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Abstract

We report on a parallel version of the Fast Multipole Method (FMM) [18] im-

plemented in the classical molecular dynamics code, NAMD (Not Another Molecu-

lar Dynamics program) [34]. This novel implementation of FMM aims to minimize

inter-processor communication through the modification of the FMM grid to match

the hybrid force and spatial decomposition scheme already present in NAMD. This

new implementation has the benefit of replacing all-to-all communications broadcasts

with direct communications between nearest neighbors. This results in a significant

reduction in the amount of communication compared to earlier attempts to integrate

FMM into common molecular dynamics programs. The early performance of FMM

is similar to the existing electrostatics methods already in NAMD. It also provides an

improvement in the parallel scaling of previous implementations of FMM in NAMD.

In addition, tests of the stability and accuracy of the FMM algorithm in molecular

dynamics as applied to several common solvated protein structures are discussed.
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Parallel Fast Multipole Method

For Molecular Dynamics

I. Introduction

There is significant interest today to understand the function of materials at the

nano-scale, from high performance polymers to common biological structures such as

proteins. Research efforts are underway to understand the role of biological materials

and mechanisms in diseases and metabolic function not only to aid drug design, but

also in an attempt to leverage biological structures in the development of biomimetic

materials, such as super-hydrophobic surfaces or optical coatings. Applications of

biomimetic materials include aircraft structure and lubricants, photonic materials

and sensor design [47].

One of the primary methods of exploring the theory of these materials is though

computational modeling of molecular dynamics, known as MD. Molecular Dynamics

can allow researchers to study protein function by simulating kinetics, looking at shifts

in structure conformation due to environmental effects, or studying potential active

sites that can be useful in drug design [48]. In molecular dynamics simulations, atoms

are treated classically, and explicit bonds are predefined. By omitting the quantum

mechanics and chemical kinetics, systems with as many as several hundred thousand

atoms can be modeled, including entire proteins in explicit solvent. Related coarse-

grained modeling uses the same programs and techniques in attempts to study larger

structures such as entire cells [17].

Most natural proteins have between 50 and 2000 amino acid residues, or about

one thousand to forty thousand atoms [53]. They do not maintain their structure

in vacuum, but are stabilized by their environment, commonly water, membranes,

or other proteins. When simulations are placed in a box of an explicit solvent, such

as water, this results in system sizes between twenty thousand and a half million

1



Figure 1.1: The Green Fluorescent Protein with the chro-
mophore inside of a protective β-barrel.

atoms, with most common problems currently studied in the literature around fifty

to a hundred thousand atoms. Some recent papers have modeled systems of over a

million particles, and there is a significant push to attempt to model long strands of

DNA [54].

The basic molecular dynamics model calculates a number of forces, frequently

parameterized representations of the natural forces, including atomic bonds, Van der

Wahl’s and electrostatic forces (see Section 2.1). In the case of a covalent bond,

because an atom is only bound to a small number of other atoms, the contributions

to the forcefield are easily calculated, even for very large systems. But, for the non-

bonded terms, specifically the Van der Wahl’s and electrostatic forces, each atom

interacts with every single other atom. This calculation very easily dominates the

calculation time; in most current molecular dynamics programs, it will generally be

around 80% of the run time. As a result, it is the non-bonded portion of the calculation

that is usually targeted for performance improvements.
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There are a number of methods designed to handle these non-bonded calcu-

lations, including cutoff methods, particle mesh methods and tree methods. One

particular type of tree method, the Fast Multipole Method (FMM) was introduced in

1987 by Greengard and Rokhlin [18] as a method for calculating long range two body

interactions such as electrostatic or gravitational forces (see Section 2.3). FMM was

the first algorithm for this class of problem with linear scaling, which is the advantage

of being able to scale to very large number of particles without significant penalty.

There are a number of molecular dynamics programs in common use today,

including CHARMM [29], LAAMPS [39], GROMACS [27], Amber [11] and others.

While all of these programs utilize a number of different techniques for the calcu-

lation of electrostatic forces, none of them implement an algorithm that provides

linear scaling to handle extremely large systems. All these codes include a cutoff

method, because it is easy to write and extremely fast, but is not accurate enough

for biomolecules. Most of these codes also include particle mesh methods, because

they are generally easier to implement than FMM. This ease of implementation yields

better serial run times for small to medium systems.

In an effort to implement a linearly scaling algorithm capable of handling larger

simulations, the Fast Multipole Method was integrated into a commonly used, parallel,

molecular dynamics program. The objective is to provide linear scaling with problem

size and parallel performance on par with the current electrostatics implementation.

The package NAMD version 2.5 was chosen in which to implement the Fast

Multipole Method. NAMD, which stands for Not Another Molecular Dynamics code,

was developed at the Theoretical and Computational Biophysics Group at the Univer-

sity of Illinois at Urbana Champaign (UIUC) [23]. It was chosen because it is stable,

well documented, fast, and parallelizes very well to large numbers of processors. It

3



Figure 1.2: The Apolipoprotein A-I (ApoA1) Protein embed-
ded in a lipid bilayer.

is also well integrated with the VMD (Visual Molecular Dynamics) program, utilized

for analysis and visualization [20].

The two reference systems used in this study include the Green Fluorescent

Protein (GFP), which has many common uses including medical imaging and drug

discovery [58] (see Figure 1.1). GFP is composed of 238 amino acids and is barrel

shaped, approximately 40 Å long and 30 Å in diameter, and protects a chromophore

buried in the middle of the cylinder. The other reference system, Apolipoprotein A-I

(ApoA1), is a large dimer membrane protein with 196 residues and 3205 atoms to

each protein. The two proteins form a quaternary structure shaped roughly like a

ring (see Figure 1.2), and is the protein constituent for HDL “good” cholesterol [37].

This system is the standard NAMD benchmark [36], with 6410 atoms in the protein,

21,440 atoms in a lipid bilayer in the middle of the ring and solvated in water for

a total system size of just over 92 thousand atoms. Simple water boxes and water

spheres were also used to provide a large number of similar systems with different

sizes to model performance as particle count increases.

4



II. Theory and Background

Molecular Dynamics is a method of simulating substances at the atomic level

through the use of classical mechanics that was initially developed in the 1960s, and

has been around in its current form since the early 1980s [43, 48]. The first major

development was the MM2 program developed by Allinger in the mid-seventies [4],

with the field advancing dramatically since then.

Understanding material properties and function is a multi-scale problem that

involves the understanding of everything from electronic wavefunctions to the bulk

properties of molar quantities of a substance. Solving most problems at a quan-

tum level, through techniques such as Time Dependent Density Functional Theory

(TD-DFT), Hartree-Fock (HF) or Multiconfiguration Self Consistent Field (MCSCF)

quickly becomes computationally difficult. Even the more efficient of these methods,

such as TD-DFT, are impractical for systems of much larger than a couple hundred

atoms, and time dependent calculations are restricted to very short time scales [30].

Molecular Dynamics provides an atomic level of detail and can yield insight without

needing to solve a very large many-body problem at the computationally expensive,

quantum level of theory.

2.1 Molecular Dynamics

Molecular Dynamics typically involves simulating a classical system as a series of

point masses interconnected with a series of harmonic potentials representing covalent

bonds. The exact form of this potential can be expressed in a number of ways, and

any one form is referred to as a forcefield. NAMD supports the X-PLOR family of

5



forcefields, including CHARMM22 [29] which has the form:

Φ =
∑

bonds

kb(b − b0)
2 +

∑

angles

kθ(θ − θ0)
2 +

∑

dihedrals

kφ [1 + cos(nφ − δ)]

+
∑

impropers

kω(ω − ω0)
2 +

∑

Urey−Bradley

ku(u − u0)
2

+
∑

i

∑

j

(

ε

[

(

Rminij

rij

)12

−

(

Rminij

rij

)6
]

+
qiqj

ε0rij

)

. (2.1)

where b is bond length, θ is bond angle, φ is a dihedral angle, ω is an improper

angle, and Φ is the total potential. The Urey-Bradley constraint, u, is a cross term

that is generally unused. The first five terms, all bonded parameters, are harmonic

oscillators parameterized to represent the forces arising from covalent chemical bonds.

As shown in Figure 2.1, the bond length parameter is a harmonic potential between

two directly atoms that have been predefined has having a covalent bond. The bond

angle is defined as the angle between two bonds that connect to a common atom.

The dihedral angle is measured along four linearly bonded atoms, and is defined as

the angle between the plane formed by the first three atoms in the sequence (atoms

1-2-3) and the plane formed by the last three atoms in the sequence (atoms 2-3-4.)

The improper angle also involves four atoms and is defined as the angle between

the plane formed by three atoms with a fourth atom. It is used to measure the

height of a atom such as the nitrogen in an ammonia structure. These parameters

are bonded terms, the sums over these parameters are only over the small number

of atoms to which a given atom is covalently bonded, or connected through one or

two intermediary covalent bonds. As the number of atoms in a system increases, the

number of these bonds increases linearly; leading to O(N) scaling of computation of

the bonded parameters.

The two final terms in Equation 2.1 represent the two body non-bonded interac-

tions. In general, these require N 2 calculations to perform, where N is the number of

6



Figure 2.1: The atom bond parameters for the CHARMM
forcefield include bond length (here r), bond angle θ, dihedral
angle φ, and improper angle α. (Reproduced from [31].)

particles in the simulation. The first of these terms is the Lennard-Jones interaction,

ΦLJ =
∑

i,j

ε

[

(

Rminij

rij

)12

−

(

Rminij

rij

)6
]

, (2.2)

which approximates the Van der Wahl’s potential between two atoms, where Rminij

is the equilibrium distance between two types of atoms, and rij is the actual distance

between the center of mass of the two atoms. The second non-bonded term, repre-

senting electrostatic interactions, is a direct Coulomb sum over the point charges qi

representing each atom:

Φelec =
∑

i,j

qiqj

ε0rij
, (2.3)

where the charge is the result of the residual charge that is a result of averaging the

electronic wavefunctions at the center of mass of the atom. These are parameterized

through quantum level simulation of similar chemical complexes.
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Because the electronic interactions between bonded atoms are accounted for in

the bonds, the electrostatic and Lennard-Jones interactions are generally excluded for

directly bonded atoms and atoms bonded to a common intermediate atom (commonly

notated as 1-2 and 1-3 interactions, respectively). For four atoms connected by linearly

successive bonds, the Lennard-Jones interaction between the first and fourth atoms

(1-4 bonds) may be excluded as well, and many forcefields allow for the attenuation

of the 1-4 non-bonded interactions.

2.2 Challenges for Large-Scale and Long-Time Molecular Dynamics

2.2.1 Cutoff Calculations and Multiple Time Stepping. The O(N 2) nature

of the non-bonded force calculations make them prohibitively expensive for all but

the smallest of systems. Initial efforts at reducing computational time involved a

cutoff scheme, where the electrostatic interactions between atoms separated more

than a given distance were not calculated. But, this type of abrupt cutoff leads to

significant non-linearities in the potential, destabilizing dynamics. Figure 2.2 shows

the Lennard-Jones potential, with the dotted line showing a gradually smoothed form,

with divergence beginning at a specified switch distance, reaching zero at the cutoff

distance. Given its rapidly decaying 1/r6 nature, this scheme is generally satisfactory

for the Lennard-Jones potential, with a cutoff usually on the order of 9-15 Å. However,

the 1/r form of the Coulomb potential does not approach zero as quickly, giving

it a longer range nature. As a result, cutoff methods inappropriately truncate the

electrostatic forces, and are generally ineffective for modeling biomolecules [40, 41].

