. Additional research 

incorporating internal energy effects in the thermal conductivity calculation may yield a 

better match.   

The next proof of the validity of the fit found here is to use the Lennard-Jones model in a 

CFD simulation. The same CFD grids used in this document could be used for the initial 

run of the simulations. The grid could then be re-adapted to the temperature gradient. It is 

expected that the new viscosity and thermal conductivity relations will result in a closer 

fit to the DSMC solution. It is expected that this fit could be used in a CFD model to 

analyze any flow with similar geometry and freestream conditions.  

 78



 
Figure 35. Run 5, Entropy generation comparison between kinetic, Sutherland, and Lennard-Jones 

models 

Recall that both the models for calculating viscosity and thermal conductivity were based 

upon the first Sonine approximation to the Chapman-Enskog solution. By including more 

terms in the Sonine expansion, it is possible to improve upon the viscosity and thermal 

conductivity predictions, especially for high or low temperature cases (Chapman and 

Cowling, 1952: Appendix C). 

Further improvement can be made to the continuum shear relation by inclusion of the 

bulk viscosity. This term is contained in the traditional N-S formulation for the shear 

stress tensor given in equation (II.55). Stoke’s Hypothesis dealt with the bulk viscosity 

term by assuming that 3λ + 2μ = 0, where again, λ ≡ μB – (2/3) μ. This is equivalent to the 

Chapman-Enskog solution to the Boltzmann equation that for a monatomic gas near 
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equilibrium μB = 0. This fact naturally leads one to theorize that non-equilibrium may 

result in a non-zero value of bulk viscosity due to activation of internal energy modes. A 

small value of bulk viscosity may result in a better fit to the kinetic data, as shown in 

Figure 36.  

 
Figure 36. Run 7, Comparison showing improvement to the shear stress in the x-x direction, only the 

shock peak is shown as the bulk viscosity only has effect in regions of compression 

This figure demonstrates how the proper amount of bulk viscosity (here about 7% of the 

kinematic viscosity) can improve the solution. The changes are only applied inside the 

shock. This is a consequence of the divergence term associated with the bulk viscosity in 

the shear stress tensor (equation (II.55). The divergence term is often associated with the 

conservation of mass and is a measure of how much the fluid is expanding or contracting. 

Therefore, the bulk viscosity only has an effect inside the shock where there is a sudden 

compression of the flow. The physical mechanism of bulk viscosity is due to the increase 
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in translational energy due to density changes. The subsequent internal energy increase 

comes only after a certain relaxation time. The ratio of translational energy to the total 

amount is greater than it normally would be at equilibrium, effectively introducing a 

pressure to oppose the contraction of the gas. The opposite is true of expansion. Bulk 

viscosity is a way of keeping track of this non-equilibrium imbalance between 

translational and internal energy; essentially a compression/expansion damping term 

(Chapman and Cowling, 1952; 396). Future study should seek a formulation for bulk 

viscosity as a function of internal energy activation. Suggestions for this relation are 

found in the literature (Hirschfelder and others, 1954: 503; Vincenti and Kruger, 1965: 

407 – 412). 

It should be noted that the kinetic formulation for the shear stress and heat flux obtained 

via DSMC is not perfect. As described earlier, the DSMC method simulates flow by 

modeling molecules as they interact with each other and with boundaries such as walls. 

The validity of the DSMC method is only as good as the physics used to model the 

interaction of the molecules. The value of DSMC is that the user is mostly limited by his 

or her ability to apply good models. It is probable that the physical models used in any 

particular DSMC code do not offer perfect agreement with reality. This would have an 

effect on the second order moments used to calculate shear, and certainly the third order 

moments found in the heat flux would suffer due to imperfect collision models. For this 

reason, it is recommended that future study focus not only on improving values used 

within the continuum constitutive relations, but also on implementing better molecular 
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models within the DSMC process itself. Other codes may be chosen which demonstrate 

closer fits to experimental data (see Harvey, 2003). 
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V. Conclusions 

In order to gain a deeper understanding of non-equilibrium in a flow, it is useful to 

examine the fluid as a collection of particles, rather than as a continuous mass. Kinetic 

theory models the physics of particles and thus is not overly constrained by equilibrium. 

The Chapman-Enskog solution to the Boltzmann equation links kinetic theory with the 

traditional equations used in CFD, like the Navier-Stokes. This solution also 

demonstrates the constitutive relations for shear and heating used in the Navier-Stokes 

equations are invalid for highly non-equilibrium situations. Because these constitutive 

relations are so commonly used in modeling, it is important to understand why and when 

they become invalid.  

Entropy generation is an indicator of non-equilibrium. Boltzmann’s H-theorem supports 

this assertion, showing that entropy is produced when a PDF is disturbed from 

equilibrium. This research theorizes entropy generation can serve to indicate exactly how 

much the velocity distribution has deviated, or in other words, how much non-

equilibrium is present in the flow.  

To measure entropy generation the method being used must be able to capture non-

equilibrium effects. For this reason, Direct Simulation Monte Carlo was used in 

comparison with a standard CFD package. Entropy generation was derived based on the 

Gibbs equation in conjunction with the conservation of mass, momentum, and energy. 

Equilibrium assumptions only enter when forming the constitutive relations for shear 
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stress and heat flux. However, it is possible to express these two using kinetic theory, and 

reliably model non-equilibrium flows.  

Two cases computed by CFD and DSMC were compared. Variations between the two 

solution methods were discussed in the context of non-equilibrium effects. In general, an 

oblique shock predicted by DSMC tends to stand further away from the surface of the 

body and is much thicker than the shock predicted by CFD. Additionally, because the 

shock predicted by CFD is much thinner, it tends to over-predict the peak height of the 

entropy generation in order to meet entropy conditions on the downstream side of the 

shock.  

