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Abstract 
 

There are many uses of low pressure airbags, both military and commercial.  Many of 

these applications have been hampered by inadequate and inaccurate modeling tools. 

This dissertation contains the derivation of a four degree-of-freedom system of 

differential equations from physical laws of mass and energy conservation, force 

equilibrium, and the Ideal Gas Law.  Kinematic equations were derived to model a 

cylindrical airbag as a single control volume impacted by a parallelepiped collidant.  An 

efficient numerical procedure was devised to solve the simplified system of equations in 

a manner amenable to discovering design trends.  The largest public airbag experiment, 

both in scale and scope, was designed and built to collect data on low-pressure airbag 

responses, otherwise unavailable in the literature.  The experimental results were 

compared to computational simulations to validate the simplified numerical model.  

Experimental response trends are presented that will aid airbag designers.  The two 

objectives of using a low pressure airbag to demonstrate the feasibility to 1) accelerate a 

munition to 15 feet per second velocity from a bomb bay, and 2) decelerate humans 

hitting trucks below the human tolerance level of 50 G’s, were both met. 

 



 
 
 

DYNAMIC RESPONSE OF A 
COLLIDANT IMPACTING A LOW 

PRESSURE AIRBAG 
 
 
 
 

Chapter I:  Introduction 
 
 
 

This dissertation addresses two practical applications of airbags in the real world.  

The first is accurately and efficiently modeling bumper airbags for trucks and buses to 

reduce the injuries and deaths of pedestrians and people in smaller vehicles hit by trucks 

and buses.  The second problem is accurately and efficiently modeling airbags for 

ejecting munitions (bombs and missiles) from bomb bays.  See Figures 1-1 for examples 

of these airbag applications. 

 
 

 
Figure 1-1:  Low Pressure Airbag Applications 
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Objective:  The objectives of this research were to demonstrate that airbags at low 

pressure could: 

1. Accelerate a munition to 15 feet per second in a bomb bay 

2. Decelerate humans hitting trucks at less than the human tolerance level of 50 

Gs. 

Airbags are one of the most difficult devices in mechanical engineering to model, and 

hence design.  The physics of the fluids interacting with viscoelastic airbags that stretch 

and leak does not lend itself to the type of closed-form, analytical equations that can 

precisely model the b he only way 

engineers have been able to model airbags is ith non-linear, finite element, computer 

cod

e literature has shown errors from 14% to 174% even for models with 

hundre ousands of 

process

airbag. 

est 

 

 

ehavior of many mechanical or fluid systems.  T

 w

es or numerical approximation [1-1].  The agreement of these models with 

experiments in th

ds of thousands of degrees-of-freedom.  These codes can take th

or hours to calculate the dynamic response of a single collidant hitting a single 

A run of one of these finite element codes produces the solution to one specific 

geometry and set of initial conditions.  The user must guess what airbag parameters to 

change, which direction, and how much, to get better airbag performance.   

As a result, only a few large organizations, such as Delphi and AutoLiv, the larg

airbag manufacturers and automakers, have made the effort to model airbag response.  

These firms use the non-linear dynamics, finite element program, LSDyna, from

Livermore Systems Technology Corporation (LSTC) [1-1].  To save computer time, they
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often use a simplified inflation process rather than the more accurate Arbitrary 

Lagrangian Eulerian method [1-1].  Nevertheless, LSDyna, the computers to run it, the 

training to operate it, and the engineers to run it are all expensive.   

ty if 

ers 

st 

n.  The 

t 

act cycle represent 

init

g as absorbers are:  

key airbag system design choices as inputs.  These design choices will be called design 

Low pressure airbags would more likely reach their full potential benefit to socie

they could be designed with only a few hours of engineering effort on personal comput

rather than weeks of effort on supercomputers. 

This dissertation explores some of the fundamental physics of airbag behavior that 

support the creation of just such airbag design and optimization tools applicable for mo

low pressure airbag applications.  This dissertation will focus on one basic use of the 

airbag.  The use is as an absorber of kinetic energy of a moving object.  The airbag 

catches the moving object and reduces its kinetic energy, thereby slowing it dow

moving object hitting an absorber will be called a collidant.  The rebound of the collidan

is equivalent to an ejection.  The conditions at the bottom of the imp

ial conditions for an ejector.  The rebound stroke will be equal to an ejection stroke. 

Traditional design uses equations for performance parameters or responses.  Some 

widely sought responses for airbag systems actin

• Collidant acceleration  

• Collidant change in kinetic energy 

• Membrane stress in airbag 

• Peak airbag pressure 

These various responses could be maximized, minimized, or constrained as desired 

by the engineer trying to optimize an airbag system.  These response equations will use 
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factors.  They are simple system parameters measured before a device performs its 

function, such as:  

• Airbag initial length, width, height, porosity, elastic modulus,  

• Collidant mass, contact area & location 

Th s dissertation proposes ei quations, so-called airbag response equations, for 

mo i  of airbag and collidant sizes.  A numerical 

routine was developed to solve the equations approximately.  Experiments with collidants 

and airbags were run to verify the hypotheses through the numerical approximations. 

del ng the dynamic responses of a range

Thesis Statement:  Collidant accelerations and airbag pressure during a centered 

impact aligned with the longitudinal axis of a cylindrical, low-pressure airbag can 

be modeled accurately by means of the equations and approximations developed in

Chapters 3 and 4.   

This research re

 

sults in the following contributions: 

tion of airbag 

ction of time 

ical 

 

a 

 

This dissertation is organized as follows: 

• Analytical equations for collidant acceleration as a func

pressure, and for pressure as a fun

• Kinematic equations for a single control volume model of a cylindr

airbag impacted by a parallelepiped collidant 

• Development of an experimental apparatus for airbag pressure and 

acceleration testing 

• Verification of the assumptions underlying the hypothetical equations and

approximations by comparison of analytical results with experimental dat
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1. Chapter 1 introduces the research. 

2. Chapter 2 discusses prior work in airbags, particularly low pressure on

Chapter 3 develops the physics equations of the 

es. 

3. collision and airbag. 

tails 

and permeability experiments and results. 

7. 

and compares the simulation results to the collision experimental results.  

nd recommendations regarding this 

4. Chapter 4 develops the kinematics equations of the airbag engaging the 

collidant. 

5. Chapter 5 develops the elasticity and permeability equations and de

the airbag elasticity 

6. Chapter 6 details the collision experiments and results. 

Chapter 7 describes the numerical simulation of the collisions and details 

8. Chapter 8 makes conclusions a

research. 
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Chapter II:  Prior Work 
 
 
 

The prior work has been divided into six sections.  The first section is an historical 

overview of airbag or inflated membrane uses.  The next section describes some prior 

work on airbags in the collidant impact absorber mode.  The third section describes prior 

work on airbags in the projectile ejection mode.  The fourth section describes work 

modeling membrane forces in inflatable buildings.  The fifth section describes the state of 

the art in nonlinear airbag code validation attempts.  The final section is a summary. 

 
 
A. Early Airbag Uses 

 
 

The airbag is one of the lightest weight structural tools and has had many 

applications.  In 1783 in France, Joseph Montgolfier invented the balloon, a large airbag 

filled with enough hot air, to carry six men [2-1].  The rubber inflatable raft is an airbag 

with low permeability, used as a floatation device.  In 1955, Goodyear invented an 

inflatable rubber airbag airplane large enough to carry two people and sold twelve [2-2].   

In 1952, after an automobile crash with his wife, John Hetrick invented the car 

interior airbag to protect and decelerate occupants [2-3].  The Simplex Corporation 

invented a rubber-coated Kevlar airbag jack that can lift a 144,000 lb overturned railroad 

car or Abrams tank [2-4].  Eaton Corporation invented the air spring, a rubber cylindrical 

airbag for truck suspensions.   

The US Air Force cluster bomb uses airbags to push bomblets away from each other 

and as ballutes to steer and aim the cluster bomb [2-5].  The US Army has experimented 

with airbags on Jeep airdrop pallets [2-6].  This program failed for lack of good airbag 
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design models.  NASA and Martin-Baker Aircraft Company developed large airbags to 

cushion the impact of their Martian rovers [2-7].   

In 1962, Aerospace Corporation invented an inflatable re-entry vehicle for a 1,000 lb 

payload [2-8].  In 1996, NASA launched a satellite with an inflatable antenna [2-9].  In 

2000, Canadian Troy Hurtubise developed and demonstrated a bulletproof, airbag armor 

[2-10].  In 1996, Ohio engineer, Peter Dreher P.E. (the author), invented a bumper airbag 

for vehicles to reduce injury and damage from collisions [2-11].  This dissertation 

research emanated from that work.  Some of the most salient work in airbag absorber and 

ejector applications is described below.   

 
 

B. Absorber Characteristics 
 
 

There are many applications for airbags used as absorbers.  The car interior airbag is 

the most widely used absorber, with over 90 million manufactured each year and close to 

one billion on the road.  These airbags range in size from 1 to 7 cubic feet and utilize 

porosity to control deflation rate.  The truck air spring is probably the second most 

utilized with 120 million on the road.  It is smaller, about a third of a cubic foot.  Its 

fabric has zero porosity.  Other impermeable membrane airbag applications such as 

bubble wrap packaging are quite popular, with billions sold.   

The first Martian landing craft airbag, at 14 feet in diameter, is one of the largest 

absorber airbags ever made and used as such.  Some inflatable antennas on spacecraft are 

over 100 feet in diameter and are impacted by micro-meteorites.  New designs call for 

hardened skin that allows for meteorite perforation without collapse due to deflation.  But 

new inflatable atmospheric re-entry vehicles use inflatable structures that will need to be 
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optimized for debris impacts.  Some of the most appropriate literature in absorber airbag 

responses is discussed in the following sections. 

1. Internal Vehicle Airbags. 

a) Collision Physics and Human Injury. 

Drs. Charles E. Strother and Richard M. Morgan of the National Highway Traffic 

Safety Administration (NHTSA) wrote a paper in 1974 [2-12] identifying the 

fundamental physics governing absorber airbag requirements in automobile collisions.  

Strother and Morgan identified occupant change in velocity (ΔV) and peak deceleration 

as proxies for the key responses of fatality, injury, and vehicle damage.  They point out 

that most of the deaths and injuries come from frontal impacts.  Regarding Figure 2-1 

below, they say, “First, a significant percentage of the deaths (50-67%) and injuries (10-

42%) fall above 30 mph.  Secondly, if all injuries and fatalities resulting from frontal 

impacts at vehicle ΔV’s of 50 mph or less could be eliminated, 98-100% of the all 

injuries and 92-98% of all deaths presently occurring in this mode would be prevented.”  

Figure 2-1 shows cumulative percent injuries on the left and cumulative percent fatalities 

on the right from three different studies.  The shaded area marks the range of the results 

and dashed lines represent a study result internal to this range and solid lines are study 

results on the edge of the range.  
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Figure 2-1:  Injuries and Fatalities as a function of Speed (mph) into a Solid Barrier (with 
permission of authors) [2-12] 

 
 

Strother and Morgan identified a key design factor affecting the responses collidant 

ΔV and peak acceleration.  That design factor is stopping distance.  “Protecting occupants 

in high-speed frontal impact simply involves making use of the available occupant 

stopping distance.  This available occupant stopping distance exists in the form of interior 

distance, chest to dashboard separation, and in the form of exterior – bumper to firewall – 

displacement.”  They concluded that 80% of the bumper to firewall space could be 

crushed and 100% of the dashboard to chest space could be used for occupant 

deceleration and hence ΔV. 

Strother and Morgan also concluded that this stopping distance had to be used 

efficiently.  Efficiency meant that the occupant had to be at his upper end of deceleration 

tolerance for the whole stopping distance.  Restraint systems had to be designed that 

2-4 



would achieve this high efficiency.  They used hand calculations of Newton’s Law to 

show the relationship of the responses to the design factors. 

The Federal Motor Vehicle Safety Standard 208 (FMVSS 208) [2-13] specifies 

performance requirements for automobile interior airbags sold in the U.S.  The airbag 

application is that of absorber of vehicle occupant kinetic energy.  The Standard specifies 

which responses are important for this Absorber.  These responses are vehicle occupant 

injury and fatality.  Injury and fatality are measured by FMVSS 208 Head, Thoracic, 

Sternum, and Neck Injury Criteria.   

The most restrictive Head Injury Criterion (HIC) is for the 1-year-old baby test.  This 

test uses a baby test dummy with the acronym CRABI.  The measurement is described in 

reference [2-13] as follows.   

“For any two points in time, t1 and t2, during the collision, which are separated by 

no more than a 15 millisecond interval and t1 < t2, the Head Injury Criterion HIC15, 

shall be calculated using the resultant head acceleration, a, at the center of gravity of 

the dummy head expressed as a multiple of G, the acceleration due to gravity.  HIC15 

shall be calculated using the expression: 

HIC15 =     (2-1) ( )
2

1

2.5

1.5
2 1

t

t

adt t t −⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦
∫

HIC15 must not exceed 390 for a 1-year-old baby.  For example, if the acceleration 

were constant at 50 Gs for the 15 milliseconds, HIC15 would be 502.5 × 0.0152.5 × 

0.015-1.5 = 265 < 390.” 
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The thoracic criterion for a 1-year-old dummy is that the thoracic instrumentation 

shall not exceed 50 Gs for more than 3 milliseconds.  This is a tighter restriction than the 

HIC15. 

The Neck Injury Criterion, Nij, is : 

Nij = (Fz / Fzc) + (Mocy / Myc) 1≤    (2-2) 

for any time during the crash.  Fz is the axial force.  It can be in tension or compression.  

Fzc is fixed at 328 lbf for a one-year-old whether tension or compression.  In addition to 

the Nij limit, Fz ≤ 175 lbf for peak tension by law.  And Fz ≤ 216 lbf for peak 

compression, too.  All these force limits place more than 50 Gs on the baby. 

Mocy is the Occipital Condyle Bending Moment.  It can be either in flexion or 

extension whether the head is flipping forward or backward.  It is detected by the upper 

neck load cell for the duration of the crash.  Myc is 32 lbf-ft for flexion and 13 lbf-ft for 

extension for a 1-year-old.  The impact of a truck bumper is from the front and would 

generate a flexion moment.   

The CRABI head is about 2 lbs and the moment arm from the shoulder to the 

occipital condyle is about 2 inches.  The moment limit is 384 in-lbf.  If the shoulders 

were rigidly secured to the seat, the force on the head would be 192 lbf or an acceleration 

of 96 Gs.  This acceleration is above the 50 G limit set by the thorax. 

Therefore, FMVSS 208 identifies the response of peak collidant deceleration as a 

good proxy for the responses of occupant injury and fatality.  For the case of a bumper 

airbag hitting another vehicle, total collidant vehicle deceleration is the most appropriate 

response.  If the whole vehicle is kept below the occupant allowable decelerations for all 

of the above criteria, the occupants will experience those decelerations or lower.  Most 
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occupants are restrained by seatbelts and interior airbags, providing added flexibility and 

softening of the vehicle’s deceleration.  A reasonable response constraint is to keep the 

colliding vehicle deceleration below 50 Gs. 

The FMVSS responses are based on cadaver tests with internal organ damage 

assessments.  Translating those assessments into peak deceleration responses was done 

with hand calculations. 

b) Car Interior Airbags. 

Mr. Donald Nefske of the General Motors Research Laboratory developed a basic 

airbag physics model in 1971 and validated it with experiments [2-14].  His model used a 

permeable, elastic airbag of cylindrical shape, 3-feet long by 2-feet in diameter.  He 

modeled the airbag inflating against a rectangular box.  The airbag was laid on the floor 

with its major axis parallel to the floor.  The box was mounted from two load cells above 

the airbag with its major axis also horizontal but perpendicular to the major axis of the 

airbag.  The box was 18 inches wide by 42 inches long by 12 inches deep.  It was 

mounted at various heights above the floor such that it would prevent the full inflation of 

the airbag, for instance, six, twelve, and 18 inches above the floor. 

