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Abstract: We experimentally reporton optical binding of many glass 
particles in air that levitate in a single optical beam. A diversity of particle 
sizes and shapes interact at long range in a single Gaussian beam. Our 
system dynamics span from oscillatory to random and dimensionality 
ranges from 1 to 3D. The low loss for the center of mass motion of the 
beads could allow this system to serve as a standard many body testbed, 
similar to what is done today with atoms, but at the mesoscopic scale. 

©2016 Optical Society of America 

OCIS codes: (350.4855) Optical tweezers or optical manipulation; (020.7010) Laser trapping; 
(350.3950) Micro-optics. 
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1. Introduction 

At the molecular scale, traps can contain many atoms, serving as a testbed for studying 
quantum phenomena. Such atom ensembles benefit from the relative ease of dealing with the 
condensate [1–3] as a whole rather than individually engineering a single atom. Additionally, 
the signal that emerges from many-atoms can be strong enough, while noise is reducible by a 
variety of cooling techniques [4–7]. 

Trapping experiments with a single optically levitating sphere were suggested for quantum 
studies at room temperature [8] as its center-of-mass motion is coolable [9–11] while being 
minimally coupled with the thermal environment [8]. 

Optical traps are also sensitive enough to measure Brownian motion [12] and molecular 
forces [13] as well as holding particles as small 5 nm in size [14] and operating with non-
diffracting beams [15]. Extending the original idea of suspending single silica beads in a 
single beam vertical trap of Ashkin et al [16] to an optical trap that contains many 
microspheres, is attractive and has often been studied in a viscous environment [17–22] and 
with multiple-minima traps [18, 20, 23] where each particle clings to a fringe, as well as in 
many charged particle ion traps and plasmas [24,25]. Additionally, the subject of optical 
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binding, there light mediated interaction of optically trapped objects, has also been the subject 
of extensive work [26, 27]. 

We here investigate the dynamics of a many particles trapped in a single optical beam as 
theoretically suggeste in [28] and first experimentally demonstrated in [29]. Such systems 
might benefit studies of phase transition including zigzag-to-linear [30] and self-organization 
[31]. One might intuitively expect that many solid particles in a single 3D optical trap will 
move up the gradient to stick to each other near the well center. Contrary to this expectation, 
we experimentally report here on a long-range, low-dissipation optical binding where the 
particles are suspended against gravity by the optical trapping force. The repulsion between 
particles originates from their mutual scattering of light that modifies the initially smooth trap. 

 

Fig. 1. Experimental setup: silica microspheres are suspended above a single Gaussian beam 
and give rise to many microspheres trapped near the beam focus. 

2. Materials and methods 

The experimental setup is shown in Fig. 1. The optical trap uses a 1.5 µm laser that is coupled 
to a GRIN lens (AR coated, focal length 2 mm, diameter 1.8 mm) via a single-mode optical 
fiber as suggested in [18, 20] for providing a beam that is smooth along the transverse 
direction. The beam is also kept smooth along the longitudinal direction as no counter-
propagating beams are involved. This is done by keeping the region above the trapping region 
free from reflectors, only the lab ceiling, which is sufficiently high and scatters the light 
efficiently. 

The combination of AR coating, single mode fibers and open region above guarantees the 
beam smoothness, as an extra caution this was experimentally checked by scanning along the 
focus a camera of pixel size 8.4 µm x 9.8 µm, smaller fringes would have been accompanied 
by scattering at angles larger than 9 degrees, which was not observed in our system. 
Additionally, we monitored the beam with an IR card at its far field. In all of these cases we 
could see no irregularities in the beam. All of the above are sufficient to rule out small-scale 
speckles and fringes. 

We estimate that modulation or deviation of the beam from a Gaussian shape is less than 
2%. We then suspend the silica particles by first holding them on a glass coverslip and then 
releasing them by applying a mechanical shock on the coverslip about 5 cm over the lens 
focus, this distance allows the sphere to reach the terminal velocity. 

To minimize thermal effects, a combination of a 1.5 µm laser wavelength and fused silica 
spheres was chosen. The low absorption of silica at this wavelength (0.2 dB/km) makes that 
only one part in 107 of the laser light is absorbed, considering the worst case (single sphere 
sitting at the focus under 100 mW irradiation) and a simple steady state heat conduction in air 
at room temperature, produces a negligible thermal effect, with an upper limit of temperature 
rise about 0.05 K. 
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The optically trapped particles are viewed from the side with a microscope and video 
camera, manually positioned by an XYZ stage. As background illumination, several blue 
LEDs were employed. 

3. Results and discussion 

 

Fig. 2. Clustering of many particles as side viewed for 7 µm silica spheres suspended in air. (a) 
The number of particles grows from 1 to 11 as they keep falling (see Visualization 1). (b) 
Zooming-in reveals that multi-sized and multi-shaped particles can also optically bind. Red 
scattering is from a low-power probe beam (see Visualization 2). Scale bar is 50 µm in all 
images and beam waist is about 1 sphere diameter. With 11 particles the particle group center 
of mass was 240 µm above the beam waist. 