In order to understand where the traditional constitutive relations become invalid, shear 

stress and heat flux have been calculated based on the same solution field using two 

methods. In the first, the shear and heating were calculated using the traditional 

continuum method. This method uses the coefficients μ, for viscosity, and K, for thermal 

conductivity. Kinetic theory gives formulations for the viscosity and thermal conductivity 

based on empirical constants. One such method, known as Sutherland’s law, was used 

here. Sutherland’s law is inadequate for certain regions of these flows, and an alternate 

formulation is proposed for future study.  

The second method of calculating the shear stress and heat flux benefits from the DSMC 

simulation, where the velocity and internal energy state of each particle are known. The 

constitutive relations were calculated based on their kinetic definitions as expectation 

quantities of various moments of velocity and internal energy. The relationships 

developed were free from equilibrium assumptions. For this reason, a comparison of the 
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two methods highlights the equilibrium limitations in the continuum constitutive 

relations.  

The kinetic method predicts a larger shock region than the continuum method. There was 

a region just upstream and downstream of the continuum shock where non-equilibrium 

conditions exist, but not captured by the continuum constitutive relations. Because the 

continuum shock is thin, and the entropy must increase across the shock regardless of the 

width of the shock, the peak entropy generation is very high in the continuum solution.  

The main source of discrepancy between the kinetic method and the continuum method 

of computing the shear and heat flux results from using Sutherland’s law. This model 

includes only attractive forces.The Lennard-Jones model can be applied over a broader 

range of temperatures by representing both attractive and repulsive forces between 

molecules. An improved fit to the kinetic data is found. The thermal conductivity 

formulation can be improved by inclusion of internal energy contributions.  

The Chapman-Enskog solution and evidence from the literature suggest the bulk 

viscosity may be used to account for some amount of non-equilibrium due to 

compression or expansion of a flow. A small amount of bulk viscosity was added to the 

continuum shear stress resulting in an improved match with the kinetic prediction for 

shear. A formulation for bulk viscosity may be found to further improve the continuum 

shear formulation.  

Once satisfactory formulations for the viscosity, the thermal conductivity, and the bulk 

viscosity are found, the next step is to apply them to a CFD code and obtain a solution, 
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rather than simply calculating their values post-process. The solution would then be 

compared with the DSMC solution and available experimental data. Tuning the 

constitutive relations to account for non-equilibrium effects would effectively extend the 

useful range of the Navier-Stokes equations. Unlike previous methods introducing new 

variables and equations, this method is relatively simple, conceptually an empirical fit 

based on DSMC data rather than experiment. Once a single DSMC solution is generated 

and a suitable fit is found, the same parameters may be applied to calculate viscosity and 

thermal conductivity for a variety of flows with similar geometries and freestream 

conditions. The limits of this method are still unexplored. While this method of extending 

the valid range of the continuum equations may not be quite as elegant as some of the 

complicated versions mentioned in this document, its simplicity and effectiveness is 

compensation enough to merit further study.  
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Appendix 

Changes to the MONACO Source Code  

File: src/PHYS/count.c 

This file is used to calculate summations. These are stored in the sums structure as 
defined in the file src/PHYS/cellphys.h. The entire file has been included. Additions were 
made to calculate <CiCj> , <CiC2>, <Ciεrot>, and <Ciεvib> and have been commented in 
the code with ***.  
 
/******************************************************************** 
 *                        MONACO Version 3.0                        * 
 *                                                                  * 
 * Copyright (c) 1999-2004 University of Michigan                   * 
 *                                                                  * 
 * count.c : Sample particle properties in a cell, sorted by species* 
 *           Density is always sampled for collision selection.     * 
 *           Other properties only when macro props are desired.    * 
 *                                                                  * 
 ********************************************************************/ 
 
#include <string.h> 
 
#include "../KERN/constants.h" 
#include "particle.h" 
#include "../KERN/global.h" 
#include "../KERN/misc.h" 
#include "cellphys.h" 
 
#define BLOCKSIZE 1000 
 
void count(int nobj, 
           particle_type particles[MAXNOBJ], 
           int sample, 
           float sums[MAXNSPEC][MAXNSUMS], 
           int nobjspec[MAXNSPEC]) 
{ 
  int iobj,istrips,nup,nlow,ispec,n; 
  int iobjX[MAXNSPEC][BLOCKSIZE],nspecblock[MAXNSPEC]; 
  float obju,objv,objw,objrot,objvib; 
  float usum,uusum,vsum,vvsum,wsum,wwsum,rotsum,vibsum; 
/************************************************************/ 
  /* Additions by Ryan Carr to calculate shear and heating */ 
  float 
uvsum,uwsum,vwsum,uuusum,uvvsum,uwwsum,vuusum,vvvsum,vwwsum,urotsum,uvibsum,vrotsum,vvib
sum; 
  /*********************************************************/ 
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/* Reset number of objects per species */ 
 
  memset(nobjspec, 0, MAXNSPEC*sizeof(int)); 
 
  if (!sample) 
  { 
    /* If no sampling necessary just count number of objects per species */ 
 
    for (iobj = 0; iobj < nobj; ++iobj) 
      ++nobjspec[particles[iobj].spec]; 
  }             
  else 
  { 
    /* Sample properties for each species */ 
 
    nup = 0; 
 
    /* Process in stripes for better data locality */ 
 
    for (istrips = 0; istrips < (nobj-1+BLOCKSIZE)/BLOCKSIZE; ++istrips) 
    { 
      nlow = nup; 
      nup  = MIN(nlow+BLOCKSIZE,nobj); 
 
      /* Reset blockcounter for spec */ 
 
      memset(nspecblock, 0, MAXNSPEC*sizeof(int)); 
 
