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We develop a method to generate electromagnetic nonun-
iformly correlated (ENUC) sources from vector Gaussian
Schell-model (GSM) beams. Having spatially varying
correlation properties, ENUC sources are more difficult
to synthesize than their Schell-model counterparts (which
can be generated by filtering circular complex Gaussian ran-
dom numbers) and, in past work, have only been realized
using Cholesky decomposition—a computationally inten-
sive procedure. Here we transform electromagnetic GSM
field instances directly into ENUC instances, thereby avoid-
ing computing Cholesky factors resulting in significant sav-
ings in time and computing resources. We validate our
method by generating (via simulation) an ENUC beam with
desired parameters. We find the simulated results to be in
excellent agreement with the theoretical predictions. This
new method for generating ENUC sources can be directly
implemented on existing spatial-light-modulator-based vec-
tor beam generators and will be useful in applications where
nonuniformly correlated beams have shown promise, e.g.,
free-space/underwater optical communications. © 2019
Optical Society of America

https://doi.org/10.1364/OL.44.005719

Compared to uniformly correlated or Schell-model partially co-
herent sources, nonuniformly correlated (NUC) sources are a
relatively recent and lightly researched subject. NUC sources
have spatially varying correlation properties, giving them fasci-
nating propagation or beam characteristics beyond those of
Schell-model sources. Originally introduced by Lajunen and
Saastamoinen in 2011 [1] and generalized (vectorized) shortly
thereafter [2], NUC sources have since been shown to
outperform—in terms of the first and second moments of
intensity—both coherent Gaussian and Gaussian Schell-model
(GSM) beams when propagated through turbulent media [3].

This has motivated more recent work in synthesizing NUC
beams for use in applications such as free-space/underwater op-
tical communications [4–7]. Because of their spatially varying
correlation properties, NUC sources are inherently more diffi-
cult to generate than uniformly correlated sources. Nearly all of

the existing NUC synthesis literature concerns scalar NUC
sources and, generally, those techniques cannot be applied to
synthesize vector or electromagnetic nonuniformly correlated
(ENUC) beams. Only one Letter (Ref. [7]) known to the
authors has synthesized ENUC sources, and the results were
limited for two main reasons: (1) the ENUC field realizations
were synthesized using Cholesky decomposition—a computa-
tionally onerous procedure in terms of both memory and
processing power, and (2) there was limited control over the
cross-polarization correlation functions (W xy and W yx) of
the resulting ENUC cross-spectral density (CSD) matrix W.

In this Letter, we address both of these limitations and suc-
cessfully demonstrate how to generate ENUC beams using a
spatial-light-modulator (SLM)-based system such as that de-
scribed in Ref. [7]. We start by presenting how to transform
GSM field instances into NUC instances with a simple nonlin-
ear transform [8]. GSM beams, being uniformly correlated, can
be synthesized by filtering circular complex Gaussian random
numbers (CCGRNs) [9]. The filtering is typically performed
in the frequency domain using fast Fourier transforms (FFTs).
Being able to take GSM field instances and transform them into
NUC realizations, thereby avoiding computing Cholesky fac-
tors, is the main contribution of this Letter.

Next, we show how to control W xy and W yx by adapting a
recently published technique designed specifically for Schell-
model sources [10]. From this analysis, we find the range of
physically synthesizable, as opposed to physically realizable
[2], ENUC sources. Lastly, we present the simulation results
where we generate an ENUC source with desired parameters.
We compare the simulated results to the theoretical predictions
to validate our method. We conclude with a brief summary of
this Letter and a list of potential applications.

We begin with the CSD matrixW of an ENUC source [2]:

W αβ� ρ1, ρ2� � Aα exp

�
−
ρ21
4σ2α

�
Aβ exp

�
−
ρ22
4σ2β

�

× Bαβ exp�−�jρ1 − γαj2 − jρ2 − γβj2�2∕δ4αβ�,
(1)

where α � x, y, ρ � x̂x � ŷy, and Aα and σα are the amplitude
and rms width of the α field component, respectively. Also in
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Eq. (1), δαβ is the cross-correlation width, Bαβ is the complex
cross-correlation coefficient, and γα is a real two-dimensional
(2D) vector that shifts the maximum of the correlation
function away from the origin.

