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Abstract  

 

The aerospace community continues to push the envelope in engineering aircraft 

that fly higher, faster, and safer while operating with a greater degree of efficiency.  To 

meet these operational requirements innovative aerospace components must be designed 

to operate in aggressive environments.  This research will investigate the ultimate 

compressive strength and the compressive creep behavior of NextelTM 720/Alumina 

ceramic matrix composite at 1200°C in air and 100% steam environments.  The effects of 

creep loading history on the tensile and compressive material behavior will also be 

examined.   The primary strengths of the N720/A composite are its oxide/oxide 

composition which inherently resists oxidation and a porous matrix which enables crack 

deflection producing enhanced matrix damage tolerance. 

Mechanical testing showed a significant decrease in the compressive performance 

of N720/A when exposed to steam environment.  Conversely, N720/A specimens tested 

in compressive creep in air experienced an increase in compressive performance.  SEM 

analysis showed that densification of the α-alumina matrix occurred in both test 

environments.  In air densification sinters the matrix resulting in a strengthening effect.  

Whereas, in steam environment analysis shows the addition of hydrogen induces 

hydrothermal softening of the matrix resulting in a significant loss of the compressive 

performance of N720/A.   
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COMPRESSIVE CREEP BEHAVIOR OF NEXTELTM 720/ALUMINA CERAMIC 

MATRIX COMPOSITE AT 1200◦C IN AIR AND IN STEAM ENVIRONMENT 

 

 

 

I. Introduction 

 

 For thousands of years composite materials have been used to enhance the quality 

of human life.  During the primitive age straw was added to clay to produce reinforced 

bricks.  Now, in the twenty-first century we see the application of composites in everyday 

life, ranging from roadways formed of steel and aggregate reinforced Portland cement to 

fiberglass bathtubs and cultured marble countertops [75].  With a greater understanding 

of composites advances are not limited to such simple applications, but rather extend to 

great feats of engineering. 

 Perhaps, the engineering field that stands to gain the most from the use of 

composites is the aerospace industry.  The unique demands of aircraft design are 

stringent.  A material must exhibit high durability and consistent performance while 

undergoing prolonged and repeated use.  Additionally, it must be lightweight to 

maximize the capacity and efficiency of aeronautic components.  Attributes such as high 

strength to weight ratio, low life cycle cost, maintainability, and reliability make 

composites ideal for use in aerospace applications [16:4-9]. 

 In fact the aerospace industry has been benefiting from the use of composites 

since the early 1950’s when Boeing introduced the 707, one of the most reliable jetliners 
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in the world [7].  Since then several aircraft have been composed almost entirely of 

composites, for example the Air Force B-2 Spirit [16:7].  Today, composites continue to 

be used in the manufacturing of the most modern aircraft designs.  Airbus A380, the 

world’s largest jetliner, recently introduced in 2005, is comprised of 25% composites by 

weight [74]. 

Although composites have advanced aerospace technology by providing 

lightweight durable materials, in the past they have lacked strong performance under 

elevated temperature.  Materials such as ceramic matrix composites (CMC) and 

carbon/carbon composites have been developed to meet the ultra-high temperature 

requirements of future jet turbine designs.  As of late these materials have sparked the 

most interest in the engineering community due to their proven reliability, low weight, 

and promising performance under high temperature. 

Testing has shown that these materials do in fact provide enhanced durability 

under elevated temperatures.  However, some shortcomings were discovered.  When 

exposed to oxidizing environments such as steam these newer composites degraded at a 

much higher rate.  This prompted the development of all-oxide CMCs which resist 

oxidation in typical operating environments, but display less favorable mechanical 

behavior than non-oxide counterparts [63:1].  NextelTM 720/Alumina (N720/A) 

composite, is the latest effort in correcting the oxidation problem encountered by CMCs 

with non-oxide fibers.  The objective of this investigation is to examine the compressive 

creep characteristics of N720/A CMC at 1200◦C in air and steam environments.  

Furthermore, it is important to examine the effects of creep loading history on the tensile 

and compressive material behavior of N720/A, in order to better design CMC material 
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systems that resist oxidation, and exhibit superior strength under severe temperature 

conditions.  
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II. Background 

 

2.1 Ceramic Matrix Composites 
 

2.1.1 Composites 

The concept of a composite is simple.  Place two substances together, that 

generally have opposite strengths, and create a single material that benefits from both.  

Fundamentally, a composite is a material that combines two chemically or physically 

distinct phases into one form.  As displayed in Figure 1, the continuous phase is called 

the matrix while the distributed phase is referred to as reinforcement.  The latest addition 

to the field of composites are CMCs.  In the past, monolithic high performance ceramics 

have displayed incredible strength and hardness at high temperatures.  However, poor 

performance was revealed when monolithic ceramics were subjected to tensile and 

compressive loading.  Even worse, these ceramics had a tendency to fail without warning 

in a catastrophic manner under mechanical and thermal loading; making these types of 

materials unlikely candidates for use in the aerospace industry [14:1-4]. 

 

Figure 1. Composite Phases [16:1]. 
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As a result of these previous findings a method for harnessing the capability of 

ceramics to withstand incredible heat was engineered in the form of ceramic matrix 

composites.  The primary goal of CMC was to make ceramics fail “gracefully”, meaning 

to show signs of deformation before failure while also increasing the threshold of 

mechanical loading [14:4].  Ceramics are the prime candidate materials because they are 

the only substance that can reliably operate above temperatures of 1100◦C.  Polymers and 

metals have the advantage of deforming plastically before failure, however, Figure 2 

shows that ceramics have the capacity to withstand much higher temperatures.  Due to 

the heat resistant quality of ceramics they are ideal for applications in demanding 

environments such as operating environments of rocket nozzles, heat exchangers, 

automobile engines and cutting tools [14:5]. 

 

 

Figure 2.  Maximum Material Service Temperatures [14:5]. 
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In nature ceramics exist in both crystalline and non-crystalline form (i.e. general 

ceramics vs. glass).  Ceramics are held together by mostly ionic bonds and some covalent 

bonds.  Some common crystal bonding structures include: simple cubic, close-packed 

cubic, and hexagonal closed packed.  Ceramic characteristic strength and brittleness can 

be attributed to these bonding configurations [14:11-13].  However, with the addition of 

fibers the high temperature resistance of ceramics can be complemented by higher 

fracture toughness of a CMC.  Fibers can provide energy dissipating qualities such as 

fiber matrix debonding, loading to crack deflection, and subsequent fiber pullout [14:7].  

These attributes greatly enhance the potential of CMCs by significantly increasing 

damage tolerance. 

 
2.1.2 Fibers 

 
The primary purpose of reinforcement is to strengthen the matrix by enhancing its 

mechanical loading characteristics.  The reinforcement phase can be situated in several 

orientations.  Some reinforcements are distributed in particle form as whiskers or as short 

fibers measuring only a few mm in length.  Long fibers are called continuous because 

they run the entire length of the composite material.  Continuous fibers sometimes 

labeled as filaments or monofilaments are laid out in the matrix in bundles of fiber called 

tows.  When comparing different composites the number of fibers in each tow may vary.  

Tows are then twisted among each other to provide strength in the form of bundles of 

tows referred to as yarn [27:3].  

Fibers can be arranged in several different architectures throughout the matrix.  

The two primary types of architectures are woven and laminate.  Woven fibers are 
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interlaced among each other in a variety of methods such as a plain weave or satin weave.  

On the other hand, laminate fibers are simply laid on top of one another in the matrix in 

an organized fashion.  The difference between these two fiber architectures involves the 

freedom of fibers to move during mechanical loading and the overall porosity of the 

resulting composite.  Composites reinforced with woven fibers tend to be more porous 

than laminates due to the space created by interlocking the tows; the more favorable 

configuration depends on the intended application of the material.  These architectures 

are important because fibers provide the majority of tensile strength in CMC materials.   

Ceramic fibers have proven to be exceptionally reliable at high temperatures and 

under substantial loading.  However, fibers will frequently be exposed to oxidizing 

environments when used in aerospace applications.  This was a problem for non-oxide 

fiber material, which heavily degrades in mechanical loading capacity when oxidation 

occurs.  Fiber coatings were added in an attempt to prevent oxidation.  However, some of 

these coatings breakdown at high temperatures rendering them ineffective; additionally 

they add cost to the fabrication process making them an unsatisfactory design solution.  

The current solution to the oxidation process is to manufacture all-oxide CMCs that resist 

oxidation even in the most aggressive environments.  Review of mechanical properties 

shows that oxide fibers typically perform worse than non-oxide fibers [41:6].  The most 

recent effort to solve the oxidation problem while maintaining the strength characteristics 

of non-oxide fibers is NextelTM 720/Alumina composite; the material featured in this 

research. 
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2.1.3 Matrix 

The matrix is the continuous phase that provides the shape of the material.  The 

primary functions of the matrix are to transfer load between fibers, separates fibers to 

prevent adjacent tows from failing, and to protect and house the fibers from 

environmental attack [5:7].  A clear illustration of the fiber/matrix relationship is depicted 

in concrete reinforced with steel bars (rebar).  Concrete is very strong in compression but 

lacks strength in tension.  In some applications concrete will experience tensile loadings 

therefore it is cast with rebar to allow for this design criteria.  Much like a CMC, the 

combination of two constituent materials provides a concrete that has multidimensional 

capabilities. 

 In order for a material to qualify as an acceptable matrix it must meet several 

criteria.  Ceramic matrix material should form a mechanical or frictional bond with the 

reinforcement and should not react chemically with the fibers during fabrication or 

service.  Additionally, the matrix should not damage the reinforcement and it should 

provide resistance to creep, fatigue, and impact loading, while exhibiting high toughness 

[14:44].  Generally, fiber used as reinforcement should have the same or similar 

coefficient of thermal expansion as the selected matrix, to prevent undue internal stress in 

the material when exposed to extremely high temperature.  This is why ceramic fibers 

typically reinforce ceramic matrix materials.  Although very few matrix materials meet 

all of these requirements, composite materials are always engineered to exhibit the most 

desirable characteristics. 

 Some common ceramic matrix materials include α-alumina (Al2O3), mullite 

(3Al2O3-2SiO2), Boron Nitride (BN), Boron Carbide, and Carbon [14:35-38].  Most of 
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these ceramic compounds have low density, high melting point, and a high degree of 

hardness which make them ideal for use in various CMCs.  α-Alumina is the most stable 

ceramic in a variety of environments such as air, oxygen, and argon. Although α-alumina 

is not the most heat resistant ceramic material it has a high melting point of 2050°C 

[14:35]. The CMC featured in this research takes advantage of an α-alumina matrix to 

operate effectively at high temperatures.   

 One of the most important aspects of an effective matrix/fiber relationship is the 

connection between the two phases often referred to as the interface of the composite.  

Contrary to intuition, experimentation has shown that having a weak fiber-matrix 

interface is more advantageous than having a strong fiber-matrix interface.  The reason 

this is structurally beneficial is due to crack deflection.  When a crack forms it is better 

for it to propagate between the fiber through the matrix, rather than propagating through 

both matrix and fiber; causing the composite to fail catastrophically [23:607].  The crack 

deflection mechanism provides CMCs with higher fracture toughness and the benefit of 

exhibiting delayed failure rather than catastrophic failure.  Figure 3 shows both types of 

interface and different types of fracture mechanisms.   
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Figure 3. Schematics of the Damage Processes that Enable Damage Tolerance in a)  
Conventional Dense-Matrix Weak-Interface CMC and b) Porous Matrix CMCs Without  

Fiber Coatings [79:15]. 
 

 Similar to fibers, ceramic matrix material can be categorized as either oxide or 

non-oxide compounds.  As with fiber selection, choosing ceramic matrix materials that 

are already oxidized is preferred to non-oxide materials.  At high temperatures and in 

oxidizing environments, non-oxide matrix material is susceptible to degradation and a 

loss of mechanical properties.  Matrix materials such as α-alumina and mullite are the 

most commonly used oxide substances in the fabrication of CMCs.  When exposed to 

various loading scenarios it is important that both the fiber and the matrix resist oxidation 

in order to maintain the structural integrity and durability of a component.  When 

monolithic ceramics are paired with reinforcing fibers of similar properties and structure, 

a brittle material can be transformed into a composite with a high damage tolerance 

10 



capable of providing strength at the ultra-high temperatures commonly encountered in 

aerospace applications [4:565]. 

 

2.1.4 All Oxide CMCs 

 Oxide-oxide ceramic matrix composites are materials composed of oxide fibers 

surrounded by an oxide matrix.  The ability to resist oxidation is an inherent quality of 

all-oxide CMCs.  Not only is it important for a CMC to resist oxidation on its exterior 

surface it is crucial that if a crack forms and the oxidizing environment reaches the 

interior the fiber has a similar oxidation resistance.  This is the reason that CMCs that 

combined oxide and non-oxide materials did not exhibit environmental durability 

required for a material expected to operate under loading at extreme temperatures in an 

oxidizing environment for prolonged periods of time [27:10]. 

 There are two ways to provide for crack deflection and to achieve damage 

tolerance in a CMC.  The first method relies on a weak fiber-matrix interface, frequently 

accomplished by using fiber coating.  The second design philosophy accepts the strong 

fiber-matrix interface and achieves crack deflecting behavior by means of a finely 

distributed porosity in the matrix.  This research involves N720/A, a porous matrix CMC, 

designed to exhibit inherent oxidation resistance and high strength as well as stiffness. 

 

2.1.5 Fabrication of CMCs 

The manufacturing process of a CMC is one of the most crucial steps in the life 

cycle of the material.  In order to benefit from the unique design and exceptional 

attributes of CMCs in aggressive environments, fabrication must be consistent and 
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precise.  The first step in the processing of a CMC is appropriate selection of a fiber and 

matrix combination.  There are a number of different conventional methods for 

fabricating the matrix material; some of these include sintering, injection molding, hot 

isostatic pressing (HIP), chemical vapor deposition (CVD), and reaction forming     

[14:20-22].  In general the following steps apply to the processing of the matrix material.  

The matrix starts in a powder form and is prepared for the ensuing process.  The powder 

is then formed into a desired shape by using a binder called a green body.  The green 

body is then sintered at high temperatures to densify the material; sometimes a 

combination of hot pressing is involved.  Finally, the sintered material is formed into a 

desired shape for use in a component [14:20]. 

Much like matrix materials, fibers are processed with a similar type of precision 

to ensure that the finished product has desirable reinforcement qualities.  Such attributes 

include high theoretical density (low porosity), small grain size for low temperature 

applications, large grain size for high temperature applications, and high purity [14:64].  