      /* Calculate species number of objects and sort into groups */ 
 
      for (iobj = nlow; iobj < nup; ++iobj) 
      { 
        ispec = particles[iobj].spec; 
        iobjX[ispec][nspecblock[ispec]] = iobj; 
        ++nspecblock[ispec]; 
      } 
 
      /* Calculate the sums for the number of particles */ 
 
      for (ispec = 0; ispec < MAXNSPEC; ++ispec) 
        nobjspec[ispec] += nspecblock[ispec]; 
 
      /* Calculate the momentum of the distribution functions */ 
 
      for (ispec = 0; ispec < MAXNSPEC; ++ispec) 
      { 
        usum   = 0.0; 
        uusum  = 0.0; 
        vsum   = 0.0; 
        vvsum  = 0.0; 
        wsum   = 0.0; 
        wwsum  = 0.0; 
        rotsum = 0.0; 
        vibsum = 0.0; 
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/*****************************************************************/ 
 /* Additions by Ryan Carr to calculate shear and heating */ 
 uvsum  = 0.0; 
 uwsum  = 0.0; 
 vwsum  = 0.0; 
 uuusum = 0.0; 
 uvvsum = 0.0; 
 uwwsum = 0.0; 
 vuusum = 0.0; 
 vvvsum = 0.0; 
 vwwsum = 0.0; 
 urotsum = 0.0; 
 uvibsum = 0.0; 
 vrotsum = 0.0; 
 vvibsum = 0.0; 
 /*********************************************************/ 
  
        for (n = 0; n < nspecblock[ispec]; ++n) 
        { 
          iobj = iobjX[ispec][n]; 
           
          obju    = particles[iobj].Vx; 
          usum   += obju; 
          uusum  += obju*obju; 
          
          objv    = particles[iobj].Vy; 
          vsum   += objv; 
          vvsum  += objv*objv; 
 
          objw    = particles[iobj].Vz; 
          wsum   += objw; 
          wwsum  += objw*objw; 
 
          objrot  = particles[iobj].Erot; 
          rotsum += objrot; 
          
          objvib  = particles[iobj].Evib; 
          vibsum += objvib; 
 
/****************************************************************/ 
   /* Additions by Ryan Carr to calculate shear and heating */ 
   uvsum += obju*objv; 
   uwsum += obju*objw; 
   vwsum += objv*objw; 
   uuusum += obju*obju*obju; 
   uvvsum += obju*objv*objv; 
   uwwsum += obju*objw*objw; 
   vuusum += objv*obju*obju; 
   vvvsum += objv*objv*objv; 
   vwwsum += objv*objw*objw; 
   urotsum += obju*objrot; 
   uvibsum += obju*objvib; 
   vrotsum += objv*objrot; 
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   vvibsum += objv*objvib; 
   /* note that I have not put in wuusum and wvvsum, this */ 
   /* must be done before the code can be used in 3D */ 
   /*********************************************************/ 
        } 
 
        sums[ispec][SUM_N]   += nspecblock[ispec]; 
        sums[ispec][SUM_U]   += usum; 
        sums[ispec][SUM_UU]  += uusum; 
        sums[ispec][SUM_V]   += vsum; 
        sums[ispec][SUM_VV]  += vvsum; 
        sums[ispec][SUM_W]   += wsum; 
        sums[ispec][SUM_WW]  += wwsum; 
        sums[ispec][SUM_ROT] += rotsum; 
        sums[ispec][SUM_VIB] += vibsum; 
  
/*********************************************************/ 
 /* Additions by Ryan Carr to calculate shear and heating */ 
 sums[ispec][SUM_UV]  += uvsum; 
 sums[ispec][SUM_UW]  += uwsum; 
 sums[ispec][SUM_VW]  += vwsum; 
        sums[ispec][SUM_UUU]  += uuusum; 
 sums[ispec][SUM_UVV]  += uvvsum; 
 sums[ispec][SUM_UWW]  += uwwsum; 
 sums[ispec][SUM_VUU]  += vuusum; 
 sums[ispec][SUM_VVV]  += vvvsum; 
 sums[ispec][SUM_VWW]  += vwwsum; 
 sums[ispec][SUM_UROT]  += urotsum; 
 sums[ispec][SUM_UVIB]  += uvibsum; 
 sums[ispec][SUM_VROT]  += vrotsum; 
 sums[ispec][SUM_VVIB]  += vvibsum; 
 /*********************************************************/   
      } 
    } 
  } 
} 
End of file count.c 
 
 
File: src/PHYS/cellphys.h 

This file is used to define the sums structure which is part of the cell structure.  
/******************************************************************** 
 *                        MONACO Version 3.0                        * 
 *                                                                  * 
 * Copyright (c) 1999-2004 University of Michigan                   * 
 *                                                                  * 
 * cellphys.h : Definition of subset of cell structure which is     * 
 *              physics related, including all sampled data.        * 
 *                                                                  * 
 ********************************************************************/ 
 
#ifndef CELLPHYS_H 
#define CELLPHYS_H 
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enum { SUM_N = 0, 
       SUM_U, 
       SUM_UU, 
       SUM_V, 
       SUM_VV, 
       SUM_W, 
       SUM_WW, 
       SUM_ROT, 
       SUM_VIB, 
/***************************************************/ 
       /* Additions by Ryan Carr to calculate shear and heating */ 
       SUM_UV, 
       SUM_UW, 
       SUM_VW, 
       SUM_UUU, 
       SUM_UVV, 
       SUM_UWW, 
       SUM_VUU, 
       SUM_VVV, 
       SUM_VWW, 
       SUM_UROT, 
       SUM_UVIB, 
       SUM_VROT, 
       SUM_VVIB, 
       /*********************************************************/ 
       MAXNSUMS 
}; 
 
typedef struct cell_phys 
{ 
  float sums[MAXNSPEC][MAXNSUMS];     /* Sample values for cell */ 
 
} cell_phys; 
 
#endif /* CELLPHYS_H */ 
 
End of file cellphys.h 
 
File: src/OXFD/getvars.c 

This file is used to read in the post-process variables requested by the user. The entire file is too long to 
include here. This segment is simply added to the if statement inside the file. 
 