Another widely used technique for overcoming the problem of the computational

difficulty of calculating electrostatic interactions is Multiple Time Stepping (MTS)

[52]. An all atom potential is calculated only once every several time steps, and a

distinction is made between quickly varying short range and slowly varying long range

interactions. A time integration technique, commonly the Velocity-Verlet/r-RESPA

method, is used to add an impulse for an all-atom potential over many timesteps, and

a cutoff calculation is used for short range calculations for intermediate timesteps.
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Figure 2.2: The Lennard-Jones potential. Many calculations
will include an artificial cutoff, where the potential is gradually
smoothed to zero between a given switch distance and the cutoff
distance. (Reproduced from [7])

Care has to be taken to avoid resonance between the slowly varying timestep and

vibrational modes of the system [8]. With the fastest bond-stretch being the H-H

bond of around τ = 10 fs, and a resonance defeating requirement to keep timesteps

at less than τ/2 [46], leads to a requirement for an outside timestep of around 4 fs.

With a standard inside timestep of 1 or 2 fs, this only leads to, at most, a two to four

times speedup in program runtime.

2.2.2 Long Range Electrostatics. Dynamics simulations, especially those of

highly charged biomolecules, require electrostatic contributions of all atoms. Elec-

trostatic potentials can be calculated using basic Particle-Particle Particle-Mesh (al-

ternatively abbreviated PPPM or P3M) methods [19]. Here, the simulation domain

is broken into a regular grid, and a single dipole or quadrapole expansion is calcu-

lated representing all particles in each box. Interactions are then calculated between

each particle and the distant multipole with near-neighbor interactions calculated di-

rectly. This yields a significant improvement over full direct methods, with a scaling

of O(N log N) [32].

Periodic boundary conditions (PBCs) help negate edge effects of atoms inter-

acting with the simulation boundary by considering the simulation space to be part of
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an infinite domain. Therefore, when particles pass through a boundary, the particle

reappears on the opposite side. In general, periodic boundary conditions can be ap-

plied in any or all three dimensions. This requires the contribution to the electrostatic

potential of an infinite number of images of the system in each periodic direction. The

long range nature of the coulomb potential requires a slowly decaying sum over all

these periodic images. Ewald summations greatly simplify this computational task

by converting the slowly decaying sum to a quickly decaying sum in reciprocal space

through a Fourier transform [16]. Particle Mesh Ewald (PME) is an extension of

Particle-Mesh with Ewald summations to calculate interactions with periodic images

of the system [12]. Because of the Fast Fourier Transformations (FFTs), these meth-

ods will generally scale as O(N 3/2), and can be difficult to parallelize efficiently. In

certain circumstances, PME methods will scale as O(N log N), and are commonly

utilized because they are relatively simple to implement, and moderately fast.

An alternative to the P3M methods is a family of algorithms known as “tree

methods”. Tree methods use a hierarchical structure, starting with a fine grid, con-

densing the electrostatic information for each small region in the grid, and then sum-

ming it with neighbor regions to create a single expression for the larger region. This

process is repeated with fewer and fewer grid points at each level, until a single expres-

sion is developed for the entire system. Most tree methods, such as the Barnes-Hut

mechanism, have never been implemented in molecular dynamics because of their

relative complexity compared to PME.

There have been several recent developments in which are termed multi-grid

methods [44, 45, 51]. These are similar to tree methods, but are not as difficult to

implement. In general, these methods can scale as O(N). Their relative simplicity

compared to the Fast Multipole Method can result in faster serial execution time.

However, like PME, when implemented on parallel computers, they still rely on a large

number of all-to-all communications and require a bit more synchronization between

multiple processors. As a result, they are not as adaptable to methods of overlapping

communication and computation as the Fast Multipole Method (see Section 3.3.2).
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While there have been a number of groups researching these methods, none of them

have yet to be implemented in a common MD code.

All methods, including Particle Mesh Ewald and the Fast Multipole Method,

suffer from problems relating to conservation of energy. This is a result of the approx-

imation of the force contribution of the distant charges, where we cannot guarantee

that the force of particle A on B is not exactly the same as the force of B on A, violating

Newton’s Third Law. Furthermore, when atoms cross grid boundaries, these methods

can lead to discontinuity in the potential. Both problems require these methods to

be calculated with high numerical accuracy, reducing their time-saving potential.

Improved tree methods were developed in the mid-1980s, starting with Barnes

and Hut [6], and later improved to the Fast Multipole Method developed by Greengard

and Rokhlin [18]. These methods were originally thought to provide O(N log N)

performance, but were later shown to provide O(N) scaling [14].

2.3 The Fast Multipole Method

The Fast Multipole Method is an advanced tree method that calculates mul-

tipole expansions for small regions of space across the simulation domain, and then

transform these multipoles across a tree hierarchy to quickly calculate the potential

at any region of space.

2.3.1 Manipulation of Electrostatic Multipoles. The 1/r function, as seen in

the electrostatic potential (Equation 2.3) can be expanded about a common origin in

three dimensions using spherical harmonics [21] as:

1

|r> − r<|
=
∑

l≥0

∑

|m|≤l

rl
<

rl+1
>

(l − m)!

(l + m)!
P m

l (cos θ>)P m
l (cos θ<)eim(φ>−φ<), (2.4)

where r = {r, θ, φ}, |r>| > |r<|, and P m
l (u) is the associated Legendre function:

P m
l (u) =

(−1)m

2ll!
(1 − u2)m/2 dl+m

dxl+m
(u2 − 1)l, (2.5)
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(a) (b)

Figure 2.3: Diagram of a standard multipole (a) and a local
expansion (b). The charge distribution is represented with blue
points, and the position the potential will be evaluated at is the
black point.

where, in the case of our expansion, u is cos θ. For standard electrostatic multipoles,

with a charge at r′ contained somewhere within a sphere of radius R and the potential

evaluated at position r, Equation 2.4 can be rewritten as

1

|r− r′|
=
∑

l≥0

∑

|m|≤l

r′l

rl+1

(l − m)!

(l + m)!
P m

l (cos θ)P m
l (cos θ′)eim(φ−φ′), (2.6)

provided |r| > R ≥ |r′|. This is referred to as a Multipole Expansion, and is demon-

strated in Figure 2.3 (a). A very similar expression known as a Local Expansion can

be written from Equation 2.4 for a distant charge located at r′ outside of a sphere of

radius R, and acting on a point r inside the sphere, (see Figure 2.3 (b)):

1

|r− r′|
=
∑

l≥0

∑

|m|≤l

rl

r′l+1

(l − m)!

(l + m)!
P m

l (cos θ′)P m
l (cos θ)e−im(φ−φ′), (2.7)

Some references may loosely refer to all three of the previous expressions as multipole

expansions, but here we shall use these more precise definitions.
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Defining two new functions Llm(r) and Mlm(r), Equation 2.6 can be written

simply as
1

|r − r′|
=
∑

l≥0

∑

|m|≤l

Mlm(r)Llm(r′) (2.8)

where

Mlm(r) =
(l − m)!

rl+1
P m

l (cos θ)eimφ, (2.9)

and

Llm(r) =
rl

(l + m)!
P m

l (cos θ)e−imφ. (2.10)

The charge distribution, ρ(r′), can be defined for a series of point charges through the

use of a delta function:

ρ(r) =
n
∑

i=0

qiδ(r − ri). (2.11)

Using this formulation, we can write the full electrostatic potential for a multipole by

substituting Equation 2.8 into Equation 2.3:

Φ(r) =
∑

l≥0

∑

|m|≤l

∫

ρ(r′)Mlm(r)Llm(r′)d3r′, (2.12)

and for a local expansion the potential is:

Φ(r) =
∑

l≥0

∑

|m|≤l

∫

ρ(r′)Llm(r)Mlm(r′)d3r′. (2.13)

Note that in Equations 2.12 and 2.13, the charge distribution at all points r′ can be

algebraically separated from the location where the potential is being measured, at r,

which can be referred to as the observer. As a result, all information about a given

charge distribution ρ can be calculated without knowledge of the observer,

L̃lm(r′) =
∑

i

qiLlm(r′
i
), (2.14)
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Figure 2.4: Diagram of the shifting of the center of expansion
for three different multipoles by d1, d2 and d3. Note that the
new definition of R is such that it encompasses all of the area
circumscribed by R1, R2 and R3.

where L̃lm is referred to as an unobserved multipole expansion. The full potential can

be calculated at a later time, provided the observer meets the criteria r > R, with

the expression

Φ(r) =
∑

lm

L̃lm(r′)Mlm(r). (2.15)

We can also similarly define an unobserved local expansion, M̃lm

M̃lm =
∑

atoms

qiMlm(r′
i
). (2.16)

These expressions are for single-center multipoles, with a common center of

expansion, and were defined in terms of r and r′. If we wish to shift the center of

expansion to a new location, we start with the definition of a generalized two-center

multipole expansion [10], defined in terms of a, b and c. This can be expressed in
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Llm, Mlm notation as:

1

|c − (a + b)|
=
∑

lm

∑

l′m′

Llm(a)Ml+l′,m+m′(c)Ll′m′(b). (2.17)

To shift the origin of a multipole by d, rewrite Equation 2.8 as

1

|r − d − (r′ − d)|
=
∑

lm

∑

l′m′

Llm(r′ − d)Mlm(r − d) (2.18)

then substitute a → r′, b → −d, and c → r− d and match terms with Equation

2.17 to get

Llm(r′ − d) =
∑

l′m′

Llm(r′)Ll−l′,m−m′(−d). (2.19)

This is shown in Figure 2.4 for three multipole expansions. The origin of a local

expansion can also be shifted by d with

Mlm(r′ − d) =
∑

l′m′

Ml+l′,m+m′(r′)Ll′m′(d). (2.20)

Using a similar process, we know that conversions between a multipole expansion

and a local expansion about a distant origin at d, as shown in Figure 2.5, can be made

by utilizing Equation 2.17 to give us the expression

Mlm(r′ − d) =
∑

l′m′

(−1)l′Ll′m′(r′)Ml+l′,m+m′(−d). (2.21)

Furthermore, Equations 2.11 and 2.12 show that we can express a single multipole ex-

pansion for a set of distant charges through simple summation of multiple expansions,

provided all expansions are around a common origin and that the sphere defined by

the new R entirely encompasses the areas circumscribed by the previous definitions

of R.

If the Llm in Equation 2.21 is in fact an unobserved multipole expansion, L̃lm,

then the left hand side of this equation would become a unobserved local expansion,
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Figure 2.5: Diagram of the transformation of three multipole
expansions by d1, d2 and d3, to local expansions about a com-
mon origin. Note that the new definition of R is such that it
does not encompass the areas circumscribed by R1, R2 and R3.

M̃lm, as in Equation 2.16. Similar to the expression in Equation 2.15, the potential

from the charges can then be calculated at a point r by simple product with Equation

2.9,

Φ(r) =
∑

lm

Llm(r)
∑

atoms

ρ(r′)Mlm(r′ − d)d3r′ (2.22)

=
∑

lm

Llm(r)M̃lm(r′ − d), (2.23)

provided that r < R < r′ ∀ r′.