We desire to generate ENUC stochastic field realizations of
the form

E�ρ� � x̂Ex� ρ� � ŷEy� ρ�

Eα�ρ� � Cα exp

�
−
ρ2

4σ2α

�
Tα�ρ�, (2)

where Cα is a complex constant, and Tα is a complex screen
generated from correlated complex Gaussian random numbers.
Taking the vector auto-correlation of Eq. (2) and comparing
the resulting expression to Eq. (1), we see at once that
Aα � jCαj, arg�CxC�

y � � arg�Bxy�, and
hTα� ρ1�T �

β� ρ2�i � jBαβj exp�−�jρ1 − γαj2 − jρ2 − γβj2�2∕δ4αβ�:
(3)

Thus, we can generate ENUC field instances by producing two
screens with the second-order moments given in Eq. (3) and
then applying Eq. (2).

We note that Tx and Ty are statistically inhomogeneous
and, therefore, difficult to synthesize. In Ref. [7], Tx and
Ty were generated using a Cholesky factorization, which is
computationally prohibitive, i.e., O�n3� complexity to com-
pute the Cholesky factor and then O�n2� (matrix-vector prod-
ucts) to synthesize Tx and Ty. For example, assume that the
desired Tx and Ty are 512 × 512 grids, which is a common size
for commercially available SLMs. The covariance matrix in
Eq. (3) would be a staggering 220 × 220 matrix, which would
require a supercomputer to store and compute the Cholesky
factors. In Ref. [7], the authors generated Tx and Ty on much
smaller grids and then interpolated the screens to 512 × 512.

Considering the above example, it clearly would be beneficial
to have another method to generate ENUC screens other than
Cholesky decomposition. Here we propose to transform electro-
magnetic Gaussian Schell-model (EGSM) screens, which are
statistically homogeneous and can be generated by filtering
CCGRNs [9], directly into ENUC screens. To do so, we begin
by expressing the EGSM W as [11]

Wαβ� ρ1, ρ2� � Aα exp

�
−
ρ21
4σ2α

�
Aβ exp

�
−
ρ22
4σ2β

�

× Bαβ exp�−jr1 − r2j2∕δ4αβ�: (4)

This differs from the traditional EGSM W in regard to the
power of δαβ, which is typically squared. Here we raise it to
the fourth power to match the ENUC correlation function.
We have also introduced r, which is a vector function of ρ,
in the EGSM correlation function for ultimately the same reason.

Comparing the correlation functions in Eqs. (1) and (4), we
see at once that

r � α̂jρ − γj2: (5)

This quite simply means that we can generate an ENUC Tα by
mapping the EGSM Tα values at r to ρ via Eq. (5). We also
note that because of Eq. (5), the ENUC Tα are rotationally
symmetric about γ.

The proposed ENUC screen generation process is best
illustrated by example. Here we wish to generate an ENUC Tα

with δαα, σα, and γα—we will generalize this to produce a full
ENUC source later in the Letter. We start by determining the
size of the grid in ρ space. This grid must be large enough to
“fit” the ENUC W αα. To keep things general, we assume that
ρ ∈ �−L∕2, L∕2�. Equation (5) maps ρ into r space such that
r ∈ �0, � ffiffiffi

2
p

L∕2� jγαj�2�, where the
ffiffiffi
2

p
comes from consid-

ering the square ρ grid at its maximum distance from the origin.
Now that we have the grid size in the r plane, we need to

determine the grid spacing Δ. This spacing should be fine
enough to capture the variation of Tα in r space, which is
related to δαα. The required Δ has been discussed in many past
Letters, and Δ ≤ δαα∕5 is sufficient [9]. The number of grid

points is N � ⌈� ffiffiffi
2

p
L∕2� jγαj�2∕Δ⌉.

The next step is to generate an EGSM Tα. This process has
been described in the literature many times [7,9,11]. Here we
provide the final result for the reader’s convenience:

Tα�i, j� �
X
m, n

rα�m, n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φαα�m, n�
2�NΔ�2

s
exp

�
j
2π

N
�mi � nj�

�
, (6)

where i, j are the discrete spatial indices in the r plane
(ξ � iΔ, η � jΔ), m, n are discrete spatial frequency indices,
and rα is an N × N matrix of zero-mean, unit-variance,
CCGRNs. Also in Eq. (6), Φαα is the spatial power
spectrum—the Fourier transform of the EGSM correlation
function in Eq. (4)—and equal to

Φαα� f � � πδ4αα exp�−π2δ4ααf 2�: (7)

Here f � x̂f x � ŷf y is the continuous spatial frequency
coordinate and related to m, n by f x � m∕�NΔ�,
f y � n∕�NΔ�. Figure 1(a) shows an example of the real part
of Tα generated by evaluating Eq. (6) using FFTs.