…   else if ( !strcasecmp(var,"MACH") ) 
    { 
      if (normval[nvars]==1.0) 
     sprintf(var_list[nvars],"%s", "Ma"); 
      else 
    sprintf(var_list[nvars],"%s", "Ma/Ma0"); /* this would be strange */ 
 
      if (species[nvars]>0) 
     strcat(var_list[nvars], specnum); 
 
      eval_list[nvars] = eval_mach; 
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      nvars++; 
    } 
/********************************************/ 
/* Changes added by Ryan Carr */ 
 
    else if ( !strcasecmp(var,"Q1") ) 
    { 
      strcpy(var_list[nvars],"q1"); 
 
      if (species[nvars]>0) 
        strcat(var_list[nvars], specnum); 
       
      eval_list[nvars] = eval_q1; 
 
      nvars++; 
    } 
 
    else if ( !strcasecmp(var,"Q2") ) 
      { 
 
 strcpy(var_list[nvars],"q2"); 
 
 if (species[nvars]>0) 
   strcat(var_list[nvars], specnum); 
  
 eval_list[nvars] = eval_q2; 
       
 nvars++; 
      }  
 
       else if ( !strcasecmp(var,"TAU11") ) 
      { 
 strcpy(var_list[nvars],"tau11"); 
 
 if (species[nvars]>0) 
        strcat(var_list[nvars], specnum); 
       
      eval_list[nvars] = eval_tau11; 
 
      nvars++; 
    } 
     
    else if ( !strcasecmp(var,"TAU12") ) 
      { 
 strcpy(var_list[nvars],"tau12"); 
 
 if (species[nvars]>0) 
        strcat(var_list[nvars], specnum); 
       
      eval_list[nvars] = eval_tau12; 
 
      nvars++; 
    }    
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    else if ( !strcasecmp(var,"TAU22") ) 
      { 
 strcpy(var_list[nvars],"tau22"); 
 
 if (species[nvars]>0) 
        strcat(var_list[nvars], specnum); 
       
      eval_list[nvars] = eval_tau22; 
 
      nvars++; 
    }   
     
   else if ( !strcasecmp(var,"QROT1") ) 
    { 
      strcpy(var_list[nvars],"qrot1"); 
 
      if (species[nvars]>0) 
        strcat(var_list[nvars], specnum); 
       
      eval_list[nvars] = eval_qrot1; 
 
      nvars++; 
    } 
 
    else if ( !strcasecmp(var,"QROT2") ) 
      { 
 
 strcpy(var_list[nvars],"qrot2"); 
 
 if (species[nvars]>0) 
   strcat(var_list[nvars], specnum); 
  
 eval_list[nvars] = eval_qrot2; 
       
 nvars++; 
      }  
 
   else if ( !strcasecmp(var,"QVIB1") ) 
    { 
      strcpy(var_list[nvars],"qvib1"); 
 
      if (species[nvars]>0) 
        strcat(var_list[nvars], specnum); 
       
      eval_list[nvars] = eval_qvib1; 
 
      nvars++; 
    } 
 
    else if ( !strcasecmp(var,"QVIB2") ) 
      { 
 
 strcpy(var_list[nvars],"qvib2"); 
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 if (species[nvars]>0) 
   strcat(var_list[nvars], specnum); 
  
 eval_list[nvars] = eval_qvib2; 
       
 nvars++; 
      } 
/***********************************/ 
End of changes to getvars.c  
 
File: src/OXFD/oxford.h 

Functions are defined in this file. The functions used to calculate the shear and heating components are 
added to the list. 
 
/* added by Ryan Carr to calculate heat and shear */ 
extern float eval_q1(cell_type *, int); 
extern float eval_q2(cell_type *, int); 
extern float eval_tau11(cell_type *, int); 
extern float eval_tau12(cell_type *, int); 
extern float eval_tau22(cell_type *, int); 
extern float eval_qrot1(cell_type *, int); 
extern float eval_qrot2(cell_type *, int); 
extern float eval_qvib1(cell_type *, int); 
extern float eval_qvib2(cell_type *, int); 
/**************************************************/ 
End of changes to oxford.h 
 
File: src/OXFD/eval.c 

This file is a group of functions used to calculate post-process variables. Only the new functions to 
calculate shear and heating have been included here. They can simply be added to the overall list of 
functions.  
 
/********************************************************************/ 
/* Return Q1                              */ 
/********************************************************************/ 
float eval_q1(cell_type *cell, int spec) 
{ 
  int ispec; 
 
  float vx,vy,vz,vxx,vyy,vzz,vxy,vxz,vyz,vxxx,vxyy,vxzz,vyxx,vyyy,vyzz; 
  float q1 = 0.0,c1c1c1=0,c1c2c2=0,c1c3c3=0; 
 