Nefske modeled and conducted static and dynamic inflation tests.  The static tests 

used an impermeable liner.  With a metering pump, he filled the airbag to various 

pressures against the box mounted at various heights Δ.  He recorded the force on the box 

and the pressure and volume in the airbag at the various levels.  He modeled the box 

force F as airbag pressure P times an experimentally derived effective area Aef (Δ) at a 

given height Δ: 

( )efF P A= × Δ      (2-3) 

2-7 



The force turned out to be a linear function of pressure, and the effective area turned out 

to be a linear function of box height.  These experiments provided simple linear 

relationships for the model.  

The airbag volume V varied with the box height and also with the airbag pressure as it 

stretched.  The variation with box height was nonlinear, but the variation with pressure 

b(Δ) was approximately linear.  Hence  

( ) ( )0V V Pb= Δ + Δ     (2-4) 

These experiments provided simple relationships for the model. 

The dynamic tests used the airbag without a liner.  The airbag was nylon fabric coated 

with neoprene and fairly impermeable, having an experimentally estimated open area of 

1.5 square inches at all pressure levels.  One airbag had a 3-inch diameter vent hole on 

each end, the other airbag had none. 

Nefske modeled the airbag thermodynamic system as a control volume containing 

only the air inside the airbag.  He used the conservation of mass to calculate the gas mass 

in the airbag.  He adjusted the effective orifice discharge coefficient until the simulation 

fit the experiments.  He used the conservation of energy and the Ideal Gas Law to 

calculate the pressure in the airbag.  He used a time step finite difference technique to 

integrate numerically the results of the inflating airbag against a stationary collidant. 

Unlike Nefske, the present dissertation calculates airbag volume and surface area 

based on geometric shape assumptions.  The air mass leak rate is calculated based on 

experimental fabric leak rates rather than using leak rate as an empirical factor to fit a 

simulation to an experiment as Nefske did.  The present dissertation airbag pressure is 

dependent on more variables than the Nefske model.  The collidant force is dependent on 
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more variables than the Nefske model and requires no static testing.  The present 

dissertation models a moving collidant versus the static collidant of the Nefske model.  

    

3. External Vehicle Airbags. 

a) Car Bumper Airbags. 

Dr. John Dreher PhD, P.E. and the author, Peter Dreher P.E., developed and patented 

an Absorber airbag called the Livvon Bumper Airbag.  Figure 2-2 shows a drawing from 

the patent, [2-11]. 

 

 
Figure 2–2:  Bumper Airbag on a Truck hitting a Car (with permission of authors) [2-11] 

 
 

They developed a 20-step mathematical model of a passenger vehicle colliding head-

on into the front of a stationary truck of infinite mass, with an inflated bumper airbag.  

The 20-step math model runs in an Excel spreadsheet.   

The main purpose of the 20-Step model was to determine what size airbag is 

necessary to achieve the change in collision velocity that Strother [2-12] described, i.e. 50 

mph to 30 mph with an acceptable deceleration response level, vehicle mass, and airbag 

cost.  The main responses of the 20-Step model are collidant peak deceleration and 
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change in collision velocity.  Airbag pressure is also a response.  It can be used to 

estimate the responses of airbag stress and burst potential. 

Strother [2-12] identified stopping distance as the main design factor in any collision 

safety device.  The bumper airbag adds stopping distance for the vehicle occupant beyond 

the existing bumper-to-firewall and chest-to-dashboard distance.  The Drehers also 

identified this added stopping distance as one of the most important design factors of a 

bumper airbag. 

The 20-Step model uses simple kinetics to do an inertial force balance on the 

colliding vehicles, and the Ideal Gas Law to determine the pressure in the airbag.  The 

truck is treated as an infinitely rigid stationary barrier.  The 20-Step model breaks the 

compression of the 5-foot long airbag into 20 three-inch compression steps rather than 

finite time steps.  The time of each 3-inch step is approximated as the three inches 

divided by the collidant velocity at the beginning of each step.  After each step of finite 

closing distance, several calculations are made.  The force applied to the colliding vehicle 

during the step, decelerating it, was assumed to be the step starting pressure in the airbag 

times the face area of the collidant engaging the airbag.  A new vehicle velocity was 

calculated based on this deceleration multiplied by the time of the step.  A new airbag 

volume was calculated based on the three inches of collidant compression and the 

expanded diameter caused by the increased airbag pressure.  The expanded diameter was 

based on a fabric elasticity provided by the fabric manufacturer’s grab tensile tests.  The 

volume of the ends of the airbag ballooning around the car face or under the truck 

bumper was neglected.  A new airbag pressure was calculated based on the new reduced 

volume and some leaked air.  The air leaked was based on the airbag exposed surface 
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area at the start of the step and the airbag pressure times a leak rate provided by the fabric 

manufacturer. 

Based on the 20-Step model responses, the Drehers designed a bumper airbag with 

five key features:   

1) The airbag is long enough to eliminate 90% of deaths, injuries, and vehicle 

damage.   

2) It is designed as structurally efficient cylindrical pressure vessels that are 

easy to manufacture and conserve fabric.   

3) The airbag major axis will buckle into a stable position against the road, 

because it is loaded off-center on the ends.   

4) The airbag front face slant keeps it down when moving and pedestrians on 

top during a collision.  The slanted-front airbag was tested up to 50 mph, 

and it stayed down.   

5) The airbag has a controlled pressure release to keep collidant accelerations 

within allowable levels specified by the Federal Motor Vehicle Safety 

Standards. 

The Drehers built prototypes and tested them.  Figure 2-3 shows photographs of the 

experiments.  The collision tests up to 20 mph showed approximately the predicted airbag 

compression and no damage to cars.  The driver experienced no injuries. 
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Figure 2-3:  Photographs of Livvon Bumper Airbag Tests (with permission of authors) 
[2-11] 

 
 
 

The Drehers identified the following responses as important to Absorber airbag 

performance: 

• Collidant peak deceleration and change in velocity 

• Airbag pressure, major axis buckling, bottoming out, aerodynamic lift 

• Airbag system weight and cost 

They identified the following design factors as significantly affecting those responses: 

• Airbag initial length, width, and height 

• Airbag porosity and elasticity 

• Airbag initial pressure 
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• Collidant mass and initial velocity 

• Collidant initial contact height and width 

The present dissertation uses a time-accurate simulation rather than the Dreher’s 

distance step model.  It also accounts for the airbag end geometries in calculating leak 

surface area and volume. 

b) Martian Spacecraft Landing Airbags. 

Mr. C. S. Huxley-Reynard of the Martin-Baker Aircraft Company in Britain wrote a 

paper about optimizing airbags for the European Mars Lander spacecraft, Beagle, in 2000 

[2-7].  See Figure 2-4 below for a three dimensional representation of this airbag system 

during a simulated Martian surface impact as rendered by LSDyna. 

 

 
Figure 2-4:  Martian Lander Airbag – LSDyna Simulation at Impact [2-7] 
 
 
 

Huxley-Reynard optimized an airbag for a specific payload with specific dimensions.  

The optimization is only for segmented, spherical, impermeable, absorber airbags with 

spokes catching 60 kg collidants traveling at 20 meters per second.  Figure 2-5 shows the 

airbag spokes.  
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Figure 2-5:  Airbag Segment Design with Upper and Lower Spokes (with permission of 

authors [2-7]) 
 
The collidants were disks, 0.6 meters in diameter and 0.2 meters thick.  Figure 2-6 below 

depicts the disk shaped collidant.   

 

 
 

Figure 2-6:  Disk shaped Collidant in an Airbag (with permission of authors [2-7]) 
 

2-14 



 
 

The optimization constraint responses were:  

• Prevent impact of the lander payload with the ground up until the moment 

of airbag jettison, i.e., limit airbag compression stroke  

• Limit the collidant peak acceleration to < 200 Gs.   

The only active design factors for this optimization were airbag diameter and airbag 

initial pressure.  Airbag porosity was identified as a design factor.  To maintain gas 

pressure in a porous airbag, make-up gas is required.  The Martian Lander’s inaccurate 

altimeters required early and sustained airbag inflation, and the weight of sufficient 

make-up gas for a porous airbag was too heavy.  Hence only impermeable airbags were 

considered. 

The optimization was done by graphing LSDyna output rather than developing airbag 

response equations.  The author intuitively moved through the design space.  Figure 2-7 

below shows the constraint lines for the airbag compression stroke at impact and peak 

acceleration. 

 

 
Figure 2-7:  Constraint Response Graph (with permission of authors [2-7]) 
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Several LSDyna simulations were run.  Larger airbag diameter was better than 

smaller, but there was a limit to how high the payload could be off the ground when the 

airbags jettison.  This constraint limited the airbag diameter to 1.95 meters.   

Thus the only design factor optimized was airbag pressure.  This optimization was 

done graphically on a 2-D graph populated by responses from LSDyna runs based on a 

Monte Carlo distribution of rock sizes on Mars.  See Figure 2-8 below for this graph.  

The graph had lines for the stroke constraint and the acceleration constraint.  The author 

concluded that a 1.95 meter diameter airbag inflated to 3.6 psia was optimal. 

LSDyna is an explicit non-linear finite element code used for modeling airbags [1-1].  

It uses thousands of tiny shell elements to model the airbag fabric.  The volume inside the 

fabric surface is modeled as a thermodynamic open system control volume, using 

conservation of mass and energy and the Ideal Gas Law to solve for state variables.   

LSDyna requires the user to define the mass leak rate of air as a function of a state 

variable divided into linear segments.  This approach makes a crucial variable a crude 

guess.  Huxley-Reynard had no mass leaking of air from his impermeable airbag, 

avoiding this inaccuracy in LSDyna.  The present dissertation strives to quantify the mass 

leak rate of air accurately based on fabric permeability properties.  
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Figure 2-8:  Responses based on Monte Carlo Distribution of Rock Sizes (with 

permission of authors; poor quality copy [2-7]) 
 
 
 
C. Bomb Bay Ejector Characteristics 

 
 

Designers have built and tested airbag ejectors for bomb bays.  In 1984, Howard King 

and Kilian Sneden of Northrop reported an experiment [2-15] with an airbag ejector for a 

CBU-20 Rockeye munition on a ground-test stand.  Ejection velocities exceeded 13 ft/sec 

(set as an acceptable minimum for the test).  Their airbag had 70 internal tethers per 

square inch to hold the outer surface in place after bomb ejection.  Though they 

considered their experiments “highly successful”, no further development was pursued. 

In 2003, Vincent Vendetti of the US Naval Surface Warfare Center reported tests on a 

small bomb bay ejector airbag [2-16].  He concluded that more than 4,000 psig was 

necessary to eject a 90 lb submunition.  He had airbag burst problems.  Further work was 

canceled.  See Figure 2-9 for a rendering of this system. 
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Figure 2-9: Naval Bomb Bay Ejector Airbag Test Apparatus (with permission of authors 

[2-16]) 
 

 

It is hypothesized that airbags can eject munitions successfully (>15 feet/second exit 

velocity) at far lower pressures – tens of psig, not thousands.  This dissertation research 

strives to prove that low pressure airbags can eject munitions successfully.  It is assumed 

that the rebound of a collidant from impact with an airbag is equivalent to an ejection.  

Hence an ejector with the same initial airbag volume, pressure, and air mass as an 

absorber airbag has when the collidant reaches a zero velocity, should produce the same 

ejection velocities. 

 
 
D. Inflated Membrane Characteristics 

 
 

The significant published work in inflated membranes concerns inflated fabric 

buildings.   

1. Cylindrical Inflated Buildings 

Civil Engineers Malcolm and Glockner [2-17] were called in by the Canadian 

government to study the collapses of air supported membrane buildings.  It turned out 
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that snow and ice around the apex allowed for some ponding that ultimately caused 

collapse.  The authors strove to define the relationship between shape, internal pressure, 

and critical loading of a pneumatic structure.  They approached this challenge by 

examining the equilibrium of a central line load on a cylindrical inflatable in conjunction 

with ponding of rain or melt water.  See Figure 2-10 below. 

 

 
Figure 2-10:  Deflected Shape with Central Load and Ponding (with permission of 

authors [2-17]) 
 
 
 

The equation they derived was not solvable analytically, so they solved it numerically 

using the Newton-Raphson technique.  One of their intermediate relationships was an 

upper limit on the value of W, total ponding force, above which the membrane building 

collapsed 

( )2 mTW P b
ρ

≤ −      (2-5) 
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where P is air pressure, b is fabric weight per unit area, Tm is membrane tension at the 

deformed apex, and ρ is density of material in the pond.  Though this equation is not our 

hypothesis, it has some of the elements of our hypothesis.  It has a static force (W), 

similar to our collidant dynamic force; fabric tension Tm, similar to our trampoline force; 

and airbag pressure P.  The results of the numerical solution are presented in Figure 2-11 

below.  

 
 

 
Figure 2-11:  Effect of Internal Pressure and Shape on Critical Load (with permission of 

authors [2-17]) 
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2. Hemispherical Inflated Buildings 

Szyszkowski and Glockner [2-18] analyzed the behavior of hemispherical inflatable 

buildings under axi-symmetric concentrated loads.  They found that the inflatable 

structures became unstable and exhibited snap-through buckling at certain aspect ratios.  

See Figure 2-12 below. 

 

 
Figure 2-12:  Qualitative load-deflection diagrams for spherical/cylindrical and 

spherical/conical membranes (with permission of authors [2-18]) 
 
 
 

The research of the present dissertation is limited to the central shape, which exhibits 

neutral stability.  The equilibrium equation of Szyszkowski [2-18] is different from the 

dissertation’s free body model for a center load.  The authors conclude from their 

analysis that the maximum equilibrium concentrated load Pmax is 

2
0 0

max 0.968
2

R qP π
=      (2-6) 
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where R0 is the initial radius of the inflated structure, and q0 is the building air pressure.  

This maximum load occurs when the fabric adjacent to the concentrated load is 20o from 

the vertical.   

The authors’ analysis goes on to show that the equilibrium concentrated load is zero 

when the adjacent fabric is 0o from the vertical.  The authors define the geometry and 

forces according to Figure 2-13 below.  The concentrated downward central load on the 

spherical membrane is P.  Internal pressure is q0.  The central downward deflection of the 

membrane is f.   

The meridional normal angle φ, is the angle between the vertical and a line normal to 

the tangent of any point on the membrane surface.  The meridional normal angle at the 

center point of the membrane is φ0.  It is defined as positive.  It starts at zero in the 

unloaded case and increases to 90o as the center point is deflected.  The meridional 

normal angle at the outer point on the membrane where the membrane begins deflecting 

from its original shape, i.e., where the wrinkled region begins, is φ1.   

The horizontal radius from the central vertical axis to the point of interest on the 

membrane is r.  The meridional radius of curvature of the undeformed spherical 

membrane is R0.  The deformed membrane meridional radius of curvature is Rφ.  It varies 

from point to point on the membrane in the wrinkled region. 
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Figure 2-13:  Deformed configuration of axisymmetric membrane (with permission of 

authors [2-18]) 
 
 
 

Using the boundary conditions, one obtains: 

1
0 2 2

0 0 1

sinsin
sin

P
R q P

ϕϕ
π ϕ

=
−

    (2-7) 

After transformations, the meridional normal angle φ1 satisfies the equation: 

1

0
1 2

0 0 0 04 sin sin sin
P d

R q
ϕ

ϕ

ϕϕ
π ϕ ϕ ϕ−

=
+∫    (2-8) 

With numerical techniques, Equations (2-7) and (2-8) can be solved approximately.  The 

results are shown in Figure 2-14.  Note that, when the angles are zero, the force is zero, 

i.e., the undeformed case.  As the force rises, the angles increase.  These results allow for 

side ballooning of the membrane as φ1 goes above 90o. 
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Figure 2-14:  Plot of non-dimensional load F vs. fabric normal angle φ (with permission 
of authors [2-18]) 

 
 
 

Though the majority of the deceleration work done on our collidant occurs when the 

fabric next to the collidant is vertical, i.e. φ0 = 90o, an approximation is provided for the 

forces during the initial deflection of our airbag end cap. 