Recall that r ∈ �0, � ffiffiffi
2

p
L∕2� jγαj�2�, and, therefore, we

only need a single “radial slice” of an EGSM Tα to produce
an ENUC Tα. An example of this is shown in Fig. 1(b), which
is the radial slice along the ξ axis of the Tα in Fig. 1(a).

Fig. 1. ENUC Tα generation process. (a) Real part of an EGSM Tα

on the r � x̂ξ� ŷη grid, (b) radial slice along ξ axis of the EGSM Tα

in (a), (c) real part of ENUC Tα formed from mapping the
Tα values in (b) to ρ using Eq. (5), and (d) y � γαy slice through (c).
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Lastly, we map the Tα values at r to ρ using Eq. (5). This
will likely require interpolation, especially if the points in the ρ
grid—such as those in the r grid—are uniformly spaced (as is
often the case). Figure 1(c) shows the end result of this process,
and the real part of the ENUC Tα formed from the EGSM Tα
in Fig. 1(a).

The ENUC screen [Fig. 1(c)] is rotationally symmetric
about the point γα. Examining Figs. 1(b)–1(d), one can clearly
see the effects of the mapping from r to ρ: the screen features
near ξ � 0 in (b) map to locations near γα in (c). These features
are clearly evident in (d), which shows the y � γαy slice through
(c). As a result of the quadratic transformation in Eq. (5), the
features near ξ � 0 in (b) are spatially elongated or stretched
[see the region around x � γαx in (d)]. As we move away from
ξ � 0, the screen features transition from being stretched to
compressed, again due to the quadratic mapping in Eq. (5).

The procedure in the preceding paragraphs controls the
“self” or diagonal elements of the ENUC W and, therefore,
is sufficient to generate ENUC beams that are linearly and par-
tially polarized. To generate ENUC beams that are circularly or
more generally, elliptically polarized, we must precisely control
the off-diagonal elements of the ENUC W, namely, Wxy
and Wyx .

In Ref. [10], the author controls the full W of electromag-
netic Schell-model sources by using a spatially varying, com-
plex, cross-correlation coefficient R between the random
numbers (rx and ry) that seed Tx and Ty. Specialized to the
problem here, R takes the form

R� f � � δ4xy
δ2xxδ

2
yy∕jBxyj

exp

�
−π2

�
δ4xy −

δ4xx � δ4yy
2

�
f 2

�
, (8)

where R ∈ �−1, 1� ∀ f . This stipulation on R is an obvious math-
ematical condition and is closely related to the physical realizabil-
ity criteria of EGSM and by Eq. (5), ENUC sources [2,11]. For
convenience, we let R � Cg , where C and g represent the
coefficient and exponential function in Eq. (8), respectively.

It is important to check, using the realizability criteria, that
indeed R ∈ �−1, 1�∀ f . Since we are ultimately interested in
producing ENUC sources, we must use the ENUC realizability
criteria [2]:

Bαα � 1,Bxy � B�
yx , jBxyj ≤ 1, δxy � δyx ,

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ4xx � δ4yy

2

4

s
≤ δxy ≤

ffiffiffiffiffiffiffiffiffiffiffi
δxxδyy
jBxyj

s
: (9)

We focus on the fork inequality on the second line of
Eq. (9). At the inequality’s lower limit, g � 1 and C < 1,
meaning that R ∈ �−1, 1�. At the upper limit, 0 < g ≤ 1 and
C � 1∕jBxyj. Since jBxyj ≤ 1, C is generally inconsistent with
R ∈ �−1, 1� ∀ f . Thus, the approach for generating ENUC
beams presented here cannot produce all physically realizable
ENUC sources.