Clustering of many particles - is observed in the trap at a power of 0.5 W with 7 µm spheres 
and a beam waist of approximately 1 sphere diameter (Fig. 2 and Visualization 1). Clustering 
is versatile in that it also occurs when non-spherical particles (which are formed from 
physically attached spheres) are suspended and clustered, as shown in zoomed-in in Fig. 2(b) 
and Visualization 2. Trapped objects remain suspended up to several hours, even with large 
numbers or highly dynamic behavior. Our experiments show that the center of mass of the 
particles is above the waist. As explained in [32], particles tend to settle at this region since it 
suggests ‘increase in axial scattering force with decreasing height and transverse confinement 
of the gradient force’. 

Temporal dynamic arrangements - created by the interaction of trapped particles range 
from simple, harmonic motion, to complex and disordered behavior when the particle number 
increases. Starting with two spheres, periodic oscillations are observed (Fig. 3). Figure 3(a) 
shows photographs of the two objects over one half period of oscillation. We observed such 
periodic motion lasting up to several minutes. The vertical (along the laser propagation 
direction) separation of the two spheres is shown in Fig. 3(b) (red) over a period of 4 s. The 
vertical position of the center of mass of the two spheres is also shown in Fig. 3(b) (blue). As 
will be calculated later (Fig. 4(c)), the lower sphere is significantly modifying the field in the 
upper sphere region, suggesting that oscillation is due to binding between the two 
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Fig. 3. Dynamics of oscillating microspheres in an optical Gaussian trap (beam waist 0.8 
microsphere diameters). Two 7 µm silica microspheres (a) photographed over one half-period 
of oscillation (see Visualization 3) (b) partial time domain plot of the vertical separation (red) 
of the objects where changing the sign represents that the two particles were switching 
positions, and the vertical position of the center-of-mass of the two spheres (blue) (c) 
histogram of particle positions over 100 s of oscillation, showing two preferred spacings, and 
(d) Fourier transform of vertical separation data, oscillation is approximately 3 Hz. Non-
periodic dynamics: (e) Time evolution of the trajectories for five trapped objects in a beam of 
waist 0.8 diameters. The particles initially move in small, random orbits near their original 
positions, but over time exchange places to form new configurations, eventually covering 
almost completely and area of 40 µm × 450 µm (see Visualization 4). 

microspheres. Furthermore, such oscillation was never observed when a single sphere was 
populating the trap. 

Figure 3(c) shows a histogram of the vertical position of the objects over 100s. Two 
discrete positions where the objects are likely to be found are evident. The oscillation 
frequency of the vertical separation is about 3 Hz (Fig. 3(d)), and so the histogram represents 
300 oscillation periods. The distance between the two preferred positions is 35 µm, which is 
much larger than either the optical wavelength or the particle radius. The quality factor, where 
Q = ν/Δν is the frequency of the Fourier spectrum is approximately 70. The quality factor 
describes the energy stored in the system divided by the energy lost in one cycle. The 
measured Q = 70 shows that our system is operating at the underdamped regime, and the 
energy is dissipated by Brownian motion in air. The damping factor obtained for a 7 µm 
sphere in air by the kinematic theory of gases is 2.5 while our measured damping is 0.26 This 
is in contrast with the interaction of overdamped particles trapped in liquid media [17]. 

Disordered random motion is observed for larger numbers of interacting objects. Figure 
3(e) shows such random paths traced by five trapped objects over the course of 45 s. Each 
colored line shows the path traced by one object, up to the time indicated on the image. It can 
be seen that the trapped particles initially move in small areas near their original positions. 
However, over time the objects move far from these locations, interchanging locations many 
times and forming new configurations. After less than one minute, an area of 40 µm × 450 µm 
has been covered almost completely by the trajectories of the five trapped objects. 
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Our experimental results are accompanied by a model to give qualitative insight on the 
observed phenomena. A Comsol-based finite element mode was chosen for the static 
simulations since it allows dealing with arbitrary shapes and positions for any number of 
particles while considering multi-reflections. In what follows, we will increase the beam waist 
and see how the dimensionality of the system changes. 

 

Fig. 4. Experimental results and modeling of (a) Silica microspheres, diameter 25 µm, 1D 
confined to a Gaussian beam trap (waist 0.8 microsphere diameters). Adding objects creates 
new intensity maxima, resulting in potential wells for trapping additional objects. (b) One 
spherical and two non-spherical objects in a weakly focused Gaussian beam (waist 4 
microsphere diameters) trap where the structure turns 3D. (c) Long-range interaction of trapped 
particles. A 10 µm motion of a trapped particle results in a similar sized movement of the 
potential well at a distance of 4 diameters, or 18 wavelengths. (d) Dynamic simulation of 
trapped particles in an NA = 0.1 and 0.5 W, Gaussian beam where particle diameters from top 
to bottom are 5.6, 5.6, 7, 10.5 and 10.5 µm (see Visualization 5), as in the above experiment 
(Fig. 3.e). 
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1D behavior - was experimentally observed, as in [33] when the beam waist was 80% of 
the sphere diameter. Figure 4(a) shows an experimental photograph of 4 microspheres, 
nominally 25 µm in diameter, confined to the optical trap at an optical power of 0.5 W. Figure 
4(a) also shows the calculated intensity distribution produced by multiple scattering of light 
by the microspheres. As expected, because of multiple reflections and gravity, trapped objects 
can be displaced from the intensity maxima. From a general view, the resulting configuration 
resembles a 1D crystal and might be studied in the future as coupled oscillators [34] where the 
coupling mechanism is via mutual scattering. 