The present dissertation assumes a constant radius for the airbag end cap dome arc 

forming in effect a partial torus versus the variable radius arc of Szyszkowski and 

Glockner [2-18].  The present dissertation assumes a simple free body model for the 

distributed force on the non-axisymmetric collidant versus the axisymmetric point load 

model of Szyszkowski and Glockner.  Szyszkowski and Glockner model a static load 

versus the dynamic load of the present dissertation. 

 
 
E. Nonlinear Airbag Code Validation Attempts 

 
 

The state of the art in nonlinear airbag code validation is covered in references [2-19] 

through [2-31].  All these researchers used explicit nonlinear finite element code to 

numerically approximate airbag behavior.  How these codes model airbag permeability or 

vent holes can affect the correlation of the simulations to experiments.  For example, 
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LSDyna requires the user to specify a mass flow rate-pressure relationship for 

permeability modeling.  These codes use conditions and trends from the previous time 

steps to predict the next time step conditions.  Any inaccurate physics modeling or slight 

numerical drift from reality in early time steps often is magnified into large errors later in 

the simulation.  As a result, when the simulations are compared to experimental results, 

the errors can be quite large, often hundreds of percent. 

Nieboer [2-19] conducted nine impact tests on a single airbag, a standard 60 liter 

driver’s side impermeable airbag with four 35 mm diameter vent holes.  The airbags were 

fully inflated before impact.  Each test had a single impactor traveling at a unique 

velocity ranging from 2.2 m/s to 5.9 m/s.   The impactors were a 165 mm sphere and 

three circular plates of unique diameter.  A typical collidant displacement error was the 

simulation showing a −50 mm displacement but the experiment showing a +12 mm 

displacement in an experiment where the peak displacement was 150 mm, resulting in a 

48% error.  The maximum collidant acceleration error was 174% in an experiment where 

the peak acceleration was −230 m/s2.  The airbag pressure error was 90 mbar in an 

experiment where the peak airbag pressure was only 180 mbar.  These errors are on the 

order of 50% to 174%.  The model used in [2-19] had only 3,456 elements and consumed 

only 300 CPU minutes, whereas the typical models used by Delphi have more than 

200,000 elements and take more than a million cpu minutes to solve [2-33]. 

Lakshminarayan [2-29] conducted three impact tests on a single driver’s side 

impermeable airbag with a single hemispherical impactor.  The timing of impact was 

varied from uninflated, to partially inflated, to fully inflated.  For the case of the 

uninflated airbag, the impactor was resting on the airbag when it was inflated, creating an 
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ejection response.  For the other two cases, the impactor was moving toward the airbag 

when it was in the process of inflating and had reached a state of partial or full inflation.  

The simulation used PAM-CRASH, a leading airbag nonlinear dynamic software 

program.  There were 600 quadrilateral elements.  CPU time was not revealed, but the 

simulation was performed on the Ford Motor Company supercomputer, and the 

simulation results were closer to the experiment and less noisy than other references.  The 

simulation over-predicted the peak collidant acceleration by 16%.  The worst collidant 

velocity errors were 27% of the peak velocity.  The worst airbag pressure errors were 

14% of the airbag peak pressure.  The lack of airbag permeability and venting removes a 

leading source of error in simulations and could explain why this simulation was the most 

accurate of all the references. 

Matsumoto [2-30] conducted only a single experiment, a full scale vehicle crash with 

a 50 percentile male crash dummy and a driver’s side airbag.  The simulation software 

was MADYMO 2D.  The number of model elements and CPU time were not revealed, 

but the simulation was performed on the Mazda Motor Corporation supercomputer.  The 

worst simulation error was 38% of the peak collidant acceleration.   

Hoffmann [2-31] used a production driver’s side airbag, fully inflated on a rigid 

steering wheel, during a sled impact test with a Hybrid III crash dummy.  The test was 

repeated three times.  The simulation used PAM-CRASH.  The number of model 

elements was 576 and CPU time on a Cray XMP was 1.5 minutes.  The worst simulation 

error was 53% of the peak collidant acceleration.   

Lu [2-32] tested two different driver’s side vented airbags with slightly different 

diameters and vent hole sizes.  A total of five tests were done against a swinging cylinder 
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impactor at various standoff distances.  The number of model elements or CPU time was 

not revealed, but LS-Dyna was code used.  LSDyna requires the user to define mass flow 

rate from vents and airbag permeability, generally as a function of a single state variable, 

such as pressure.  The simulation over-predicted the peak collidant acceleration by 33%.  

The worst collidant velocity errors were 42% of the peak velocity.     

 
 
F. Summary 

 
 

The airbag is one of the lightest weight structural tools available to man, but one of 

the most difficult to model.  The prior work on modeling and validating airbags is less 

extensive than the present dissertation.  The Nefske model covered only a stationary 

collidant, required significant pre-testing to obtain geometry and state variable 

relationships, and used airbag leak rate as a factor to fit its simulation for limited 

experimental results.  The Dreher model uses a distance step simulation model rather than 

the time step model of the present dissertation.  The Dreher model did not account for the 

leak areas and volumes of the airbag end caps as the present dissertation does.  The 

Szyszkowski and Glockner membrane model covers only stationary collidants, as well.  

The present dissertation assumes a constant radius for the airbag dome arc at a given 

azimuth, forming a partial torus, versus the variable radius arc of Szyszkowski and 

Glockner.  The present dissertation assumes a distributed force on the simple free body 

model for the non-axisymmetric collidant versus the axisymmetric point load model of 

Szyszkowski and Glockner.  Szyszkowski and Glockner model a static load versus the 

dynamic load of the present dissertation. 
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Prior work to validate nonlinear dynamic codes for airbags has shown simulation 

errors versus experiments ranging from 14% to 174%.  Computation times last from 

several minutes to many hours for models with thousands of degrees of freedom and 

more.  The most accurate model was of an unvented, impermeable airbag.  Since 

permeability or venting are a major source of physics errors in the models, caution is 

advised in comparing it to the other references or the present dissertation which do model 

these features.  
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Chapter III:  Airbag Collision Physics 
 
 
 
A. Overview  
 
 

The goal of this chapter is to develop differential equations that can be solved 

numerically for collidant acceleration and airbag pressure P.  The model is specifically 

designed to analyze the experimental setup – a one-dimensional collision.  The model 

assumes a one-dimensional collision and rebound of the collidant.  Airbag geometry is 

assumed to depend explicitly upon only collidant position, z, and fabric strains ε

z

H and εL 

as described in Chapter 4. 

Three systems were modeled:  1) a collidant dynamic system, 2) an airbag fabric 

dynamic system, and 3) a thermodynamic system consisting of a control volume inside 

the airbag. The collidant and fabric dynamic systems are divided into three free bodies 

for force equilibrium as shown in Figure 3-1.   

 

 
Figure 3-1:  Hoop, Dome, and Collidant Free Body Segmentation 
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The control volume inside the airbag system is modeled as an open thermodynamic 

system as shown in Figure 3-2. 

 

 

Collidant 

Airbag 
Control 
Volume 

Air 
Leak 

 m  

 
Figure 3-2:  Open Thermodynamic System of Air inside Airbag 

 
 
B. Governing Equations Applied to the Systems  
 
 

Three physical relationships of thermodynamic systems provide some equations to 

solve for these unknowns: 1) Conservation of Mass, 2) Conservation of Momentum or 

Newton’s second law, and 3) Conservation of Energy.  These equations are 

0Dm
Dt

=       (3-1) 

( )D mz
F

Dt
= Σ      (3-2) 

DE Q W
Dt

δ δ= −      (3-3) 

 

                                                                 3 - 2



1. Conservation of Mass Equations. 

The conservation of mass equation (3-1) applies to all three systems.  The dynamic 

systems have no change in mass; hence, the trivial solution applies.  The control volume 

system does have air mass crossing its boundary.  The conservation of air mass says that 

the change in control volume mass is equal to the inflow minus the outflow, where is 

flow into the airbag.  Hence positive m  raises control volume air mass m, and negative 

 decreases the control volume air mass. 

m

m

p
CV pores

dV m u dA
t

ρ ρ∂
p= = − ⋅

∂ ∫∫∫ ∫∫     (3-4) 

where m Vρ= and Ap is the area of the pores.  The air in the airbag leaks out through the 

pores in the fabric at velocity up relative to the control surface when the airbag is 

pressurized.  Mass continuity can be used to solve for pore entrance velocity. 

p
p

mu
Aρ

=       (3-5) 

The air density at the pore ρp is assumed to be the same as the bulk air density in the 

control volume ρ.   

2. Conservation of Momentum Equations. 

The conservation of momentum equation (3-2) applies to all three systems.   

a. Collidant Dynamic System:  The collidant dynamic system has significant 

change in momentum in the vertical axis but insignificant change in the other axes.  

Hence the model assumes a one-dimensional system.  The free body diagram in Figure 3-

3 shows the force equilibrium for the collidant.     
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Figure 3-3:  Free Body Diagram Collidant Dynamic System 

 

The vertical cut was made to avoid fabric forces contributing to vertical accelerations 

in this free body diagram.  The weight of the collidant and atmospheric pressure act 

downward, while the airbag pressure acts upward.  The pressure forces net to the gage 

pressure (Pg) in the airbag, acting on the horizontal cut area of the airbag, Acut.  This area 

consists of the collidant face area plus the projection of the inner hemispherical dome 

onto the horizontal plane. 

( )
2

2

0

1
2cutA R r

π

dφ= −∫      (3-6) 

where hemispherical dome radius r(φ ) varies with azimuth angleφ as described in 

Chapter 4. 
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The collidant moves in a straight vertical line perfectly centered on the top center of 

the airbag.  Gravity (G) drives it from various drop heights to impact the airbag at various 

speeds.  Therefore, the motion of the collidant momentum acts in only one direction – 

straight up and down – designated as the z direction with its origin on the ground and 

positive in the upward direction.  The force balance of Newton’s Second Law 

( ) g cutM z G P A+ =      (3-7) 

is rearranged to isolate the acceleration. 

g cutP A
z

M
= −G       (3-8) 

b. Airbag Fabric Dynamic System:  The airbag fabric dynamic system sustains 

significant force through its hoop stress and longitudinal stress, but insignificant change 

in momentum in terms of its light fabric mass.  The airbag fabric has a mass of less than 

1/16 of a slug and accelerates on average less than 5 feet/second2, based on empirical 

results in Chapter 6, hence causing a change in momentum of less than a third of a pound.  

The airbag fabric dynamic system is modeled by force equilibrium as shown by the two 

free body diagrams in Figure 3-4.   
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Figure 3-4:  Free Body Diagrams of Airbag Fabric in Hoop and Longitudinal Tension 

 

Hoop stress is obtained from quasi-static force equilibrium in the lateral direction.  

The hoop radius R is a function of hoop strain.  Most of the airbag hoop strain energy 

comes from the strain in the airbag cylinder and little from strain in the airbag dome.  If 

the airbag were impermeable, the airbag gage pressure would act over the entire fabric 

surface.  Based on the free body diagram force balance, the hoop stress in the cylinder 

would be 

H gt P Rσ =      (3-9) 

( )0 1g g
H g H

P R P R
P A

t
H

t
ε

σ
+

= = =    (3-10) 

where hoop area factor AH = R/t. 

Because the airbag fabric is permeable, the gage pressure acts on the fabric 

fibers and a Fanno force acts on the fabric pores as shown in Figure 3-5.  The 

cylinder hoop stress contains the gage pressure times fiber area, which is assumed 

constant with varying hoop stress.  All the hoop strain is assumed to open up 
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pores, hence the Fanno flow resistance force Rx grows with strain and hence 

stress.  The equation for Rx is shown in Appendix A.   The difference between 

incorporating Fanno flow or not is shown to be negligible in the simulation in 

Chapter 7.  Figure 3-4 shows the gauge pressure acting on the fibers and on the 

pores, which is the assumption made for both hoop stress and longitudinal stress, 

discussed next. 

 

σH

Airbag 
Cylinder 

Rx

Pg

σH

Equivalent 
Fabric 

R

t

 
Figure 3-5:  Pressure and Fanno Force on Equivalent Fabric 

 

The longitudinal stress in the airbag cylinder can be calculated from the airbag 

pressure acting on the dome radius, per the free body diagram in Figure 3-4.  The 

longitudinal stress is derived from a force balance of the free body diagram. 

2L g
rtR P r Rσ φ ⎛ ⎞= −⎜ ⎟

⎝ ⎠
φ      (3-11) 

2

2
g

L g

P rr P
t R

σ
⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

LongA     (3-12) 

where ALong is a geometry factor delineated in Chapter 4.  The dome radius r varies with 

azimuth angle φ, collidant height z, hoop stress σH, and longitudinal stress σL itself.  
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Although different kinematic equations govern dome radius in different impact phases, 

Equation (3-12) applies in every phase.  Thus Figure 3-4 is generic to all phases.  

Uniform stress is assumed for the model with the option of it varying with azimuth angle 

φ  through dome radius r(φ ) in the future.   

c. Control Volume Thermodynamic System:  The air in the airbag 

thermodynamic system has a small conservation of momentum.  Most of the air in the 

airbag is assumed quiescent, except for the isentropic streamlines leading to the pores.  

Because the radial flows are equal and opposite to each other, their momentum changes 

cancel each other out.  Only the flows out the top of the airbag have a net change in 

momentum.  The amount of air mass in these top flows is approximately 1/1500 slug with 

a peak velocity change of approximately 100 feet/second (based on simulation results 

from Chapter 7) which would require a force of approximately 1/15 of a pound.  Thus, 

the momentum of the air leaving the control volume was negligible in the analysis of the 

airbag pressure and collidant acceleration.  Appendix A shows how to incorporate it 

using a second control volume for the air flowing through the pores.  Ignoring elevation 

differences, the Bernoulli equation for this streamline flow becomes 

2

2
p

p

u
P P ρ= −      (3-13) 

1) Conservation of Energy Equations:  The conservation of energy 

equation (3-3) applies to all three systems.  All systems are assumed adiabatic, .  

The control volume has a ~65 

0Qδ =

oF peak temperature rise during the impact, but insufficient 

time for significant heat transfer as explained in  Section D.  The collidant and fabric 

dynamic systems have no temperature rise other than negligible heat transfer from the air 
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in the airbag.  The energy equations for the dynamic systems of the collidant and fabric 

are analyzed in Appendix A.  Those equations proved superfluous once the fabric-mass 

system of Figure 3-1 was divided into three free-body diagrams and quasi-static 

equilibrium was assumed for the fabric system.   

The components of the conservation of energy equation for an open system are 

described next.  The major energy of the system is the internal energy of the air inside the 

airbag, kinetic and potential energies being negligible.  The event is so fast as to be 

adiabatic to heat conduction or radiation.  The thermodynamic system has significant 

change in energy.  The E on the left hand side of Equation (3-3) includes total energy in 

the control volume, as well as energy transported across the boundary.  The rate of work 

on the boundary Wδ is the absolute pressure inside the control volume acting on the 

moving fiber area and the absolute pore pressure Pp times the gas velocity through the 

pore, multiplied by the appropriate cross sectional pore area.  Because the control surface 

is inboard of the fabric and fabric pores, only two types of work are done on the boundary 

of the system:  

1) the absolute pressure P of the system acting on the moving boundary;   

2) the absolute pressure Pp pushing the volume of air through the pores. 