These traits heavily rely on the fabrication method and the type of material used.  The 

NextelTM 720/Alumina CMC featured in this research benefits from fibers that are 

comprised of 85% α-alumina (Al2O3) and 15% mullite (SiO2) by weight and are 

fabricated by the 3M Corporation in the following basic steps.  An organic basic salt 

solution is used as a precursor.  Then the organic material is driven out by decomposing 

or volatilization.  In order to maintain the design characteristics it is important to ensure 

that no defects such as cracks or blisters form as the organic material is being driven 

away.  Next the fibers are fired at 1400°C under carefully controlled conditions.  Finally, 

the fibers will undergo a straightening treatment at lower temperatures [14:69].  It is 
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important to note that because this material is fired/sintered at such a high temperature it 

will develop larger grain size ideal for use at elevated temperatures, making this type of 

fiber a good candidate for use in aerospace components. 

 

 

Figure 4. Representative steps of fabric-based CMC manufacturing process [31]. 

 

Once both the matrix and reinforcement materials are fabricated individually they 

can be combined together in any number of desired orientations with continuous or 

whisker reinforcement.  The fibers are laid-up in the unconsolidated matrix and the final 

process involves consolidating the matrix into its finished form.  Figure 4 illustrates the 

process by which fiber and matrix are combined to make a CMC. 
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2.2   Aerospace Applications 

 Ceramic matrix composites possess several qualities which make them desirable 

for use in aerospace applications.  Such qualities include fracture strength, toughness, 

temperature resistance, oxidation resistance, and reliability.  The unique requirements of 

aerospace engineering include designing components that will increase the performance 

and efficiency of aircraft while reducing the cost of operation and maintenance without 

sacrificing reliability [14:399].  During the late twentieth century CMCs started appearing 

in several civilian and military aircraft.  As fabrication becomes cheaper and material 

properties are established, ceramic matrix composites will become more prevalent in the 

structural and mechanical components of modern aircraft. 

 

Figure 5. Potential Engine CMC Applications [52:492]. 

 

 CMCs are ideal for use in aerospace platforms such as satellites, space vehicles, 

and turbine engines.  Components that typically operate at very high temperatures will 
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certainly benefit the most from the advancements made in composites.  Nearly all 

components found in turbine engines will have the potential to be constructed using CMC 

materials.  Figure 5 labels some specific components found in turbine engines that will 

benefit from the advancement of CMC materials.  Other components include nozzle 

flaps, exhaust nozzles, combustor, turbine vanes, and blisks (bladed disks) [52].  If these 

components are manufactured using environment specific CMC material, engines which 

normally operate with cooling systems will be able to operate without cooling at 

temperatures of 1400°C without sacrificing performance or safety [5:17,41:50].  

Additionally, oxidation resistance will be provided by all-oxide materials.  The future of 

the aerospace industry will be undoubtedly optimized by the incredible capability and 

versatility that these materials can provide. 

 

2.3 Failure Mechanisms 

 In order to effectively characterize the performance of specific ceramic matrix 

composites it is important to understand how failure occurs on the macroscopic level.  

Under mechanical loading CMCs fail when the ultimate strength of one of the two phases 

is reached.  Whether the matrix fails first or the fiber fails depends on the type of loading 

the material undergoes.  Previous research has shown that the matrix generally fails first 

when a CMC is exposed to tensile loading.  On the other hand when similar CMCs are 

loaded in compression the fibers tend to fail first resulting in a very distinctive fracture 

surface. 

 Due to the fact that this research focuses on the compressive creep behavior of 

N720/A CMC, further discussion of compressive failure mechanisms is necessary.  There 
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are three basic modes of failure when a CMC is exposed to compression; the first 

involves longitudinal splitting of the fiber-matrix interface.  This type of failure is 

characterized by a shearing of the fibers and matrix usually due to a weak interface.  This 

failure mode illustrated in Figure 6, is common among CMCs with a fiber coating (weak 

interface) [27]. 

 

Figure 6. Schematic of Shear Failure Mode of Unidirectional Composite Under  
Longitudinal Compression [27]. 

 
 

 The second mode of failure is referred to as fiber buckling or kinking.  This type 

of failure occurs when the fibers bend under loading forming kink bands.  Typically, the 

kink bands form at angles between 20°-30° relative to the plane normal to the direction of 

the fibers.  This mode eventually causes the fibers to fail, therefore eliminating the 

CMC’s ability to carry load. 
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Figure 7. Schematic of Microbuckling, which Leads to Excessive Deformation in Ductile  
Fibers or Fracture Planes in Brittle Fibers [27]. 

 

The third mode of failure is called “crushing.”  This occurs when the axial strain 

within the composite attains a value equal to the critical crushing strain of the fibers.  

Interestingly, technological advancements in fiber fabrication and implementation have 

provided fibers with increased axial performance.  Therefore crushing failure mode rarely 

occurs due to the fact that fiber buckling will happen first. 

 

2.4 Previous Work 

 Recently, much research concerning ceramic matrix composites has been 

conducted to determine their structural integrity when exposed to mechanical loading, 

high temperature, and aggressive environments.  Two of the most advanced CMCs 

previously investigated are NextelTM 610/Alumina with monazite coated fibers and 

NextelTM 720/Alumina.  Both materials have been thoroughly tested in multiple loading 

scenarios to provide data concerning which materials perform best under different 

loading histories.  Such scenarios include subjecting N720/A and N610/M/A to tension, 

compression, and cyclic loading while at a wide range of high temperatures.  Valuable 

information on both types of CMC was collected and analyzed. 
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Harlan investigated the effect of 100% steam and laboratory air environments on 

the tensile creep performance of N720/A at 1200°C and 1330°C.  Monotonic tensile tests 

were performed in order to determine the ultimate tensile strength of the N720/A at both 

temperatures.  As a result several stress levels were selected for use in creep tests at high 

temperatures.  This research concluded that while tensile creep resistance was good at 

1200°C in laboratory air, the presence of steam significantly degraded creep resistance, 

especially at 1330°C [22,60]. 

Mehrman investigated the effect of hold times at maximum load on fatigue 

performance of N720/A at 1200°C as well as the effects of load history on the retained 

durability.  This research showed that material performance is degraded significantly in 

the presence of steam.  Testing also revealed that prior fatigue in air environment resulted 

in an order of magnitude increase in creep life [41:83-84,42] 

Hetrick investigated the effect of frequency on the fatigue response of N720/A at 

1200°C in both air and steam environments.  This study focused on the frequencies of 0.1 

and 10 Hz.  The research showed a considerable decrease in fatigue performance when 

tested in steam as opposed to in laboratory air.  It was revealed that specimens tested at 

0.1 Hz exhibited shorter fatigue lives and smaller strains at failure than those tested at 10 

Hz.  It was also interesting to note that a higher degree of fiber pullout and a more fibrous 

failure surface occurred in specimens tested at 10 Hz.  These observations, led to the 

conclusion that the fiber-matrix interface was weakening significantly at the higher 

frequency level [25:71,59]. 
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2.4.1 Off-Axis Behavior of CMCs 

 The previously mentioned research endeavors were all concerned with an on-axis 

testing of specific CMC material.  This means that loading was directed along the 0° 

fibers.  However, there has been much interest in exploring how these CMCs would 

respond to an off-axis loading scenario such as can be imposed on a composite with a 

±45° fiber orientation.  The value of such testing is easy to see when considering that 

under operational conditions the highest loads are not always applied in the direction of 

the reinforcing fibers. 

 A study conducted by Siegert evaluated the tensile creep performance of N720/A 

with a ±45° fiber orientation at 1200°C in laboratory air and steam.  Creep-rupture tests 

were completed in all environments at stress levels of 45, 40, 35, and 15 MPa.  The 

ultimate tensile strength of N720/A with a ±45° fiber orientation was 55 MPa with an 

elastic modulus of 45 GPa and a failure strain of  0.265%.  As expected, testing showed 

that an increase in creep stress level caused a decrease in creep life.  The material was 

found to perform best in air followed by steam and then argon, disproving the theory that 

N720/A performs best in non-oxidizing environments.  Specimens tested at stress levels 

<35 MPa exhibited strong creep performance, all achieving creep run-out set to 100 hr at 

1200°C [62,65].  Furthermore, Scanning Electron Microscope investigation showed a 

correlation between coordinated fiber bundle failure and decreased creep life.     

 

2.4.2 Compression 

 Previously, little importance was placed on investigating the compressive 

behavior of CMC materials.  In fact this research effort is the first formal attempt to 
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assess the compressive properties of NextelTM 720/Alumina ceramic matrix composite.  

This study focuses on compressive properties and the compressive creep behavior of 

N720/A.  In an earlier study Jackson reported on the compressive creep behavior of 

N610/M/A, also a porous matrix CMC.  However, there are several very important 

features of these two CMCs that differ substantially and have the potential to greatly 

affect the compressive creep behavior of each material. 

 A primary difference between N610/M/A and N720/A is the interface.  The 

N610/M/A has monazite fiber coating which provides a weak interface between the fiber 

and the matrix.  Conversely, the N720/A relies on a porous matrix for crack deflection.  

Another difference between the two materials is the fiber architecture.  The N610/M/A 

uses a laminate fiber architecture which means layers of fiber and matrix are constructed 

on top of one another.  On the other hand the N720/A CMC is constructed using woven 

0°/90° fiber fabric layers.  The structural difference paired with the interface distinction 

may cause N720/A to perform in a different manner than the N610/M/A CMC.    

As previously mentioned Jackson determined the compressive properties and 

studied compressive creep behavior of N610/M/A at both 900°C and 1100°C.  This CMC 

is fabricated with unidirectional layers in a symmetric cross-ply (0°/90°/0°/90°)s 

orientation and was tested on-axis.  This research revealed that the monazite coating 

resulted in the loss of compressive strength at both investigated temperatures.  The creep 

behavior was unaffected by the monazite coating at 900°C.  However, at 1100°C, greater 

creep strains were accumulated by the monazite-containing composite.  It is important to 

note that all specimens tested at various stress levels between 50 and 95 MPa achieved 

creep run-out set to 100 hr [27:91-92,28]. 
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2.5 Thesis Objective 

 The objective of this thesis is to explore the compressive creep behavior of 

NextelTM 720/Alumina at 1200°C in air and steam environments.  Additionally it will be 

imperative to establish information concerning the ultimate compressive strength of 

N720/A at 1200°C.  This research will be conducted with the mission of establishing 

limitations on the use of this material in high-temperature aerospace applications. 
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III.  Material and Specimen 

 

3.1 NextelTM 720/Alumina Ceramic Matrix Composite 

NextelTM 720/Alumina is the CMC material featured in this research.  N720/A 

CMC has no interface between the fiber and matrix and relies on a porous matrix for flaw 

tolerance.  Extensive research into the tensile behavior of N720/A CMC has resulted in 

favorable and promising findings.  Compressive behavior at elevated temperatures must 

be investigated to completely understand the capabilities and limitations of this material. 

 

3.1.1  NextelTM 720 Fiber 
 

Fiber found in N720/A is manufactured by Minnesota Mining and Manufacturing 

Company (3MTM).  This fiber is composed of 85%Al2O3 and 15%SiO2 by weight in the 

form of α-alumina (41 vol %) and mullite (59 vol %) [45].  These fibers are distributed 

along the entire length and width of the matrix material in a continuous manner with a 

0°/90° orientation.  At the microscopic level the structure of N720/A is quite intricate.     

α-Al203 appears in the fiber in the form of small elongated grains with sizes less than 0.1 

μm.  In addition mullite and Al2O3 both appear in larger mosaic crystals with grain sizes 

up to 0.5 μm [77].   

These fibers are designed to give N720/A the ability to withstand tensile loading 

at high temperatures.  The N720/A fiber exhibits better creep performance than any other 

commercially available polycrystalline oxide fiber [77].  One of the reasons why N720/A 

fiber demonstrates better creep performance than other fibers is due to the absence of 

non-crystalline phases in the fibers.  It is interesting to note that creep performance of     
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α-alumina is inversely proportional to grain size [75].  The exact process by which the 

N720/A fiber is fabricated is proprietary, however it does follow the basic steps of the sol 

gel process previously discussed. 

 

3.1.2  Alumina Matrix 

NextelTM 720/Alumina CMC material employs a porous α-alumina matrix.  The 

alpha form of alumina is thermodynamically stable and has a high melting point of 

2050°C.  In the form of a monolithic ceramic, α-alumina is very strong with a strength 

range of 300 to 900 MPa depending on grain size.  Its Young’s modulus is 380 GPa. 

However, it is very brittle.  Therefore the addition of fibers is extremely beneficial to its 

characteristics [14:13,40]. 

A fine grained α-alumina structure is generally desirable at low temperatures 

because at low temperatures, both strength and toughness increase with decreasing grain 

size.  However, in this CMC a larger grain size α-alumina was used to satisfy the need for 

the CMC to perform at aerospace turbine temperatures.  A commercial mainstay in 

ceramics is α-alumina reinforced by zirconia to increase toughness.  Zirconia particles 

change the molecular structure of α-alumina by increasing its volume and creating a 

hexagonal closed packed orientation [14:35].  This research will primarily focus on the 

microstructure of the porous matrix, specifically the densification of the porous matrix 

and its effects on compressive creep behavior. 
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3.2 Specimen Development 

 

3.2.1  Material Processing 

The micrograph displayed in Figure 8 shows the fiber-matrix interface of an as-

processed virgin specimen.  The granular substance surrounding the circular fibers is an 

α-alumina matrix which exhibits a porous nature.   Due to the fact that N720/A composite 

employs a strong bond between fiber and matrix, the inherent porosity of α-alumina is 

essential to providing crack deflection around fibers.  During fabrication it is important 

for the material to be manufactured with precision, so as to ensure the structural design is 

comprised of the appropriate material constituents.  The physical properties of the 

N720/A composite used in this investigation are displayed in Table 1. 

 

 

Figure 8. Micrograph of as-processed virgin N720/A composite.  Porous nature of matrix 
is apparent [37]. 
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Table 1. Characteristic Properties of N720/A Panel. 

 

 

The ceramic matrix composite material studied in this research was NextelTM 

720/Alumina (N720/A), manufactured by Composite Optics, Inc. (COI) Ceramics, a 

division of ATK Space Systems.  The composite was supplied in a form of a 5.2 mm 

thick panel comprised of 24 0°/90° woven layers, with fibers woven in an 8 harness satin 

weave.  