  /* Mole fractions of species in this cell */ 
  float *nfrac = molefrac[cell->cellid];      
 
  if (spec==0)    /* All species */ 
  { 
    for (ispec=0; ispec<nspec; ispec++) 
    { 
      vx = cell->phys.sums[ispec][1]; 
      vy = cell->phys.sums[ispec][3]; 
      vz = cell->phys.sums[ispec][5]; 
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      vxx = cell->phys.sums[ispec][2]; 
      vyy = cell->phys.sums[ispec][4]; 
      vzz = cell->phys.sums[ispec][6]; 
 
      vxy = cell->phys.sums[ispec][9]; 
      vxz = cell->phys.sums[ispec][10]; 
      vyz =  cell->phys.sums[ispec][11]; 
      vxxx = cell->phys.sums[ispec][12]; 
      vxyy = cell->phys.sums[ispec][13]; 
      vxzz = cell->phys.sums[ispec][14]; 
      vyxx = cell->phys.sums[ispec][15]; 
      vyyy = cell->phys.sums[ispec][16]; 
      vyzz = cell->phys.sums[ispec][17]; 
              
      c1c1c1 += (vxxx-3.0*vx*vxx+2*vx*vx*vx)*nfrac[ispec]; 
      c1c2c2 += (vxyy-2.0*vy*vxy+2*vx*vy*vy-vx*vyy)*nfrac[ispec]; 
      c1c3c3 += (vxzz-2.0*vz*vxz+2*vx*vz*vz-vx*vzz)*nfrac[ispec]; 
    } 
  } 
  else 
  { 
 
      vx = cell->phys.sums[spec-1][1]; 
      vy = cell->phys.sums[spec-1][3]; 
      vz = cell->phys.sums[spec-1][5]; 
 
      vxx = cell->phys.sums[spec-1][2]; 
      vyy = cell->phys.sums[spec-1][4]; 
      vzz = cell->phys.sums[spec-1][6]; 
 
      vxy = cell->phys.sums[spec-1][9]; 
      vxz = cell->phys.sums[spec-1][10]; 
      vyz =  cell->phys.sums[spec-1][11]; 
      vxxx = cell->phys.sums[spec-1][12]; 
      vxyy = cell->phys.sums[spec-1][13]; 
      vxzz = cell->phys.sums[spec-1][14]; 
      vyxx = cell->phys.sums[spec-1][15]; 
      vyyy = cell->phys.sums[spec-1][16]; 
      vyzz = cell->phys.sums[spec-1][17]; 
       
      c1c1c1 = vxxx-3.0*vx*vxx+2*vx*vx*vx; 
      c1c2c2 = vxyy-2.0*vy*vxy+2*vx*vy*vy-vx*vyy; 
      c1c3c3 = vxzz-2.0*vz*vxz+2*vx*vz*vz-vx*vzz; 
       
  } 
 
  q1 = 0.5*eval_mdens(cell,spec)*(c1c1c1+c1c2c2+c1c3c3); 
   
  return (q1); 
} 
/********************************************************************/ 
/* Return Q2                             */ 
/********************************************************************/ 
float eval_q2(cell_type *cell, int spec) 
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{ 
  int ispec; 
 
  float vx,vy,vz,vxx,vyy,vzz,vxy,vxz,vyz,vxxx,vxyy,vxzz,vyxx,vyyy,vyzz; 
  float q2 = 0.0,c2c2c2=0,c2c1c1=0,c2c3c3=0; 
 
  /* Mole fractions of species in this cell */ 
  float *nfrac = molefrac[cell->cellid];      
 
  if (spec==0)    /* All species */ 
    { 
      for (ispec=0; ispec<nspec; ispec++) 
 { 
   vx = cell->phys.sums[ispec][1]; 
   vy = cell->phys.sums[ispec][3]; 
   vz = cell->phys.sums[ispec][5]; 
    
   vxx = cell->phys.sums[ispec][2]; 
   vyy = cell->phys.sums[ispec][4]; 
   vzz = cell->phys.sums[ispec][6]; 
 
   vxy = cell->phys.sums[ispec][9]; 
   vxz = cell->phys.sums[ispec][10]; 
   vyz =  cell->phys.sums[ispec][11]; 
   vxxx = cell->phys.sums[ispec][12]; 
   vxyy = cell->phys.sums[ispec][13]; 
   vxzz = cell->phys.sums[ispec][14]; 
   vyxx = cell->phys.sums[ispec][15]; 
   vyyy = cell->phys.sums[ispec][16]; 
   vyzz = cell->phys.sums[ispec][17]; 
 
   c2c2c2 += (vyyy-3.0*vy*vyy+2*vy*vy*vy)*nfrac[ispec]; 
   c2c1c1 += (vyxx-2.0*vx*vxy-vy*vxx+2*vy*vx*vx)*nfrac[ispec]; 
   c2c3c3 += (vyzz-2.0*vz*vyz-vy*vzz+2*vy*vz*vz)*nfrac[ispec]; 
 } 
    } 
  else 
    { 
 
      vx = cell->phys.sums[spec-1][1]; 
      vy = cell->phys.sums[spec-1][3]; 
      vz = cell->phys.sums[spec-1][5]; 
 
      vxx = cell->phys.sums[spec-1][2]; 
      vyy = cell->phys.sums[spec-1][4]; 
      vzz = cell->phys.sums[spec-1][6]; 
 
      vxy = cell->phys.sums[spec-1][9]; 
      vxz = cell->phys.sums[spec-1][10]; 
      vyz =  cell->phys.sums[spec-1][11]; 
      vxxx = cell->phys.sums[spec-1][12]; 
      vxyy = cell->phys.sums[spec-1][13]; 
      vxzz = cell->phys.sums[spec-1][14]; 
      vyxx = cell->phys.sums[spec-1][15]; 
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      vyyy = cell->phys.sums[spec-1][16]; 
      vyzz = cell->phys.sums[spec-1][17]; 
       
      c2c2c2 = vyyy-3.0*vy*vyy+2*vy*vy*vy; 
      c2c1c1 = vyxx-2.0*vx*vxy-vy*vxx+2*vy*vx*vx; 
      c2c3c3 = vyzz-2.0*vz*vyz-vy*vzz+2*vy*vz*vz; 
    } 
 
  q2 = 0.5*eval_mdens(cell,spec)*(c2c2c2+c2c1c1+c2c3c3); 
   
  return (q2); 
} 
 
/********************************************************************/ 
/* Return tau11                              */ 
/********************************************************************/ 
float eval_tau11(cell_type *cell, int spec) 
{ 
  int ispec; 
   