These work pressures are absolute pressures, because they are opposed by equal and 

opposite pressures from the fabric and pore openings, respectively.  Therefore the 

external work uses these absolute pressures.  The friction work of the air moving through 

the pores is outside the control surface but accounted for by the absolute pressure pushing 

the air through the pores.  Positive pressure and positive outward flow and area vectors 

mean that the boundary work takes energy from the system; therefore, it is negative on 

                                                                 3 - 9



the left hand side of Equation (3-14).  Likewise for the flow work through the pores, 

positive outward normal vectors take energy from the system.  The major energy crossing 

the boundary of the system is the specific energy ep of the air leaking through the pores of 

the airbag.  Hence the conservation of energy equation for this open system is 

b m p p p p p
fibers pores CV pores

Pu dA P u dA e dV e u dA
t

ρ ρ p
∂

− ⋅ − ⋅ = + ⋅
∂∫∫ ∫∫ ∫∫∫ ∫∫   (3-14) 

The conservation equations have introduced eight equations to solve for the following 

fifteen unknown variables: 

m = mass of air inside airbag 

P = absolute pressure inside airbag 

ub = velocity of boundary of control volume 

ρ = density of air in airbag = m/V 

e = specific energy of air in control volume 

V = volume of air inside airbag control volume 

z = elevation of the collidant bottom 

εH = horizontal hoop strain of airbag 

σH = horizontal hoop stress of airbag 

εL = longitudinal strain of airbag  

σL = longitudinal stress of airbag 

up = velocity of air into the airbag pore 

Pp = pore entrance air pressure 

Am = moving outward normal area of airbag excluding leaking pore area Lf faceA A= +  

Ap = cross sectional area of pores in the leak area  

                                                                 3 - 10



ep = specific energy of air entering the pores in the control surface  

The following geometric quantities needed in this chapter can be calculated from the 

kinematic equations derived in Chapter 4.  

Acut = cross sectional area of a horizontal cut of airbag for free body analysis 

ALf = airbag fiber outward surface area where air can leak through the pores 

Ap0 = outward normal area density of pores in unstrained airbag fabric 

 
 
C. Closure Equations  
 
 

The following constitutive equations are needed to close the system of equations 

derived from the conservation laws in the previous Section B. 

1. Constitutive Equations. 

Air pressure P, temperature T, and density ρ inside the airbag are considered uniform 

except approaching the pores.  Approaching the pores, air density remains constant, but 

pressure and temperature drop due to the higher velocity.  The relevant constitutive 

equation is the Ideal Gas Law. 

P RTρ=      (3-15) 

Where the airbag contacts the ground or the collidant, the pressure is assumed to seal 

the fabric against these surfaces, preventing air from leaking out of the pores of the 

airbag.  Therefore, the mass flow below is based on a non-linear function of gage 

pressure, depending on three parameters, 0Am  (or ), α, and R0m L.  The three parameters 

were found by non-linear least squares regression of Equation (5-10) to the permeability 
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experimental data as a function of gage pressure.  This mass flow was empirically 

determined in Chapter 5, and is 

( )0 1 gP
Lf L g Am A R P m e α−⎡ ⎤− = + −⎣ ⎦    (3-16) 

0 0where /A Lfm m A= , , the air mass flow rate into the airbag, Pm g = P − Patm is gage 

pressure, and RL, the leak rate through the airbag.  Equation (3-4) expresses mass flow 

rate as a non-linear function of gage pressure, depending on three parameters, 0Am  (or 

), α, and R0m L.  Equation (3-4) constitutes a constitutive equation for mass flow rate, 

relating it to pressure.   

The hoop stress and strain are assumed to be uniform throughout the airbag.  In 

reality, the hoop stress is lower in the dome than the cylinder, but this variation is 

neglected.  The longitudinal stress and strain are also assumed to be longitudinally 

uniform even though the stress in the dome is higher.  Longitudinal stress and strain do 

vary with azimuth angle.  The relevant constitutive equations for plane stress are   

[ ]
[ ]

1
0
0 , where

1
10 0

L
H H

H L
L L

H
HL HL

H L

C
E E

C

E E
G

νε σ
ε σ

ν
γ τ

⎡ ⎤ −⎡ ⎤⎢ ⎥⎧ ⎫ ⎧ ⎫ ⎢ ⎥⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎢ ⎥= =⎨ ⎬ ⎨ ⎬⎢ ⎥ −⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎩ ⎭ ⎩ ⎭⎢ ⎥ ⎣ ⎦⎣ ⎦

  (3-17) 

2. Microscopic Examination and Strain of Pore Area. 

Microscopic investigation found the unstrained pore area density Ap0 to be ~0.1% of 

the unstrained fabric outward surface area.  Under strain, the pores grow 

disproportionately to the fibers.  In effect, all the additional bulk fabric area created by 

the strain goes to the pores.  Hence, the leaking pore area is 
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0(p L p H LA A A )ε ε= + +     (3-18) 

This pore area is used to calculate pore velocity, the work of gas blowing through the 

pores, and the pore shear force and work as well in Appendix A.  Therefore, the pore area 

must be unobstructed. 

3. Air State at Pore. 

The state at the pore entrance is determined by five equations 1) air mass continuity 

Equation (3-5), 2) Bernoulli free stream flow Equation (3-13), 3) the Ideal Gas Law, 4) 

the definition of Mach number, and 5) the definition of specific energy.  Since the air 

flow rates inside the control volume are fairly low, incompressible flow along a 

streamline is a reasonable assumption.  Hence the density at the pore entrance is assumed 

equal to the bulk air density of the control volume.  The Ideal Gas Law determines the 

pore entrance temperature. 

p
p

P
T

Rρ
=      (3-19) 

Pore entrance Mach number is a function of the Ideal Gas constant, pore entrance 

velocity and temperature. 

p
p

p p

u u
M p

RT Pγ
γ
ρ

= =     (3-20) 

Since these gas flows have negligible change in elevation and hence potential energy, the 

specific energy ep of the air at the pore entrance is the air specific enthalpy plus specific 

kinetic energy.  Hence 

2

2
p

p p p

u
e c T= +     (3-21) 
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The specific heat at constant volume cv is a measured property in a constitutive 

relationship and is the specific heat minus the Ideal gas Constant. 

v pc c R= −      (3-22) 

4. Closure of the Open Thermodynamic System of the Air in the Airbag. 

An open thermodynamic system of the air inside the airbag was chosen for the 

physical model.  The system includes only the air inside the airbag and is open, because it 

allows air mass transport across its boundary.  Figure 3-2 shows this thermodynamic 

system with the dashed lines as its boundary.  The system contains the thermal or internal 

energy of the air inside the airbag.  Because the specific energy of the control 

volume is quiescent, it is merely internal energy.  Its derivative with time is shown as the 

first two terms on the right hand side of Equation (3-23).  Since the airbag air weighs less 

than 2 lbs, its gravitational potential and kinetic energies are ignored.   

vU c T=

Only air mass and its associated energy cross the boundary of the open 

thermodynamic system.  The impact is so quick that there is essentially no time for heat 

transfer.  Air does leak out through the pores of the airbag, causing a significant mass 

transport  across the boundary of the system with attendant energy transport.  The 

friction work of the viscous air moving through the pores of the airbag limits the air flow 

through the pores.  This friction was accounted for by the mass flow constitutive 

relationship Equation (3-12).  The work of airbag gage pressure on the moving airbag 

causes boundary work.   

m

The moving boundary work is the pressure force on the boundary acting through the 

distance the boundary moved.  This boundary area times the distance it moves is a 
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volume, in fact, the volume displaced by the boundary moving.  Since pressure inside the 

control volume is assumed to be uniform, pressure multiplied by this change in volume is 

the moving boundary work; hence Equation (3-14) simplifies to 

2

2
pm

p v v v p
m p

uAPV P v m mc T mc T m c T
A A

⎛ ⎞
− + = + − ⎜⎜+ ⎝ ⎠

+ ⎟⎟   (3-23) 

where v = 1/ρ is specific volume and T is absolute temperature of air in airbag.  

Rearranging terms in Equation (3-23) allows putting the pore work Pv together with its 

internal energy, making an enthalpy on the right hand side. 

2

2
pm

v v p p
m p

uAPV mc T mc T m c T
A A

⎛ ⎞
− = + − ⎜⎜+ ⎝ ⎠

+ ⎟⎟    (3-24) 

Rearranging variables allows a solution for T  

2

2
p f

v p p

v

u A
mc T m c T PV

A
T

mc

⎛ ⎞
− + + −⎜ ⎟⎜ ⎟

⎝ ⎠=    (3-25) 

a. Ideal Gas Law for Airbag Temperature T and its Time Derivative. 

The Ideal Gas Law determines the control volume bulk temperature.  Rearranging 

Equation (3-11) and substituting the definition of density yields an equation for 

temperature  

PVT
mR

=      (3-26) 

The time derivative is simply 

( )2
PV PV mRPVT

mR mR
+

= −     (3-27) 

Substituting into Equation (3-25) eliminates T . 
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( )

2

2

2
p m

v p p
m p

v

u Amc T m c T PV
A APV PV mRPV

mR mcmR

⎛ ⎞
− + + −⎜ ⎟⎜ ⎟ ++ ⎝ ⎠− =   (3-28) 

Both sides of Equation (3-28) are multiplied by the air mass m to remove its redundancy.  

The rate of change in volume V is a function of collidant velocity, hoop strain rate, and 

longitudinal strain rate.  Hoop strain rate is a function of pressure change .  To bring all 

the  terms to the left side, the V terms are regrouped. 

P

P

2

21 1
p

p p

m

v m p v

u
m c T

APV mPVPV mT
R R c A A c mR

⎛ ⎞
+⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠+ + = − + +⎜ ⎟⎜ ⎟+⎝ ⎠

  (3-29) 

Substituting the Ideal Gas Law for T, multiplying by gas constant R, and substituting the 

definitions of cp = R + cv and γ = cp / cv yields 

( ) ( )
2

1 1 1
2

pm
p p

m p

uAPV PV m c T
A A

γ γ
⎛ ⎞ ⎛ ⎞

+ + − = − +⎜ ⎟ ⎜⎜⎜ ⎟+ ⎝ ⎠⎝ ⎠
⎟⎟   (3-30) 

Substituting γf for the expression in parenthesis on the left hand side of the equality and 

using the Ideal Gas Law to eliminate the temperatures yields 

( )
2

1
2

p
f

P u
PV P V mγ γ γ

ρ
⎛ ⎞

+ = + −⎜⎜
⎝ ⎠

p ⎟⎟    (3-31) 

where 

( )1 1 m
f

m p

A
A A

γ γ
⎛ ⎞

= + −⎜⎜ +⎝ ⎠
⎟⎟     (3-32) 

Substituting in the Bernoulli Equation (3-13) allows the elimination of additional terms. 
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2

2
p

f

uPPV P V mγ γ
ρ

⎛ ⎞
+ = −⎜⎜

⎝ ⎠
⎟⎟     (3-33) 

As shown in Chapter 4, volume depends on the kinematic state variables z, εH, and εL.   

Hence, the equation for V depends on the partial derivatives of V with respect to z, εH, 

and εL and their time rates of change, respectively, as shown in Equation (3-33). 

b. Combined with Equilibrium Form of Longitudinal Stress 

For the case where σL is derived from force equilibrium in the fabric, V is derived as 

{ }, , , , ,
H L

T H
z H L z

L

V V z V V V z Vε ε ε

ε
ε ε

ε
⎧ ⎫

= + + = + ⎨ ⎬
⎩ ⎭

  (3-34) 

The volume derivative can be found from the strain derivatives, which, in turn, depend on 

the stress derivatives.  The stresses found in Equations (3-19) and (3-20) can expressed 

more broadly as a function of gage pressure Pg and so-called geometry factors, AH and 

ALong.  

( )
( )
, ,

, ,
H g H H L

L g Long H L

P A z

P A z

σ ε ε

σ ε ε

=

=
    (3-35) 

Simultaneous Equations (3-35) are coupled to the strains, through constitutive Equation 

(3-3), which determine the geometry factors.  In keeping with the simplifying assumption 

of uniform stress and strain, Equations (3-35) can be solved in conjunction with an 

equivalent circular collidant (i.e., cylindrical collidant with radius that gives same face 

area as the rectangular collidant).  The resulting uniform strains are used to determine the 

geometry factors in Chapter 4 whose partial derivatives appear in the following 

differentiation with respect to time.  In vector form, Equation (3-35) may be written as 
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HH
g

LongL

A
P

A
σ
σ

⎧ ⎫⎧ ⎫ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪⎩ ⎭ ⎩ ⎭

    (3-36) 

The strains can be found using the constitutive matrix. 

[ ] [ ] HH H
g

LongL L

A
C C P

A
ε σ
ε σ

⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭

   (3-37) 

Time differentiation yields 

[ ] [ ]HH
g

LongL Long

A A
C P C P

A A
ε
ε

H⎧ ⎫⎧ ⎫⎧ ⎫ ⎪ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬ ⎨
⎪ ⎪⎩ ⎭

⎪
⎬

⎪ ⎪⎩ ⎭ ⎩ ⎭
   (3-38) 

P emerges, but the geometry derivatives depend on the strain derivatives. 

, ,,
, , ,

H L

H L

H HH H z H

Long z Long Long LLong

A AA A
z

A A AA
ε ε

ε ε

ε
ε

⎧ ⎫ ⎡ ⎤⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= + ⎢⎨ ⎬ ⎨ ⎬ ⎨
⎪ ⎪ ⎢ ⎥ ⎩ ⎭⎪ ⎪ ⎩ ⎭ ⎣ ⎦⎩ ⎭

⎥ ⎬

z

  (3-39) 

Substituting and separating yields 

[ ] [ ][ ] [ ]1 ,
,

H HH
g g

Long Long zL

A A
I P C A C P P z

A A
ε
ε

− ⎛ ⎞⎧ ⎫ ⎧⎧ ⎫ ⎫⎪ ⎪ ⎪⎡ ⎤= − ∂ +⎜ ⎟⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎜ ⎟
⎪

⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎝ ⎠⎪
  (3-40) 

where  

[ ]
, ,

, ,
H L

H L

H H

Long Long

A A
A

A A
ε ε

ε ε

⎡ ⎤
∂ = ⎢ ⎥

⎢ ⎥⎣ ⎦
    (3-41) 

Substituting back into Equation (3-34) yields 

{ } [ ] [ ][ ] [ ]1 ,
, ,

,
T H H

z g g
Long Long z

A A
V V z V I P C A C P P z

A Aε

− ⎛ ⎞z⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪⎡ ⎤= + − ∂ +⎜ ⎟
⎪

⎨ ⎬ ⎨⎣ ⎦ ⎜ ⎟⎬⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎝ ⎠⎪
 (3-42) 

If V is broken into coefficients of and , the result is described as z P

{ } { }
{ } { }

, , , ,

, , ,

T
Z z

T
P P

V V V

V V

ε

ε

zε

ε

= +

=
    (3-43) 
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where  

{ } [ ] [ ][ ] [ ]

{ } [ ] [ ][ ] [ ]

1

1

,
,

,

,

H z
z g g

Long z

H
P g

Long

A
I P C A C P

A

A
I P C A C

A

ε

ε

−

−

⎧ ⎫⎪ ⎪⎡ ⎤= − ∂ ⎨ ⎬⎣ ⎦ ⎪ ⎪⎩
⎧ ⎫⎪ ⎪⎡ ⎤= − ∂ ⎨ ⎬⎣ ⎦ ⎪ ⎪⎩ ⎭

⎭    (3-44) 

Equations (3-42) through (3-44) can be substituted back into Equation (3-32) to express 

for the case of longitudinal stress derived from equilibrium.  What remains to be 

solved are the partial derivatives of A

P

H and ALong with respect to z, εH, and εL.  These 

derivatives are calculated in Chapter 4 Section D. 2. 

 

D. Assumptions and Justifications 

 
Several important assumptions were made to simplify the problem. 

1. The dynamic motion of the collidant was assumed to be one-dimensional in 

the vertical, z axis. 

2. The momentum of the air inside the airbag and airbag fabric were considered 

negligible compared to the collidant’s momentum. 