 Test specimens were cut using abrasive water-jet machining to specifications 

shown in Figure 9.  Plexiglas sheets sandwiched the panels during cutting to reduce 

fraying at the edges of the specimens. After machining, the specimens were cleaned to 

remove any residual debris from the water jet machining. The cut specimens were placed 

into an ultrasonic bath of deionized water for 20 min., then soaked in 200-proof ethyl 

alcohol for 20 min., and finally, dried in an Omegalux LMF- 3550 Bench top Muffler 

Furnace at 250 °C for 2 hours. 

 

3.2.2  Specimen Geometry 

Due to the unique demands of this research the specimens were cut in a 

rectangular shape as opposed to the dog bone shape usually employed in tensile tests.  

The reason for this change was to minimize the chance of buckling.  For each specimen 

to provide valuable information it must fail in pure compression.  With a wider and 

thicker cross section, and special care taken when aligning the test machine and mounting 
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the specimen, buckling was easily avoided.  In the past, anti-buckling devices have been 

used to remedy this problem, however this is not a practical solution at 1200°C. 

 

 

Figure 9. Test Specimen: (a) top view, (b) side view. 

 

3.2.3 Specimen Tabbing 

Before a specimen could be tested it had to be properly prepared to withstand grip 

pressure.  Fiberglass tabs were bonded to the grip section of the specimens with M-Bond 

200 adhesive.  The tabs protected the specimen surface from being damaged by the grip 

wedges. 
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IV. Experimental Arrangements and Test Procedures 

 

4.1 Testing System and Components 

There were several components used in this research in order to test specimens 

under load, at extremely high temperatures, and in different environments.  The 

components used include a servo hydraulic testing machine, a digital controller with 

associated software, extensometer, high temperature ovens, steam generator, chiller, and 

susceptor.  All of these components were used in each compressive creep test with the 

exception of the susceptor and steam generator, which were only used for testing in steam 

environment.  

  

Figure 10. MTS 810 Test Station. 

 

The primary system used in this research was the servo hydraulic machine 

manufactured by Material Testing Systems (MTS) Corporation.  The axial 810 Material 
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Testing System with a 25 kN (5.5 kip) capacity shown in Figure 10, was used for 

compression to failure tests and compressive creep tests. This system was equipped with 

hydraulic wedge grips which were used to apply a pressure of 10 MPa to the grip points 

of the specimen. 

 

Figure 11. Test System Close-up. 

 

The controller used in this research was the TestStar II digital controller displayed 

in Figure 12.  This controller was used to generate input signals and was able to store 

large amounts of data.  Throughout each test several signals of information were sent to a 

file designated by the specimen name.  These signals included force, force command, 

displacement, displacement command, temperature in each oven, strain, and time.  
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Multipurpose Testware (MPT) was the software used to program test histories and for 

data acquisition.  The software allows the user to create specific programs for testing in 

different control modes. 

 

Figure 12. MTS Temperature Controller. 

 

During testing it was imperative to measure the strain experienced by the 

specimen.  The component used to measure strain levels is the called the extensometer.  

Displayed in Figure 13, the extensometer used in this research was an MTS axial       

high-temperature low contact force extensometer of 12.5-mm gage length.  By using two 

alumina extension rods, 3.5 mm in diameter and 151 mm in length the extensometer was 

protected during high-temperature tests. The tips of the rods are sharp to ensure firm 

contact with the specimen; if the extensometer were to slip test results would be 

inconclusive.  The extensometer is placed behind a heat shield and air-cooled. 

29 



 

Figure 13. MTS Extensometer. 

 

The component used to heat the specimen to the desired temperature was the 

oven.  Shown in Figure 14, the oven is comprised of several parts.  It is surrounded by an 

extremely heat resistant alumina casing which seals completely around the specimen.  

The heating elements are small devices located inside the alumina casing which convert 

electricity to heat.  Thermocouples in the oven provide the digital controller with closed-

loop feedback that ensured the oven was running at a consistent temperature.  The 

thermocouples used in this experimentation are S-type thermocouples which were 

routinely used during testing at 1200°C. 
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Figure 14. AMTECO Hot-Rail Furnace/Oven. 

 

For testing in steam, continuous steam environment was provided by an 

AMTECO HRFS-STMGEN Steam Generation System displayed in Figure 15. Tests in 

steam employed the alumina susceptor, a cylinder with end caps, which fits inside the 

furnace. The specimen gage-section is located inside the susceptor, with the ends of the 

specimen passing through slots in the susceptor. Steam is introduced through a feeding 

tube in a continuous stream with a slight positive pressure, expelling the dry air and 

creating 100% steam environment inside the susceptor.  The portion of the specimen 

enclosed in the susceptor is surrounded with steam environment.  During testing it was 

important to monitor distilled water levels in the steam generator system to ensure steam 

was being produced.  This set-up was very effective in simulating steam environment. 
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(a) (b) 

Figure 15. Steam System: (a) pump and temperature controller, (b) heating unit. 
 

Hydraulic wedge grips were employed in all tests.  Grips displayed in Figure 14 

are exposed to the intense heat created by the oven during testing, but are only rated to 

operate at a temperature of 400°C.  To remedy this problem a Neslab model HX-75 

chiller was used to cool the grips.  By flowing cold water through tubes running through 

machined holes in each grip wedge the temperature was prevented from harming any 

parts of the servo hydraulic grip system.  The chiller was filled with distilled water to 

prevent corrosion and was able to cool the water to 14°C. 

The final piece of equipment necessary to conduct testing in different 

environments was the alumina susceptor.  The susceptor , shown in Figure 16 was used 

only when conducting tests in steam.  There are several openings in the susceptor, one in 

the rear to allow for a feeding tube and two in the front to allow the extensometer rods to 
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contact the specimen.  The feeding tube was connected to the steam generation system to 

provide the appropriate test environment. 

 

Figure 16. Alumina susceptor: (a) disassembled, (b) front view, (c) rear view. 

 

When all of the aforementioned components are combined the result is an 

excellent system for testing CMC materials.  In previous research this set-up has proven 

reliable in all types of testing such as tension, compression, and cyclic loading scenarios.  

This system was used heavily in compression during this experimentation.  When testing 

in compression, it is important to take care in identifying limits for the machine.  The 
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placement of the oven between the servo-hydraulic grips is precarious due to the fact that 

if failure occurs the oven could be damaged.  By setting limits in the computer software 

program called interlocks, the Teststar II digital controller was able to monitor the 

location of the grips ensuring that damage to the oven was avoided. 

 

4.2 Temperature Calibration 

Before testing could commence the temperature controllers were calibrated to 

ensure the desired temperature was actually achieved.  In order to accurately simulate 

potential operating environments it was important to measure the surface temperature of 

the specimen.  Due to the fact that two ovens are used simultaneously to elevate the 

temperature around the specimen the setting of each individual temperature controller 

must be determined.   

To establish the appropriate settings two S-type thermocouples were attached to 

the specimen with a cement adhesive.  The thermocouples were connected to an OMEGA 

HH202A portable two channel temperature sensor, which provided a read-out of the 

specimen temperature.  The temperature calibration specimen is displayed in Figure 17.  

The specimen was placed in the grips and force control was selected and set to zero force 

during temperature calibration.  Command temperature was then automatically elevated 

to a pre-selected level at a slow rate to reduce the chance of overshooting the end point.  

After the temperature settled, manual adjustments were made in order to reach the desired 

temperature of the specimen.  
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Figure 17. Temperature Calibration Specimen. 

 

Once this temperature was reached the ovens were allowed to dwell for 

approximately 30 minutes to ensure settling occurred.  Throughout the calibration process 

an independent high temperature probe was used to verify the readings displayed on the 

sensor.  Once these values were obtained they could continue to be used for future testing 

of these specimens at the same temperature.  It is important to note that if the size or 

shape of the specimen changes its thermal characteristics will change making it necessary 

to repeat the temperature calibration process.  Temperature calibration was conducted in 

each environment.  For example when calibrating the ovens in air to reach a temperature 

of 1200°C the right oven was set at 997°C and the left oven was set at 999°C.  While in 

steam, temperature settings had to be a significantly higher due to the cooling effect of 

moisture.  In steam the right oven was set to 1187°C and the left oven was set to 1181°C. 
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4.3 Test Procedures 

This research focused primarily on compressive creep behavior of N720/A 

composite in two environments at elevated temperature.  Several test procedures had to 

be constructed in order to thoroughly examine and classify the reasons for specific 

behavior exhibited by the material.  These tests included compression to failure of a 

virgin specimen, long term creep tests in both air and steam environment, and 

compression or tension tests on specimens that achieved creep run-out.  Each procedure 

was individually programmed in the Multipurpose Testware (MPT) software station 

manager, carefully inspected for flaws, and locked into the controller.  The controller 

maintained excellent command of the system through a feedback loop and successfully 

carried out each test under full automation.  In all tests the specimen was heated to 

1200°C in 15 minutes and held at 1200°C for an additional 30 minutes prior to testing. 

 

Figure 18. Sample MPT Test Procedure. 
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4.3.1 Compression to Failure 

In order to evaluate the data collected throughout this research it was important to 

establish compressive properties of NextelTM 720/Alumina composite at 1200°C.  This 

was accomplished in compression tests to failure conducted in displacement control with 

the rate of -0.05 mm/s.  Very valuable information was collected from this type of test, 

such as the ultimate compressive strength, strain at failure, time to failure, and the 

coefficient of thermal expansion.  Several compression to failure tests were completed to 

ensure the repeatability of the data.  It is important to note that compression to failure 

tests were conducted in both air and steam environments. 

 

4.3.2 Creep Rupture Tests 

The next series of tests involved long term creep rupture tests lasting up to 100 

hours.  Creep tests were carried out in both air and steam environments at stress levels of 

-40, -60, -80, and -100 MPa.  All creep tests were conducted in force control.  In 

compressive creep-rupture tests specimens were loaded to the desired creep stress level at 

the stress rate magnitude of 15 MPa/s.  Creep run-out was defined as 100 h at a given 

creep stress.  Much like compression to failure tests, valuable information was collected 

from creep rupture tests.  Information such as compressive modulus, creep rates, and 

creep curves were determined. 

 

4.3.3 Post-Creep Testing 

After long-term creep tests were performed, it was important to see how the 

specimen that achieved run-out was affected by exposure to sustained mechanical loading 
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at elevated temperature and to evaluate any changes in modulus, strength, and stress-

strain behavior.  Post-creep tests were conducted in compression or tension, and were 

carried out to failure.  Much like compression to failure tests, post creep tests were run in 

displacement control at a rate magnitude of 0.05 mm/s. 

 

4.4   Post-Failure Analysis 

While the data collected during actual testing was valuable in illustrating the 

mechanical performance and retained properties of individual specimens, it did not reveal 

the mechanisms behind the mechanical response of the material.  In order to elucidate 

important factors affecting material behavior it was necessary to take a closer look at the 

composite microstructure and specimen fracture surfaces.  This was done by using an 

optical microscope and a scanning electron microscope (SEM). 

 

4.4.1 Specimen Preparation for Microscopy 

Although the optical microscope required no specimen preparation for effective 

viewing, the SEM was preparation intensive.  The SEM relies on the transfer of electrons 

from an above mounted aperture to the specimen being viewed.  Therefore, it was 

necessary to ground the specimen and provide it with a conductive coating [1].  The 

specimen was cut just below the fracture surface using an MTI Corporation EC400 CNC 

Dicing/Cutting and 3.5 in. impregnated diamond blade.  It was then secured to an 

aluminum platform using silver paste to satisfy the grounding condition.   
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Figure 19. CNC Saw. 

Next, the mounted specimen was placed in a SPI-MODULE Control and Carbon 

Coater to coat the non-conductive surface of N720/A with a conductive carbon coating.  

This was achieved by creating a vacuum around the specimen purging it of all air and 

then sending current through carbon rope, effectively transferring carbon atoms to the 

fracture surface. 

 

 

Figure 20. SPI Carbon Coating System. 
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4.4.2 Optical Microscopy 

After each test was completed and the specimen achieved failure, the fracture 

surface was examined using the optical microscope. Typically, each specimen yielded 

two fracture surfaces and each fracture surface required four photographs to fully 

document its characteristics.  Each fracture surface was different, however, fracture 

surfaces of specimens which were exposed to similar environments and loadings histories 

showed significant resemblance. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Zeiss Optical Microscope. 
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A simple procedure was used to capture clear and detailed optical micrographs.  

The procedure included five steps. (1) The procedure involved selecting appropriate 

lighting at the 3200K setting so as to not overexpose areas of the specimen. (2) A z-stack 

function was performed to capture images at different depth levels throughout the 

specimen. (3) The z-stack images were then overlaid using a geometric alignment 

function to create a three dimensional picture. (4) In order to adjust the z-stack images on 

top of one another an extended focus was performed to perfectly align and focus each 

level of the image. (5) Finally, the image was sharpened to define individual fibers and 

matrix cracking and then smoothed in a gauss format to provide the optimal micrograph. 
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4.4.3 Scanning Electron Microscope Analysis 

The scanning electron microscope is a sophisticated tool used to capture high 

resolution images at magnifications much greater than the human eye or even an optical 

microscope can achieve.  Due to its unique manner of creating images the SEM is ideal 

for capturing fracture surfaces, especially those with complex damage zones.  The SEM 

operates by thermionically emitting electrons from a tungsten cathode and accelerating 

them towards an anode.  The energy exchange between the electron beam and the sample 

result in the emission of electrons and electromagnetic radiation which can be detected 

and used to form an image [1].  

 

Figure 22. FEI Quanta Scanning Electron Microscope (SEM) and EDAX X-Ray  
Analysis System. 
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V.  Results and Discussion 

 

 The following chapter provides a comprehensive discussion of all tests completed 

during this investigation.  This study focused on the compressive creep behavior of 

NextelTM 720/Alumina at 1200°C in both air and steam environments. Additionally, 

compressive properties of N720/A at 1200°C were established.  Furthermore, the effect 

of steam on the compressive creep performance of N720/A at elevated temperature was 

evaluated.  Retained properties of specimens that achieved creep run-out in both 

environments were evaluated.  The effect of load rate on the compressive characteristic 

properties and stress-strain behavior of N720/A was assessed.  Once these results are 

presented, an in depth analysis of composite microstructure and damage and failure 

mechanisms is presented.  The objective of the microstructure investigation is to identify 

mechanisms behind degraded compressive creep performance in steam.  Note that this is 

the first investigation into the compressive behavior of N720/A at 1200°C, therefore 

comparison with prior work is limited.  Table 2 summarizes all tests performed during 

this study. 