To then calculate the force acting on a charge at r requires differentiating Φ with

respect to r. The M̃lm term on the right hand side of Equation 2.23 can be arrived
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at numerically, and does not involve r. Using the analytic derivative of Llm [43]:

∂

∂x
Llm =

1

2
[Ll−1,m+1 − Ll−1,m−1] , (2.24)

∂

∂y
Llm = ±

1

2
[Ll−1,m+1 + Ll−1,m−1] , (2.25)

∂

∂z
Llm = Ll−1,m, (2.26)

the force as a result of the charge distribution can be evaluated anywhere, provided

sufficient distance between r and r′.

2.3.2 The Fast Multipole Method Algorithm. The Fast Multipole Method

was first developed by Greengard and Rokhlin in 1987 [18], and can provide O(N)

scaling in certain circumstances. It is a variation on tree algorithms that in general

provided O(N log N) scaling. It allows for significant improvement of accuracy at

the expense of speed through the parameterization of the number of poles in the

expansion (pm) and the degree of refinement in the tree (lr).

The method starts with a recursive bisection of simulation space, dividing each

dimension in half, descending down one level and repeating this for each of the sub-

domains. In three dimensions, this tree has eight children for each parent, and is done

recursively and terminated at a level Lmax when there is approximately one atom in

each box. This would imply a Lmax of log8 N .

Schematically, this sub-division is represented as an inverted tree. The “top”

of the tree is denoted as level zero, and encompasses the entire simulation space.

Descending the tree, the first level has eight equally shaped boxes. Each of these has

four children in two dimensions, eight in 3D, providing a total of 16 boxes at level two

(or 64 in 3D) and so on. For each box at any level, interactions are separated into

three regions (see Figure 2.6, drawn with two dimensions). Short range interactions

encompass particles within the current box, and in the 8 nearest neighbor boxes. In

three dimensions, this would yield 26 nearest neighbors. Intermediate interactions

are defined as boxes that are children of the current box’s parent’s nearest neighbors,
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Figure 2.6: Schematic showing interaction zones in two di-
mensions. The black box is at level three. It has eight nearest
neighbors, shaded dark gray; the 27 light gray boxes constitute
intermediate interactions; and the distant interactions are white.

but are not its nearest neighbors. There are 27 intermediate boxes in 2D (62 −

32), shaded light gray in Figure 2.6, and 189 (63 − 33) intermediate boxes in three

dimensions. Finally, distant interactions are all boxes not children of the parent’s

nearest neighbors.

There are a number of different geometries that are used in the Fast Multipole

Method to define short range, intermediate and long range interactions. The imple-

mentation presented here uses this tree-based definition, as outlined in Figure 2.6.

This is the same as used in Pfalzner [33] and Rapaport [43], as well as in the original

work by Greengard and Rokhlin [18]. Other implementations, such as the work by

Lupo [28] and Rankin [42] use a geometry based definition that have the advantage

of providing a user definable parameter, θ, that allows the scaling of the size of these

interaction zones, and the development of different neighbor lists. This geometric

methodology is not included here.
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The Fast Multipole Method involves the following steps:

1. Build a tree through a recursive bisection of simulation space, sorting all atoms

into their respective boxes at the lowest level.

2. Calculate the unobserved multipole expansion (L̃lm(r′)) using Equation 2.14 for

all charges in each of the smallest boxes about the center of each box.

3. Shift the center of each L̃lm(r′) expansion to the center of the parent’s box

using Equation 2.19. Sum the results for each of the eight children. Repeat this

process all the way to the top of the tree.

4. Starting at the second level, for each box, transform each expansion L̃lm(r′) for

all intermediate and distant boxes to an unobserved local expansion, M̃lm(r′ − d)

about the current box (at d) using Equation 2.21. Sum all contributions to form

a single unobserved local expansion.

5. Step down the tree, transforming each local expansion M̃lm(r′) to the center

of each of it’s children’s boxes with Equation 2.20. Add in new intermediate

interactions using Equation 2.21.

6. At lowest level, calculate force contribution from the local expansion on each of

the individual atoms.

7. Directly calculate contributions for all short range interactions.

The center of each box is used for the origin of each expansion. Note that

the multipole expansion in step 2 is merely the unobserved multipole, obtained by

evaluating Llm in Equation 2.10, multiplied by the charge distribution, as in Equation

2.14. The transformation in steps 4 and 5 are calculated with Equation 2.21, and are

transformed to the center of the new box. The short range interactions in step 7 are

calculated directly by evaluating Equation 2.3.

Constructing the tree at the beginning of each timestep requires a relatively

small amount of work. The majority of the computation effort required for the Fast

Multipole Method occurs in step 5, as it involves the application of Equation 2.21
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Table 2.1: Timing For Serial FMM

System Size log8 N Time (sec) Time (sec)
(Atoms) lr = 0 lr = 1

4898 4 26.75 2.58
5943 4 26.73 2.47
48451 5 251.88 27.85
202627 5 255.4 38.52

repeatedly for each box. Ignoring boundaries, and in three dimensions, each box, at

every level, requires the transformation of 189 intermediate interactions. Note that

Equation 2.21 includes a sum over m and l as well as the over m′ and l′. This leads

to a O(pm
4) nature of the transformation, where pm is the number of poles, or terms

in the expansion.

Table 2.1 shows benchmarks of an early serial version of the Fast Multipole

Method with 10 terms in the expansion and at various levels of refinement in the

tree. This clearly shows that the cost of calculating one additional level is much

greater than the cost of the direct calculations in step 7. As a result, improvements

in speed are generally realized by utilizing fewer than log8 N levels of refinement.

Therefore, in this implementation, the number of levels, Lmax, is determined from the

user parameter lr:

Lmax = log8(N) − lr, (2.27)

with a default value for lr of one. This also leads to a slight improvement in accuracy as

more atoms’ interactions are calculated directly, and not through the approximation

inherent in a truncated multipole expansion.

The Fast Multipole Method can be fairly easily extended to handle Periodic

Boundary Conditions [49, 50] by utilizing the multipole expansion calculated at the

zeroth and first levels and utilizing the Ewald formulation [16]. This work is not

completed as part of this project, but implementation is straightforward and requires

little modification to the algorithm as presented here. Some changes are necessary to

allow for finer grained interactions of particles near the boundary.
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The Fast Multipole Method has the advantages of improved scaling with prob-

lem size, easily tunable accuracy through control of the number of terms in the expan-

sion, and improved parallelizability, this comes at the expense of more complicated

implementation.

The Fast Multipole Method requires the repeated application of three operators:

1. Shifting the origin of a multipole expansion.

2. Transforming from a multipole expansion to a local expansion.

3. Shifting the origin of a local expansion.

These can be broken down into the evaluation of four mathematical operations:

1. Evaluation of Llm

2. Evaluation of Mlm

3. Product of Llm and Ll′m′

4. Product of Llm and Ml′m′

The implementation of these four mathematical operators was based on code provided

in Rapaport [43], that was adapted into C++ from the C programming language and

optimized for performance. All other code provided in this project is either written

from scratch by myself, adapted from NAMD, or is directly from NAMD version 2.5

(see Appendix A.1 for overview of structure.)

There are numerous methods that can be utilized to speed up the algorithm.

A Fast Fourier Transform acceleration was proposed by Greengard and Rokhlin, and

first implemented by Elliott and Board [13]. White and Head-Gordon [56] have also

proposed a method to reduce the O(pm
4) scaling of the multipole to local transfor-

mations down to O(pm
3) through a method of rotating coordinate space such that

the transformation is done in the +x direction before being rotated back. The initial

implementation also uses the straightforward coordinate transformation schema, and

future work should look at the advantage of FFT or coordinate rotation improvements.
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III. Parallel Implementation

NAMD is a highly robust molecular dynamics code that has proved to be fast and

highly scalable. Parallel performance can be measured by defining parallel efficiency

as

tserial/(tp ∗ np), (3.1)

where tp is the time for each step when run in parallel on np CPUs, and tserial is the

amount of time per timestep when run on one CPU. NAMD has shown the ability to

scale with 90% efficiency when running on 256 processors, and 75% efficiency on 1500

processors [23, 38]. With the hardware trend towards even larger massively parallel

systems, more recent work has shown the ability to scale with 90% efficiency to 1024

processors and 70% efficiency to 2048 on Blue Gene/L [24].

NAMD is implemented entirely in C++, and utilizes the Charm++ parallel

framework [22]. This allows a message driven paradigm, which is asynchronous by

nature. This provides for a maximum of overlap between communication and com-

putation with minimal programmer effort.

3.1 NAMD’s Architecture

3.1.1 NAMD’s Parallel Structure. NAMD version 2 relies on a hybrid

decomposition scheme that utilizes both spatial and force decomposition [35]. The

simulation domain is first broken spatially, into cubic patches. These patches have a

minimum length that is slightly greater than the cutoff distance (see Figure 2.2), but

are sized so there are an integer number along each dimension of the simulation space.

Atoms are then assigned to a home patch based upon their position. The patches are

then distributed evenly across all CPUs. After a given number of timesteps, by default

twenty, atoms whose position has drifted outside their respective patch are migrated

to the appropriate adjacent patch. The patches provide the atom positions to the

force computation objects, and handle the velocity updating and time integration for

the atoms.
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Figure 3.1: Schematic of the hybrid spatial-force decompo-
sition in NAMD2. Home patches contain atom positions and
do time integration, while compute objects receive the positions
from the patches and return forces. If a compute object resides
on another CPU, a proxy patch is created to centralize all com-
munication between that processor and the home patch.

In addition, NAMD2 implements a force decomposition scheme, where each type

of force is assigned to a C++ object. One instance of each force object is initialized

on each CPU. Example force objects include ComputeBonds, ComputeNonbondedSelf,

ComputeNonbondedPair, or ComputePME. Compute objects may be associated with a

single patch (ComputeBonds object), or they may require the positions of two adjacent

patches (ComputeNonbondedPair). If the compute object resides on a different CPU

than one or both of the patches, a proxy patch is created. The proxy patch handles

communication with the home patch and the compute objects on that CPU. It receives

atom positions from the home patch, provides them to the compute objects, and then

transmits the resulting force vector back (see Figure 3.1).

3.1.2 Dynamic Load Balancing in NAMD. NAMD is unique among MD

programs in that it performs dynamic, measurement based, load balancing. All MD

programs perform an initial load balancing when first distributing atoms to the pro-

cessors. This simple, heuristic-based static load balancing has several disadvantages.

First, different force types can cause different amounts of computational load. Sec-

ond, processor speed, and especially inter-processor communication costs, can be very
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difficult to estimate. Finally, over the length of an MD run the density may shift,

with atoms moving a significant distance across the length of the simulation.

NAMD uses migratable objects, and over the course of the simulation, indi-

vidual home patches or force objects may be moved based on actual measurements

of their run time, and on their communications dependencies [23]. After an initial

number of timesteps (by default 100), NAMD will observe the CPU load on each

processor, and may move patch or force objects. This decision making process will

be repeated frequently throughout the simulation, usually every 2000 timesteps after

the initial re-balancing, although these are user definable parameters. The impact

of dynamic load balancing can be significant. When comparing the average time per

step over the first 100 steps with subsequent steps, it is common to observe a 10-30%

performance improvement. This adaptive load balancing also allows for efficient use

of inhomogeneous clusters, when some nodes have different clockspeeds from others.