3. A prescribed geometry was assumed to govern the shape of the airbag (see 

Chapter 4).  As a result, volume and surface areas of the airbag were 

considered functions of collidant position and airbag strain, only. 

4. A state of uniform stress was assumed throughout the airbag fabric.   

5. A uniform (mean) state was assumed for the air inside the airbag, except for 

quasi-steady, isentropic streamlines leading to air mass flow through the pores 

in the airbag fabric. 
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6. The collidant impact was assumed to be of such short duration that the system 

was adiabatic.  

7. The fabric area under the collidant is assumed strained because of the 

relatively frictionless contact with the collidant.   

The first assumption is justified in that the collidant gondola is restrained by ¾ inch 

steel guide cables tensioned to approximately 1,000 lbs each.  Video records of motion of 

the gondola in a typical experiment show lateral displacements of 0.3 % of the gondola 

vertical displacements, lateral velocities of less than 0.3% of the vertical velocities, and 

lateral kinetic energies of less than 0.1% of the vertical kinetic energies.  Ignoring lateral 

motion is justified on its relatively small size compared to the 15 to 34 foot vertical drop.  

It would account for some small kinetic energy transfer. 

The second assumption is justified in that the air mass and fabric mass are less than 

1% of the collidant mass.  Though most of the air and fabric mass is relatively stationary, 

at least part of it moves at close to the speed of the gondola.  Hence the air and fabric 

momentum is less than 1% of the momentum of the typical gondola.  Ignoring the air and 

fabric momentum is justified on its small size relative to the 350 to 600 lb gondolas.  It 

would absorb some small kinetic energy, however.  The neglected air is inside the airbag.  

The air blowing out the pores is outside the system as later defined, and therefore its 

potentially high momentum would not be considered in the second assumption. 

Assumption three is justified in that the prescribed geometry closely resembles the 

actual airbag volume and surface area – the two key factors in determining dynamic 

response of collidants.  The major differences in the geometry assumptions are a 

hemispherical dome instead of a more realistic flattened dome and a straight cylinder 
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airbag bottom instead of a domed bottom.  The first difference adds volume and surface 

area; the second, subtracts volume and surface area. 

Assumption four is justified in that the most important factors determining dynamic 

response, airbag volume and surface area, are integrated values based on integrated 

strains.  These integrated strains can be based on integrated stresses, hence average 

stresses can capture nearly as accurately as variegated stresses the global effect on 

collidant kinematics.  Moreover, equations derived in this chapter will show that hoop 

stress depends uniformly on the integrated effect of strain, whereas longitudinal stress 

varies with azimuth position.  Hence uniform hoop strain is better justified than 

longitudinal strain.  However, Chapter 7 will show that longitudinal strain is an order of 

magnitude less than hoop strain, leading to small errors due to assuming uniform strain.  

Assumption five is justified in that the secondary air flows inside the airbag caused by 

fill jets, for example, that would justify varying the state variable values, are small 

enough to be ignored.  These fill jets are turned off before impact.  Any residual swirl is 

substantially dissipated by the air transport toward and through the pores.  As shown in 

Chapter 7, the air transport through the pores is a small fraction of the total air in the 

airbag, and hence its non-uniformity is ignored as well. 

Assumption six is justified in that the impact duration is less than 0.2 seconds and the 

amount of energy lost through heat transfer is less than 1% of the collision energy.  Heat 

transfer is based on the temperature difference between the air inside the airbag and the 

air outside the airbag.  The air temperature outside the airbag is typically T1 = 70oF or 

530oR.  During adiabatic compression, the absolute temperature ratio in degrees Rankine 
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is proportional to the absolute pressure ratio as explained in Saad [3-1:16].  A typical 

airbag pressure ratio to atmosphere in the experiments is 1.5 to 1.  Hence: 

T2 / T1 = (P2/P1)(γ-1)/γ = 1.50.286 = 1.12 
 

The resulting temperature in the airbag at peak compression is T2 = 1.12 × 530oR = 595oR 

= 135oF.  The heat transferred to the air outside the airbag, Q, is based on the temperature 

difference, T2 – T1 = 65oF, a heat transfer coefficient h, and an airbag surface area A, as 

explained in Rohsenow [3-2:92].  For the case of a typical single-walled bumper airbag, 

the heat transfer is about 0.5 Btu/hr-sqft-F, and the airbag surface area is about 41 square 

feet.  The equation is: 

Q = hA ΔT = 0.5 * 41 * 65 = 1,336 Btu/hour = 0.37 Btu/sec 
 

Typical collision compression only lasts about 1/5 second, so the heat transferred is only 

about 0.07 Btu.  The temperature change of the air inside the airbag is proportional to this 

heat addition and the mass of the air m =3.4 lbm, and the heat capacity of the air cp = 0.24 

Btu/lbm, [3-5: 522].  Therefore: 

ΔT = Q / (m cp) = 0.07 / (3.4 * 0.24) = 0.09oF 
 

This temperature difference is only 0.1% of the adiabatic temperature rise of the air in the 

airbag.  Therefore, the heat transfer effect on overall energy is negligible.  The adiabatic 

assumption is quite good.  The compression happens in less than a second; the 

temperature changes are low, and the heat transfer coefficients are low.  Therefore, little 

heat is transferred, justifying the adiabatic assumption. 

The fabric area under the collidant is assumed strained because of the relatively 

frictionless contact with the collidant.  The friction coefficient of fabric on gondola is 

only 0.26 as measured empirically with the angled slide test. 
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E. Conclusion  
 
 

In summary, the unknowns are solved by conservation laws, kinematic equations, 

state equations, and differential equations.  The kinematic equations determine airbag 

volume, leak area, pore area, and area of the cut.  These equations can be quite 

complicated and hence addressed in their own chapter (4).  The state equations determine 

the airbag hoop strains, the airbag pore conditions, and the control volume density and 

temperature.  The differential equations determine the control volume air mass and 

pressure, the collidant elevation and velocity, and optionally, airbag longitudinal strains. 

The equation that solves for collidant elevation z is the force equilibrium for the 

collidant.  The equation that solves for airbag air mass m is the conservation of mass.  

The equation that solves for the airbag pressure P is the conservation of energy.   

m = mass of air inside airbag by integration of Equation (3-2); 

z = elevation of the collidant bottom by integration of Equation (3-22); 

P = absolute pressure inside airbag by integration of Equation (3-62); 

The Ideal Gas Law solves for the airbag air temperature T, and the definition of 

density, ρ = m/V, solves for density.  The equilibrium for lateral forces solves for the 

hoop stress, σH.  The equilibrium for longitudinal forces solves for the longitudinal stress, 

σL.  The constitutive stress-strain relation determines the strains from the stresses.  The 

permeability equation solves for pore entrance air velocity up.  The pore area Ap is 

defined by microscopic examination and strain. The specific energy of the air at the pore 

entrance ep is defined by thermal and kinetic energy. 
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In order to predict the behavior of airbags, a mathematical model was developed.  A 

system of three differential equations in time were derived by applying Newton’s second 

Law to the collidant, conservation of mass and energy to the airbag control volume, and 

static equilibrium to the fabric.  Hence a system of three differential equations of state 

was employed to solve for the mass, position, and pressure variables.  The following 

quantities of interest are calculated as a post processing step. 

T = absolute temperature of air in airbag by Equation (3-50); 

e = specific energy of air in the control volume; 

up = velocity of air into the airbag pore by Equation (3-5); 

Pp = pore entrance air pressure by Equation (3-6); 

ep = specific energy of air entering pore by Equation (3-9); 

Tp = pore entrance air temperature by Equation (3-7); 

Mp = pore entrance air Mach number by Equation (3-8); 
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Chapter IV:  Kinematics of Collidant Impact 
 
 
 
A. Overview  
 
 

The primary assumption of the collidant-airbag impact is one-dimensional kinematics 

governed by the collidant (gondola) elevation coordinate, z.  Assumed geometries 

throughout the impact reduce the system to one spatial degree of freedom.  The airbag 

geometry is assumed to start as a cylinder with a hemisphere on top before gondola 

impact as seen in Figure 4-1 with the attendant actual airbag photograph.  A second 

kinematic assumption is a state of uniform strain in the hoop and longitudinal directions, 

εL and εH, respectively. 

 

 

 R0

θt

 L0

 z 

Gondola

Airbag 

r0

Figure 4-1:  Gondola and Airbag Pre-Impact 
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The gondola hits the top of the airbag and plunges it inward on itself.  The gondola 

forces the top of the airbag to progress through several shapes – first, a flattened dome, 

second, a partial bubble, third, a full bubble.  These shapes are shown in cross section in 

Figure 4-2 and designated as Phases 1, 2, and 3. 
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Figure 4-2:  Gondola Airbag Impact Phases 1, 2, and 3 
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These phases can change at a given gondola elevation z as the cross sectional view is 

rotated in azimuth (about the z axis.)  Because the gondola face impacting the airbag is 

either square or rectangular, the cross section length, 2s, in Phases 2 and 3 shortens or 

lengthens as the cross-sectional view is rotated in azimuth.  For each time step in a 

numerical approximation of the impact, a gondola elevation z is calculated.  At each z, 

integration through the azimuth angle φ with its attendant dome angle θt that delineates 

one phase from another, as shown next, provides a good approximation of the airbag 

surface area and volume. 

As the gondola contacts the hemisphere in Phase 1, it flattens the top of the dome.  As 

the gondola moves downward entering Phase 2, the airbag shape changes as seen in 

Figure 4-2.  In the third and final phase, the gondola is fully immersed into the airbag.  

Because an impact can involve different phases along the edge of the gondola impact face 

at any time step, a phase may exist for only a segment along the edge of the gondola 

covered by azimuth angle Δφ.  Figure 4-3 shows a top view of the gondola impacting the 

airbag over time and the progression of the phases.  The first frame has pure Phase 1 

contact.  Frame 2 shows the onset of Phase 2 splitting the top with Phase 1.  Frame 3 

shows Phase 2 closing in on Phase 1 from both sides.  Frame 4 shows the onset of Phase 

3 while Phase 2 is still active.  Frame 5 shows pure Phase 3.  
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Figure 4-3:  Top View of Airbag and Gondola Showing Contact 
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Each phase has different kinematic equations.  The kinematic equations depend on 

the state variables z, εL, and εH, and the geometric initial conditions of airbag cylinder 

length L0 and radius R0 and gondola face width 2x and length 2y to calculate the changing 

airbag dimensions R, r, L, s, and θt.  All phases of impact have the same equations for R 

and r.  The airbag cylinder radius R is determined by cylinder hoop strain εH, hence: 

)1(0 HRR ε+=      (4-1) 

The airbag dome meridional arc radius length r is calculated based on the geometrical 

constraint of horizontal compatibility:   

(1 cos )
1 cost

t

R sr R s rθ
θ

−
− = − → =

−
   (4-2) 

Therefore, the unknown variables unique to each Phase are L, s, and θt.  Subscripted 

indices are used for these variables when distinguishing among expressions appropriate 

to particular phases. 

 The selection of kinematic model is based on the phase of the impact.  Before 

gondola impact, z > L + R, and the no-impact model for gondola free fall is used.  When 

impact occurs, z = L + R, and the model switches to the Phase 1 impact equations.  

Subsequently, z < L + R.  The model remains in Phase 1 as long as the radius of flattening 

s1 is: 

1

sec , if
csc , if

C

C

x
s

y
φ φ φ
φ φ φ

≤⎧
< ⎨ >⎩

    (4-3) 

otherwise the mode switches to the Phase 2 equations.  The system stays in Phase 2 as 

long as θt < 180o, or equivalently z > L, otherwise it switches to Phase 3.  Because the 

transitions in and out of Phase 2 are more complicated, pure Phase 1 and 3 are described 
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first and then pure Phase 2.  Transitions from one Phase to the next are described 

afterwards.  Finally, equations for airbag surface area and volume are derived for all 

combinations of Phases.   

 
 
B. Phases of Impact  
 
 

1. Phase 1:  Initial Impact. 

a. Geometry Definitions:  See Figure 4-1 for definitions of the vertical 

cylindrical airbag and gondola in two dimensions.  The airbag cylinder radius is R and 

unstrained is R0.  Upon impact, the hemispherical dome radius, r = R.  Subsequently, 

Equation (4-2) determines r, designated as r1 during Phase 1.  The height of the airbag 

cylinder up to the edge of the dome arc is L, with L0 being the initial length.  The vertical 

dotted line is the centerline of the airbag and gondola.  Two additional equations are 

needed for the two unknowns L1 and s1.   

Figure 4-4 shows the gondola hitting the airbag’s hemispherical domed top and 

flattening it.  The radius of flattening is s1; the half width of the gondola is x.  The radius 

of the dome arc is now r1. 

b. Assumptions:  Airbag dome meridional arc terminal angle θt remains at 90o.   
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Figure 4-4:  Gondola Initial Airbag Impact 
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θt
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Figure 4-5 shows the top view of the transparent gondola, airbag, and layout of 

dimensions s1, x, y, and φ needed in the surface area and volume calculations for the case 

of Phase 1.  The contact radius s1 and cylinder side length L1 are calculated from vertical 

compatibility and an assumption of fabric continuity. 

Vertical Compatibility:  1 1 sin tL z r z r1θ= − = −    (4-4) 

Fabric Continuity:   ( )( )1 1 1 0 0 1t Ls L r L R Cθ ε+ + = + + =   (4-5) 

where εL is the longitudinal strain, vertical along the cylinder and meridional along the 

dome.   In reality, the meridional strain grows larger along the dome arc.  The fabric area 

under the collidant is assumed strained because of the relatively frictionless contact with 

the collidant.  The friction coefficient of fabric on gondola is only 0.26 as measured 

empirically with the angled slide test. 
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Figure 4-5:  Top View of Airbag and Gondola Showing Contact 

 

c. Derivation of Phase 1 Kinematic Equations:  The gondola contact length on 

the airbag s1, is calculated from the fabric continuity Equation (4-5).  Substituting 

Equations (4-2) and (4-4), and assuming θt = π/2, Equation (4-5) is solved for s in terms 

of constants and state variables for gondola height and airbag strain. 

1 1 1 1

1
21

2 2 2
2

C z R
s C L r C z r

π
π π

π

⎛ ⎞− + −⎜ ⎟⎛ ⎞ ⎝= − − = − + − =⎜ ⎟
⎝ ⎠ −

⎠   (4-6) 

Substituting Equation (4-6) for s1 into equation (4-2) yields:   

1 1

2
2

R C zr R s π
− +

= − =
−

     (4-7) 

Equation (4-7) is easily determined in conjunction with Equation (4-5) for fabric 

continuity, given Lε , which is assumed uniform throughout the fabric.  In order to lift the 

restriction of uniform longitudinal stress and strain in the future, it will be convenient to 

express r1 in terms of pressure rather than longitudinal strain.  Substituting for strain from 
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Equation (3-17) and for stress from Equation (3-12) yields a quadratic equation for r1 in 

terms of gauge pressure:   

( )

2
1

1

0 0

1

2
1

2
2

g L

L

rP r R
R

R L R z
tE

r

ν

π

⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟− + + +
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝=

−

⎠    (4-8) 

Solving for r1 will express a positive real r1 in terms of state variables from the following 

quadratic equation.   

( )

( )

( ) ( ) ( )

( )

0 0

0 0

2

0 0 0 0 0 0

0 0

1

2
2

2 4 1
2

g

L

g

L

g g g L

L L

g

L

P
L R

tE
P

L R
RtE

P P P
L R L R R L R z

tE RtE tE
P

L R
RtE

r

π

νπ

− − + +

+

± − + + − + − + + − −

+

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞ ⎛ ⎛
⎜ ⎟ ⎜ ⎜
⎝ ⎠ ⎝ ⎝ L

R ⎞ ⎞
⎟ ⎟
⎠ ⎠

 (4-9) 

Finally, substituting Equation (4-7) into Equation (4-4) also expresses L1 in terms of state 

variables. 