 

 

 

 

 

 

 
 

43 



Table 2. Test Matrix 
 

Specimen Loading Type Environment Max. Stress 
Magnitude (MPa) 

UCS-1 Compression to failure Air 130 
UCS-2 Compression to failure Air 132 
UCS-3 Compression to failure Air 122 
UCS-4 Compression to failure Steam 115 
UCS-5 Compression to failure Aged 25h Steam 99 
AC-1 Creep Air 100 
AC-2 Creep Air 80 
AC-3 Creep Air 60 
SC-1 Creep Steam 100 
SC-2 Creep Steam 60 
SC-3 Creep Steam 40 
LRA Compression Air 108 
LRS Compression Steam 54 

AC-1a. Post Creep Air 123 
AC-2a. Post Creep Tension Air 133 
AC-3a. Post Creep Air 137 
(UCS=ultimate compressive strength    AC=air creep   SC=steam creep    LR=load rate) 

 
5.1 Thermal Expansion 

Each test in this investigation was performed at 1200°C.  In order to achieve this 

temperature the specimen and associated testing equipment were required to heat to this 

temperature and dwell at temperature for a period of between 45 minutes to 1 hour.  

During heat-up the N720/A CMC experienced significant thermal expansion.  Thermal 

expansion is defined as the event when a material increases in volume when exposed to 

increasing temperature.  In each test, data was recorded during temperature ramp-up in 

order to determine thermal strain (εth).  The coefficient of thermal expansion (α) was 

calculated by fitting a curve to the linear portion of the ε-Τ curve.  The coefficient of 

thermal expansion in steam was higher than that in air temperature heat-up sequences.  
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Strain and temperature data was collected for all specimens.  Table 3 summarizes the 

recorded values for thermal strain and the coefficients of thermal expansion. 

 

Table 3. Thermal strain and coefficients of linear thermal expansion for the N720/A  
composite in steam and air environments. 

 
 

Specimen 
 

Thermal Strain (%) 
Coefficient of Linear 
Thermal Expansion 

(10-6 K-1) 
UCS-1 no strain data N/A 
UCS-2 no strain data N/A 
UCS-3 0.752 7.61 
*UCS-4 0.977 9.92 
*UCS-5 0.943 9.98 

AC-1 0.756 8.53 
AC-2 0.740 7.73 
AC-3 0.712 7.55 
*SC-1 1.028 9.84 
*SC-2 1.00 9.99 
*SC-3 0.997 9.99 
LRA 0.788 8.33 
*LRS 1.053 9.93 

(*) Temperature Ramp Conducted in Steam Environment. 

 

5.2  Monotonic Compression Tests 

NextelTM 720/Alumina CMC material system has been researched exhaustively in 

prior efforts to examine tensile, fatigue, and off-axis behavior in several environments at 

varying temperatures.  However, this investigation is the first effort to explore the 

compressive characteristics of N720/A.  Monotonic compression tests were conducted in 

both laboratory air and steam environments. 

Compression to failure was performed in laboratory air to establish the ultimate 

compressive strength and the compressive elastic modulus of N720/A at 1200°C.  For the 

purpose of this investigation ultimate compressive strength (UCS) is defined as the stress 
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level at which a specimen fails under loading.  Results reveal an ultimate compressive 

strength magnitude of 122 MPa and a compressive modulus of 68.8 GPa.  After these 

baseline values were established the effects of environment, creep, and load rate on the 

strength, modulus, and failure strain of the N720/A CMC material system were assessed. 

The effect of steam on the compressive properties and behavior of N720/A was 

investigated in two compressive tests.  A compression-to-failure test was performed in 

steam in order to evaluate short-term effect of steam environment.  Results indicate that 

short-term exposure to steam reduces the ultimate compressive strength by 5.73% to 115 

MPa, whereas the effect of steam on the compressive modulus is more pronounced 

showing a 15.84% decrease.  While steam environment takes little time to have an effect 

on the compressive strength and stiffness of N720/A, prolonged exposure shows an even 

greater impact.  The specimen aged for 25 hours at 1200°C in steam prior to the 

compressive test to failure loading showed an 18.9% reduction in strength as well as a 

36.5% decrease in compressive modulus.  Figure 23 shows compressive stress-strain 

curves obtained in laboratory air and in steam for the as-processed material as well as the 

compressive stress-strain curve obtained for the specimen subjected to 25 h of prior aging 

at 1200°C in steam. 
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Figure 23. Compressive stress-strain curves for as-processed N720/A specimens tested at 
1200°C in air and in steam and for N720/A specimen subjected to prior aging for 25h at 

1200°C in steam and failed at 1200°C in steam. 
 
 

It is seen that steam environment is detrimental to the compressive properties of 

N720/A.  Compressive behavior of a 0°/90° composite is matrix-dominated; CMCs rely 

on the matrix to carry the load.  Hence this reduction in strength and modulus indicates 

that the presence of steam has a degrading effect on the α-alumina matrix.  A further 

discussion as to the mechanisms behind this degradation is substantiated by extensive 

microstructural investigation provided in later sections. 

The effect of loading rate on the compressive properties and stress-strain behavior 

of N720/A was explored in both air and steam environments.  The MTS servo hydraulic 

set-up was programmed to perform a compression to failure test in load control, at a rate 
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of -0.0025 MPa/sec.  At this rate in both air and steam environments specimens achieved 

compressive failure at a much lower stress magnitude than those tested at a faster rate.  

When compared to the as-processed specimen the moduli of specimens tested at the 

slower load rate in air and in steam were significantly reduced.  It is also interesting to 

note that failure strain in steam is increased by roughly 900% when load rate is reduced.  

Steam environment continues to degrade the compressive performance of N720/A 

independent of loading scenario.  Figure 24 shows a comparison of the stress-strain 

behavior of N720/A specimens when tested to failure in displacement control versus slow 

rate load control.  
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Figure 24. Compressive stress-strain curves obtained for N720/A specimens tested at 1200°C 
in air in displacement control at -0.05 mm/s and in load control at -0.0025 MPa/s in both 

steam and air environments. 
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Figure 25.  Compressive stress-strain curves for N720/A specimens tested in compression 
to failure at 1200°C in: (1) displacement control: in air, in steam, and following aging in 

steam for 25 h, (2) load control: in air and in steam. 
 

The graph shown in Figure 25 compares the stress-strain behavior of all N720/A 

specimens tested in compression to failure at 1200°C.  The shape of the load control in 

steam stress-strain curve is particularly interesting, because its stress-strain behavior 

deviates the most noticeably from as-processed behavior, of any of the other curves.  

Comparison of the load control in steam curve and the displacement control aged in 

steam for 25 h curve, shows that in both cases steam is detrimental to the modulus and 

compressive strength of as-processed N720/A.  However, the combination of exposure to 

steam under increasing load at 1200°C as seen in the load control curve, results in the 
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most catastrophic change in the compressive performance of N720/A composite.  

Sustained loading during exposure to steam at 1200°C is the exact scenario which 

specimens undergo when exposed to a steam creep environment.  Therefore this finding 

will be important in a later discussion of the compressive creep performance of N720/A 

in steam at 1200°C.  

It is also important to discuss test duration in order to understand how much time 

elapsed prior to failure of each specimen.  In tests conducted in displacement control at a 

rate of -0.05 mm/s failure occurred rapidly.  Test duration for the compression to failure 

test of N720/A at 1200°C in air was approximately 16.0 seconds.  Test duration for the 

compression to failure test of N720/A at 1200°C in steam was approximately 13.0 

seconds. Test duration for the compression to failure test of N720/A at 1200°C following 

25 h of aging in steam was approximately 8.0 seconds.  Conversely, tests conducted in 

load control at a stress rate of -0.0025 MPa/s failed slowly.  Test duration for the slow 

compressive load rate to failure of N720/A at 1200°C in air was approximately 12 hours 

and 12 minutes. Test duration for the slow compressive load rate to failure of N720/A at 

1200°C in steam was approximately 5 hour and 47 minutes.  Table 4 shows the 

associated compressive properties of tests conducted in compression to failure. 

 

Table 4. Summary of compressive properties for the N720/A composite 

 
Specimen 

 
Test 

Environment 

Compressive 
Strength Magnitude 

(MPa) 

 
Compressive 

Modulus (GPa) 

 
Failure Strain (%)

Magnitude 
UCS-3 Air 122 68.8 0.207 
UCS-4 Steam 115 57.9 0.523 
UCS-5 Aged 25h Steam 99 43.7 0.244 
LRA Air 108 25.75 0.420 
LRS Steam 54 8.95 2.12 
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5.3 Creep Rupture Tests in Air 

Three creep rupture tests were performed in the laboratory air environment.  After 

attaining a reliable value for the ultimate compressive strength of N720/A several creep 

stress levels were selected.  These values were approximately 80%, 65%, and 50% of the 

ultimate compressive stress level of -122 MPa, yielding stress levels of -100, -80, and -60 

MPa.  The test specimen was held at creep stress for 100 h or until failure occurred.  All 

specimens tested in air achieved the creep run-out of 100 h.  Figure 26 illustrates the 

creep behavior of N720/A at several creep stress levels in laboratory air at 1200°C. 
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Figure 26.  Compressive creep curves for N720/A CMC at 1200°C in air. 
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In previous work investigating NextelTM 720/Alumina CMC tensile fatigue and 

creep behaviors were the focus of the study.  Because in tension, the behavior of the 

composite is fiber-dominated, prior work focused on fiber-dominated behavior and 

properties.  However, in compression the composite behavior is matrix-dominated.  The 

matrix is carrying essentially the entire load in compression.  It is seen that at 1200°C in 

air, N720/A exhibits primary and secondary creep regimes when subjected to sustained 

compressive loading.  Note that creep strain magnitudes accumulated at creep stresses of 

-60 and -80 MPa are lower than the failure strain magnitude reached in compression tests 

to failure.  Conversely, creep strain magnitude accumulated in the -100 MPa creep test 

exceeds the failure strain magnitude produced in compression tests to failure.  As 

expected, creep strain accumulation increased with increasing creep stress.  Table 5 

summarizes the results of compressive creep tests at 1200°C in air. 

 

Table 5. Summary of Compressive Creep Tests at 1200°C in Air. 

Specimen Creep Stress 
(MPa) 

Creep Strain 
(%) 

Time to Rupture (s) 

AC-1 -100 -0.404 360,000 (Run-out) 
AC-2 -80 -0.140 360,000 (Run-out) 
AC-3 -60 -0.095 360,000 (Run-out) 

 

 

5.4 Creep Rupture Tests in Steam 

The effect of steam on creep performance was investigated by performing three 

creep tests at similar stress levels to those executed in air.  However, from the start of this 

sequence of testing the results of creep tests in steam environment differed significantly 
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from those obtained in air environment.  The first creep test in steam was performed at     

-100 MPa.  The failure occurred after a mere 6.5 seconds.  It became quite clear that the 

presence of steam would significantly reduce the life of N720/A in compressive creep at 

1200°C.  Therefore the two subsequent creep tests were performed at -40 and -60 MPa; 

lower stress magnitudes.  Figure 27a shows the compressive creep curves obtained for 

N720/A at 1200°C in steam environment on a full test scale.  Figure 27b shows a close-

up of the creep curve obtained at -100 MPa at 1200°C in steam on a truncated test scale. 
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Figure 27a.  Full scale: compressive creep curves for N720/A CMC at 1200°C in steam.  
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Figure 27b. Truncated scale: compressive creep curves for N720/A CMC at 1200°C in 
steam. 

 

Creep testing in steam was initiated after creep tests in air were completed.  Due 

to the fact that all creep tests in air achieved run-out it seemed that similar behavior in 

steam might be observed.  However, none of the specimens tested in creep in steam 

environment survived 100 h at creep stress.  In fact all specimens tested in creep in steam 

failed rapidly compared to the specimens tested in creep in air.  The longest creep 

lifetime in steam of approximately 4 h was achieved by the specimen tested at -40 MPa.  

It is also interesting to note that specimens tested at lower creep stress magnitudes 

accumulated higher creep strains at failure.  This is due to a reduction in creep rate 

magnitude at lower creep stress magnitudes.  Specimens tested at lower creep stress 

magnitude, creep at a significant rate but not at a catastrophic rate, such as experienced 
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by the specimen tested at -100MPa.  The cause of this rapid failure is a direct result of the 

addition of steam to the experimental conditions.  Hence, the presence of steam has a 

deteriorating effect on the creep performance of the α-alumina matrix of the N720/A 

CMC which dominates the material response under compressive loading.  The following 

section will discuss the influence of steam and stress levels on the creep rate of N720/A 

subjected to compressive creep loading.  Table 6 summarizes the data collected in creep 

tests performed in steam. 

 

Table 6. Summary of Compressive Creep Tests at 1200°C in Steam. 

Specimen Creep Stress 
(MPa) 

Creep Strain 
(%) 

Time to Rupture 
(s) 

SC-1 -100 -0.188 6.5 
SC-2 -60 -1.128 2355 
SC-3 -40 -1.577 13920 

 

5.5 Compressive Creep Rate and Time to Creep Rupture of N720/A 

 Comparison of creep data at 1200°C in air and in steam environments obtained in 

testing leads to a very definitive conclusion about the effect of steam on the compressive 

creep performance of N720/A.  Steam is detrimental to the compressive creep 

performance, to the point where catastrophic failure occurs rendering this CMC material 

system ineffective.  In order to quantify the degree to which the presence of steam affects 

compressive creep resistance of N720/A, creep rates were calculated to determine at what 

rate compressive strain is accumulated in the material under sustained loading in steam 

and air environments. Table 7 shows creep rates and associated test environments as well 

as creep stress levels.  All creep rate magnitudes in steam are higher than those recorded 
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in air.  A catastrophically high creep rate magnitude of 0.018 s-1 with a corresponding life 

of only 6.5 seconds was observed at -100 MPa in steam.  Specimens subjected to creep at 

-40 and -60 MPa also produced creep strain rate magnitudes that were an order of 

magnitude higher than those produced in air at the same creep stress levels.  These high 

creep rate magnitudes suggest that the matrix is strongly affected by the presence of 

steam.  Failure of all specimens tested in steam occurs in less than four hours, while all 

specimens tested in air achieved creep run-out of 100 h.  A further investigation as to the 

mechanisms causing these early failures in steam is presented in the next section where 

the behavior of α-alumina matrix is discussed. 