When the beam waist is opened, a phase transition to 3D configuration is observed; this 
phenomena might be relevant to zigzag-to-linear 25 phase transition studies. Figure 4(b) 
describes the intensity pattern produced when the beam diameter is increased to 4 bead 
diameters. An off-axis intensity maximum is formed (Fig. 4(b) right), followed, as expected, 
by a particle settling there. 

A major feature of the experimentally observed binding is that motion of one particle is 
long-range affecting the motion of another. In accordance with a typical situation seen in our 
experiment, we calculate in Fig. 4(c) that a 10 µm motion of one particle results a similar-size 
motion of the potential well at a distance of about 4 diameters away ( = 18 wavelengths). In 
Fig. 4(d) (and Visualization 5), a simulation that combines the optical potential and gravity 
with the dynamics was performed. It was assumed (in Fig. 4(d)) that each sphere functions as 
a ball lens that focuses the light that hits it into a new Gaussian beam. The multiple forces that 
the Gaussian beams apply (the first from the GRIN lens with NA 0.1 and the secondary from 
the spheres beneath with NA 0.5) computed using the software “Optical tweezers 
computational toolbox” [35] serve as an input to a dynamic (including gravitational force) 
model that shows the expected motion. The dissipation was taken from the experimentally-
measured mechanical quality factor, and the kinetic energy of the system was kept 
comparable with the thermal energy, kBT, by accordingly adding random velocities to each 
sphere. Limited by our computational resources, this model neglects interference effect 
between the Gaussian beams involved. Still, this multi-physics simulation (Fig. 4(d) was 
estimates dynamics similar to what we experimentally observed (Fig. 3(e)). 

An important enabler here relates to the fact that particles are not sticking to each other as 
evident from watching the trapped microspheres for many hours. This repulsion stands in 
agreement with previous observations of two-sphere system in a 2D aquatic environment [17]. 
Such repulsion originates from multi-reflections between particles as calculated in Fig. 4(a) 
and shown, for example, in the form of the intensity modification between the first two 
particles. Another repulsion mechanism originates from the dark fringes between the trap's 
minima. These dark fringes are inherent to coherent light scattering and function as a wall that 
separates particles (Figs. 4(a)-4(c)). Particle separation here might resemble repulsion in other 
many-body systems in nature including droplets in fluids [36] and atoms [37]. 

The final position and movement of the particles are determined by a manifold of well-
known and reproducible parameters like the laser power and numerical aperture, but the initial 
position and speed of the particles (which are random within some degree) have a strong 
effect on the final configuration and dynamics of the trapped cluster above. We can 
qualitatively assert that most of the experiments resulted in a series of static particles in 
numbers between 1 and 5 (moving only within Brownian limits) like shown in Fig. 2 while 
about 10% of the experiments gave some degree of random motion like the one shown in Fig. 
3(e) when the particle number increases between 4 and 10 and in rare cases, about 5% of the 
experiments, a periodic motion like the one shown in Fig. 3(a) was observed. 

As for future experiments, an interesting question is what will happen in vacuum when the 
trap is turned off. As an example, we will take thirty 1 µm spheres trapped at 300 K in a 10 
µm region and calculate their dynamics after the trap is turned off. About 5 ms after release, 
only half of the particles (the slow ones) will stay at a free-falling 10 µm region while their 
average temperature decreases to 200 K. 
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3. Conclusion 

In conclusion, we believe that our many particle optical trap can impact light-matter studies 
by providing a many-body test bed that is coolable [11] and almost free from clamping-loss or 
material-dissipation of mechanical energy [38–40]. A variety of particles shapes and sizes that 
we demonstrate to be dynamically trapped along the transverse and longitudinal dimensions is 
achieved by our relatively simple experiment where only one Gaussian beam is involved. It is 
expected that increasing the optical intensity and adding a counter propagating beam of 
transverse polarization, will bring us closer to the high frequencies where cooling [11] is 
likely (e.g. by placing the trapped microspheres in a blue-detuned resonator). 

By using nano-particles [14], which calculation [28] and experiments [14] suggests 
possible, will allow less dissipation by light [8] (in vacuum) to further increase isolation from 
thermal environment. While systems such as BEC and ion traps are widely studied, our still 
unexplored light-matter system might serve as a many-body testbed benefitting from isolation 
[28] and coolability [11]. 
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