The load balancing strategy adapts to them when assigning work to various nodes, al-

lowing faster nodes to carry a heavier load, and not having to spend idle time waiting

for slower nodes to finish.

The measurement mechanisms are provided by Charm++. Charm++ also pro-

vides a number of load balancing strategies, and these may be specified by the user

at runtime [57]. These strategies include Refine, which slowly moves objects from the

heaviest loaded processors and RefineComm, which includes communications costs in

the measurement of load. The Greedy strategy moves the biggest object from the

heaviest loaded processor to the lightest, and a Random strategy will randomly reas-

sign objects. The Metis strategy will partition according to the object communication

graphs. There are also a number of Neighbor methods which will only move objects to

nearby processors, and can take into account the computer’s communications topol-

ogy, and significant research is underway to tune these methods to various computers

such as Blue Gene/L [3]. The work presented here does not take into consideration

the impact of these various strategies, and all data presented is with the default load

balancing scheme supplied with NAMD.
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Figure 3.2: Fast Multipole Method scaling, broken down by
phase. The algorithm shows very good scaling, but it is dramat-
ically slowed by the communications-heavy results phase, where
the force vector is condensed to a single CPU, and then redis-
tributed to the appropriate patches. Figure taken from [28].

3.2 Previous Work on FMM

The initial implementations of the Fast Multipole Method were in astronomical

simulations of gravitational attractions between solar systems [33,49]. However, these

differ from molecular dynamics simulations because the density of galaxies are highly

inhomogeneous, unlike the density of a protein in solution. Much of the earlier work

on the Fast Multipole Method in molecular dynamics were proof of concept demon-

strations of FMM, and were not integrated into commonly used, full featured MD

programs [25,26,43]. When much of this development was done in the early 90s, MD

simulations were much smaller, on the order of a couple thousand atoms. This early

work suggested that FMM would be more efficient than PME at around 70 thousand

particles [49].

There have been two primary efforts to integrate FMM into commonly used

code, both of them targeting NAMD. Early versions of NAMD, including version

1 and versions 2.0 through 2.2, included the Distributed Multipole Tree Algorithm
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(DPMTA) library [23,42]. This was a general purpose, parallel FMM implementation

developed at Duke University and later integrated into NAMD. The second imple-

mentation was completed in 2001, and written and integrated directly into NAMD

version 1 [28].

Both of these efforts had a common performance limitation. They utilized a

parallel decomposition scheme for FMM that was separate from that used by the

core NAMD program. The atom positions, distributed across all the processors, had

to be consolidated to a single processor, where a single function call to FMM was

executed. FMM would then redistribute the atom positions according to its own

methodology, compute the forces in a distributed manner, reconsolidate the forces

and return to NAMD, which would redistribute the forces back to their respective

patches. This mechanism was communication heavy, and did not parallelize well to a

large number of processors. Figure 3.2, taken from [28], shows this problem. The Fast

Multipole Method algorithm parallelizes well, taking up significantly less wall clock

time at larger number of processors, but the results portion of the implementation,

the redistribution of the force vector, quickly becomes dominant, negating the parallel

advantage.

3.3 Design of Parallel Algorithm

3.3.1 Domain Decomposition. In order to overcome the primary perfor-

mance limitation of the two previous Fast Multipole Method implementations in

NAMD, the primary goal of this project is to eliminate the communication of atom

positions and the resultant force vectors by preserving the hybrid spatial-force de-

composition scheme. Instead of building the FMM tree from the top down through

a standard recursive bisection, this implementation starts at an intermediate level

of the tree, defined as the split level (Lsplit), and sizes the FMM boxes at this level

so that they coincide perfectly with the preexisting NAMD patches (see Figure 3.3).

From this point, a recursive bisection is done to complete the bottom of the tree by

subdividing the patches. The top portion of the tree is then built by working back up
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Figure 3.3: Schematic of domain decomposition and the
Global and Patch schema for the Fast Multipole Method com-
pute objects. Schema shows one dimensional representation of
a tree with four levels and the split level set to 2.

from the split level. This allows execution to begin without the transmission of any

atom positions, and complete without communicating force vectors. It also preserves

the dynamic load balancing scheme with little additional work.

The current implementation follows the existing NAMD paradigm, and closely

mimics the current ComputePME implementation in structure. A single compute

object, ComputeFmmObj, is started on each processor, and execution begins with

a call to doWork() in this class. The ComputeFmmObj object creates an array of

ComputeFmmPatch objects, one for each patch that processor is responsible for, and

hands off the atom positions and results force vector to each of these. The ComputeFmmMgr

class handles all the interprocessor communications, as well as all communication be-

tween the ComputeFmmPatch objects. The final C++ object, ComputeFmmGlobal,

handles the tree above the split level (see Figure 3.3); only one instance of this object

is necessary for the entire simulation. A ComputeFmm class implements a serial version

of the algorithm, and provides the bulk of the expansion manipulation functions. This

class is inherited by both ComputeFmmPatch and ComputeFmmGlobal. (See Appendix

A for more detail.)
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3.3.2 Overlapping of Communication and Computation. For most parallel

applications, the time required to communicate between processors is the primary

driver of inefficiency. In instances when communications cannot be limited, the la-

tency is best hidden by conducting other computational work while waiting for mes-

sages to arrive. As a result, information that is needed by other processors should be

transmitted as soon as the information is known, and the steps necessary to compute

data that will be needed on other processors should be given priority. Similarly, tasks

that can be done with available data should be delayed until all data with parallel

dependencies has been calculated and transmitted.

In the Fast Multipole Method, there are three points necessitating communi-

cation. One is the transmission of the expansions up the tree to the global object,

and the local expansions back down (see Section 2.3.2, steps 3 and 5). Second, the

expansions need to be transmitted to the nearby boxes on the interaction list (step

4). Finally, atom positions in the smallest level boxes on the edge of the patches need

to be transmitted to their neighbors for the full direct portion of the calculation (step

7).

To overlap the communication and computation as much as possible, the steps

as listed in Section 2.3.2 are handled in the following order. After the building of

the tree, the atom positions near the edges of the patches that will be needed for the

nearest neighbor full direct calculations should be determined and transmitted. Steps

2 and 3 are then completed, with the resulting expansion representing the entire patch

transmitted up to the global compute object. The expansions for the boxes below the

split level are transmitted to the nearest neighbor patches for use in step 4. Because

the communications with the global object require two sequential transmissions, the

expansions up, and then the resulting unobserved local expansions back down, these

messages should be prioritized over the messages to the neighbor patches. Once all this

has been transmitted, if no messages have arrived from neighbor patches, execution

can skip to step 7, and the forces of neighbor atoms can be calculated where possible.

The additional interactions for those on the edge of the patch, where the nearest
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neighbor boxes reside on another processor can be added in as soon as those messages

arrive.

The transformations of the unobserved multipole expansions from intermediate

neighbors to unobserved local expansions can be calculated and summed indepen-

dently from the transformation of the parent’s local expansion down. As a result, all

the messages that arrive can be acted on immediately, without waiting for the global

object to complete its work. A counter is kept for each patch, and once all messages

have arrived, both from neighbor patches as well as the local expansion from the

global portion of the calculation, execution can continue the rest of the way down the

tree (steps 5 and 6).

Completion of the full direct portion of the calculation is notably independent

of the rest of the algorithm, and can be completed earlier, overlapping the expansion’s

transmission, and hiding much of the communications cost. Furthermore, chances are

likely that the relevant atoms positions and charges from the neighboring patches have

already been transmitted by NAMD to the local processor, to aid in the computation

of the Van der Wahl’s or the bonded force contributions. These atom positions are

stored either in the home patch, should it be resident on the same processor, or in

a proxy patch. For the sake of simplicity of programming effort, this feature is not

utilized in the current implementation of FMM, as the relevant atom positions are

transmitted by FMM itself. This remains as a significant future optimization, with

the benefit of removing a large amount of redundant communication.

In the global compute object, the first transformation up can be completed as

each message arrives. Once all expansions have been received, execution will continue

to the top of the tree, and then back down to the split level (steps 3 through 5). For

a three dimensional system, there will be a total of 189 boxes in the intermediate in-

teraction zone for any given box, assuming it’s not near the simulation boundary (see

Figure 2.6). For boxes just below the split level, this is a significant amount of com-

munication, as the expansions for all boxes that are two away from a patch boundary
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have to be transmitted to the neighboring patches. Furthermore, the expansion for

an entire patch has to be sent to 189 other patches. In addition, all expansions one

below the split level have to be transmitted to the 124 neighboring patches. In order

to prevent this massive amount of communication, all of this computation will be

completed in the global object. For all levels below this, the expansions for the edge

boxes only have to be transmitted to the 26 nearest neighbor patches. The current

implementation, in order to reduce complexity, transmits one identical message to

all nearest neighbors containing the unobserved multipole expansions. In an attempt

to reduce communication size, customized messages should be sent to each processor

containing only the relevant expansions. This remains a possible future optimization

that has not been implemented.

3.3.3 Tree Representation. Every compute patch object, and the global

compute object contain a copy of the entire tree, stored as a simple array. Every node

in the tree contains pointers to each of the box’s 8 children, 26 nearest neighbors,

and parent. Memory for each box’s unobserved multipole and local expansions are

allocated when needed, and deleted at the end of every step. Because each patch

compute object has its own copy of the tree, when two adjacent patches are on the

same processor, the same information is stored in two places. Furthermore, explicit

communication in the form of multiple memory copies occurs unnecessarily as the

atom positions and expansions are transferred back and forth. This was done to ease

implementation. In future work, it would be prudent to limit the architecture to have

only one compute object per processor (as the rest of NAMD does for other force

types) instead of dedicating one object per patch.

Numerous papers have discussed various hash methods for representing the tree

in these multipole methods [55]. In this effort, these complicated schemes are not

necessary because memory is more abundant in modern computers, and in execution

time, tree traversal is trivial compared to the multipole transformations [33]. Table

3.1 shows the total execution time for each step in the initial, serial version of the
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Table 3.1: Performance profile for a serial version of
FMM, showing time spent in each of the major steps.

Step Function Time (sec) Time (%)

1 BuildTree() & PopulateTree() 0.03 0.1
2 CalculateMP() 0.10 0.4
3 TransformMPUpTree() 0.28 1.2

4 & 5 IntermediateLE() 19.61 82.7
5 TransformLEDown() 0.13 0.6
6 MPToForces() 0.37 1.6
7 NearInteractions() 1.84 7.8

Fast Multipole Method, calculating the forces for a 48 thousand atom system of GFP.

The number of terms (pm) is 7, and lr is one. This shows that very little time is spent

setting up the tree; instead, the vast majority of time is spent manipulating the various

expansions. Table 3.2 breaks this down further, as the evalL(), evalM(), prodLL(),

prodLM(), and IntermediateLE() functions involve mathematical manipulations of

expansions. The NearInteractions() function is the full direct portion in step 7.

The remainder, totaling less than a half of a percent of the execution time, can be

classified as building and traversing the tree.

A significant driver of the parallel performance of the algorithm as outlined is

the location of the split level (Lsplit) in relation to the total number of levels (Lmax).