 

Table 7. Minimum Creep Rates for N720/A Specimens Tested at 1200°C in Air and in 
Steam. 

 
Specimen Creep Stress 

(MPa) 
Test Environment Strain Rate (s-1) 

AC-1 -100 Air -2.95E-7 
AC-2 -80 Air -9.024E-8 
AC-3 -60 Air -8.336E-8 
SC-1 -100 Steam -1.8E-2 
SC-2 -60 Steam -2.879E-6 
SC-3 -40 Steam -6.09E-7 

 

 It is also interesting to compare the compressive creep rates of N720/A obtained 

in this study with the tensile creep rates obtained in prior efforts.  Figure 28 compares the 

creep rates produced in this investigation and those obtained in tensile creep tests by 

Harlan [22,60].  Results in Figure 28 suggest that steam has the same degrading effect on 

the tensile as on compressive creep performance of N720/A.  However, in the case of 

tensile creep the effect seems less pronounced.  In the case of tensile creep, the 

relationship between the minimum creep rate and creep stress can be described by a 
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power law.  On the other hand, in steam the minimum creep rate magnitude increases 

drastically as the creep stress magnitude exceeds 60 MPa.  This leads to the conclusion 

that steam has a greater effect on the compressive creep performance of N720/A than on 

its tensile creep performance.  These findings are significant because this CMC material 

will undoubtedly be subjected to sustained compressive loading in degrading 

environments when used in real aerospace engine components. 
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Figure 28. Minimum creep rate magnitude vs. applied stress magnitude for N720/A 
composite at 1200°C in air and in steam.  Tensile data form Harlan [22,60]. 

 
 

Additional evidence substantiating the conclusion that steam has a detrimental 

effect on the compressive creep performance of N720/A is provided by time to rupture 

data.  Specimens tested in steam exhibit a much shorter creep life duration than 

57 



specimens tested in air at identical stress levels.  Another method of quantifying the 

degree to which the presence of steam affects compressive creep resistance of N720/A, is 

to record and analyze creep lifetimes of specimens tested in air and steam environments.  

Figure 29 graphically represents the time to rupture for each specimen at its associated 

stress level in each environment. 
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Figure 29. Stress rupture plot: creep lifetimes of all N720/A specimens tested in air and in 
steam at 1200°C.  
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  Additionally, Table 8 shows the time to rupture for each specimen and 

associated test environments as well as creep stress levels.  Notice that all specimens 

subjected to creep in air achieve run-out of 100 h, while all specimens subjected to creep 

in steam fail in less than 4 hours.  These creep lifetimes correspond to the catastrophically 

high creep rate magnitudes observed in steam especially at the higher stress levels.  These 

short creep lifetimes suggest that matrix performance is negatively affected by the 

presence of steam. 

 

Table 8. Time to rupture of specimens tested in creep loading at 1200°C in air and in 
steam. 

 
Specimen Creep Stress 

(MPa) 
Test 

Environment 
Time to Rupture 

(s) 

AC-1 -100 Air Run-out 
AC-2 -80 Air Run-out 
AC-3 -60 Air Run-out 
SC-1 -100 Steam 6.5 
SC-2 -60 Steam 2355 
SC-3 -40 Steam 13920 

 
 
 
5.6 Effect of Steam on Compressive Creep Rupture Behavior 

As a matrix material α-alumina is a candidate constituent in CMCs for high 

temperature application due to its stability at elevated temperatures.  Additionally, as an 

oxide material it exhibits inherent oxidation resistance, a valuable property especially 

when being considered for use in aerospace applications where corrosive water vapor is 

likely to be present during normal operation.  However, results of compressive creep 

testing at 1200°C in a steam environment show a significant decrease in performance as 

compared to laboratory air environment.  This poses an important question; if oxidation is 
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not responsible for this decrease in performance, what aspect of water vapor is causing 

such degradation in compressive creep resistance? 

Several previous studies have explored the effect of steam on polycrystalline      

α-alumina subjected to creep at 1200°C [35].  These research efforts have concluded that 

it is not the oxygen in steam that has a degrading effect on the α-alumina matrix, rather 

the presence of hydrogen is to blame.  Previous results have shown that the presence of 

hydrogen leads to a significant reduction in yield stress.  Furthermore, presence of 

hydrogen lowers the mechanical strength of polycrystalline α-alumina with different 

grain sizes [35:566]. 

Creep studies performed on polycrystalline α-alumina at temperatures above 

1200°C that focused on fine grained materials indicated that the main deformation 

mechanism is diffusion-controlled grain boundary sliding.  It was also shown [35] that 

the presence of hydrogen induces hydrothermal softening of α-alumina and changes in 

the deformation mechanism.  These phenomena are attributed to the penetration of 

hydrogen defects into α-alumina.  Results reported in literature [35] reveal that hydrogen 

defects can be introduced in to α-alumina to depths of mm by diffusion from water vapor.  

The two kinds of hydrogen defects were reported to be: (1) interstitial protons in the bulk 

and (2) molecular clusters likely located near surfaces and grain boundaries.  Results in 

reference (35) demonstrate that the yield stress of α-alumina was reduced by the presence 

of hydrogen by a factor of 6 for fine grained α-alumina.  In this case weakening is 

associated with a change in the predominant deformation mechanism, from dislocation 

glide to grain boundary sliding and cracking.  In summary, the presence of hydrogen 
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induces a hydrothermal softening of α-alumina and changes the deformation mechanisms, 

resulting in a reduction in mechanical performance [35:573]. 

The conclusions drawn by previous studies are clearly illustrated and confirmed 

by the early failures and high creep rates experienced by N720/A subjected to 

compressive creep in steam environment.  Further examination of specimens failed in the 

aforementioned scenarios is carried out using optical and SEM microscopy techniques.  

 

5.7 Retained Properties 

Creep testing was performed on six N720/A specimens.  However, only the 

specimens tested in air achieved creep run-out.  To evaluate the retained properties of 

these pre-crept specimens it was essential to test them in compression to failure and to 

determine the retained modulus, failure strain, and retained strength.  Specimens which 

achieved run-out in creep tests at -60 and -100 MPa were subjected to compression tests 

to failure.  Conversely, the specimen tested in creep at -80 MPa was subjected to a tensile 

test to failure in order to evaluate the effects of prior compressive creep on tensile 

properties and stress-strain behavior. 

Post-creep testing revealed that prior compressive creep significantly affected the 

retained properties.  Retained compressive strength is increased after 100 h in creep 

loading at -60 and -100 MPa.  The specimen subjected to creep at -60 MPa showed a 

rather significant increase in strength of 12.3%.  However, both specimens exhibited a 

reduction in compressive modulus. Results of retained mechanical properties of N720/A 

specimens subjected to prior creep at 1200°C in air are shown in Table 9. 
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Table 9. Retained Properties of N720/A CMC specimens subjected to prior creep in air at 
1200°C. 

 
 

Specimen 
Creep 
Stress 
(MPa) 

Retained 
Strength 
(MPa) 

Retained
Modulus

(GPa) 

Initial 
Modulus

(GPa) 

Failure
Strain 

(%) 

Strength 
Retention 

(%) 

Modulus 
Retention

(%) 
AC-1a. -100 -123 45.4 68.8 -0.218 100.8 66.0 
AC-2a.* -80 +133 60.0 75.1 -0.301 70.0 79.9 
AC-3a. -60 -137 49.7 66.0 -0.249 112.3 75.3 

(*) Post creep testing in tension. 
 

It appears that the porous matrix could be the source of the increase in 

compressive strength.  When the specimen is held under sustained compressive load for a 

prolonged period of time, matrix porosity is likely to decrease, causing matrix coarsening 

and densification.  This process makes the matrix inherently stronger and therefore able 

to carry significantly higher loads than in the as-processed condition.  Figure 30 

illustrates the effect of prior compressive creep on the retained compressive properties of 

N720/A composite. 
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Figure 30.  Effect of prior compressive creep at 1200°C in air on the compressive    
stress-strain behavior of N720/A CMC at 1200°C in air. 

 
 

 Although this research focuses primarily on the compressive creep behavior of 

N720A, it was important to assess how prior compressive creep affected tensile        

stress-strain behavior.  The specimen subjected to creep at -80 MPa was subjected to 

tension to failure after achieving creep run-out.  Although prior compressive creep caused 

an increase in compressive strength, it significantly degraded the tensile properties.  

Tensile modulus was reduced by 20.1% while the tensile strength suffered a greater 

reduction of 30%.  The densification of the porous matrix plays the opposite role under 

tensile loading.  As the porosity is reduced the matrix loses its ability to provide for crack 

deflection and to prevent brittle failure.  While fiber performance is critical to the 

performance of the CMC in tensile loading, a minimum level of finely distributed matrix 
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porosity is equally critical to crack deflecting behavior and damage tolerance.  Matrix 

densification leads to decrease in damage tolerance and brittle failure.  Evidence of this 

phenomenon is provided by the fracture surface.  The fracture surface reveals planes of 

coordinated fiber failure.  This finding indicates that cracks were not deflected around 

fibers.  The composite fractured in a brittle manner like a monolithic ceramic.  Following 

sections will discuss this observation using optical micrographs for substantiation.  Figure 

31 illustrates the reduced performance of N720/A in tension following 100 h of 

compressive creep at 1200°C in air. 
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Figure 31. Effect of prior compressive creep at 1200°C on tensile stress-strain behavior 
of N720/A CMC at 1200°C. 
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5.7.1 Compressive Creep Behavior of Polycrystalline Alumina 

The retained properties obtained in this study for specimens subjected to prior 

compressive creep at 1200°C in air and in steam were somewhat unexpected.  Prior 

compressive creep in air at 1200°C caused a noticeable increase in the compressive 

strength of this particular material system.  To understand why such an increase in 

compressive strength is observed it is essential to understand that the matrix is 

responsible for carrying most of the compressive load experienced by N720/A composite. 

Therefore the behavior of the matrix dictates strengthening of this CMC in compression. 

The matrix material used in the fabrication of NextelTM 720/Alumina composite is 

a slightly porous polycrystalline α-alumina.  A previous study investigated the behavior 

of α-alumina under compressive load in aggressive temperature environments [6].  This 

previous research effort focused on the behavior of α-alumina, alone.  However, it is 

reasonable to assume the introduction of fibers should not change α-alumina properties 

significantly, especially in compressive loading.  It was reported [6] that at low 

temperature and/or low applied stresses, deformation in α-alumina occurs by grain 

boundary sliding.  In this case increased densification is observed in the samples 

subjected to compressive creep, compared to the as-sintered material [6:2807]. 
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 1μm  1μm 

 1μm  1μm 

Figure 32. α-Alumina microstructure after being subjected to creep loading at various 
stress levels; comparison of grain size [6].  

 
 

This study showed that specimens subjected to prior compressive creep at high 

temperature exhibited grain growth during high temperature deformation.  

Aforementioned grain growth under various stress levels is illustrated in Figure 32 [6].  

To evaluate the stress influence on grain size, the average grain size after creep tests was 

compared to a reference sample put in the creep furnace, without load, at the same time.  

At 1200°C when the applied stress is between 40 and 100 MPa the resultant 

microstructure after creep is coarser compared to that of the as-sintered material, very 

few residual pores are observed [6:2814].  These findings confirm the theory that the 

porous α-alumina undergoes additional sintering and coarsening under compressive load 

at elevated temperature, resulting in a loss of matrix porosity and a densification of the 

N720/A CMC material system, leading to an increase in compressive strength. 

It is important to note that this previous research [6] clearly defines low temperature 

and low applied stress as a range of values. The temperatures between 1150°C and 
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1200°C are defined as low.  Applied stresses between 0 and 100 MPa are defined as low 

as well [6:2818].  While it is apparent that these temperatures and stresses are quite 

aggressive, for the purposes of a relative discussion of the compressive behavior of        

α-alumina under load at elevated temperature these definitions are important.  

 

5.8 Composite Microstructure 

Throughout this discussion of results, data and theories have been provided to 

serve as an explanation for what occurred in each specimen from an objective and 

quantitative standpoint.  The experimental results present a fairly clear picture of the 

material behavior under monotonic and sustained compressive loading at 1200°C in air 

and in steam.  However, it is important and also considerably more difficult to identify 

the microstructure mechanisms responsible for the observed mechanical behaviors.  

Inspecting the composite microstructure of selected specimens with both the optical 

microscope and SEM will allow for a deeper understanding to what mechanisms were 

activated during loading, at elevated temperature, in steam or air environment.  

Phenomenon such as grain growth under load and densification of the matrix are 

explored at the microscopic level.  The goal of this exercise is to understand why certain 

failure mechanisms occur, why steam environment is so detrimental, and to fully evaluate 

the performance of N720/A in compressive loading scenarios. 
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5.8.1 Optical Microscopy 

Viewing optical images of the NextelTM 720/Alumina fracture surfaces is useful 

for establishing the basic appearance of fracture surfaces obtained under specific 

conditions.  These micrographs capture the entire fracture surface revealing important 

features concerning the topography of each specimen failure.  All tests in this 

investigation were conducted at 1200°C.  Therefore fracture surfaces are only 

environment and load type dependent.  Although some of the fracture surfaces presented 

in figures on the following pages look very different there is a basic similarity between 

N720/A specimens failed in compression at 1200°C.  This similarity is a distinctive 

angled fracture surface which indicates shearing of the fibers.  See the side views in 

Figures 33(b), 35(a), and 35(b). 

It is important to note that the N720/A CMC employs a woven fiber architecture.  

The reinforcement is composed of 0°/90° fibers which are woven into an 8 harness satin 

weave fabric.  This is much different from CMC materials studied in the past that had a 

laminate structure with the 0° and 90° fibers included in separate unidirectional layers of 

the material.  This difference has a significant influence on the performance of the 

material as well as on the appearance of the fracture surfaces. 

The images in Figure 33 show fracture surface of an as-processed N720/A CMC 

specimen subjected to compression to failure at 1200°C in a laboratory air environment.  

The image in Figure 33(a) reveals a long damage zone measuring 45 mm.  The weave is 

exposed showing that it played a role in resisting the failure under compressive loading.  

The failure mechanism usually associated with compression failure is buckling and 

kinking of the fibers which ultimately leads to fiber fracture.  However, the failure 
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mechanism observed in this compression to failure specimen is shearing of the fibers and 

matrix.  The fracture is not extremely clean; however, there is a distinct stair-step pattern 

which is easily seen in Figure 33b.  The side view also reveals that some delamination 

occurred during failure.  This failure mode is common among dense matrix CMCs with a 

fiber coating (weak interface).  It is important to note that only 9.0 seconds elapsed 

before the specimen in Figure 33 failed at a compressive stress of 122 MPa. 