1 1

1
2

2
2

C R z
L z r

π

π

⎛ ⎞− + −⎜ ⎟
⎝= − =

−

⎠     (4-10) 

2. Phase 3:  Full Impact. 

a. Geometry Definitions:  See Figure 4-6 for definitions of the geometry for the 

vertical cylindrical airbag and gondola in two dimensions.  See Figure 4-7 for the top 
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view of the gondola, airbag, and layout of dimensions s, x, y, and φc, the azimuth angle to 

the gondola corner. 

  b. Assumptions:  The airbag height to the dome edge L3 shortens substantially 

because of the penetrating collidant.  The airbag dome meridional arc θt is 180o all the 

way around the azimuth.   

 

 

 
Figure 4-6:  Gondola Fully Impacting Airbag 
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The gondola has impacted the airbag dome such that its bottom face is fully covered 

by the fabric.  The remaining dome shape is governed by the dome meridional arc radius 

r, gondola face azimuth length s, and airbag cylinder edge height L3.   

c. Derivation of Phase 3 Kinematic Equations:  With r3 given by Equation     

(4-2), two equations for the two unknowns L3 and s3 are needed.  Fabric continuity for 

Phase 3 is: 

( )3 3 3 0 0 (1 )t LL r s L z L Rθ+ + + − = + + = Cε    (4-11) 
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Solving for L3 from Equation (4-11) yields:   

[ ]3 3
1
2 3L C r s zπ= − − +      (4-12) 

The final equation needed is for fabric contact distance.   

 

 x

 y
φc 

 s

 
Figure 4-7:  Top View of Airbag and Gondola 

 

In pure Phase 3, the airbag contacts the gondola face all the way to its corner.  The 

expression for the length of s3 to the gondola edge in Figure 4-7 is discontinuous as the 

azimuth angle φ approaches the corner azimuth angle φC. 

3 2

sec , if
csc , if

C

C

x
s s

y
φ φ φ
φ φ φ

≤⎧
= = ⎨ >⎩

    (4-13) 

With s3 given by Equation (4-13), r3 and L3 are determined in terms of state variables and 

constants, via Equations (4-2) and (4-12). 

3
3

sec , if
2
csc2 , if

2

C

C

R x
R sr

R y

φ φ φ

φ φ φ

−⎧ ≤⎪− ⎪= = ⎨ −⎪ >
⎪⎩

   (4-14) 
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3

1 1 sec , if
2 2 2

1 1 csc , if
2 2 2

C

C

RC x z
L

RC y z

π π φ φ φ

π π φ φ φ

⎧ ⎡ ⎤⎛ ⎞− + − + ≤⎪ ⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎣ ⎦= ⎨
⎡ ⎤⎛ ⎞⎪ − + − + >⎜ ⎟⎢ ⎥⎪ ⎝ ⎠⎣ ⎦⎩

    (4-15) 

3. Phase 2:  Intermediate Impact. 

a. Geometry Definitions:  See Figure 4-8 for definitions of the geometry for the 

vertical cylindrical airbag and gondola in two dimensions.  For pure Phase 2 contact, the 

gondola has impacted the airbag dome such that its bottom face is fully covered by the 

fabric, similar to full Phase 3.  The dome shape is governed by the airbag dome 

meridional radius r and airbag terminal meridional arc angle θt.   

b. Assumptions:  Airbag terminal dome arc angle θt varies during this phase 

expanding from 90o to 180o.  The fabric contact length on the gondola face, s2, is known 

from Equation (4-13).   

 

 

 R

θt

 r

L2   

 z 

Gondola

Airbag

 s

Figure 4-8:  Gondola Intermediate Airbag Impact 
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c. Derivation of Phase 3 Kinematic Equations:  The remaining dimensions (L3, 

r3, and θt) must be solved simultaneously from geometric compatibility and fabric 

continuity: 

Vertical Compatibility:  2 2 2 2sin sint tz L r L z rθ θ= + → = −   (4-16) 

Fabric Continuity:   ( )2 2 2 0 0 (1 )ts L r L R Cθ Lε+ + = + + =   (4-17) 

Solving Fabric Continuity equation (4-17) for θt, and substituting Equation (4-16) for L2 

gives 

2 2

2

sin t
t

C s z r
r

θθ − − +
=     (4-18) 

Substituting Equation (4-2) for r into Equation (4-18), delivers θt in terms of state 

variables in conjunction with Equation (4-13) for s2. 

[ ]2

2

(1 cos )
sint

t

C s z
R s

θ
tθ θ

− − −
=

−
+    (4-19) 

Angle θt is non-linear and transcendental in θt.  Hence a non-linear equation solver is 

used to determine it.   

Contact length s2 is determined by the gondola face dimensions x and y and the 

azimuth angle φ according to Equation (4-13).  Figure 4-7 from Phase 3 contact shows a 

top view of the gondola and airbag and defines the dimensions that apply to pure Phase 2 

contact as well.  In pure Phase 2, the airbag contacts the gondola contact face all the way 

around, such that Equation (4-17) applies.  Therefore, there are two solutions to angle θt, 

one for each edge. 

[ ]sec (1 cos )
sin , if

sec
tx

tx tx C

C x z
R x
φ θ

θ θ φ
φ

− − −
= +

−
φ≤   (4-20) 
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[ ]csc (1 cos )
sin , if

csc
ty

ty ty C

C y z
R y
φ θ

θ θ φ
φ

− − −
= +

−
φ>   (4-21) 

Likewise, there are two solutions for r2 and L2 from Equations (4-2) and (4-16). 

2
2

sec ,
1 cos

csc1 cos ,
1 cos

C
tx

t
C

ty

R x if
R sr

R y if

φ φ φ
θ
φθ φ φ

θ

−⎧ ≤⎪ −− ⎪= = ⎨ −− ⎪ >
⎪ −⎩

    (4-22) 

2 2

sec sin , if
1 cos

sin
csc sin , if

1 cos

tx C
tx

t

ty C
ty

R xz
L z r

R yz

φ θ φ φ
θ

θ
φ θ φ φ

θ

−⎧ − ≤⎪ −⎪= − = ⎨ −⎪ − >
⎪ −⎩

  (4-23) 

 
 
C. Transitions between Phases  
 
 

1. Transition from Pre-Impact, Phase 0, to Phase 1. 

Impact occurs when s1 = 0 at an elevation found by solving Equation (4-6) for z when 

s1 = 0. 

0 1
2

z C R π⎛= + −⎜
⎝ ⎠

⎞
⎟     (4-24) 

2. Transition from Phase 1 to 2. 

The transition from Phase 1 dome contact to Phase 2 contact occurs when 2tθ π> , 

as shown in Figure 4-2 from a side view.  From a top view, it is shown in Figure 4-9.  

Phase 2 contact exists along the gondola x-normal edge from φ = 0 to φ2x, and Phase 2 

equations apply.  From φ = φ2x to 90o, the airbag dome is in Phase 1 contact, and Phase 1 

equations apply.  The elevation at which the transition occurs for a given azimuth angle is 
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found by setting s1 = s2 according to Equation (4-13), and solving Equation (4-6) for z.  

The resulting elevation at which Phase 1 ends is 

1 1
2 2

z C R sπ π⎛ ⎞ ⎛ ⎞= + − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

22     (4-25) 

 

x y
φ2x

s

 Phase 1

 Phase 2

 Airbag 
Contact 
Circle 

 
Figure 4-9: Top View of Airbag and Gondola Showing Contact 

 

Phase 2 first begins when 2 20 and .x s xφ = =   Full Phase 2 occurs when 

2 2
2 2 2and .x y C s x yφ φ φ= = = +   The corresponding elevation limits are found from 

Equation (4-24).  In between these elevations, when Phase 1 begins and is completed, the 

transition azimuth angle must be determined. 

Several conditions determine the value of φ2x.  If θt is π/2, then Phase 1 equations 

apply.  If θt is between π/2 and π, then Phase 2 equations apply.  If θt is π, then Phase 3 

equations apply.  The φ where the θt transitions from Phase 1 to 2 is φ2x.  Since Equation 
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(4-19) for θt is transcendental, a more tractable condition to indicate transition from Phase 

1 to Phase 2 is the condition that Inequality (4-3) becomes an equality.   

It is possible to need two φ2 angles, one for the x-normal edge contact φ2x and one for 

the y-normal edge contact φ2y.  Figure 4-10 shows this scenario and the two azimuth 

angles.   

 

φ2x

φ2y

 Airbag 
Contact 
Circle 

Phase
2

Phase 2

Phase
1

 
Figure 4-10: Top View of Airbag and Gondola Showing Contact 

 

Solving Equation (4-17) for s2 and using Equation (4-16) for L2 and Equation (4-22) 

for r2, leads to 

( ) ( )2
2 2 2 2 sin sin

1 cost t t
t

R ss C L r C z r C z t tθ θ θ θ θ
θ

−
= − − = − + − = − + −

−
 (4-26) 

At the transition from Phase 1 to 2, θt is π/2.  Hence 

( )2 2 1
2

s C z R s π⎛ ⎞= − + − −⎜
⎝ ⎠

⎟     (4-27) 

Substituting Equation (4-13) as the definition for s2 yields 
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22 sec 1
2 2xx C Rπ φ⎛ ⎞ ⎛ ⎞− = + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
zπ

−    (4-28) 

Recall that C depends on εL and R depends on εH.   

When uniform strain is assumed, Equation (4-28) may be solved directly for the 

transition angle 2xφ .  When εL and εL are allowed to vary with azimuth, it is more 

convenient to solve for the transition angle in terms of the pressure.  Substituting fabric 

continuity constant C from Equation (4-17) together with the constitutive Equation (3-17) 

for εL along with the Tsai substitution [3-3: pg 17] yields   

( )2 0 02 sec 1 1
2 2

L L H
x

L

x L R R z
E

σ ν σπ πφ
⎛ ⎞−⎛ ⎞ ⎛ ⎞− = + + + −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
−  (4-29) 

Substituting longitudinal and hoop stress Equations (3-10) and (3-12) for the stresses 

results in 

( )

2
2

2

2 0 0

2
2 sec 1 1

2 2

g L

x
L

rP r R
R

x L R R z
tE

ν
π πφ

⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎛ ⎞ ⎛ ⎞⎝ ⎠⎜ ⎟− = + + + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠
⎜ ⎟⎜ ⎟
⎝ ⎠

−  (4-30) 

Substituting Equation (4-20) for r2 and θt = π/2 yields 

( )

( )2
2

2

2 0 0

sec
sec

2
2 sec 1 1

2 2

x
g x L

x
L

R x
P R x R

R
x L R R z

tE

φ
φ ν

π πφ

⎛ ⎞⎛ ⎞−
⎜ ⎟⎜ ⎟− − −

⎜ ⎟⎜ ⎟⎛ ⎞ ⎛ ⎞⎝ ⎠− = + + + −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠

−

           (4-31) 

Expanding terms, consolidating, and separating variables into a quadratic equation that 

can be solved for the transition angle in terms of gauge pressure 
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( ) ( ) ( ) ( )
( )

( )

( )

2

0 0 0 0

0 0

2

1 2
2 2 2 2 2

2 2
sec

g g L

L L

g

L

x

P P R
L R L R R z

tE tE
arc

P
x L R

tE

νπ π
π

φ

−
− ± − − + + + + − −

+

=

⎧ ⎫⎡ ⎛ ⎞
⎪ ⎪⎜ ⎟

⎤
⎢ ⎥⎪ ⎣ ⎝ ⎠

⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

⎦ ⎪  

           (4-32) 

Equivalently, for φ2y 

( ) ( ) ( ) ( )
( )

( )

( )

2

0 0 0 0

0 0

2

1 2
2 2 2 2 2

2 2
csc

g g L

L L

g

L

y

P P R
L R L R R z

tE tE
arc

P
y L R

tE

νπ π
π

φ

−
− ± − − + + + + − −

+

=

⎧ ⎫⎡ ⎛ ⎞
⎪ ⎪⎜ ⎟

⎤
⎢ ⎥⎪ ⎣ ⎝ ⎠

⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

⎦ ⎪
 

           (4-33) 

This scenario changes the limits of integration for Phase 1 and 2 surface and volume 

integrals introduced in Sections 7 and 8.  For Phase 1 calculations, φ2x and φ2y are used as 

the limits of integration rather than 0 and π/2.  For the Phase 2 calculations, instead of 

corner azimuth angle φC as a limit, φ2x and φ2y are used.   

3. Transition from Phase 2 to 3. 

The transition from Phase 2 dome contact to Phase 3 contact, shown in Figures 4-2 

and 4-11, occurs when θt = π and at the same time when z = L.  This situation occurs first 

at the corner.   
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φ3x

φ3y

Phase
2

 Phase 2

Phase
3

 
Figure 4-11: Top View of Airbag and Gondola Showing Contact 

 

Phase 3 contact exists along the gondola edges from φ3y to φ3x, and Phase 3 equations 

apply.  From φ = φ3y to 90o and from 0o to φ3x, the airbag dome is in Phase 2 contact, and 

Phase 2 equations apply.  The elevation at which the transition occurs for a given azimuth 

angle is found by setting and solving Equation (4-15) for z.  The resulting 

elevation at which Phase 2 ends is 

3L = z

2 1
2 2

z C R sπ π⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

3     (4-34) 

Phase 3 first begins when 2 2
3 3 3and .x y C s x yφ φ φ= = = +   Full Phase 3 occurs when 

3 30,andx s xφ = = .  The corresponding elevation limits are found from Equation (4-28).  

Between these elevations, when Phase 2 begins and is completed, the transition azimuth 

angles must be determined.  The phase-transition azimuth angles φ3x and φ3y are 

determined by solving Equation (4-15) under condition that z = L3.  At the transition from 

Phase 2 to 3, θt is π and the following is true. 
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3
3 2 2

R ss s C z π−
= = − −     (4-35) 

Separating s3 and substituting Equation (4-13) as the definition for s3 and Equation (4-17) 

for the definition of C yields 

31 sec
2 2xx C Rπ φ⎛ ⎞ zπ

− = − −⎜ ⎟
⎝ ⎠

   (4-36) 

Once again, given uniform strain, Equation (4-36) may be solved directly for the 

transition angle 3xφ . 