  float vx,vxx; 
  float tau11,c1c1=0.0; 
  /* Mole fractions of species in this cell */ 
  float *nfrac = molefrac[cell->cellid]; 
 
  if (spec==0)    /* All species */ 
    { 
      for (ispec=0; ispec<nspec; ispec++) 
 { 
   vx = cell->phys.sums[ispec][1]; 
   vxx = cell->phys.sums[ispec][2]; 
    
   c1c1 += (vxx-vx*vx)*nfrac[ispec]; 
 } 
    } 
  else 
    { 
      vx = cell->phys.sums[spec-1][1]; 
      vxx = cell->phys.sums[spec-1][2]; 
       
      c1c1 = (vxx-vx*vx); 
    } 
 
  tau11 = -c1c1*eval_mdens(cell,spec)+eval_press(cell,spec); 
   
  return (tau11); 
} 
 
 
/********************************************************************/ 
/* Return tau12                              */ 
/********************************************************************/ 
float eval_tau12(cell_type *cell, int spec) 
{ 
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  int ispec; 
   
  float vx,vy,vxy; 
  float tau12,c1c2=0.0; 
  /* Mole fractions of species in this cell */ 
  float *nfrac = molefrac[cell->cellid]; 
 
  if (spec==0)    /* All species */ 
    { 
      for (ispec=0; ispec<nspec; ispec++) 
 { 
   vx = cell->phys.sums[ispec][1]; 
   vy = cell->phys.sums[ispec][3]; 
   vxy = cell->phys.sums[ispec][9]; 
    
   c1c2 += (vxy-vx*vy)*nfrac[ispec]; 
 } 
    } 
  else 
    { 
      vx = cell->phys.sums[spec-1][1]; 
      vy = cell->phys.sums[spec-1][3]; 
      vxy = cell->phys.sums[spec-1][9]; 
       
      c1c2 = (vxy - vx*vy); 
    } 
   
  tau12 = -c1c2*eval_mdens(cell,spec); 
   
  return (tau12); 
} 
 
/********************************************************************/ 
/* Return tau22                              */ 
/********************************************************************/ 
float eval_tau22(cell_type *cell, int spec) 
{ 
  int ispec; 
   
  float vy,vyy; 
  float tau22,c2c2=0.0; 
  /* Mole fractions of species in this cell */ 
  float *nfrac = molefrac[cell->cellid]; 
 
  if (spec==0)    /* All species */ 
    { 
 
      for (ispec=0; ispec<nspec; ispec++) 
 { 
   vy = cell->phys.sums[ispec][3]; 
   vyy = cell->phys.sums[ispec][4]; 
    
   c2c2 += (vyy-vy*vy)*nfrac[ispec]; 
 } 
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    } 
  else 
    { 
      vy = cell->phys.sums[spec-1][3]; 
      vyy = cell->phys.sums[spec-1][4]; 
       
      c2c2 = (vyy-vy*vy); 
    } 
 
  tau22 = -c2c2*eval_mdens(cell,spec)+eval_press(cell,spec); 
 
  return (tau22); 
} 
 
/********************************************************************/ 
/* Return Qrot1                              */ 
/********************************************************************/ 
float eval_qrot1(cell_type *cell, int spec) 
{ 
  int ispec; 
   
  float vx; 
  float qrot1,erotc1=0.0,erot; 
  /* Mole fractions of species in this cell */ 
  float *nfrac = molefrac[cell->cellid]; 
 
  if (spec==0)    /* All species */ 
    { 
      for (ispec=0; ispec<nspec; ispec++) 
 { 
   vx = cell->phys.sums[ispec][1]; 
   erotc1 = cell->phys.sums[ispec][18]; 
   erot = cell->phys.sums[ispec][7]; 
   qrot1 = (erotc1-vx*erot)*nfrac[ispec]; 
 } 
    } 
  else 
    { 
   vx = cell->phys.sums[spec-1][1]; 
   erotc1 = cell->phys.sums[spec-1][18]; 
   erot = cell->phys.sums[spec-1][7]; 
 
   qrot1 = (erotc1-vx*erot); 
    } 
 
  qrot1 = qrot1*eval_mdens(cell,spec)/species[spec].mass; 
 
  return (qrot1); 
} 
 
/********************************************************************/ 
/* Return Qrot2                             */ 
/********************************************************************/ 
float eval_qrot2(cell_type *cell, int spec) 

 102



{ 
  int ispec; 
   
  float vy; 
  float qrot2,erotc2=0.0,erot; 
  /* Mole fractions of species in this cell */ 
  float *nfrac = molefrac[cell->cellid]; 
 
  if (spec==0)    /* All species */ 
    { 
      for (ispec=0; ispec<nspec; ispec++) 
 { 
   vy = cell->phys.sums[ispec][3]; 
   erotc2 = cell->phys.sums[ispec][20]; 
   erot = cell->phys.sums[ispec][7]; 
    
   qrot2 = (erotc2-vy*erot)*nfrac[ispec]; 
 } 
    } 
  else 
    { 
   vy = cell->phys.sums[ispec][3]; 
   erotc2 = cell->phys.sums[ispec][20]; 
   erot = cell->phys.sums[ispec][7]; 
    
   qrot2 = (erotc2-vy*erot); 
    } 
   
  qrot2 = qrot2*eval_mdens(cell,spec)/species[spec].mass; 
   
  return (qrot2); 
} 
 
 
/********************************************************************/ 
/* Return Qvib1                              */ 
/********************************************************************/ 
float eval_qvib1(cell_type *cell, int spec) 
{ 
  int ispec; 
   
  float vx; 
  float qvib1,evibc1=0.0,evib; 
  /* Mole fractions of species in this cell */ 
  float *nfrac = molefrac[cell->cellid]; 
 