In general, using a cutoff distance of between 9 and 14 Å, there are approximately

1000 atoms in each patch. This means there generally are three levels of the tree

below the split level, and only two if lr is set to one. For many common problems, the

patch grid is around four to eight patches per side. In the case of GFP, with a patch

grid of 4 x 4 x 4, this means Lsplit = 2. At most, for current problem sizes, the split

level is 4. Note, however, that the Fast Multipole Method without periodic boundary

conditions only requires manipulations for expansions at level two and below. This

means that for common problem sizes, such as GFP, there is very little work for the

global compute object to handle.
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Table 3.2: Performance profile for serial FMM, show-
ing time spent in each function.

Function Time (sec) Time (%)

prodLM() 13.59 59.95
NearInteractions() 6.54 28.85
IntermediateLE() 0.51 2.25

evalM() 0.49 2.16
prodLL() 0.12 0.53
evalL() 0.11 0.49

MPToForces() 0.10 0.44
CalculateMP() 0.02 0.09
PopulateTree() 0.02 0.09
ComputeForces() 0.01 0.04
BuildTree() 0.01 0.04

For a system of 570 thousand atoms, the patch grid is around 10 x 10 x 10

yielding a split level of 4. This means that the global patch has to do expansion

transformations over two levels of the tree, giving it a workload approximately equal to

each of the patch compute objects. There is a limit to how well this scheme parallelizes

for extremely large systems. While much of the additional work from more atoms is

distributed across the compute patch objects, it simultaneously results in more, non-

parallelized, work in the global object. In order to extend this methodology to systems

with tens of millions of atoms, the global object would itself need to be parallelized,

further distributing this load.

Most of the current implementation is transparent to the load balancing system,

and allows NAMD to shift patches to different processors to re-balance the work. The

exception to this is the global object. The current implementation starts the global

compute object on a single processor, and does not move it. Furthermore, the load

balancing system is not notified of the additional workload represented by the global

object. Instead, because NAMD uses a measurement based load balancing scheme,

I rely on it to recognize the additional time taken by that processor, and to migrate

other computational objects off.
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3.3.4 Current Limitations. The chosen methodology of enforcing that the

size of the FMM boxes at the split level coincide with the pre-existing NAMD patches

causes further complications when the patch grid is not perfectly cubic. The patch

grid can have any number of patches along each side, while the FMM tree will always

have 2l boxes along each dimension. This is handled by fitting the patch grid inside

the FMM tree, and then simply allocating no atoms to the additional FMM boxes,

so that the area covered by the FMM tree is larger than the simulation size.

This approach has two repercussions. First, it makes future implementation of

periodic boundary conditions more difficult. Second, while significant time can be

saved by not calculating the bottom levels of the tree for these “null” patches, their

contribution to their parent is not zero. Specifically, if the value of a unobserved

multipole expansion is zero, and the origin of that expansion is transformed to a

new origin using Equation 2.19, the transformed expansion is not zero. For exam-

ple, if an expansion of zero is transformed by a distance d = (2, 1, 1), the result is

(re,im) m = 0 m = 1 m = 2

l = 0 (0.00,0.00)

l = 1 (0.00,0.00) (0.00,0.50)

l = 2 (0.00,0.00) (0.00,1.00) (0.00,0.6875)

These contributions in the imaginary part of the m 6= 0 elements of the expansion are

canceled out, though, if eight non-overlapping children are all transformed the same

distance to a common parent. As a result, for all the “null” patches, they have to

have an explicitly zero expansion that is transformed to the common parent.

To implement periodic boundary conditions using the Fast Multipole Method,

only a few minor adjustments need to be made: the transformation of the expansions

up the tree to the zeroth level, the application of the Ewald summation technique [16]

for distant images of itself, and propagation of this contribution back down the tree.

Furthermore, for patches at or near the boundary, their nearest neighbor lists need

to be modified to include the periodic neighbors on the other side of the simulation
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domain. Because of the existence of the “null” patches outlined in section 3.3.3, this

is non-trivial.

As stated earlier, the current implementation of FMM explicitly communicates

the atom positions for all atoms near the edge of each patch to that patch’s neighbors.

This results in a significant amount of redundant communication at each timestep,

as that data is already available on that processor. Section 5.1 has an analysis of the

amount of communication occurring at each timestep, and how much could be saved

by accessing the proxy patches.

NAMD has a number of features that are used to attempt to reduce the amount

of communication between processors. As dynamics progress, some atoms drift across

patch boundaries. Atoms are not reassigned to a new patch at every timestep, but

once per cycle. This default value is every 20 steps. If an atom migrates too far

over a patch boundary before being reassigned, this can cause some drastic errors

in the electrostatic force calculation because it is assigned to the incorrect FMM

box. In an effort to mitigate these problems, the NAMD configuration parameters

stepspercycle was set to 10, and pairlistdist was set to the cutoff distance. Both

of these parameter changes cause slight performance degradation, but the magnitude

of this penalty was not measured.

The implementation of the Fast Multipole Method preserves the current NAMD

mechanisms for multiple time stepping, although there has not been any robust testing

to ensure the accuracy of this feature. As a result, FMM was not run using this MTS

feature.
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IV. FMM Algorithm Performance

The Fast Multipole Method has three potential advantages over existing methods,

it can be more accurate, handle larger systems better or faster, and it has the potential

to parallelize more efficiently. The performance of the Fast Multipole Method, in

terms of accuracy and problem size scalability are examined in this chapter. The

parallel performance of the current implementation is examined in Chapter V.

An important part of the measurement of accuracy of the Fast Multipole Method

is the determination of the number of terms in the expansion necessary to model the

relevant systems, which is covered in Sections 4.1 and 4.2. The accuracy of the FMM is

measured against the full direct computation of the total system energy and the force

vectors. This can be directly compared to existing PME methods, and is addressed

in Section 4.3.1. To measure the accuracy in dynamic systems, two sample biological

systems, ApoA1 and the Green Fluorescent Protein are modeled with both FMM and

PME, with the resulting stability and final structures compared with each other, as

well as with the accepted crystal structures in Section 4.3.2. Finally, the scaling of

the Fast Multipole Method with increasing problem size is presented in Section 4.4.

The current Fast Multipole Method implementation is not as robust as the

default PME method included in NAMD, as outlined in Section 3.3.4. There are a

number of features, specifically multiple time stepping and dynamic load balancing

optimizations, that are available to PME, but not yet throughly tested with FMM.

In addition, there are a number of parameters that were modified in order to get

FMM running consistently. Specifically, the pair list distance and the steps per cycle

parameters were reduced. For all the performance and accuracy tests presented in the

following two chapters, the parameters for each method are the parameters that will

provide optimum performance for each respective algorithm. The parameters that

differed between the two methodologies are listed in Table 4.1, all of which should

give additional speed to PME. These benefits in serial speed can also have side effects

with better parallel scaling and scaling of problem size as they reduce the workload

of the more computationally expensive electrostatic calculations, and move it to the
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Table 4.1: Parameter Settings for PME and FMM

Parameter FMM PME

cutoff 14 Å 14 Å
pairlistdist 14 Å 15 Å
timestep 1 fs 1 fs
rigidBonds no no
nonbondedFreq 1 1
fullElectFrequency 1 2
stepsPerCycle 10 20

other MD force calculations and the molecular dynamics engine, which generally scale

better than the electrostatics portion.

4.1 Accuracy of the Fast Multipole Method

4.1.1 Theoretical Accuracy. The theoretical accuracy of the Fast Multipole

Method was derived in the early papers on the method by Greengard, Rokhlin and

Ambrosiano [5, 18]. The number of terms required for a given level of accuracy, ε,

depends on the number of levels in the tree, and is given as

〈NLmax
〉−1 2−pm ≤ ε (4.1)

Where 〈NLmax
〉 is the average number of atoms in each box at level Lmax. Following

from Equation 2.27, this number is one when lr is zero, and is eight when lr is one,

meaning that the number of terms needed for an accuracy of ε simplifies to

pm = log2(8 ∗ ε). (4.2)

Test runs with several systems have shown that the current PME implementation has

an accuracy of about 10−4 (see Table 4.2). Using this as a baseline, assuming a value

of lr of zero, and plugging into Equation 4.1, we find

pm = log2(10−4) = 13.3, (4.3)
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showing that a calculation should use around 13 poles in the expansion. But, given

a lr of one, this requirement drops to 10 terms. Note that this is a worst case error,

and some empirical measurements have shown the number of terms required for that

level of accuracy to be lower (see Sections 4.1.2 and 4.3).

4.1.2 Empirical Tests For Accuracy. The true test of the accuracy of the

implementation is the ability to model real systems in a manner that can validated

by experiment, and conforms to well known thermodynamic laws. A classic test of

the latter is to measure energy drift in a constant energy, constant volume simulation,

to see if it is conserved. A second major test is to measure the protein stability for a

number of sample systems. Starting with a known crystal structure, the system can be

minimized, heated and equilibrated. A simulation of about 1 ns is considered sufficient

to show stability, and provide decent statistics of the structure conformation [48]. The

secondary structure can be compared to the known or accepted conformations for that

protein.

Energy conservation tests are difficult to perform without periodic boundary

conditions, which are not included in the current implementation. While a constant

energy simulation can easily be run, individual molecules will drift significantly from

the primary system, causing an inability to equilibrate the model, as well as errors

arising from atoms drifting outside of the simulation domain. Artificial boundary

conditions can be imposed, but soft wall potentials add energy to the system, and

there is not currently an efficient method to implement hard wall boundary conditions

in NAMD.

There have been a number of previous efforts to implement the Fast Multipole

Method in molecular dynamics, and there are well established error bounds for the

method, although there is not consensus on the number of terms required in the FMM

expansion. The work by Lupo, et. al. uses five terms [28]; Kurzak and Petitt use 16;

and an early paper by Board, et. al. shows relative error with 4 and 8 terms [9]. Only

one paper, by Bishop, Skeel and Schulten, has attempted to measure the number of
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Figure 4.1: This graph shows the conservation of energy with
Fast Multipole Method with various number of terms in the
expansion. This figure reproduced from [8].

terms required to accurately carry out molecular dynamics simulations with the Fast

Multipole Method [8]. This paper includes the results shown in Figure 4.1, which

seem to indicate that six terms are sufficient for their 36k atom protein system. It

is important to note that the Fast Multipole Method tested in that paper is not a

complete analogue to the implementation documented here. The DPMTA algorithm

uses a geometric, spherical definition of intermediate and well separated boxes that

is different from the tree-based definition used here, and outlined in Figure 2.6. As

a result, the measurements provided there for accuracy may not be sufficient to be

applied to this work. The results included here all truncate the expansion at 7 terms,

except when noted.

4.2 Validation of the Fast Multipole Method

Development started with a serial, standalone version of FMM, that read in a

simple structure from a Protein Database (PDB) file. Significant portions of NAMD

were used early in the development process in order to maintain consistent data

structures and methodology with the target program. A simple, serial version of the

Fast Multipole Method was completed, with the resulting energies and force vectors

compared between the two for a large number of structures.
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This program was then parallelized, using much of the NAMD architecture and

structure, including the patch system for decomposition. This program read in the

atom positions and calculated a single electrostatic force vector. Both the full direct

and Fast Multipole Methods were parallelized and the full direct method was used

for comparison purposes.