 

 

(a) 

(b)

Figure 33. Fracture surfaces of N720/A specimen tested in compression to failure at 
1200°C in laboratory air: (a) top view, (b) side view. 

   5.5mm 
  18mm 
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Presented in Figure 34 are fracture surfaces of specimens failed in compression 

after being subjected to 100 h of compressive creep loading in laboratory air environment 

at 1200°C.  These fracture surfaces are very similar to those observed in compression to 

failure tests of as-processed N720/A, displayed in Figure 33.  This is not surprising when 

considering that even after sustained loading at elevated temperature the retained 

properties of this material are similar to those of the as-processed CMC. 

(a) 

 

(b) 

(a)

  18mm     18mm 

 

Figure 34. Fracture surfaces of N720/A specimens subjected to compressive creep tests at 
1200°C in air: (a) -60 MPa, (b) -100 MPa. 
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(a) (b)

  5.5mm   5.5mm 

Figure 35. Fracture surfaces of N720/A specimens subjected to compressive creep tests at 
1200°C in air: (a) -60 MPa side view and (b)  -100 MPa side view. 

 

The specimen tested in creep at -100 MPa exhibits a fracture surface similar to 

that obtained for the as-sintered material.  This specimen also retained its strength; data 

indicates it failed at 123 MPa which is 100.8% of the as-processed compressive strength.  

The fracture surface indicates that the woven reinforcement resists failure but ultimately 

succumbs to a shearing force producing a stair-step fracture surface.  Additionally, the 

side view provided in Figure 35, indicates there is some delamination much like what 

was observed in the as-processed compression to failure specimen. 

When N720/A CMC is exposed to a steam environment, its compressive 

performance degrades significantly.  An earlier explanation suggested that the presence 

of hydrogen caused this decrease in performance of the α-alumina matrix material.  

Figure 36 shows fracture surfaces obtained in all compressive creep tests performed in 
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steam at 1200°C.  All three fracture surfaces show a significantly denser matrix, however 

data obtained during this investigation suggests that in steam this matrix 

coarsening/densification does not translate into matrix strengthening.  In this case the 

dense matrix appearance is an indication of both grain growth and hydrothermal 

softening of α-alumina yielding a decreased compressive performance.  It is important to 

note that none of these specimens achieved creep run-out of 100 h and consequently 

failed in creep loading. 

 

(a) (b)

   18mm 

   18mm     18mm 

(c)

Figure 36. Fracture surfaces of N720/A specimens subjected to compressive creep tests at 
1200°C in steam: (a) -100 MPa, (b) -60 MPa, (c) -40 MPa. 
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The most noticeable difference between the fracture surfaces produced in creep 

tests conducted in steam and those produced in air is the length of the damage zone.  

Specimens tested in creep in steam produced much shorter damage zones.  

Accompanying this shorter fracture zone is a denser appearance indicated by a 

coalescence of failure for both fibers and matrix.  The stair-step topography of the 

fracture surface seen in creep tests performed in air is not present in the fracture surfaces 

obtained in steam due to the fact that steam “softens” the matrix, making it adhere more 

readily to the fibers.  As a result of matrix coarsening and densification coordinated fiber 

fracture is observed.  The side views in Figure 37 show the “smooth” nature of the 

fracture surfaces obtained in steam.  Brushiness that characterizes failure surfaces 

obtained in compression of N720/A in laboratory air is not present in the fracture surfaces 

produced in steam.  Although minor cracking is present in the 40 MPa specimen, only 

very little delamination is observed in the fracture surface of N720/A specimen tested in 

creep at -40 MPa in steam.  This is due to the fact that the matrix is weakened and fails at 

a lower load. 
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(a) (b)

    5.5mm    5.5mm 

(c) 

  5.5mm 

Figure 37. Damage Zones: compression to failure of N720/A specimens failed in creep in 
steam at 1200°C: (a) -100 MPa side view, (b) -60 MPa side view, (c) -40 MPa side view. 

 

 
(c) (b) 
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 Figure 38 displays the fracture surfaces of the specimens used to explore the 

effect of loading rate on the compressive performance of N720/A in both air and steam 

environments.  These specimens were subjected to monotonic compression tests at           

-0.0025 MPa/s, a much slower loading rate than that experienced by specimens tested in 

displacement control.  Examination of these fracture surfaces reveals that they follow the 

same pattern in fracture topography as do the specimens tested in different environments.   

The specimen tested in a laboratory air environment at a load rate of                      

-0.0025 MPa/s exhibits similar characteristics to the as-processed sample tested in air at   

-0.05 mm/s.  The damage zone of the specimen tested at -0.0025 MPa/s is only slightly 

shorter.  The surface is very brushy with fibers separating from bundles.  A clear       

stair-step appearance is observed indicating shearing was the failure mechanism as 

opposed to buckling or kinking of the fibers.  On the other hand, the fracture surface of 

the specimen tested in steam looks much like those obtained for specimens subjected to 

creep loading in steam.  The “smooth” appearance of the damage zone and the short 

length of the break all indicated that matrix densification paired with hydrothermal 

weakening were contributing factors to the failure mechanism.  It is also interesting to 

note that mechanical loading in the presence of steam causes more degradation to the 

N720/A CMC material system than either loading or environment acting individually.  

The specimen failed in steam produced a compressive strength of only 54 MPa, a mere 

44.3% of the compressive strength produced by the as-processed composite. 
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(a) (b)(b) 

 18 mm 18 mm 

Figure 38. Fracture surfaces of N720/A specimens tested in monotonic compression at 
the rate of -0.0025 MPa/s at 1200°C: (a) air and (b) steam. 

 

After creep testing was completed, it became very apparent that the presence of 

steam played a substantial role in the performance of N720/A under compressive loading.   

Concerns about the length of time required for steam to have a degrading effect and if the 

presence of steam alone could degrade the material system were presented.  In order to 

answer these questions two loading scenarios were carried out.  The first involved a 

compression to failure test in steam environment at 1200°C.  The second scenario 

exposed N720/A to a steam environment at 1200°C at zero load for 25 h, then subjected 

this specimen to compression to failure after aging in steam.  The two fracture surfaces in 

the Figure 39 provide some insight into the effect of prior aging at 1200°C in steam on 

the failure mechanisms of this CMC. 
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(a)
 

(b) 

  18 mm    18 mm 

Figure 39. Fracture Surfaces: compression to failure of N720/A specimens failed at a 
displacement rate of -.05 mm/s at 1200°C: (a) steam and (b) aged for 25 hours in steam. 

 

 The fracture surface of the specimen tested in compression to failure in steam 

looks similar to that obtained in compression to failure test in air.  The fracture surface 

has a brushy appearance.  Additionally, the stair-step topography is observed indicating 

that fiber shearing is the damage mechanism responsible for failure.  Results of the two 

tests reveal similar values of compressive modulus and strength as well. 
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 The fracture surface of the specimen aged in steam for 25 h prior to compression 

to failure is much different from those produced in creep tests and in compression to 

failure tests conducted in steam for the N720/A material system.  It appears to be a 

“hybrid” fracture surface exhibiting both fractures typically seen in air and those 

observed in specimens tested in steam.  Although the fracture surface appears to have a 

brushy appearance the length of the damage zone is significantly reduced.  The α-alumina 

matrix appears to have densified only slightly, this is indicated by uncorrelated fiber 

fracture.  Data reveals that prior aging has a more degrading effect on the compressive 

strength and modulus than the presence of steam does during a compression to failure 

test.  Ultimate compressive strength drops to -99 MPa and the modulus is reduced by 

36.5%.   

To identify the mechanism behind the strength and modulus degradation it is 

necessary to examine the fracture surface of the specimen tested at the slow rate of            

-0.0025 MPa/s in steam environment.  The fracture surface is presented in Figure 38(b).  

Examination of the fracture surface reveals that the specimen failed through shearing of 

the matrix and fibers as one coordinated mass. This coordinated mass was created by the 

compressive load which caused a reduced porosity in the α-alumina matrix as well as 

matrix coarsening and densification.  While steam environment causes coarsening and 

densification of the α-alumina matrix and the presence of hydrogen results in 

hydrothermal softening both mechanisms acting in concert, degrade compressive 

performance of N720/A CMC to a much greater extent than each mechanism would if 

acting alone.  
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5.8.2  Scanning Electron Microscopy 

While inspection of fracture surfaces provided by optical microscopy can be 

valuable in assessing the general appearance and topography of individual specimens, 

SEM micrographs allow a closer view of the composite microstructure.  The SEM 

micrographs are particularly useful in studying composites where interaction between 

matrix and fiber is essential in understanding composite performance.  In this 

investigation the SEM permitted observation of specimen characteristics at up to 13000x 

magnifications.  Areas of interest included the matrix, pulled-out fibers, and fiber still 

embedded in matrix.  When examining matrix, points of interest include remaining 

matrix porosity, shape of matrix aggregate, and grain size.  These attributes are valuable 

in demonstrating the impact of environment and loading scenarios on composite 

microstructure. 

Specimens selected for observation with SEM included a virgin N720/A sample, a 

specimen tested in compression to failure in air, a specimen tested in creep at 60 MPa in 

air, a specimen tested in creep at 60 MPa in steam, a specimen tested in compression to 

failure at -0.0025 MPa/s in steam, and a specimen tested in compression to failure in 

steam in displacement control.  This group of fracture surfaces was selected to best 

represent the overall effect of loading and environment on the compressive creep 

performance of N720/A at 1200°C. 

The first point of interest is grain size of the matrix material.  A prior discussion 

concerning the behavior of α-alumina matrix summarized the findings of a previous 

investigation [6] in which grain growth was observed during compressive creep testing.  

The images displayed in Figure 40 show the matrix grain size of an as-processed 



specimen as well as the grain size of a specimen tested in compression to failure in air.  

Micrographs in Figure 40 show little change in grain size. 

 

 

(a)

 

     10μm 

(b)

     10μm 

Figure 40. Fracture surfaces that exhibit grain growth in the α-alumina matrix of N720/A 
specimens (a) virgin specimen, (b) compression to failure in air at 1200°C. 
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 The micrographs in Figure 41 display matrix grain size for specimens subjected to 

compressive creep in both air and steam at 60 MPa.  While the specimen tested in air 

does not exhibit significant increase in matrix grain size, matrix grain growth is evident 

for the specimen tested in steam. 

 

(a) 

 

(b) 

     10μm 

     10μm 

Figure 41. Fracture surfaces that exhibit grain growth in the α-alumina matrix of N720/A 
specimens at 1200°C (a) subjected to prior creep in air at 60 MPa, (b) subjected to prior  

creep in steam at 60 MPa. 
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(a)  (b) 

   

(b)

     10μm 

     10μm 

 

Figure 42. Fracture surfaces that exhibit grain growth in the α-alumina matrix of N720/A 
specimens at 1200°C (a) compression to failure at -.0025 MPa/s in steam, (b) subjected to 

25 hours aging in steam and then failed in compression. 
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 While specimens exposed to prior creep loading in laboratory air experienced an 

increase in compressive strength, the presence of steam considerably degraded 

compressive performance.  Results presented earlier demonstrate that specimens tested in 

compression to failure in steam produced lower values of elastic modulus and 

compressive strength and larger failure strains than the specimens tested in air.  Close 

observation of the micrographs in Figures 41(b), 42(a), and 42(b) show that all specimens 

subjected to compressive tests to failure conducted in steam exhibit significant grain 

growth in the matrix.  It would seem that the same matrix strengthening that was 

observed in air would be experienced by the specimens tested in the steam environment.  

However, each specimen tested in steam exhibited early failure and a short lifetime.  The 

introduction of hydrogen from the steam environment is responsible for corroding the α-

alumina and degrading its performance.  This occurrence has been termed “hydrothermal 

softening,” a phenomenon during which interaction of elevated temperature and the 

presence of hydrogen soften the matrix making it more malleable and easily deformed.  

SEM micrographs provided on the following pages support this conclusion. 

 The second microstructural feature of interest are matrix troughs formed by the 

pulled-out fibers.  This type of surface topography was not anticipated before testing 

commenced.  However, examination under the SEM high vacuum mode revealed matrix 

troughs in all specimens tested in this research investigation.  It is recognized that in the 

case of a porous-matrix conjugate no matrix holes or troughs would be observed on the 

fracture surface.  In dense-matrix CMCs with “weak” interfaces, the fiber pull-out results 

in formation of matrix holes, where broken fibers slide out of the matrix.  However, in 

the porous-matrix composite, the pull-out of fibers does not leave matrix sockets, but 
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causes fragmentation of the intervening matrix in the region of strain localization.  The 

presence of matrix troughs on the fracture surface seen in Figure 43 indicates the loss of 

matrix porosity and an increase in matrix coarsening and densification.  This 

densification process is attributable to additional sintering of the matrix.  It is important 

to understand that α-alumina matrix used in this composite, is a porous material.  Without 

support of fibers the α-alumina matrix material would move freely and would not 

maintain shape.  Formation of matrix troughs illustrates that the matrix has been densified 

to the point at which it holds its shape without the support of any other constituent.  The 

troughs (indentations) created by the pulled-out fibers indicate that the porous α-alumina 

has been densified by exposure to elevated temperature and compressive load.   

 The images displayed in Figure 40 show matrix troughs.  Matrix troughs were 

observed in each specimen, with those observed in specimens subjected to creep tests 

and/or steam environment being more pronounced. 

 

(a)  (b) 
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     100μm 

      10μm 

(b) 

(a) 

 
 

Figure 43. Fracture surfaces of N720/A specimens tested at 1200°C in: (a) compression 
to failure in air, (b) creep in steam at 60 MPa. Matrix troughs are apparent. 
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The micrograph in Figure 43(b) shows a close-up view of a group of fibers with 

one fiber missing.  However, the matrix material which previously separated the fibers 

still maintains the shape it had when the fiber was lying in its trough.  This image is an 

example of a matrix trough. The micrographs presented in Figure 44 show matrix troughs 

left by the 90° fibers.  The fracture surface of the specimen tested in air at 60 MPa 

exhibits very clean and tight matrix troughs.  Conversely, the specimen tested at low load 

rate in steam exhibits a considerable amount of matrix debris on the fracture surface in 

addition to the matrix troughs.  This result suggests that matrix densification occurs at a 

faster rate under sustained loading than under a monotonically increasing load.  It is 

important to recognize that in air, matrix densification occurs, which leads to matrix 

strengthening.  Conversely, in steam matrix weakening is observed. 
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 (b) 

(a) 

     50μm 

(b) 

      100μm 

 
 
Figure 44. Fracture surfaces of N720/A specimens tested at 1200°C in: (a) creep in air at 

60 MPa, (b) compression to failure at -0.0025 MPa/s in steam. 
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 The micrograph shown in Figure 45 shows a matrix mass which previously 

supported 0° fibers in a specimen aged in steam for 25 hours and then failed in 

compression.  The micrograph reveals matrix troughs as well as several of the 0° fibers 

that are still intact and holding onto the matrix despite the condition of the damage zone.  