When εL and εL are allowed to vary with azimuth, it is more convenient to solve for 

the transition angle in terms of the pressure.  Substituting the fabric continuity constant 

from Equation (4-11), together with the constitutive Equation (3-3) for εL along with the 

Tsai substitution [3-3: pg 17] yields   

( )3 0 01 sec 1
2 2

L L H
x

L

x L R R
E

σ ν σπ πφ
⎛ ⎞−⎛ ⎞− = + + −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
z−   (4-37) 

Substituting longitudinal and hoop stress Equations (3-10) and (3-12) for the stresses 

results in 

( )

2
3

3

3 0 0

2
1 sec 1

2 2

g L

x
L

rP r R
R

x L R R
tE

ν
π πφ

⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎛ ⎞ ⎝ ⎠⎜− = + + −⎜ ⎟ ⎜⎝ ⎠
⎜ ⎟⎜ ⎟
⎝ ⎠

z⎟ −⎟   (4-38) 

Substituting Equation (4-14) for r3 and θt = π yields 
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( )

( )2
3

3

3 0 0

sec
sec

4
1 sec 1

2 2

x
g x L

x
L

R x
P R x R

R

2
x L R R

tE

φ
φ ν

π πφ

⎛ ⎞⎛ ⎞−
⎜ ⎟⎜ ⎟− − −

⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠− = + + −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠

z−  

           (4-39) 

Expanding terms, consolidating, and separating variables yields a quadratic equation that 

can be solved for the transition angle in terms of pressure 

( )

( )
( )

( )
( )

( )

0 0

2

0 0

0 0 0 0

3
0 0

1
2 4

3 4
1 1

2 4 8 2
sec

4

g

L

g g g L

L L L

x
g

L

P
L R

tE

P L R P P R
L R L R R z

tE tE R tE
arc

x L R P

tE R

π

νπ π

φ

− − + +

+ −
± − + + − + + − −

=
+

⎧⎧ ⎛ ⎞ ⎫
⎨ ⎜ ⎟⎪ ⎪⎩ ⎝ ⎠⎪ ⎪

⎪ ⎪⎫⎛ ⎞ ⎧ ⎛ ⎞ ⎫⎪⎪ ⎪⎨ ⎬⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎩ ⎝ ⎠ ⎭⎪⎪ ⎪⎭
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

           (4-40) 

Equivalently, for φ3y 

( )

( )
( )

( )
( )

( )

0 0

2

0 0

0 0 0 0

0 0

3

1
2 4

3 4
1 1

2 4 8 2
csc

4

g

L

g g g L

L L L

g

L

y

P
L R

tE

P L R P P R
L R L R R z

tE tE R tE
arc

y L R P

tE R

π

νπ π

φ

− − + +

+ −
± − + + − + + − −

+
=

⎧ ⎛ ⎞⎧ ⎫
⎨ ⎜ ⎟⎪ ⎪⎩ ⎝ ⎠⎪ ⎪

⎪ ⎪⎫⎪⎛ ⎞ ⎧ ⎛ ⎞⎪ ⎪⎫
⎨ ⎬⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎩ ⎝ ⎠ ⎭⎪⎪ ⎪⎭

⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

           (4-41) 
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D. Airbag Surface Area and Volume  
 
 

1.  Airbag Exposed Surface Area.   

The exposed airbag surface area AL that might leak gas through the pores of the fabric 

is the area of the airbag cylinder walls and the exposed area of the airbag dome.  The 

differential surface area dAL in the dome, generic to all phases, is calculated by 

multiplying a differential meridional arc rdθ times a differential circumference as seen in 

Figure 4-12.  The differential circumference is calculated by multiplying the horizontal 

radius from the airbag centerline to the dome skin (cos cos )ts r θ θ+ −  by the differential 

azimuth angle dφ. 

[ (cos cos )]L tdA rd s r dθ θ θ= + − φ    (4-42) 

 

rdθ

θ

 r

Gondola 

Airbag 

 s  rcosθ

θ 

 r 

−rcosθt Gondola

Airbag

 s
rcosθ 

 
Figure 4-12:  Dome Differential Surface Area 

 

The resulting exposed dome and cylinder wall surface area integral, generic to all phases, 

with a symmetrical gondola and airbag is 
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( )

( )

2

1

2

1

0

4 (cos cos )

4 (sin cos )

t

L t

t t t t

A r s r d LR d

r s r LR d

θφ

φ

φ

φ

θ θ θ φ

θ θ θ θ φ

⎡ ⎤
Δ = + − +⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤= + − +⎣ ⎦

∫ ∫

∫
  (4-43) 

a. Phase 1 Surface Area:  For the case of pure Phase 1 initial contact, airbag 

meridional arc terminal angle is / 2tθ π= ; hence the exposed area of the dome and 

cylinder wall surface area AL1 for Phase 1 can be calculated where the variables, r and s1 

are known from Equations (4-2) and (4-3). 

( )
2

1

2 2
1 1 1 1 1 24 4

2 2LA rs r L R d rs r L R
φ

φ

π π
1φ φ φ⎛ ⎞ ⎛ ⎞Δ = + + = + + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∫   (4-44) 

For the case of pure Phase 1, i.e. all around the azimuth, Δφ = φ2 − φ1 = π/2; hence the 

dome and cylinder surface area is 

2 2 2
1 1 1 12

2LA rs r L R rs rππ π π⎛ ⎞= + + = + +⎜ ⎟
⎝ ⎠

12 2 L Rπ   (4-45) 

b. Phase 3 Surface Area:  The generic integral for the dome and cylinder 

exposed surface Equation (4-43) is used with Δφ = π/2, but, for pure Phase 3, θt is π and r 

is a function of s from Equation (4-2).   

3

3

2 2
3

3 4
4

y

x

L
R s

3A L R d
φ

φ

π φ
⎛ ⎞−

= +⎜
⎝ ⎠
∫ ⎟

)3 d

    (4-46) 

However, due to the discontinuity of Equation (4-13), the integral is broken into two 

parts, as shown in Figure 4-11.  Substituting Equation (4-13) in for s3, 

( ) (
3

3

2 2 2 2 2 2
3 3sec 4 csc 4

yC

x C

LA R x L R d R y L R
φφ

φ φ

π π φ φ π π φ= − + + − +∫ ∫ φ  (4-47) 

Substituting Equation (4-15) in for L3, 
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( ) ( )( )

( ) ( )( )
3

3

2 2
3

2 2

sec 2 sec 2

csc 2 csc 2

C

x

y

C

LA x Rx R C z

y Ry R C

φ

φ

φ

φ

d

z d

π φ π φ φ

π φ π φ φ

= − + − + +

+ − + − + +

∫

∫
  (4-48) 

In the case of pure Phase 3 contact, φ3x = 0 and φ3y = / 2π .   

c. Phase 2 Surface Area:  The generic integral for the dome and cylinder surface 

area (4-43) applies; however, for Phase 2, not only is r a function of s and θt from 

Equation (4-2), but also θt is a transcendental function that depends on φ.  Therefore, the 

surface area integral, which includes θt integrated with respect to dφ, must be solved 

numerically. 

( )
2

1

2

2 2
2 24 sin co

1 cos 1 cosL t t t t
t t

R s R s
2sA s L

φ

φ

R dθ θ θ θ φ
θ θ

⎛ ⎞⎛ ⎞− −⎜ ⎟= + − +⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠
∫  (4-49) 

Pure Phase 2 dome contact is discontinuous at the gondola impact face corner; therefore, 

substituting Equation (4-13) into Equation (4-49) yields 

( )

( )

2

2
0

2/ 2

sec sec4 sec sin cos
1 cos 1 cos

csc csc4 csc sin cos
1 cos 1 cos

C

C

L tx tx tx tx
tx t

ty ty ty ty
ty t

R x R xA x

R y R y

Rz d

y Rz d

φ

π

φ

φ φθ φ θ θ θ
θ θ

φ φ

φ

θ φ θ θ θ
θ θ

⎛ ⎞⎛ ⎞− −⎜ ⎟= + −⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞− −⎜ ⎟+ + −⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

∫

∫ φ

+

+

 (4-50) 

Since θt is transcendental and a function of φ, Equation (4-50) must be solved 

numerically.  

d. Phases 1 and 2 Active Surface Area:  The generic surface integral for the 

dome and cylinder (4-43) applies, however, for Phases 1 and 2 active, different 

integration limits apply as the surface integrals are added. 
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( )

( )

2

2

2

2

2
1 1 1 1

2

0

2

4 ( ) ( )
2

sec sec4 sec sin cos
1 cos 1 cos

csc csc4 csc sin cos
1 cos 1 cos

y

x

x

L

tx tx tx tx
tx t

ty ty ty ty
ty t

A R s s R s L R d

R x R xx Rz d

R y R yy Rz d

φ

φ

φ

φ

π φ

φ φθ φ θ θ θ
θ θ

φ φ

φ

θ φ θ θ θ
θ θ

⎛ ⎞= − + − +⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞− −⎜ ⎟+ + −⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞− −⎜ ⎟+ + −⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

∫

∫

/ 2

y

π

∫ φ

+

+

 (4-51) 

In Equation (4-51), R, known from Equation (4-1), r from (4-2), s1 from (4-6), and L1 

from (4-10), are all explicit functions of state variables and parameters.  On the other 

hand, angle θtx angle θty depend on φ from Equations (4-18) and (4-19).  The first integral 

of Equation (4-51) is evaluated explicitly in Equation (4-43) leaving the second and third 

integrals to be evaluated numerically. 

Either Phase can be eliminated by collapsing the integration limits.  If Phase 1 is over, 

φ2x and φ2y become φC.  If Phase 2 is absent, φ2x becomes 0 and φ2y becomes π/2.   

The typical impact progression is for s1 to start at zero and then bloom out on impact 

until it equals x or y.  Then φ2x and φ2y start growing from zero.  In Phase 1, s1 keeps 

growing until it equals x sec φC or y csc φC, then Phase 1 ends.  Phase 2 remains active 

until φ3x = 0.   

The rebound is the reverse order.  First, z rises above L at the side, φ = 0, initiating 

Phase 2.  Then φ3x and φ3y tend toward φC, at the corner.  When s1 drops below x sec φC 

or y csc φC, then Phase 1 becomes active at the corner and spreads outward until 

engulfing the whole circumference.  Then s1 shrinks to zero and the impact is over. 

e. Phases 2 and 3 Active Surface Area:  The generic surface integral for the 

dome and cylinder (4-43) applies, however, for Phases 2 and 3 active, different 

integration limits apply as all the surface integrals are added. 
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( )

( )

( ) ( )( )

3

3

3

2

0

2/ 2

2 2

sec sec4 sec sin cos
1 cos 1 cos

csc csc4 csc sin cos
1 cos 1 cos

sec 2 sec 2

x

y

C

x

L tx tx tx tx
tx t

ty ty ty ty
ty t

R x R xA x

R y R yy R

x Rx R C z d

φ

π

φ

φ

φ

φ φ Rz d

z d

θ φ θ θ θ
θ θ

φ φ

φ

θ φ θ θ θ
θ θ

π φ π φ φ

⎛ ⎞⎛ ⎞− −⎜ ⎟= + −⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞− −⎜ ⎟+ + −⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

+ − + − + +

∫

∫

∫

( ) ( )( )
3

2 2csc 2 csc 2
y

C

y Ry R C z d
φ

φ

π φ π φ φ+ − + − + +∫

φ

+

+
 (4-52) 

In Equation (4-52), R, known from Equation (4-1), r from (4-2), are all explicit functions 

of state variables and parameters.  On the other hand, angle θtx angle θty depend on φ from 

Equations (4-20) and (4-21) and C depends on φ from Equation (3-12).  Hence Equation 

(4-52) must be evaluated numerically. 

Either Phase can be eliminated by collapsing the integration limits.  If Phase 3 is 

absent, φ3x and φ3y become φC.  If Phase 2 is absent, φ3x becomes 0 and φ3y becomes π/2.   

The typical impact progression is for z to drop to L at φ = φC and Phase 3 begins with 

φ3x and φ3y growing from φC.  Phase 2 remains active until φ3x becomes 0 and φ3y 

becomes π/2.    

The rebound is the reverse order.  First, z rises above L at the center of the faces, and 

φ3x rises above 0 and φ3y drops below π/2 initiating Phase 2 at the center of the faces. 

2. Partial Derivatives of Geometry Factors.   

Equation (3-35) calls for partial derivatives of geometric factors arising from static 

equilibrium.  From Equation (3-10),  

(0 1 )H H
RA
t

ε= +      (4-53) 

The resulting partial derivatives using the comma notation are 
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0
, , ,0, , 0

HH z H H
RA A A
tε= =

Lε
=    (4-54) 

Likewise, from Equation (3-12), 

21
2Long
rA r

t R
⎛ ⎞

= −⎜
⎝ ⎠

⎟      (4-55) 

The resulting partial derivatives depend on the Phase of impact.  For Phase 1, they are 

( )( ) ( )2
1 1 1

1, 1 2

2 , , ,1 1, ,
2

z z z
L z z z

R R s R s R R s
A R s

t R

⎛ ⎞− − − −
⎜ ⎟= − −
⎜ ⎟
⎝ ⎠

 (4-56) 

( )( ) ( )2
0 0

1, 0 2

2 ,1 1,
2

H

H HL

R R s R s R R s
A R s

t R
ε

ε ε

⎛ ⎞− − − −
⎜ ⎟= − −
⎜ ⎟
⎝ ⎠

  (4-57) 

( )( ) ( )2

1, 2

2 , , ,1 1, ,
2

L L L

L L LL

R R s R s R R s
A R s

t R
ε ε ε

ε ε ε

⎛ ⎞− − − −
⎜ ⎟= − −
⎜ ⎟
⎝ ⎠

 (4-58) 

For Phase 2, they are 

( )
( )( ) ( ) ( )

( )

2
2, 2 22

2
2

2

1 1 cos , , , sin 1
1 cos1 cos

,
2

L z t z z t z t
tt

z

R sA R s R s
Rt

R R s
R

θ θ θ
θθ

⎧ ⎛ ⎞−⎪⎡ ⎤= − − − − −⎜ ⎟⎨⎣ ⎦ ⎜ ⎟−− ⎪ ⎝ ⎠⎩
⎫− ⎪+ ⎬
⎪⎭

 

           (4-59) 

( )
( )( ) ( ) ( )

( )

2
2, 2 22

2
2

2

1 1 cos , , , sin 1
1 cos1 cos

,
2

H H H H

H

L t t t
tt

R sA R s R s
Rt

R R s
R

ε ε ε ε

ε

θ θ θ
θθ

⎧ ⎛ ⎞−⎪⎡ ⎤= − − − − −⎜ ⎟⎨⎣ ⎦ ⎜ ⎟−− ⎪ ⎝ ⎠⎩
⎫− ⎪+ ⎬
⎪⎭

 

           (4-60) 
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( )
( )( ) ( ) ( )

( )

2
2, 2 22

2
2

2

1 1 cos , , , sin 1
1 cos1 cos

,
2

L L L

L

L t z t t
tt

R sA R s R s
Rt

R R s
R

ε ε ε

ε

θ θ θ
θθ

⎧ ⎛ ⎞−⎪⎡ ⎤= − − − − −⎜ ⎟⎨⎣ ⎦ ⎜ ⎟−− ⎪ ⎝ ⎠⎩
⎫− ⎪+ ⎬
⎪⎭

 

           (4-61) 

For Phase 3, they are 
 

( )( ) ( )2
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3. Airbag Volume.   

The airbag volume is divided into three mathematically practical components shown 

in Figure 4-13: 1) airbag main cylinder, 2) partial dome on airbag top, and 3) frustum 

under gondola.  These volume components are integrated from differential azimuth slices 

dφ.   
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Figure 4-13:  Differential Volume Components 

 

The differential air volume in the cylinder is its differential surface element, LRdφ, 

times its differential thickness dR. 

cylinderdV LRd dRφ=     (4-65) 

The differential air volume in the partial dome is its differential meridional length, rvdθ, 

times its differential azimuth, ( )cos cost vs r r dθ θ φ− +   times its differential thickness 

drv. 

( cos cos )dome t v v vdV s r r d r dr dθ θ θ φ= − +   (4-66) 

The differential air volume in the frustum is its differential radius, dRf, times differential 

arc length, Rf dφ, times its differential height dh. 

frustum f fdV R d dR dhφ=     (4-67) 

All the differential air volumes contain the differential azimuth angle dφ, but the rest of 

the differentials are unique to each volume.  For clarity of explanation, the unique 

differentials are integrated separately first.  The generic frustum volume requires the most 

explanation and thus is first.  The height of the frustum, h, in Figure 4-14, varies from 0 

to r sin θt, hence these are the integration limits for dh.  The radius of the frustum Rf 
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varies from 0 to s + h cot θt, hence these are the integration limits.  Though these limits 

invert the frustum, the volume is equivalent. 
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The generic dome volume is treated next. 
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The generic cylinder volume is the least complicated. 