  if (spec==0)    /* All species */ 
    { 
      for (ispec=0; ispec<nspec; ispec++) 
 { 
   vx = cell->phys.sums[ispec][1]; 
   evibc1 = cell->phys.sums[ispec][19]; 
   evib = cell->phys.sums[ispec][8]; 
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   qvib1 = (evibc1-vx*evib)*nfrac[ispec]; 
 } 
    } 
  else 
    { 
   vx = cell->phys.sums[ispec][1]; 
   evibc1 = cell->phys.sums[ispec][19]; 
   evib = cell->phys.sums[ispec][8]; 
    
   qvib1 = (evibc1-vx*evib); 
    } 
 
  qvib1 = qvib1*eval_mdens(cell,spec)/species[spec].mass; 
   
  return (qvib1); 
} 
 
/********************************************************************/ 
/* Return Qvib2                             */ 
/********************************************************************/ 
float eval_qvib2(cell_type *cell, int spec) 
{ 
  int ispec; 
   
  float vy; 
  float qvib2,evibc2=0.0,evib; 
  /* Mole fractions of species in this cell */ 
  float *nfrac = molefrac[cell->cellid]; 
 
  if (spec==0)    /* All species */ 
    { 
      for (ispec=0; ispec<nspec; ispec++) 
 { 
   vy = cell->phys.sums[ispec][3]; 
   evibc2 = cell->phys.sums[ispec][21]; 
   evib = cell->phys.sums[ispec][8]; 
    
   qvib2 = (evibc2-vy*evib)*nfrac[ispec]; 
 } 
    } 
  else 
    { 
   vy = cell->phys.sums[ispec][3]; 
   evibc2 = cell->phys.sums[ispec][21]; 
   evib = cell->phys.sums[ispec][8]; 
    
   qvib2 = (evibc2-vy*evib); 
    } 
 
  qvib2 = qvib2*eval_mdens(cell,spec)/species[spec].mass; 
   
  return (qvib2); 
} 
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The MONACO Graphical Interface: MonacoGui 

 
The MONACO program requires the user to create many input files containing run, 

species, collision model, flow, and wall parameters. Because there are so many 

parameters and input files it is easy for the user to make mistakes when creating and 

submitting a new run. For this reason, a graphical interface to MONACO was created by 

the author. The graphical user interface (GUI) was programmed in Python (2006), an 

open source license code widely used with Linux systems.   

 

The base code was adapted from EasyGui, an open source program by Stephen Ferg 

(2004) available for download on the internet. Changes were made to enable MonacoGui 

to set up a run with all associated inputs, submit it to the queue, and monitor its progress. 

The picture below shows the opening screen. 
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The user is able to modify the input files by clicking on one of the files listed in the 

window. For example, to modifying the run parameter input deck dsmc.dat would take 

the user to the following screen: 
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Once the run is set up, by clicking the “Submit Job” button on the main window the user 

can submit a parallel job to the clusters. While the job is running, it may be monitored by 

using the “Monitor Job” button. Many different parameters may be monitored. Below is 

an example of the particle history for a standard run.  
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Code used to create MonacoGui is included below. This is by no means the entire code; 

however, it contains most of the modifications made by the author to the EasyGui 

program. 

-------------------------------------------------------------------------------------------------------- 
 

#--------------------------------------------------------- 
# routines defined by Ryan Carr 
#--------------------------------------------------------- 
def dsmcdat():     
        msg = "Enter run parameters" 
        title = "dsmc.dat" 
        fieldNames = ["Reference Time Step","Ref 
Particle Weight","# Steps befo$ 
        fieldValues = []  # we start with blanks for 
the values 
        defaults=[0,0,0,0,0,0,0,0,0,0,0,0,0,0] 
 
 
        f=open('dsmc.dat', 'r') 
 

        l = f.readline() 
        defaults[0] = float(l.strip()) 
        l = f.readline()                   
        defaults[1] = float(l.strip())          
        l = f.readline() 
        defaults[2] = int(l.strip()) 
        l = f.readline() 
        defaults[3] = int(l.strip()) 
        l = f.readline() 
        defaults[4] = int(l.strip()) 
        l = f.readline()           
        defaults[5] = int(l.strip()) 
        l = f.readline() 
        defaults[6] = int(l.strip()) 
 l = f.readline() 
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   defaults[7] = int(l.strip()) 
        l = f.readline() 
        defaults[8] = int(l.strip()) 
        l = f.readline() 
        defaults[9] = float(l.strip()) 
        l = f.readline() 
        defaults[10] = l.strip('\n ') 
        l = f.readline() 
        defaults[11] = int(l.strip()) 
        l = f.readline() 
        defaults[12] = int(l.strip()) 
        l = f.readline() 
        defaults[13] = int(l.strip()) 
 
        f.close() 
 
        fieldValues = 
multenterbox(msg,title,fieldNames,defaults) 
        f=open('dsmc.dat', 'w') 
        for x in range(len(fieldValues)): 
                f.write(fieldValues[x]) 
                f.write("\n") 
        f.close() 
 
def flowdat(): 
        msg = "Enter Flow Data" 
        title = "field.dat" 
        fieldNames = ["X-velocity (m/s)","Y-
velocity","Z-velocity","Temperature$ 
        fieldValues = []  # we start with blanks for 
the values 
        defaults=[0,0,0,0,0] 
        f=open('flow.dat', 'r') 
        l = f.readline() 
        defaults = l.split() 
### Assumes only one flow boundary condition! 
        f.close() 
fieldValues = 
multenterbox(msg,title,fieldNames,defaults) 
 
        l = "  ".join(fieldValues)            
 
        f=open('flow.dat', 'w') 
        f.write(l) 
        f.close() 
def specdat(): 
        msg = "Enter Species Data" 
        title = "spec.dat"         
        fieldNames = ["VHS Reference 
Temperature (K)","VHS omega","Species 
Name$ 
        fieldValues = []  # we start with blanks for 
the values 
        defaults=[0,0,0,0,0,0,0,0,0,0,0] 

 
        f=open('spec.dat', 'r') 
 