This not only signifies that the matrix has densified but that hydrothermal softening 

resulting from exposure to steam indeed took place allowing the matrix to hold onto fiber 

fragments.  The next sequence of micrographs reveals the effect of steam on failure and 

damage mechanisms and the compressive performance of N720/A.  

 

 

     200μm 

 
Figure 45. Fracture surface of an N720/A specimen subjected to 25 hours aging at 

1200°C in steam, then tested in compression to failure at 1200°C in steam. 
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 Throughout this research investigation when comparing fracture surfaces 

produced in steam to those produced in air, significant differences in appearance of the 

general topography were observed.  The specimens tested in air generally had a brushy 

and fibrous fracture surface, whereas the fracture surfaces produced in steam are 

dominated by coordinated fiber failure.  

Figure 46 shows the pull-out of fiber bundles in a specimen aged at 1200°C in 

steam for 25 h prior to testing and in a specimen failed in laboratory air.  Both appear to 

be brushy, as is typical for specimens failed rapidly in a short-time test conducted in 

displacement control.  However, the fiber bundles of the specimen aged in steam appear 

much more organized and tightly grouped together than those of the specimen tested in 

air.  The presence of steam at elevated temperature exposes N720/A CMC to hydrogen, 

which has a softening effect on the matrix.  As a result the matrix becomes coarser and 

more malleable causing large pieces of matrix to adhere to the fibers and to hold fiber 

bundles together.  Finally, when the fibers begin to fail instead of splitting and fracturing 

separately, fiber bundles adhere and deform together.  Conversely, in air these fiber 

bundles are more likely to separate and yield a very brushy appearance.  Because 

specimens tested in both air and steam environments exhibited densification as indicated 

by matrix troughing, the hydrothermal softening must be responsible for the decrease in 

compressive performance of N720/A in steam. 
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(a) 

    2mm 

    1mm 

 
( )
(b) 

    2mm 

 
Figure 46. Fracture surfaces of N720/A specimens (a) subjected to 25 h aging at 1200°C 

in steam and then failed in compression, (b) compression to failure in air. 
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(a)  (b)

   

(c) 

    500μm     500μm 

      200μm 

 
Figure 47. Fracture surfaces of N720/A specimens tested at 1200°C in: (a) creep in air at 

60 MPa, (b) creep in steam at 60 MPa, (c) compression to failure                                      
at -0.0025 MPa/s in steam. 

 
 

The images in Figure 47 further emphasize the difference in microstructure 

observed of specimens tested in air and those tested in steam.  The specimen tested in air 

exhibits fiber pull-out where individual filaments are clearly discernable.  Conversely 

fracture surfaces obtained in steam show areas of coordinated fiber fracture, where entire 

bundles appear to have fractured at once.  Furthermore, considerable delamination is seen 

in specimens tested in steam.  However, the fibers in each individual layer stay closely 
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packed.  This is a strong indication that matrix altered by the hydrothermal softening does 

indeed keep individual fibers close together during loading.   

Additionally, the image in Figure 38(b) of the specimen failed in the load-

controlled test in steam environment shows the “smoothest” fracture surface of all the 

steam specimens tested in steam.  Recall that this specimen produced the lowest 

compressive strength of a mere 55 MPa.  These results suggest that monotonic loading at 

a slow rate in steam is detrimental to the compressive strength of N720/A.  As matrix 

grain size increases and hydrothermal softening of the matrix occurs the matrix is 

significantly weakened.  Next the fibers fail in shearing in a coordinated manner.  The 

result is a smooth angled fracture surface that would be expected in a monolithic ceramic 

material.  The fibers adhere to the matrix with such intensity it is almost difficult to 

distinguish two constituent materials with the naked eye. 

One of the manifestations of matrix densification is the amount of matrix that 

remains attached to exposed fibers after failure.  α-Alumina matrix in the as-processed 

specimen is porous.  Therefore only very small pieces of matrix would remain bonded to 

the pulled-out fibers after specimen failure.  However, as the matrix coarsens and 

densifies due to exposure to elevated temperature under sustained loading, larger and 

larger pieces of matrix adhere to the pulled-out fibers until the matrix densifies to such an 

extent as to inhibit fiber pull-out. 

The images in Figure 48 and 49 show that all specimens exhibit some amount of 

matrix bonded to the exposed fibers.  However, it is seen that each specimen exhibits a 

different amount of matrix bonded to its fibers.  The specimen tested in compression to 

failure in air and the specimen tested in compression to failure in steam following 25 h of 
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aging at 1200°C in steam clearly show the least amount of matrix bonded to exposed 

fibers.  This is a predictable observation due to the fact that it has been established that 

densification is accelerated when specimens are subjected to sustained loading.  In the 

case of these specimens, neither experienced loading for more than twenty seconds.  This 

indicates that although steam was present during the aging of the specimen in Figure 

48(b), it had little effect on the densification experienced by the matrix during 

compression to failure.   

 
 

 

(a)  (b)

    20μm      20μm 

 
 
Figure 48. Fracture of N720/A specimens tested at 1200°C in: (a) compression to failure 

in air, (b) compression to failure in steam following 25 h of aging at 1200°C in steam. 
 

 
Micrographs in Figure 49 show fracture surfaces of specimens tested in creep at    

-60 MPa in air and in steam as well as the fracture surface obtained in a load-controlled 

compression to failure test conducted in steam.  Note that the fracture surfaces obtained 

in creep at -60 MPa shown in Figure 49(a) and 49(b) show considerably larger pieces of 

matrix bonded to the fibers than those in Figure 48.  This observation suggests that matrix 
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densification occurred under sustained compressive loading in the case of the specimen 

subjected to creep in air at 1200°C.  Further examination of the micrographs in Figure 49 

reveal that the specimen subjected to creep in steam at 1200°C has the greatest amount of 

matrix attached to fibers of any specimen examined under the SEM in this study.  This 

finding indicates that when a specimen is exposed to both steam and sustained loading its 

matrix densifies to a much greater degree.  This matrix densification is due to both load 

and hydrothermal softening attributable to exposure to steam environment at 1200°C.  

These findings are confirmed by examining the fracture surface of the specimen tested at 

slow stress rate shown in Figure 49(c) which was exposed to a steam environment at 

1200°C under monotonic compression, which exhibits a fairly large amount of matrix 

remaining bonded to the fibers.  
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racture of N720/A specimens tested at 1200°C in: (a) creep in air at 60 MPa, 

 

Results of this effort indicate that steam environment is a bad actor in regards to 

the compressive performance N720/A composite.  Degrading effects of steam 

environment are exacerbated by sustained loading. 

 

 

(a)  (b)

 
Figure 49. F

(b) creep in steam at 60 MPa, (c) compression to failure at -0.0025 MPa/s in steam. 
. 

 

 
 

(c) 

    20μm      20μm 

     20μm 
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VI.  Conclusions and Recommendations 

This was the first research investigati  exploring the compressive performance 

of Nextel  720/Alumina CMC.  Monotonic compression tests were performed in air and 

steam at 1200°C.  The compressive modulus was 69 GPa, the compressive strength was   

-122 MPa, and failure strain was -0.207%.  Additionally, compressive creep tests were 

also conducted at 1200°C in both air and steam.  Tests conducted in air at stresses of         

-100, -80, and -60 MPa achieved run-out of 100 h.  All creep strains accumulated in air 

were less than 0.41%.   In steam creep tests were conducted at -100, -60, and -40 MPa.  

In steam, creep run-out was not achieved.  Interestingly, the creep strains accumulated 

achieved in compressive creep tests performed in steam at 1200°C were massive: 0.188% 

at -100 MPa, 1.122% at -60 MPa,  and 1.577% at -40 MPa. 

Minimum creep rate was reached in all tests.  Steady-state strain rates in air 

environment ranged from 10  to 10  s .  The presence of steam drastically accelerated 

creep, increasing creep rate magnitudes by as much as 5 orders of magnitude.  In steam, 

creep strain rates ranged from 10  to 10 s .  In air, larger creep strains were 

accumulated at higher creep stress levels.  In steam due to the fact that creep strain rates 

were so large at higher stress levels, specimens failed before they could accumulate creep 

strain.  Therefore in steam, creep strain accumulation decreased with increasing creep 

stress. 

Creep tests that achieved creep run-out were subjected to monotonic tests to 

failure in order to determine retained strength and stiffness. In this investigation only 

specimens tested in air achieved run-out.  Specimens subjected to prior creep in air at       

-100 and -60 MPa were tested in compression to failure after creep run-out was achieved.  
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Both specimens exhibited an increase in compressive strength of .8% and 12.3%.  

However, the compressive modulus of both specimens was reduced by 34% and 24

The specimen which survived compressive creep at -80 MPa was tested in tension to 

failure.  Tensile strength was reduced by 30%, and elastic modulus was reduced by 20

 Specimens tested in steam produced “smoother” and more coordinated fracture 

.7%. 

%. 

surface
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rformance of 

N720/A ive 

en to the 

g.  

h. 

s and shorter damage zones than those tested in air.  The diagonal shearing of the 

specimens tested in steam indicated that matrix and fiber failed in a coordinated manner. 

As would be expected, areas of uncorrelated fiber fracture were more prevalent in 

fracture surfaces of specimens tested in air.  It is noteworthy that the coordinated fr

surfaces were associated with a significant decrease in compressive strength.  On the 

other hand, specimens tested in laboratory air actually gained strength. 

Several factors are responsible for the aspects of compressive pe

 at 1200°C observed in this study.  First, the increase in the ultimate compress

strength of N720/A in specimens tested in creep in air can be attributed to a decrease in 

matrix porosity due to additional sintering of the matrix.  However, the opposite trend is 

seen in tests conducted in a steam environment.  Although the same matrix densification 

process that occurs in air appears to occur in steam, an additional factor causes 

weakening of the matrix.  The steam environment introduces hydrogen and oxyg

material system.  The oxide/oxide fiber and matrix constituents found in N720/A were 

specifically designed to combat the effects of oxidation.  However, hydrogen has a 

corrosive effect on the matrix material which is referred to as hydrothermal softenin

This results in the weakening of the matrix and a significant loss of compressive strengt
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Recommendations for future work include two additional microscopy methods 

that would be beneficial to fully understanding the compressive behavior of N720/A.  

The first method involves a Transmission Electron Microscope (TEM) analysis.  This 

would allow examination of fracture surfaces at much higher magnifications than SEM 

imaging.  The most applicable use of TEM in this research would be to quantify the 

actual grain size of N720/A matrix grains.  SEM analysis only allows a qualitative 

comparison of grain size, therefore quantifying grain growth for associated stress levels 

and temperatures would be extremely valuable in understanding how much α-alumina 

matrix changes under compressive load at elevated temperature. 

Additionally, a three-dimensional (3-D) SEM would allow a more detailed 

understanding of fracture surfaces.  A third dimension would be valuable in truly 

understanding fracture surfaces and how different microstructure characteristics such as 

matrix troughs and matrix embedded on fibers are spatially related to each other in three 

dimensions.  A 3-D SEM could accomplish this by incorporating a Focused Ion Beam 

(FIB) for real-time micro cross sectioning. These results would be useful in analyzing the 

effects of matrix densification and hydrothermal softening due to exposure to steam. 
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Appendix A. Additional SEM Micrographs 

 
 

Figure 50. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 

 

 
 

 
Figure 51. Fracture surface of N720/A specimen tested in compression to failure in 

displacement control at a rate of -0.05 mm/s in steam at 1200°C. 
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Figure 52. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 

 
 

 
 
 

Figure 53. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 
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Figure 54. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 

 
 

 
 
 

Figure 55. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 
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Figure 56. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 

 
 

 
 
 

Figure 57. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 
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Figure 58. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 

 
 

 
 
 

Figure 59. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 
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Figure 60. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 

 
 

 
 
 

Figure 61. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 

104 



 
 
 

Figure 62. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 

 
 

 
 
 

Figure 63. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 
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Figure 64. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 

 
 

 
 
 

Figure 65. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 
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Figure 66. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 

 
 

 
 
 

Figure 67. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 
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Figure 68. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 

 
 

 
 
 

Figure 69. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 
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Figure 70. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 

 
 

 
 
 

Figure 71. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 
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Figure 72. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 

 
 

 
 
 

Figure 73. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 
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Figure 74. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 

 
 

 
 
 

Figure 75. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 
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Figure 76. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C. 