Because the electrostatic potential decays as 1/r, most of the energy, and the

resulting forces acting on any give atom, are a result of the nearest neighbor charges;

with less than 5% of the total energy being contributed by atoms outside of a standard

cutoff of 9 Å. As a result, a majority of the force is not actually calculated through

the multipole expansions, but are instead contributed through the direct calculation

outlined in Section 2.3.2 step 7. In order to differentiate between this portion of

the calculation and contributions from expansion transformations, a test utilizing a

single water molecule was used. In this test, the tree geometry was fixed with a large

number of levels, and the location of the two hydrogens were slowly moved, with the

electrostatic forces calculated for each position. Forces could also be calculated with

the full direct method, as well as calculating the FMM by hand. In this manner, the

parallel implementation could be methodically tested, with the each section of the

code verified in isolation.

4.3 Accuracy Measurements

Performance results presented here were run on two parallel systems. The first

is Eagle, at the ASC MSRC, a SGI Altix 3700 with 1.6 GHz Intel Itanium2 proces-

sors on four 512 processor nodes and 1 GB memory per CPU. All runs on this system

were SMP, shared memory jobs. A cluster, Orb, was used for distributed-memory

performance measurement. This system has eight dual processor 900 MHz Itanium2

nodes with 2 GB of RAM each. The systems are networked using Myrinet-2000 inter-

connects directly connected to a single crossbar switch. Serial runs were conducted

on various Intel Pentium 4 desktop computers. All systems used Intel compilers, and

NAMD was compiled using Charm++ version 5.9.
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Table 4.2: Single Step Energy Accuracy

Full Direct
FMM, 7 terms PME

Energy Error, ε Energy Error, ε

GFP (48k atoms) -3184692 -3184759 .002% -3184294 .012%
Water Box (98k) -347765 -347782 .005% -347558 .060%
ApoA1 (92k) -334444 -334411 .009% -362073 7.6%
Water Box (214k) -780970 -781312 .044% -798265 2.2%

4.3.1 Single Step Energy Calculation. The initial verification of the Fast

Multipole Method is to calculate the electrostatic forces and the total electrostatic

energy for a common structure with various methods. The results are shown in

Table 4.2. The sample systems are the Green Fluorescent Protein and Apolipoprotein

systems as outlined in Chapter I. In addition, multiple water boxes were created with

VMD’s solvate command, and left at the default density.

The total system electrostatic energy when calculated with the Fast Multipole

Method is the same for both the serial standalone version and for the final imple-

mentation integrated into NAMD. The full direct numbers are also calculated both

in my serial program and the NAMD version, and match exactly. These results are

also compared with the standard PME method, both the FMM and PME calcula-

tions are compared to full direct to determine relative error. Two conclusions can be

taken from this data. First, the Fast Multipole Method, when calculated with seven

terms in the expansion, has an advantage in error by about an of magnitude over

PME. Secondly, both methods seem to show a slow increase in error as the system

size increases, although this rate of increase is significantly faster for PME, which sees

the error increase by two orders of magnitude when the system size increases by one

order of magnitude. FMM, on the other hand sees the error increase only a single

order of magnitude over the same range.

In addition, tests were done with the GFP sample system as the number of

terms in the FMM expansion was increased. Interestingly, the level of error shown in

Table 4.2 was achieved with as few as three terms in the expansion. As the number
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(a) (b)

Figure 4.2: The Green Fluorescent Protein crystal structure
(a) and the conformation of GFP after it has been minimized,
heated and allowed to equilibrate for 100 ps using FMM (b).

of terms was increased further, the energy remained consistent, within the number of

significant digits presented in the table.

4.3.2 Protein Structure Conformation. Runs were done with both FMM and

PME on the two sample systems, the Green Fluorescent Protein and ApoA1. All of the

runs were done using the parameters listed in Table 4.1, with the PME models using

periodic boundary conditions on roughly cubic systems, and FMM using spherical

harmonic boundary conditions. All systems began from the crystal structures, were

minimized, slowly heated and allowed to equilibrate. The PME systems were run for

2 ns, with the data taken over the second nanosecond. Due to downtime at the ASC
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Figure 4.3: The Apolipoprotein A-I protein crystal structure
(in violet) and its conformation after it has been minimized,
heated and allowed to equilibrate for 100 ps using FMM (in
green).

MSRC, less than 100 ps of simulation time has been completed for the FMM runs.

Full one nanosecond runs are underway, and the data presented here will be updated

when the runs complete.

For both systems, the root mean square deviation (RMSD) was computed for

the backbone atoms on the protein only, using the average position for reference.

For GFP, when calculated with the Fast Multipole Method, the RMSD was 0.479 Å,

and 2.24 Å when run with PME. For ApoA1, the RMSD was 0.705 Å for FMM

and 1.68 Å for PME. The fact that the RMSD is significantly lower for the FMM

simulations should not be taken as evidence that FMM is more accurate. It is probably

entirely a result of the very short simulation time that was completed at this time,

and these numbers will probably increase.

The final structure for GFP is shown in Figure 4.2 (b), with the crystal structure

in (a). As can be seen here, the overall structure is similar, but some of the secondary

structure has been lost. The β- barrel is noticeably larger for the simulated system,

but this is due to the heating of the system– the crystal structure was taken at

lower temperature. The 100 ps length of the run is too short to conclude if the
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Figure 4.4: These graphs show the time, in seconds, required
as the number of atoms increase, for both the Fast Multipole
Method (a) and Particle Mesh Ewald (b). Note the stair step-
ping effect in FMM, as the first three data points have three
levels in the tree, the next four have four levels, and the last two
points have five.

structure shown here is completely stable. The total system energy had just started to

equilibrate, and while the RMSD over time was increasing, it was beginning to level off.

The α-helices of the ApoA1 protein are remarkably more stable, as shown in Figure

4.3. In this figure, the final structure, in green, is superimposed over the initial crystal

structure, in violet. It is not surprising that this protein held its secondary structure

better, as α-helices are known to be far more stable than other structures [53].

4.4 Scaling of Problem Size

Early characterizations of the Fast Multipole Method noted that the linear

scaling was offset by a very large constant calculation costs due to the manipulation

of the expansions. The PME methods, easier to implement and to calculate, were

hampered by their O(N log N) scaling. Early work showed that the particle mesh

methods were faster for the system sizes of the time, and the literature varies on

predictions on when the Fast Multipole Method will outperform PME. Schmidt and

Lee, working on astrophysical simulations with multipole and particle mesh methods,
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Table 4.3: FMM Scaling with problem size.

Num Time per Scale
Atoms Step (s) Factor

11717 1.009 8.617E-05
18473 1.739 9.414E-05
27494 1.946 7.080E-05
53054 2.181 4.112E-05
91619 3.573 3.900E-05
145325 6.864 4.723E-05
216266 9.209 4.258E-05
307244 29.24 9.518E-05
421025 37.02 8.794E-05

showed a crossover point of about seventy thousand particles, after which FMM is

faster [49]. Other work by Pollock and Glosli, also not specific to molecular dynamics,

suggests that “FMM only becomes faster at some unphysical size N > 1060.”

Scaling of the Fast Multipole Method is shown in Figure 4.4 (a), these numbers

were calculated using 8 processors on a SGI Altix system. This data was collected by

running 200 MD steps in NAMD for a variety of water boxes. The per step timing

as reported by NAMD for steps 150 to 200 are given. This methodology is used for

all NAMD timing numbers in all tables and figures in Chapters IV and V. These

results tend to support the conclusions of Pollock and Glosli. For all systems sizes

and computer types, the PME method included in NAMD was faster than FMM with

performance ranging from a factor of two to almost a full order of magnitude.

According to Phillips, et. al. [34], NAMD uses the smooth PME [15] method-

ology. In this, although PME is proportional to N log N , parameters are chosen to

put the work load into the reciprocal sum which is proportional to N only. Figure

4.4 (b) bears out that this approach is quite effective. The scaling of PME is close to

linear, with the one data point at 267k atoms varying from linear only due to normal

variations in overall computer load and load imbalance. Because the PME runs were

conducted with MTS, the rest of the MD calculation, which scales as O(N), takes up
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Table 4.4: PME Scaling with problem size.

Num Time per Scale
Atoms Step (s) Factor

5945 0.214 3.602E-05
20537 0.546 2.663E-05
49160 1.265 2.574E-05
69956 1.959 2.801E-05
96605 2.515 2.603E-05
128834 3.508 2.723E-05
167879 4.484 2.671E-05
214016 6.155 2.876E-05
266972 6.386 2.392E-05
299152 9.883 3.303E-05
570350 8.671 1.520E-05
783200 12.38 1.581E-05
1042208 16.10 1.545E-05

a more computational time relative to the electrostatic portion. This also helps to

reduce the effect of poorer scaling on the part of PME.

The results for FMM in Figure 4.4 (a), show close to linear scaling, although

there is a significant stair-stepping effect as a result of the number of levels in the

tree, that was also seen in Table 2.1. The first three data points, with less than 30k

atoms, are calculated with three levels in the tree. The next four, between 30k and

250k atoms have four levels in the tree, with the final two data point using five levels.

Within these subsections, scaling is highly linear, with sudden jumps at each point

where an additional level of multipole expansion are required. A scaling factor can be

easily defined as the time per step divided by the number of atoms, and the results

for PME and FMM are shown in Tables 4.4 and 4.3.

The high computational cost of Fast Multipole Method provides a significant

barrier to performance, and the modern implementations of PME have been able to

successfully flatten the O(N log N) scaling to provide good performance for current

system sizes. The ability to provide better performance with FMM rests on imple-

mentation optimizations and on potentially better parallel performance.
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V. Parallel Performance

In recent decades, high performance computing efforts have concentrated on very

large parallel supercomputers to achieve the computational efficiency needed to pro-

vide the level of detail and accuracy needed for scientific research. This emphasis

has become even more dramatic recently, as performance improvements have shifted

from emphasizing single CPU speed to parallel hardware. This process is most vis-

ible with the introduction of multi-core CPUs at the consumer level. At the high

end, IBM’s Blue Gene project aims to achieve significant performance improvements

for supercomputers by focusing on parallel communication, increasing the number

of CPUs in a system by more than an order of magnitude. Blue Gene/L currently

uses relatively slow 700MHz CPUs, sacrificing single processor speed to meet power,

heat and physical density limitations to improve interprocessor communications speed

and scale systems to more than a hundred thousand processors, resulting in a Blue

Gene/L currently being ranked as the fastest computer in the world, with a total of

16 systems in the top 100 according to Top500.org [1,2]. The result of these research

and development efforts means that parallel scaling should be one of the key drivers

of performance for scientific modeling applications.

This chapter focuses on the parallel performance of the FMM implementation,

comparing it to the current PME method in NAMD, analyzing the communication

costs and the benefits of load balancing.