        T = f.readline() 
        w = f.readline() 
        l = f.readline() 
 
        defaults[0] = T.strip() 
        defaults[1] = w.strip() 
        defaults[2:10]=l.split()              
 
        f.close()           
 
        fieldValues = 
multenterbox(msg,title,fieldNames,defaults) 
 
        l = "  ".join(fieldValues) 
 
        f=open('spec.dat', 'w') 
        f.write(T) 
        f.write(w) 
        f.write(l) 
        f.close() 
def walldat():                  
        msg = "Enter Wall Parameters" 
        title = "field.dat" 
        fieldNames = ["Wall Temperature 
(K)","Wall Accomodation Coefficient"] 
        fieldValues = []  # we start with blanks for 
the values 
        defaults=[0,0] 
        f=open('wall.dat', 'r') 
        l = f.readline()        
        defaults = l.split()                  
        f.close()           
        fieldValues = 
multenterbox(msg,title,fieldNames,defaults) 
        l = "  ".join(fieldValues) 
        f=open('wall.dat', 'w') 
        f.write(l) 
        f.close() 
 
def ambientdat():               
        msg = "Enter Ambient Data"    
        title = "ambient.dat" 
        fieldNames = ["X-velocity (m/s)","Y-
velocity","Z-velocity","Temperature$ 
        fieldValues = []  # we start with blanks for 
the values 
        defaults=[0,0,0,0,0] 
        f=open('ambient.dat', 'r') 
        l = f.readline()        
        defaults = l.split()                  
### Assumes only one flow boundary condition! 
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        f.close() 
        fieldValues = 
multenterbox(msg,title,fieldNames,defaults) 
        l = "  ".join(fieldValues) 
        f=open('ambient.dat', 'w') 
        f.write(l)              
        f.close()                     
 
def tahoesh(): 
        msg = "Enter Submission Data" 
        title = "Job Submission Input File - 
tahoe.sh" 
        fieldNames = ["Job Name","# of 
Nodes","Processors per Node (2)","'monac$ 
        fieldValues = []  # we start with blanks for 
the values 
        defaults=[0,0,0,0] 
 
 
        f=open('tahoe.sh', 'r') 
 
        l = f.readlines() 
 
        defaults[0] = l[3].strip('#PBS -N\n') 
        defaults[1:2] = l[7].strip('#PBS -l \n 
nodes=').split(':ppn=') 
        defaults[3] = l[12].strip('MONACO_DIR= 
\n') 
 
        f.close()                     
 
        fieldValues = 
multenterbox(msg,title,fieldNames,defaults)                
 
        l[3]=" ".join(['#PBS -N',fieldValues[0],'\n']) 
        l[7]="".join(['#PBS -l 
nodes=',fieldValues[1],':ppn=',fieldValues[2],'\$ 
        
l[13]="".join(['MONACO_DIR=',fieldValues[3],
'\n']) 
 
        f=open('tahoe.sh', 'w') 
 
        for x in range(len(l)): 
                f.write(l[x]) 
        f.close() 
 
def monitor(chooser): 
 
 
        if chooser == '# of Particles': 
                f = open('monaco.dat','r') 
                content = f.readlines() 
                f.close()          

                time=range(len(content)) 
                part=range(len(content)) 
 
                for x in range(len(content)): 
                        time[x] = 
int(content[x].split('\t')[0]) 
                        part[x] = 
int(content[x].split('\t')[1]) 
                master = Tk() 
                plot = PythonPlot(master) 
                plot.plotData(time, part) 
 
 
        elif chooser == '# of Collisions': 
                f = open('monaco.dat','r') 
                content = f.readlines() 
                f.close() 
                time=range(len(content)) 
                coll=range(len(content))      
                for x in range(len(content)): 
                        time[x] = 
int(content[x].split('\t')[0]) 
                        coll[x] = 
int(content[x].split('\t')[2]) 
 
                master = Tk() 
                plot = PythonPlot(master) 
                plot.plotData(time, coll) 
 
                master.mainloop() 
 
                master.mainloop() 
 
        ['Time Step','# of Particles','# of 
Collisions','Particles per Processo$ 
 
#---------------------------------------------------------
---------- 
# monacogui driver code                   
#---------------------------------------------------------
---------- 
def _monaco(): 
        #===========================end 
of text 
================================ 
        intro_message = ("Choose which file to 
modify.\n\n" 
         + "" + 
        "" + 
        "" 
        + "\n\nMonacoGui is running Tk version: " 
+ str(TkVersion) 
        ) 
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#==================================
======== END DEMONSTRATION DATA 

                elif reply[0] == "flow.dat": 
                        reply = flowdat() 
                elif reply[0] == "spec.dat":         while 1: # do forever 
                        reply = specdat()                 choices = [ 
              elif reply[0] == "wall.dat":                         "dsmc.dat", 
                        reply = walldat()                         "flow.dat", 
                elif reply[0] == "ambient.dat":                         "spec.dat", 
                        reply = ambientdat()                         "wall.dat", 
                elif reply[0] == "run_submission":                                  "ambient.dat", 
                        reply = tahoesh()                         "run_submission", 
                else:                         ] 
                        msgbox("Choice\n\n" + choice + 
"\n\nis not recognized",$ 

                choice = choicebox(intro_message, 
"MonacoGui " + MonacoGui, cho$ 

                        return                 if choice == None: return 
if __name__ == '__main__':                 reply = choice.split() 
        _monaco()                 if   reply[0] == "dsmc.dat": 

                        reply = dsmcdat() 
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