 
 

 
 
 

Figure 77. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in steam at 1200°C 
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Figure 78. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 

 
 

 
 
 

Figure 79. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 
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Figure 80. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 

 
 

 
 
 

Figure 81. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 
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Figure 82. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 

 
 

 
 
 

Figure 83. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 
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Figure 84. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 

 
 

 
 
 

Figure 85. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 
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Figure 86. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 

 
 
 

 
 
 

Figure 87. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 
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Figure 88. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 

 
 

 
 
 

Figure 89. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 
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Figure 90. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 

 
 

 
 
 

Figure 91. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 
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Figure 92. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 

 
 

 
 
 

Figure 93. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 
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Figure 94. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 

 
 

 
 
 

Figure 95. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 

121 



 

 
 
 

Figure 96. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 

 
 

 
 
 

Figure 97. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 
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Figure 98. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 

 
 

 
 
 

Figure 99. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 
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Figure 100. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 

 
 

 
 
 

Figure 101. Fracture surface of N720/A specimen tested in creep at 60 MPa in air at 
1200°C. 
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Figure 102. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 

 
 

 
 
 

Figure 103. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 
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Figure 104. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 

 
 

 
 
 

Figure 105. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 
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Figure 106. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 

 
 

 
 
 

Figure 107. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 
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Figure 108. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 

 
 

 
 
 

Figure 109. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 
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Figure 110. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 

 
 

 
 
 

Figure 111. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 
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Figure 112. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 

 
 

 
 
 

Figure 113. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 
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Figure 114. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 

 
 

 
 
 

Figure 115. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 
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Figure 116. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 

 
 

 
 
 

Figure 117. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 
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Figure 118. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 

 
 

 
 
 

Figure 119. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 
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Figure 120. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 

 
 

 
 
 

Figure 121. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 
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Figure 122. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 

 
 

 
 
 

Figure 123. Fracture surface of N720/A specimen tested in creep at 60 MPa in steam at 
1200°C. 
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Figure 124. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 

 
 

 
 
 

Figure 125. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 
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Figure 126. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 

 
 

 
 

Figure 127. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 
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Figure 128. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 

 

 
 

Figure 129. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 

 

138 



 
 
 

Figure 130. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 

 
 

 
 

Figure 131. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 
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Figure 132. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 

 
 

 
 
 

Figure 133. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 
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Figure 134. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 

 
 

 
 
 

Figure 135. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 
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Figure 136.Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 

 
 

 
 
 

Figure 137. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 
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Figure 138. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 

 
 

 
 
 

Figure 139. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 
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Figure 140. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 

 
 

 
 
 

Figure 141. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 
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Figure 142. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 

 
 

 
 
 

Figure 143. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 
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Figure 144. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 

 
 

 
 
 

Figure 145. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 
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Figure 146. Fracture surface of N720/A specimen tested in compression to failure 
following aging in steam for 25 h. 

 

 
 
 

Figure 147. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 
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Figure 148. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 

 

 
 
 

Figure 149. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 
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Figure 150. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 

 

 
 
 

Figure 151. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 
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Figure 152. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 

 

 
 
 

Figure 153. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 
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Figure 154. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 

 

 
 
 

Figure 155. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 
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Figure 156. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 

 

 
 
 

Figure 157. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 

 
 

152 



 
 
 

Figure 158. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 

 
 

 
 
 

Figure 159. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 
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Figure 160. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 

 

 
 
 

Figure 161. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 
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Figure 162.  Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 

 

 
 
 

Figure 163. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 
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Figure 164. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 

 

 
 
 

Figure 165. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 
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Figure 166. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 

 
 

 
 
 

Figure 167. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 
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Figure 168. Fracture surface of N720/A specimen tested in compression to failure in load 
control at a rate of -0.0025 MPa/s in steam at 1200°C. 
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Appendix B. Additional Optical Micrographs 
  

 

5.5 mm 

 
 

Figure 169. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in air at 1200°C. 

 
 

 

18 mm 

 
 

Figure 170. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in air at 1200°C. 
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18 mm 

 
 

Figure 171. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in air at 1200°C. 

 
 
 

 

18 mm 

 
 

Figure 172. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in air at 1200°C. 
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18 mm 

 
 

Figure 173. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in air at 1200°C. 

 
 

 

5.5 mm 

 
 

Figure 174. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in air at 1200°C. 
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5.5 mm 

 
 

Figure 175. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in air at 1200°C. 

 
 

 

5.5 mm 

 
 

Figure 176. Fracture surface of N720/A specimen tested in compression to failure in 
displacement control at a rate of -0.05 mm/s in air at 1200°C. 
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18 mm 

 
 

Figure 177. Fracture surface of N720/A specimen tested in compressive creep at -100 
MPa for 100 h at 1200°C in air. 

 
 

 

18 mm 

 
 

Figure 178. Fracture surface of N720/A specimen tested in compressive creep at -100 
MPa for 100 h at 1200°C in air. 

 

163 



 

18 mm 

 
 

Figure 179. Fracture surface of N720/A specimen tested in compressive creep at -100 
MPa for 100 h at 1200°C in air. 

 
 

 

5.5 mm 

 
 

Figure 180. Fracture surface of N720/A specimen tested in compressive creep at -100 
MPa for 100 h at 1200°C in air. 

 

164 



 

5.5 mm 

 
 

Figure 181. Fracture surface of N720/A specimen tested in compressive creep at -100 
MPa for 100 h at 1200°C in air. 

 
 

 

5.5 mm 

 
 

Figure 182. Fracture surface of N720/A specimen tested in compressive creep at -100 
MPa for 100 h at 1200°C in air. 
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5.5 mm 

 
 

Figure 183. Fracture surface of N720/A specimen tested in compressive creep at -100 
MPa for 100 h at 1200°C in air. 

 
 

 

18 mm 

 
Figure 184. Fracture surface of N720/A specimen tested in compressive creep at -100 

MPa for 100 h at 1200°C in air. 
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5.5 mm 

 
 

Figure 185. Fracture surface of N720/A specimen tested in compressive creep at -60 MPa 
for 100 h at 1200°C in air. 

 
 

 

18 mm 

 
 

Figure 186. Fracture surface of N720/A specimen tested in compressive creep at -60 MPa 
for 100 h at 1200°C in air. 
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5.5 mm 

 
 

Figure 187. Fracture surface of N720/A specimen tested in compressive creep at -60 MPa 
for 100 h at 1200°C in air. 

 
 

 

18 mm 

 
 

Figure 188. Fracture surface of N720/A specimen tested in compressive creep at -60 MPa 
for 100 h at 1200°C in air. 
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5.5 mm 

 
 

Figure 189. Fracture surface of N720/A specimen tested in compressive creep at -60 MPa 
for 100 h at 1200°C in air. 

 
 

 

18 mm 

 
 

Figure 190. Fracture surface of N720/A specimen tested in compressive creep at -60 MPa 
for 100 h at 1200°C in air. 
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18 mm 

 
 

Figure 191. Fracture surface of N720/A specimen tested in compressive creep at -60 MPa 
for 100 h at 1200°C in air. 

 
 

 

5.5 mm 

 
 

Figure 192. Fracture surface of N720/A specimen tested in compressive creep at -60 MPa 
for 100 h at 1200°C in air. 
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5.5 mm 

 
 

Figure 193. Fracture surface of N720/A specimen tested in compressive creep at -100 
MPa for 100 h at 1200°C in steam. 

 
 

 

18 mm 

 
 

Figure 194. Fracture surface of N720/A specimen tested in compressive creep at -100 
MPa for 100 h at 1200°C in steam. 

 

171 



 

18 mm 

 
 

Figure 195. Fracture surface of N720/A specimen tested in compressive creep at -100 
MPa for 100 h at 1200°C in steam. 

 
 

 

5.5 mm 

 
 

Figure 196. Fracture surface of N720/A specimen tested in compressive creep at -100 
MPa for 100 h at 1200°C in steam. 
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5.5 mm 

 
 

Figure 197. Fracture surface of N720/A specimen tested in compressive creep at -100 
MPa for 100 h at 1200°C in steam. 

 
 

 

18 mm 

 
 

Figure 198. Fracture surface of N720/A specimen tested in compressive creep at -100 
MPa for 100 h at 1200°C in steam. 
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5.5 mm 

 
 

Figure 199. Fracture surface of N720/A specimen tested in compressive creep at -60 MPa 
for 100 h at 1200°C in steam. 

 
 

 

18 mm 

 
 

Figure 200. Fracture surface of N720/A specimen tested in compressive creep at -60 MPa 
for 100 h at 1200°C in steam. 
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18 mm 

 
 

Figure 201. Fracture surface of N720/A specimen tested in compressive creep at -60 MPa 
for 100 h at 1200°C in steam. 

 
 

 

5.5 mm 

 
 

Figure 202. Fracture surface of N720/A specimen tested in compressive creep at -60 MPa 
for 100 h at 1200°C in steam. 
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5.5 mm 

 
 

Figure 203. Fracture surface of N720/A specimen tested in compressive creep at -60 MPa 
for 100 h at 1200°C in steam. 

 
 

 

18 mm 

 
 

Figure 204. Fracture surface of N720/A specimen tested in compressive creep at -60 MPa 
for 100 h at 1200°C in steam. 
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5.5 mm 

 
 

Figure 205 Fracture surface of N720/A specimen tested in compressive creep at -60 MPa 
for 100 h at 1200°C in steam. 

 
 

 

18 mm 

 
 

Figure 206. Fracture surface of N720/A specimen tested in compressive creep at -60 MPa 
for 100 h at 1200°C in steam. 
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18 mm 

 
 

Figure 207. Fracture surface of N720/A specimen tested in compressive creep at -40 MPa 
for 100 h at 1200°C in steam. 

 
 

 

18 mm 

 
 

Figure 208. Fracture surface of N720/A specimen tested in compressive creep at -40 MPa 
for 100 h at 1200°C in steam. 
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18 mm 

 
 

Figure 209. Fracture surface of N720/A specimen tested in compressive creep at -40 MPa 
for 100 h at 1200°C in steam. 

 
 

 

5.5 mm 

 
 

Figure 210. Fracture surface of N720/A specimen tested in compressive creep at -40 MPa 
for 100 h at 1200°C in steam. 
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5.5 mm 

 
 

Figure 211. Fracture surface of N720/A specimen tested in compressive creep at -40 MPa 
for 100 h at 1200°C in steam. 

 
 

 

5.5 mm 

 
 

Figure 212. Fracture surface of N720/A specimen tested in compressive creep at -40 MPa 
for 100 h at 1200°C in steam. 
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5.5 mm 

 
 

Figure 213. Fracture surface of N720/A specimen tested in compressive creep at -40 MPa 
for 100 h at 1200°C in steam. 

 
 

 

18 mm 

 
 

Figure 214. Fracture surface of N720/A specimen tested in compressive creep at -40 MPa 
for 100 h at 1200°C in steam. 
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5.5 mm 

 
 

Figure 215. Fracture surface of N720/A specimen subjected to aging in steam at 1200°C 
for 25 h then failed in compression. 

 
 

 

18 mm 

 
 

Figure 216. Fracture surface of N720/A specimen subjected to aging in steam at 1200°C 
for 25 h then failed in compression. 
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18 mm 

 
 

Figure 217. Fracture surface of N720/A specimen subjected to aging in steam at 1200°C 
for 25 h then failed in compression. 

 
 

 

5.5 mm 

 
 

Figure 218. Fracture surface of N720/A specimen subjected to aging in steam at 1200°C 
for 25 h then failed in compression. 
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5.5 mm 

 
 

Figure 219. Fracture surface of N720/A specimen subjected to aging in steam at 1200°C 
for 25 h then failed in compression. 

 
 

 

18 mm 

 
 

Figure 220. Fracture surface of N720/A specimen subjected to aging in steam at 1200°C 
for 25 h then failed in compression. 
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5.5 mm 

 
 

Figure 221. Fracture surface of N720/A specimen subjected to aging in steam at 1200°C 
for 25 h then failed in compression. 

 
 

 

5.5 mm 

 
 

Figure 222. Fracture surface of N720/A specimen tested in compression to failure in 
steam at 1200°C in displacement control at -0.05 mm/s. 
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18 mm 

 
 

Figure 223. Fracture surface of N720/A specimen tested in compression to failure in 
steam at 1200°C in displacement control at -0.05 mm/s. 

 

 

18 mm 

 
 

Figure 224. Fracture surface of N720/A specimen tested in compression to failure in 
steam at 1200°C in displacement control at -0.05 mm/s. 
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5.5 mm 

 
 

Figure 225. Fracture surface of N720/A specimen tested in compression to failure in 
steam at 1200°C in displacement control at -0.05 mm/s. 

 

 

5.5 mm 

 
 

Figure 226. Fracture surface of N720/A specimen tested in compression to failure in 
steam at 1200°C in displacement control at -0.05 mm/s. 
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18 mm 

 
 

Figure 227. Fracture surface of N720/A specimen tested in compression to failure in 
steam at 1200°C in displacement control at -0.05 mm/s. 

 

 

18 mm 

 
 

Figure 228. Fracture surface of N720/A specimen tested in compression to failure in 
steam at 1200°C in displacement control at -0.05 mm/s. 

 
 

188 



 

5.5 mm 

 
 

Figure 229. Fracture surface of N720/A specimen tested in compression to failure in 
steam at 1200°C in displacement control at -0.05 mm/s. 

 
 

 

5.5 mm 

 
 

Figure 230. Fracture surface of N720/A specimen tested in compression to failure in air 
at 1200°C in stress control at -0.0025 MPa/s. 
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18 mm 

 
 

Figure 231. Fracture surface of N720/A specimen tested in compression to failure in air 
at 1200°C in stress control at -0.0025 MPa/s. 

 

 

18 mm 

 
 

Figure 232. Fracture surface of N720/A specimen tested in compression to failure in air 
at 1200°C in stress control at -0.0025 MPa/s. 
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5.5 mm 

 
 

Figure 233. Fracture surface of N720/A specimen tested in compression to failure in air 
at 1200°C in stress control at -0.0025 MPa/s. 

 

 

5.5 mm 

 
 

Figure 234. Fracture surface of N720/A specimen tested in compression to failure in air 
at 1200°C in stress control at -0.0025 MPa/s. 
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18 mm 

 
 

Figure 235. Fracture surface of N720/A specimen tested in compression to failure in air 
at 1200°C in stress control at -0.0025 MPa/s. 

 

 

5.5 mm 

 
 

Figure 236. Fracture surface of N720/A specimen tested in compression to failure in air 
at 1200°C in stress control at -0.0025 MPa/s. 

 
 
 

 

192 



 

5.5 mm 

 
 

Figure 237.  Fracture surface of N720/A specimen tested in compression to failure in 
steam at 1200°C in stress control at -0.0025 MPa/s. 

 
 

 

18 mm 

 
 

Figure 238. Fracture surface of N720/A specimen tested in compression to failure in 
steam at 1200°C in stress control at -0.0025 MPa/s. 
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5.5 mm 

 
 

Figure 239. Fracture surface of N720/A specimen tested in compression to failure in 
steam at 1200°C in stress control at -0.0025 MPa/s. 

 
 

 

5.5 mm 

 
 

Figure 240.  Fracture surface of N720/A specimen tested in compression to failure in 
steam at 1200°C in stress control at -0.0025 MPa/s. 
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18 mm 

 
 

Figure 241. Fracture surface of N720/A specimen tested in compression to failure in 
steam at 1200°C in stress control at -0.0025 MPa/s. 

 
 

 

18 mm 

 
 

Figure 242. Fracture surface of N720/A specimen tested in compression to failure in 
steam at 1200°C in stress control at -0.0025 MPa/s. 
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5.5 mm 

 
 

Figure 243. Fracture surface of N720/A specimen tested in compression to failure in 
steam at 1200°C in stress control at -0.0025 MPa/s. 
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