This raises the question: what ENUC δxy and jBxyj can the
technique produce, or, more fundamentally, what are the tech-
nique’s synthesizability criteria or limits? Recall that R ∈ �−1, 1�
at the lower limit of the fork inequality in Eq. (9). Therefore,
this δxy value sets the lower synthesizability limit. At the upper
synthesizability limit, C ≤ 1. Using the expression for C in
Eq. (8) and some simple algebra, it is easy to show that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ4xx � δ4yy

2

4

s
≤ δxy ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δxxδyyffiffiffiffiffiffiffiffiffijBxyj
p

s
(10)

for R ∈ �−1, 1� ∀ f . The fork inequality in Eq. (10) and the first
line of Eq. (9) constitute the synthesizability criteria.

To show how Eq. (10) differs from Eq. (9), we set
δxx � δyy � δ and plot both inequalities versus jBxyj in Fig. 2.
The solid black curve demarks the maximum physically allowed
values of δxy∕δ − 1 and corresponds to the upper limit in Eq. (9).
The values of δxy∕δ − 1 above this curve (the solid red region in
the figure) are not physically realizable. The dashed black curve
denotes the maximum synthesizable values of δxy∕δ − 1 and cor-
responds to the upper limit in Eq. (10). The area below this curve
(shaded in green) is the synthesizable region. Between the curves,
shaded in yellow, is the region that is physically realizable, but not
synthesizable. Although physically permitted, the values of
δxy∕δ − 1 in this region cannot be generated using the technique
presented here. For general δxx and δyy, the synthesizable region
is always inside the realizability volume and, therefore, for a
given δxx , δyy, and jBxyj, max�δrealxy � ≥ max�δsynthxy �.

Having derived the synthesizability criteria and having dis-
cussed how to generate ENUC Tx and Ty from the correspond-
ing EGSM screens, we now present the simulation results where
we synthesize an ENUC source with the parameters listed in
Table 1. Note that we chose these values for proof-of-concept
purposes only. When designing an ENUC beam for use in a
specific application, it is imperative to understand how these
parameters affect the beam shape, coherence, and polarization
of the propagating ENUC beam. This analysis is presented in
Refs. [2,11] and is not included here for brevity. Before present-
ing the simulation results, we briefly discuss the setup.

As we show in Code 1, Ref. [12], we used grids with N �
1024 points per side and side lengths L � 10 mm. The grid
spacing in ρ space was L∕N � 9.77 μm. These numbers,

Fig. 2. ENUC physical realizability [Eq. (9)] versus synthesizability
[Eq. (10)] for δxx � δyy � δ.

Table 1. ENUC Parameters

Ax 1 σx 1.1 mm δxx 0.8 mm
Ay 1.2 σy 1.0 mm δyy 0.7 mm
Bxy 0.4 exp�−jπ∕6� δxy 0.763 mm
γx x̂0.35� ŷ0.5 mm γy −x̂0.4 − ŷ0.25 mm
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combined with the γx and γy in Table 1, corresponded to a
“side length” in r space of 118.0077 mm2 and a spacing
of Δ � 0.1152 mm2.

We generated correlated EGSM Tx and Ty using Table 1
and Eqs. (6)–(8). We then transformed those EGSM screens to
ENUC screens following the procedure described above and
shown pictorially in Fig. 1. We lastly produced an ENUC field
instance using Eq. (2).

We used 50,000 ENUC field realizations to compute the spec-
tral density, polarization ellipses, and W�x1, 0, x2, 0�. These re-
sults are shown in Fig. 3. Overall, the agreement between the
simulation and theory is excellent. Note that the visually conspicu-
ous differences between the theoretical and simulated Im�W xx�
[Figs. 3(g) and 3(h)] and Im�W yy� [Figs. 3(q) and 3(r)], in fact, are
quantitatively small. The color scales of those results are �−0.005,
0.005� and �−0.0098, 0.0098�, which are approximately 200
and 150 times smaller than the corresponding real part results.

In summary, we presented a method to generate ENUC
beams from EGSM sources. Previous work used Cholesky
decomposition—a computationally expensive process—to
synthesize ENUC beams [7]. Here we transformed EGSM field
instances (generated by filtering CCGRNs) directly into
ENUC realizations (without computing Cholesky factors), sav-
ing significant computing time and resources. We simulated
the generation of an ENUC source with specified parameters.
The simulated results were in excellent agreement with the
theory, thus validating our approach.

The method for generating ENUC beams presented in this
Letter can be directly implemented on existing SLM-based

vector beam generators and can be used in any application that
utilizes ENUC beams such as free-space or underwater optical
communications.
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The views expressed in this Letter are those of the authors and
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