5.1 Estimation of Communication Costs

The current Particle Mesh Ewald electrostatic computation is characterized by

a number of all-to-all broadcast communications at each timestep. For an model GFP

system running on 16 processors, the patch grid will be about 4 x 4 x 4. During com-

putation, PME transmits a PmeGridMsg, a PmeTransMsg and a PmeUnTransMsg; each

of these being an all-to-all broadcast from each processor to every other one. The

PmeGridMsg has four main elements: int zlist[], char fgrid[], float qgrid[]

and PmeReduction evir[]. With a PME grid of 64 x 64 x 64, the size of the first
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three arrays are approximately 64 x 20 x 20. Multiplying these by their respective

word sizes, the zlist array is 820 kilobits (kb) in size, with fgrid 205 kb and qgrid

1.6 megabit (Mb). The PmeReduction evir[] element is merely seven double pre-

cision floating point numbers, and therefore only 448 bits long. There are several

other message elements requiring negligible storage, but this equates to a total mes-

sage size of about 2.7 megabits. Using similar methodology, the PmeTransMsg and

PmeUnTransMsg are each about 1.6 Mb. Transmitting one of each message type every

timestep, this results in 5.9 Mb of message transmission per CPU. Multiplying by

the number of processors, this is 43 Mb in 16 broadcast messages. If each broadcast

message is treated as 15 individual messages, this is a total of 480 Mb of data in 240

messages to be transmitted each timestep.

Using the cluster Orb as an example system, each node contains two processors

and has to receive a total of 165 Mb of data (5.9Mb ∗ 14 ∗ 2) each timestep using

interconnects capable of transmitting 2.0 gigabits per second. Factoring in commu-

nications overhead, this puts a theoretical limit of at most four to eight steps per

second. This roughly agrees with the measured performance of one half second per

step.

The fast multipole method has four main communication points, the transmis-

sion of atom positions to nearby atoms, the sending of the expansion up the tree from

each patch to global, the reply from global back down the tree to each patch, and

the sending of expansions to intermediate neighbors between patches. For the atoms

message, each patch of about 1000 atoms transmits approximately 875 atom positions

to each of its 26 nearest neighbor patches. With each atom position containing three

64 bit numbers and factoring in overhead, messages are approximately 300 kb in size.

Considering simulation boundaries and the fact many of these neighbor patches re-

side on the same processor, measurements show that each patch communicates to on

average 1.5 other processors. Multiplying this times 64 total patches results in a total

of about 29 Mb for the position messages.
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Assuming a total of 7 terms in the expansions, there are 39 elements, or a

total of about 5 kb for every expansion transmitted. The patch to global and global

to patch messages include 9 expansions for a size of around 45 kb. Therefore, the

patch to global messages transmits a total of 2.9 Mb in 64 messages and the global

to patch messages transmits 2.9 Mb in only 16 messages. For the patch to patch

transmissions, each has 72 expansions for a total of 360 kb per message. With each

patch transmitting to 1.5 other CPUs, this is a total of 34.6 Mb in 96 separate

messages. All told, there are about 70 megabits of data transmitted every step, in

a total of 272 messages. Just as importantly, if the atom messages can be removed

through proper use of proxy patches, this communications load can be reduced 42%.

Because the fast multipole method consists entirely of one-to-one transmissions, this is

significantly less communications overhead than the 480 Mb for the PME calculations.

Just as important as the total volume of the communications is the timing of

the communications. If the communications and computation can be sufficiently over-

lapped, the communications come at very little cost. Similarly, if the communications

and computation are strictly serialized, the time for transmission of messages can

become critical. Charm++ has sophisticated monitoring and analysis tools that can

show real performance profiling for parallel programs, including the ability to high-

light time spent waiting for communications to arrive. This profile timing data was

taken on a number of computer systems when using PME and FMM for the electro-

statics calculations in NAMD. Unfortunately, we could not get the Charm++ data

analysis and visualization tool, Projections, working to examine the performance.

The Charm++ developers were contacted, but unable to resolve the problem in time

for inclusion.

5.2 Parallel Scaling

The parallel performance for NAMD is shown in Figure 5.1 for a shared memory

SGI Altix. Performance data for more than 32 CPUs was not available because of

MPI errors on all jobs requesting 32 or more processors. For the Fast Multipole
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Figure 5.1: This graph shows the parallel efficiency of NAMD
using both electrostatic techniques for GFP, and a 97k atom
water box. Data was collected on a shared memory, 16 processor
SGI Altix.

Method runs, the GFP was enclosed in a water sphere with 57k atoms, the PME data

was taken with the protein in a water box and 48 thousand atoms. The water box for

PME has 97k atoms and the water sphere used for FMM has 92k atoms. For both

systems and both methods, the parallel efficiency was around 60 to 70%, with the Fast

Multipole Method handling the larger, 100k atom water simulation better than PME.

The actual computation time for FMM took about six times longer than PME, so

even at 16 CPUs, the slight parallel advantage of FMM is not enough to overcome the

serial speed difference. The previous implementation by Lupo and McKenney showed

a parallel efficiency of slightly less than 60% at 16 processors and around 40% on 32

processors [28]. It should be noted, that performance data is with the multiple time

stepping feature turned on. By comparison, the current implementation shows a slight

advantage, without the additional speedup from MTS. Multiple time stepping should

provide a boost in parallel efficiency, because it emphasizes the other portions of the

MD engine, which parallelize significantly better than the electrostatics calculation.
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Figure 5.2: This graph shows the parallel efficiency of NAMD
using both electrostatic techniques for GFP and ApoA1 run on
a 16 processor cluster.

When multiple time stepping is implemented with the current FMM implementation,

it should provide a clear advantage over the previous version.

Figure 5.2 shows similar scaling results for the two methods when run on a

distributed memory cluster. Here, the overall performance is not significantly worse

than for the shared memory system, a result of both the high speed Myrinet inter-

connects and the 800 MHz processors that are significantly slower than those on the

Altix in Figure 5.1. For these tests, the ApoA1 system was used, with 136k atoms in

the spherical system used for FMM, and 92k atoms in the box used for PME. Here,

the PME method seems more tolerant of the communication latency with the smaller

GFP system, but the performance is somewhat similar in the three other cases.

Figure 5.3 shows the constant workload speedup for both PME and FMM. A

series of water boxes were run on a SGI Altix, and one processor was used for every ten

thousand atoms in the simulation. Here, PME’s stability in providing good scaling

in both problem size and parallel efficiency show a relatively constant time of about

one half second per timestep. When there is more than thirty thousand atoms in
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Figure 5.3: This is the constant workload timings for a series
of water boxes run on a SGI Altix, the time per step in seconds
is shown for PME and FMM. One processor was used for every
ten thousand atoms in the simulation.

the simulation, and thus four levels in the tree, the fast multipole method shows

decent performance, with only slight degradation as the problem size and number of

processors increase. For extremely small simulations, less than 30 thousand atoms,

there are only three levels in the tree, so there is very little parallel work distributed

among the processors.

5.3 Load Balancing

One of NAMD’s most unique features is the ability to handle measurement-

based dynamic load balancing, as outlined in Section 3.1.2. The Charm++ framework

keeps accurate timing data for all objects during the course of a run. NAMD will

periodically consult this data, and move patches and compute objects to different

processors. This scheme is very effective, and it is not unusual to see performance

gains of 15% or more after one or two rebalancing iterations.
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Table 5.1: Load balancing and CPU load after 50 and
150 timesteps

System Electrostatic 100 Steps 150 Steps
Type Average Max Average Max

ApoA1 PME 5.1 7.5 5.4 5.5
ApoA1 FMM 48 97 48 92
GFP PME 6.7 9.3 6.9 7.1
GFP FMM 46 93 47 87

Table 5.1 shows the average processor load and maximum processor load from

the first two load balancing steps as reported by NAMD. As you can see, in PME,

the load is nicely equilibrated at the second stage, with the processor having the

heaviest load brought down close to the average. This is not the case with FMM;

the maximum load is reduced slightly, but remains at a level that is twice that of

the average, showing that there remains a significant load imbalance. This heavy

load is the result of the global object. The table shows that the load is brought down

slightly, but testing in FMM shows that most patches are not migrated off of the global

processor, an effect that would be expected. This shows that either the load balancer

is not as effective as would be hoped, or that that work from the global object remains

significant, and outstrips the computational work done by several of the patches. As

mentioned before, this is not believed to be the case, but because of the unavailability

of performance profiling data, the cause of this cannot be determined with certainty.
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VI. Conclusions

The work presented here shows the Fast Multipole Method is capable a providing

a fast, accurate calculation of the electrostatic potential in molecular dynamics. Tests

outlined in Chapter IV show that it models protein structures with accuracy. The

current method provides a level of accuracy that is a full order of magnitude better

than the current PME implementation, and it has the capability to scale as well as,

and in some cases better than, PME. Much of the speed differential may be reduced

by using fewer terms in the expansion, but it is unknown if this would still correctly

model the protein systems. The current implementation of the Fast Multipole Method

is rough, and a number of areas have been identified where clear performance gains

can be realized. Benchmarks of NAMD, from version 2.0 to the current version 2.6

showed significant improvement, cutting the time per step in half, and improving the

scaling dramatically [36, 38]. The scaling with problem size is remarkably good with

PME, equivalent to FMM in these tests. In addition, if common features, particularly

multiple time stepping are integrated and tested, this should have a significant effect

on the performance. With the current version of FMM running at about half to one

fifth of the speed of PME, there is clear potential for the Fast Multipole Method to

perform as fast as PME.

This work removed the significant communications load that was a result of the

communication of atom positions and results between FMM and the core molecu-

lar dynamics engine. This had the effect of better scaling than the implementation

by Lupo and McKenney, because we were able to completely eliminate the primary

impediment to parallel performance in that implementation. Unfortunately, MPI er-

rors on the large multiprocessor system Eagle prevented the measurement of parallel

scaling past 32 CPUs.

6.1 Further Work

The implementation of periodic boundary conditions in FMM in NAMD should

allow a more direct measurement of performance and accuracy differentials with PME.
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This would allow for a more through exploration of the number of expansion terms

necessary to model relevant structures. It would also produce a more general use

methodology, as most research is carried out with periodic boundary conditions.

Further exploration needs to be conducted of the parallel performance of this

Fast Multipole Method implementation. Fixing problems with the Charm++ per-

formance tracing toolkit would allow for a better examination of communications,

providing insight into drawbacks and highlighting potential optimizations.

As noted earlier, significant optimizations remain in the current code. The pri-

mary work would be to properly utilize the proxy patch structure in NAMD to elim-

inate the redundant communication of atom positions in FMM. Cutting out 40% of

the communications in the algorithm has the potential to provide significant speedup,

although there is no indication that the current implementation is communications

limited. In many areas of the code, large memory copies are performed to ease the

initial development effort and to reduce the potential for errors and bugs from mem-

ory management errors. Further improvements are available by replacing these with

pass by reference mechanisms.

Significant other improvements should be available by utilizing a single FMM

compute object on every processor, as NAMD does for other force types, instead of the

current method of initializing separate compute objects for each patch. This should

significantly reduce the memory footprint of FMM, and reduce the communications

efforts between patches on a single processor.

The methodology used here of enforcing the Fast Multipole Method boxes to

coincide perfectly with the NAMD patch schema successfully eliminated the dominant

communications of atom positions and resulting forces. But, it also introduced a

number of problems as a result of atoms moving over patch boundaries and non

cubic patch grids impeding the implementation of periodic boundary conditions. It

is recommended further efforts use a similar schema, starting the building of the

FMM tree at the patch level, but allowing for FMM boxes to be the size of, or smaller
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than, the individual patches. FMM boxes straddling patch boundaries can be handled

through proxy patches. This would allow for a proper recursive bisection of simulation

space and a more straightforward implementation of periodic boundary conditions as

a result of not having to deal with null boxes and non-cubic trees.

While other implementations of the Fast Multipole Method have been able to

show significantly better scaling [26], these implementations did not have to deal with

the constraints of interacting with a standard MD engine. The work presented here

shows that the Fast Multipole Method can in fact integrate with common molecular

dynamics packages, providing good accuracy and performance on par with current

PME methods.
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Appendix A. Fast Multipole Method Code

A.1 FMM Algorithm

The listing below shows the code for the serial Fast Multipole Method algorithm.

The subroutines called here are inherited by the parallel version of the algorithm, and

used largely unchanged.

Listing A.1: The C++ code for the primary sequence of the serial Fast Multipole
Method algorithm. (Appendix2/ComputeFmm.C)

ForceList* ComputeFmm::ComputeForces(CompAtomList *input) {

system = input;

int numAtoms , nLevels; // parameters

5 int level , myi; // local variables

numAtoms = system->size();

nLevels = log(numAtoms)/log(8);

SizeTree();

10 PopulateTree();

// First , do multipole expansion at lowest level.

CalculateMP();

15 // Then fransform this to center of parent ’s boxes all the way

// up the tree.

for(level=nLevels -1; level >=2; --level) {

TransformMPUpTree(level);

}

20

// Convert multipole expansion to local expansion and walk down

level_end = levelStart[2] + pwrEight[2];

for(myi=levelStart[2]; myi <level_end; ++myi) {

tree[myi].me = 0.0;

25 }

IntermediateLE(2);

for(level=3; level <=nLevels; ++level) {

TransformLEDown(level);

IntermediateLE(level);

30 }

MPToForces();

NearInteractions();

return forces;

35 }
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A.2 Parallel Algorithm Data Structures

The following shows the data structures for the fast multipole method imple-

mented as a part of this work.

Listing A.2: The C++ headers for the core fast multipole method and serial im-
plementation. (Appendix2/ComputeFmm.h)

struct FmmNode {

Domain box;

CompAtomList *atoms;

5 MPole *me;

MPole *le;

unsigned int myIndex : 31;

unsigned int populated : 1;

10 FmmNode* parent;

FmmNode* child[8];

FmmNode* nneighbor[26];

FmmNode();

15 ~FmmNode();

};

class ComputeFmm {

20 public:

ComputeFmm();

~ComputeFmm();

void Initialize(int);

ForceList* ComputeForces(CompAtomList *);

25

protected:

CompAtomList *system;

FmmNode *tree;

int splitLevel;

30 int numAtoms;

int nLevels;

int nBoxes;

int nTerms;

int nElements;

35 Force* f;

BigReal energy;

// Core FMM Algorithm

void CalculateMP(void);

40 void TransformMPUpTree(int);

void IntermediateLE(int);

void TransformLEDown(int);

void MPToForces();

void NearInteractions(void);
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45

// The core mathematical multipole functions

void prodLL(MPole*, MPole*, MPole*);

void prodLM(MPole*, MPole*, MPole*);

void evalM(MPole*, Vector);

50 void evalL(MPole*, Vector);

// Tree building and utility functions

inline long int FirstChild(int , int);

inline long int Child(int , int);

55 void BuildTree(void);

void SizeTree(void);

void PopulateTree(void);

void EmptyTree(void);

void ClearTree(void);

60 };

Listing A.3: The Fast Multipole Method Compute Object. (Appendix2/ComputeFmmObj.h)

class ComputeFmmObj : public ComputeHomePatches {

friend class ComputeFmmMgr;

public:

5 ComputeFmmObj(ComputeID c);

~ComputeFmmObj();

inline void setMgr(ComputeFmmMgr *);

void doWork(void);

void PatchDone(PatchID pid , BigReal *evir);

10 BigReal TotalEnergy(void);

inline int PatchTreeMap(int);

inline int MyComputeMap(int);

inline int Step(void);

15 private:

ComputeFmmMgr *myComputeFmmMgr;

ComputeFmmPatch *computes;

ComputeFmmGlobal *global;

SimParameters *simParams;

20 SubmitReduction *reduction;

Domain systemSize;

IntegerList patchTreeMap; // give me a PID i’ll return the

// box in the tree it is in

25 IntegerList myComputeMap; // give me a PID i’ll return the

// element in compute array.

int myNumPatches;

int totNumPatches;

30 int nElements;

unsigned int nTerms : 10;

unsigned int nLevels : 10;

unsigned int splitLevel : 10;

unsigned int initialized : 1;
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35 unsigned int unused : 1;

BigReal totEnergy;

BigReal fmmEnergy;

BigReal evir[7];

int globalNode;

40 int numProcs;

int myNode;

int numComputes;

int numDone;

int lr; //level of refinement

45 int step;

};

Listing A.4: The fast multipole method Charm++ manager. It handles all commu-
nication between ComputeFmmPatches as well as all interprocessor communication. It
has seperate classes for each type of message, and also implements a message queue
in case some messages arrive early. (Appendix2/ComputeFmmMgr.h)

class NAMsg : public CMessage_NAMsg {

public:

NAMsg(void ) { ; }

5 NAMsg(PatchID , PatchIDList , IntegerList , CompAtomList , int...

);

~NAMsg(void) { ; }

static void* pack(NAMsg* msg);

static NAMsg* unpack(void *ptr);

10 int step;

int sourceNode;

PatchID sourcePatch;

PatchIDList destPatches;

IntegerList boxList;

15 CompAtomList atoms;

private:

};

20 class MPMsg : public CMessage_MPMsg {

public:

MPMsg(void ) { ; }

MPMsg(PatchID , PatchIDList , IntegerList , BigRealList , int)...

;

~MPMsg(void) { ; }

25 static void* pack(MPMsg* msg);

static MPMsg* unpack(void *ptr);

int step;

int sourceNode;

30 PatchID sourcePatch;

PatchIDList destPatches;

IntegerList boxes;
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BigRealList MP;

35 private:

};

class ComputeFmmMgr : public Group {

40 public:

ComputeFmmMgr();

~ComputeFmmMgr();

void initialize(CkQdMsg*); // Charm++ entry method

void setCompute(ComputeFmmObj *);

45 void SendNeighAtoms(PatchID , PatchIDList *, IntegerList...

*, CompAtomList *, int);

void RecvNeighAtoms(NAMsg *); // Charm++ entry method

void SendL(PatchID , PatchIDList *, IntegerList *, ...

MPoleList *, MPole *, int);

void RecvLGlobal(MPMsg *); // Charm++ entry method

void RecvLNeigh(MPMsg *); // Charm++ entry method

50 void SendMDown(MPoleList *, int);

void RecvMDown(MPMsg *); // Charm++ entry method

void DrainMsgQueues(int);

void DrainGlobalMsgQueue(int);

void PatchDone(PatchID pid , BigReal energy , BigReal ...

fmmEnergy);

55 inline int NumLevels(void);

inline int SplitLevel(void);

SimParameters *simParams;

Domain systemSize;

60 int totNumPatches;

private:

CProxy_ComputeFmmMgr computeFmmPxy;

65 PatchMgr* myPatchMgr;

ComputeFmmObj *myComputeObj;

MsgQueue mQueue;

int myNumPatches;

int splitLevel;

70 int nLevels;

int nTerms;

int nElements;

int globalNode;

int numProcs;

75 int myNode;

int numComputes;

PatchMap* patchMap; // give me a PID i’ll give you the

// processor it’s on.

int lr; // level of refinement

80 };
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struct QueuedNAMsg {

NAMsg* qMsg;

QueuedNAMsg* next;

85 };

struct QueuedMPMsg {

MPMsg* qMsg;

QueuedMPMsg* next;

90 };

class MsgQueue {

public:

MsgQueue(void);

95 ~MsgQueue(void);

void AddNAMsg(NAMsg *);

void AddLGlobMsg(MPMsg *);

void AddLNeiMsg(MPMsg *);

void AddMDnMsg(MPMsg *);

100 NAMsg* PopNAMsgQ(int);

MPMsg* PopLGlobQ(int);

MPMsg* PopLNeiQ(int);

MPMsg* PopMDnQ(int);

105 private:

int numNAMsg;

int numLGlobMsg;

int numLNeiMsg;

int numMDnMsg;

110 QueuedNAMsg * naMsgQueueHead;

QueuedNAMsg * naMsgQueueTail;

QueuedMPMsg * mpLGlobQueueHead;

QueuedMPMsg * mpLGlobQueueTail;

QueuedMPMsg * mpLNeiQueueHead;

115 QueuedMPMsg * mpLNeiQueueTail;

QueuedMPMsg * mpMDnQueueHead;

QueuedMPMsg * mpMDnQueueTail;

};

Listing A.5: The fast multipole method compute object for each patch. (Ap-
pendix2/ComputeFmmPatch.h)

class ComputeFmmPatch : public ComputeFmm {

public:

ComputeFmmPatch();

5 ~ComputeFmmPatch();

inline void SetComputeObj(ComputeFmmObj *);

void GiveAtoms(PatchElem *,int); // get patch from

// ComputeObj

void doWork(void);

10 void GetNeighAtoms(PatchID , IntegerList *, CompAtomList *,...

int);
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void GetNeighL(PatchID , IntegerList *, MPoleList *,int);

void GetMDown(MPoleList *,int);

inline void CloseBox(void);

15 private:

ComputeFmmMgr* myComputeFmmMgr;

ComputeFmmObj* myComputeFmmObj;

IndexLocation indexLocation;

IntegerList boxesOnWall;

20 PatchIDList myNeighbors;

PatchElem *myPatch;

PatchID myPid;

Results *results;

BigReal evir[7];

25 int step;

unsigned int selfDone : 1; // 1 if done self

// interactions

unsigned int gotM : 1;

unsigned int mpDone : 1; // 1 if done with Multipole

30 // contributions to patch

unsigned int numNeighDir : 5; // # patches received atom

// position for direct

// calc max 26

unsigned int numNeighL : 5; // # patches i’ve received

35 // Multipole expansions

// from max 26

unsigned int numPatches : 19;

void NearInteractions2(void);

40 void MPToForces2(void);

inline void AddAtoms(int , CompAtomList*, IntegerList*);

void GoBackDown(void);

void AllDone(void);

};

45

class IndexLocation {

public:

IndexLocation(void);

50 ~IndexLocation(void);

void Initialize(int);

void Add(int);

int ArrIndex(int);

55 private:

int length;

int counter;

int* atomIDs;

int* location;

60 };
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Listing A.6: The fast multipole method compute object that handles the tree above
the split level. (Appendix2/ComputeFmmGlobal.h)

class ComputeFmmGlobal : public ComputeFmm {

public:

ComputeFmmGlobal(ComputeFmmObj *);

5 ~ComputeFmmGlobal();

void doWork(int);

inline int Step(void);

void GetL(PatchID , MPole *, int);

10 private:

void UpTree ();

void AllDone();

ComputeFmmMgr* myComputeFmmMgr;

ComputeFmmObj* myComputeFmmObj;

15 unsigned int numPatches;

unsigned int numLRecvd : 31; // # of patches i’ve ...

received

// Multipoles from

unsigned int treeReady : 1;

int step;

20 };
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