2 2

1 1

2

0

1
2

R

cylinderV LR dRd LR
φ φ

φ φ

dφ φ= =∫ ∫ ∫    (4-70) 

By combining the three generic volumes, the resulting generic airbag volume integral is 

( )
2

1

3 3
2 2 2 2 21 2cos cos sin cos sin

2 3 3t t t t t t
r rV s r sr r s r LR

φ

φ

dθ θ θ θ θ θ
⎛ ⎞⎛ ⎞

= + + + − + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫ φ  

           (4-71) 

where L, r, and s are functions of φ in Phases 2 and 3 but not Phase 1. 
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a. Phase 1 Volume:  For the case of Phase 1 dome contact, meridional arc angle 

/ 2tθ π= , L = L1 , r = r1, and s = s1 none of which are functions of φ; hence the airbag 

volume is 
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For the case of Phase 1 all around the azimuth, Δφ is 2π; hence dome volume is 

2 2 3
1 1 1 1 1 1 1

2
2 3

V s r s r r L Rππ ⎛= + + +⎜
⎝ ⎠

2 ⎞
⎟    (4-73) 

L1, r1, and s1 are complicated functions of constants and state variables from Equations 

(4-6, 7, and 10). 

b. Phase 3 Dome Volume:  For the case of Phase 3 dome contact, L = L3, r = r3, 

and s = s3, all of which are functions of φ.   Also, meridional arc angle tθ π= ; hence the 

frustum volume is zero.  However, the generic volume Equation (4-71) does not account 

for the penetrating gondola; hence, a slice of the gondola must be subtracted.  It is a slice 

of radius s3 and height L3 − z.   

3 33
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The resulting Phase 3 airbag volume integral is 
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V r s r L R L z s
φ

φ
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where L3 and r3 are functions of constants and state variables from Equations (4-14) and 

(4-15).  Substituting Equation (4-13) in for s3, provides clarity about the discontinuity at 

the corner. 
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φ   (4-76) 

c. Phase 2 Dome Volume:  For the case of Phase 2 dome contact, L = L2, r = r2, 

and s = s2, all of which are functions of φ.   Also, meridional arc angle tθ π< , hence the 

frustum volume is greater than zero.  The resulting generic integral Equation (4-71) 

becomes. 
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           (4-77) 

Since, for the case of Phase 2 contact, angle tθ is a transcendental function of φ, the 

volume integral must be solved numerically.  Phase 2 dome contact is discontinuous at 

the gondola face corner or at the Phase 3 transition.  Therefore, substituting Equation    

(4-13) into Equation (4-77) yields 
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d. Phases 1 and 2 Active Volume:  The two volume integrals apply, however, 

for Phases 1 and 2 active, different integration limits apply as the volume integrals are 

added. 
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 (4-79) 

In Equation (4-65), R substituted from Equation (4-1), r1 from (4-7), s1 from (4-6), and L1 

from (4-10), are all explicit functions of state variables and parameters determined 

independently of the variable of integration φ.  Hence, the first integral of Equation       

(4-79) is evaluated explicitly by Equation (4-72).  In contrast, r2, L2, angle θtx and angle 
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θty depend on φ from Equations (4-20, 21, 22, and 23), but all are transcendental in θt and 

require numerical solution before integration. 

e. Phases 2 and 3 Active Volume:  The two volume integrals apply, however, for 

Phases 2 and 3 active, different integration limits apply as the volume integrals are added. 
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 (4-80) 

In Equation (4-80), R substituted from Equation (4-1), is an explicit function of state 

variables and parameters determined independently of the variable of integration φ.  On 

the other hand, r3 and L3 depend on φ from Equations (4-14) and (4-15) which must be 

substituted before integration.  Hence, the last two integrals are evaluated numerically by 

Equation (4-76).  Likewise, r2, L2, angle θtx and angle θty depend on φ from Equations (4-

20, 21, 22, and 23), and all are transcendental in θt; hence they require numerical solution 

before integration. 
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E. Change in Volume and Partial Derivatives of Volume  
 
 

The change in airbag volume with time, V , required by Equation (3-57), can be 

calculated by summing the partial derivatives of V with respect to z, εH, and εL, and 

multiplying by , z Hε , and Lε respectively.  The partial derivative of the total airbag 

volume is the sum of the partial derivatives for each phase of contact.  Hence 

1 1 1
1 2 3

2 2 2

3 3 3

H L
H L

H L
H L

H L
H L

V V VV V V V z
z

V V Vz
z

V V Vz
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ε ε
ε ε

ε ε
ε ε

ε ε
ε ε

∂ ∂ ∂
= + + = + +

∂ ∂ ∂
∂ ∂ ∂

+ + +
∂ ∂ ∂
∂ ∂ ∂

+ + +
∂ ∂ ∂

   (4-81) 

1. Phase 1 Airbag Volume Partial Derivatives.   

The Phase 1 airbag volume was integrable, thus a partial derivative can be taken on 

this solution.  These partial derivatives require substantial calculus when expressed in 

analytic form, which can be found in Appendix A for Phase 1 impact.  Numeric 

differentiation is a more practical approach that is implemented in code.  All the partial 

derivatives appearing in the following equations will be calculated numerically by 

complex step finite difference [Ref. 4-1 Martins].  Differentiating Equation (4-72) yields 

(2 2 3 2
1 1 1 1 1 1 1 2 2

1
2 2 y xV s r s r r L Rπ φ φ )

′⎡ ⎤⎛ ⎞′ = + + + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
   (4-82) 

where (·)′ indicates partial differentiation with respect to z, εH , and εL, in turn. 
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2. Phase 3 Airbag Volume Partial Derivatives.   

The Phase 3 airbag volume was integrated by numeric quadrature.  Semi-analytic 

differentiation can be taken using Leibniz’ rule on this solution.  Differentiating Equation 

(4-76) yields   

3

3 3
3

3 3 3 3 3 3 3

yC

x y
x C

x y x x y yV V d V d V V
φφ

φ φ φ φ
φ φ

φ φ φ φ
= =

′ ′ ′ ′′ = + − +∫ ∫   (4-83) 

Numeric differentiation is performed on each partial derivative of Equation (4-83) by 

complex step.   

3. Phase 2 Airbag Volume Partial Derivatives.   

The Phase 2 airbag volume contains a transcendental equation requiring numerical 

integration.  The geometric partial derivative will be handled numerically by complex 

step finite difference.  Leibniz’ Rule is applied to the V2 integrals in Equation (4-78) to 

express its derivative as the numeric integration of the integrand’s derivative plus the 

integrand times the derivative of the limits of integration.  The volume derivative is split 

into two parts because of the discontinuity of the volume equations between phases.  

Thus, after applying the Leibniz rule, Equation (4-78) becomes a continuous, semi-

analytic expression for which each of the derivatives of the parenthetical expressions are 

found by complex step finite difference. 

/ 2

2 2 2 2 2
0

x

x y
y

x y x x y yV V d V d V V
φ π

φ φ φ φ
φ

φ φ φ φ
= =

′ ′ ′ ′′ = + + −∫ ∫   (4-84) 

The limits of integration can be 2 2 3and or and 3x y x yφ φ φ φ depending whether Phase 1 or 3 

co-exists with Phase 2. 
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Unfortunately, the non-linear equation solver that numerically calculates the root of 

Equation (4-19) for θt does not handle complex variables.  Therefore, all partial 

derivatives of θt appearing in Equation (4-84) must be found semi-analytically by 

differentiating Equation (4-19) explicitly. 

[ ] ( )
( ) [ ]2 2

(1 cos ) sin
(1 cos ) sin

t t t
t

t t

C z R
R s s z C

θ θ θ
θ

θ θ
′ ′ ′− − + −

′ =
− − + + −

   (4-85) 

The partial derivatives on the right hand side of Equation (4-85) are found by complex 

step. 

 
 
F. Summary  
 
 

Kinematic equations for airbag surface area and volume were derived in this chapter 

in terms of a limited number of geometric variables.  Identifying distinct phases of impact 

and appropriate assumptions about their geometry was critical to creating a tractable 

problem.  Discovering the conditions that delineated the phases and recognizing how 

phases may coexist were important steps in the formulation. 

As a result of identifying explicitly the discontinuities in the kinematic equations, 

numerical simulations were implemented that accounted for the piecewise smooth nature 

of the solution.  Because the area and volume integrations are imbedded within the 

numeric time integration of differential equations derived in Chapter 3, derivatives of 

these spatial integrals with respect to the state variables were required.  Tedious but 

straight-forward calculus with the aid of Leibniz’ Rule provided the partial derivatives 

needed for complex-step derivatives used in the computational solution.  The end result is 

a single, sophisticated, uniform-strain finite element, governed by six degrees of freedom 
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(L, R, r, s, z, θ), which has the potential to rival finite element models comprised of 

hundreds or thousands of simple elements. 
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Chapter V:  Airbag Elasticity and Permeability Experiments 
 
 
 

After an overview of the airbag properties that were measured, the experimental 

apparatus is described.  The experimental design and procedure are explained.  The 

analyses and experimental results are separated into two sections: one for elasticity and 

the other for permeability. 

 
 

A. Overview  
 
 

Our mathematical models use airbag permeability in the form of airbag leak rate RL 

and airbag elasticity in the hoop direction EH and in the longitudinal direction EL.  Airbag 

leak rate and hoop elasticity were experimentally measured for eight of the nine airbags.  

Longitudinal elasticity was not measured and was assumed equal to the hoop elasticity, as 

is typical of the fabric manufacturer’s grab tensile data.  These experiments were 

dangerous; more than a 3 psig over-pressure from an airbag burst could kill an 

experimenter.  Precautions were taken to shield the experimenters from the test. 

 
 
B. Experimental Apparatus 

 
 

The experimental apparatus consisted of three main elements: 1) the airbag with 

flange, 2) the hose, pipe, fittings, and pressure regulator connected to the 3-inch diameter 

air compressor pipe, 3) the measuring tape and sleeves around the airbag and the pitot 

tube, pressure sensors, temperature sensor, and data-logger.   
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1. Airbag and Flange. 

The airbag and flange consisted of the airbag attached to its 2-foot by 4-foot by ¾ 

inch plywood flange used in the drop experiments.  The flange was mounted on two saw 

horses with the airbag facing upwards.  See Figure 5-1 for this configuration.  Figure 5-2 

shows a photograph of the configuration. 

 

 
Figure 5-1:  Airbag and Flange 

Flange 

Airbag 

Hose Pipe

 

There was an eighth-inch thick aluminum door that covered 4-inch by 6-inch holes in 

the flange that connect the airbag to an air jet fill source during collision experiments.  

This door was closed for the permeability and elasticity test and held shut by a 30 lb 

weight seen hanging in Figure 5-2.  This door was sealed against the flange by 3/8 by ½ 

inch foam seals (typical weather-stripping).  These seals often blew out at higher test  
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Figure 5-2:  Photograph of Airbag and Flange 
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pressures, allowing air to escape through the seals.  The white paper strips on the edge of 

the flange would blow and flap when a seal burst, indicating bad permeability data.  

Given the high ambient noise level during the tests and subtlety in the pressure readings, 

the paper flags were the best seal break indicators.   

2. Hose, Pipe, Fittings, and Pressure Regulator. 

The 1-inch diameter hose, pipe, fittings, and pressure regulator, all rated for 200 psig 

and above, connected the airbag and flange to a 3-inch diameter compressed air pipe 

pressurized at 157 psig.  The flange pipe was approximately 1-foot long and attached to 

the 20-foot long red hose with a threaded union as shown in Figures 5-1 and 5-2.  The 

fittings included a 1-inch diameter ball valve just downstream of the pressure regulator to 

control the start and stop of experiments.  The pressure regulator was adjusted for each 

experiment to give a downstream pressure high enough to give sufficient flow rate in the 

hose and pipe to achieve a given pressure in the airbag.  Figure 5-3 shows a photograph 

including the ball valve, hose, and fittings. 

 

 
Figure 5-3:  Hose, Valve, and Fittings 

 
 
 

3. Measuring Tape, Pitot Tube, Pressure Sensors, Temperature Sensor, and 

Data-Logger. 

The hoop elasticity of the airbag was calculated from changes in diameter with 

pressure as indicated by electronic pressure sensors and changes in airbag circumference 
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measured by the tape measure shown in the photograph in Figure 5-2.  One end of the 

tape measure was sewn to the airbag as a reference point.  The rest of the tape was 

supported at the proper height by black thread “belt-loops”.  A sleeve at the secured end 

of the tape supported the loose end of the tape and provided a reading line.  This line was 

read by a small telescope from a safe distance. 

A pitot tube was installed in the pipe attached to the flange door about 2 inches from 

the discharge end.  Wooden blocks with foam seals supported the Pitot tube to keep its tip 

in the center of the pipe and oriented to catch a good stagnation pressure reading.  One 

pressure sensor read the stagnation pressure from the tip of the Pitot tube, and the other 

read the static pressure from the side port on the Pitot tube.  The air stream velocity was 

calculated from these two pressure readings.  Two additional pressure sensors at low air 

velocity spots inside the airbag measured the airbag static pressure.  All these pressures 

were fed into the data-logger, a laptop computer running LabView 7 [5-1] software 

shown in Figure 5-3.   The pressure data was noise filtered by averaging the 4,000 data 

points. 

Temperature inside the airbag was measured by a thermocouple in a low air velocity 

location.  The thermocouple had a digital readout with a large LED display.  The black 

readout box is shown near the experimenter’s foot in Figure 5-2. 

 
 
C. Experimental Design and Procedure 

 
 

The experiments consisted of first barely inflating an airbag to get a baseline 

circumference and permeability, then raising the regulator pressure slightly to get a 

higher flow rate and airbag pressure.  It took 5 to 10 minutes for the airbag temperature 
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and circumference to come to equilibrium, before pressure, flow rate, and temperature 

measurements were taken.  The pressure and flow rate sensors took 4 seconds of data at 

one millisecond intervals.  Each reading was averaged over the 4 second interval.  The 

experimenters recorded the digital thermometer reading manually.  Eight to ten readings 

were taken per airbag, up to approximately 3 psig. of fill pressure. 

After each airbag experiment, the fill pipe was disconnected from the airbag flange 

door, the tape measure unthreaded, sensors detached, and the airbag with flange removed 

from the saw horses.  The next airbag was then mounted on the saw horses and rigged for 

testing.  Eight of the nine original airbags were tested for permeability and elasticity after 

completion of the drop testing.  The ninth airbag exploded during one of the higher and 

heavier drop tests, and therefore was not available for permeability and elasticity testing. 

 
 
D. Elasticity Analysis and Experimental Results 

 
 

1. Analysis. 

The elasticity results show the airbag circumference varying with pressure.  The 

linearization of this variation is indicated by an x, y relationship with an initial offset in 

Figures 5-4 to 5-12.  The hoop strain was calculated from the measured change in airbag 

circumference divided by the unstrained circumference c0.  Elastic modulus is a function 

of the applied hoop and longitudinal stresses and resulting strains.  A constitutive stress-

strain equation shows the relationship to elastic modulus. 

0

0

H L
H L

H L

c c
c E E

σ νε σ−
= = −         (5-1) 
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where c0 is the initial airbag circumference, c – c0 is the strained circumferential 

displacement, and νL is the longitudinal Poisson ratio.  The hoop stress was calculated 

from the airbag pressure, strained radius, and nominal fabric thickness.  The longitudinal 

stress in a cylinder is half the hoop stress [5-2].  Thus 

(0 1
2 2 2

g gH
L

P R P R
t t

σ )Hσ ε= = = +        (5-2) 

where t is airbag fabric thickness.  From Ref [3-3: p17], / /H H LE LEν ν= .  Therefore, 

substituting (5-2) into (5-1) yields 

(0 1 1
2

g H )H H
H

P R
E t

νε ε⎛ ⎞= − +⎜ ⎟
⎝ ⎠

       (5-3) 

EHt was calculated from the measurements.  Let the effective modulus be 

1
2

H

H

E tEt ν≡
−

         (5-4) 

Hence, substituting (5-4) into (5-3) and solving for hoop strain yields 

0

0

0 01

g

g
H

g g

P R
P REt

P R Et P R
Et

ε = =
−−

       (5-5) 

Recalling the definition of hoop strain given by Equation (5-1) in terms of the measured 

circumference, 0where 2c 0Rπ= , these equations lead to 

0
0 0 0

0 0

2 1g

g g

P R P R
c c c R 0g

Et P R Et P R
π

⎛ ⎞ ⎡
= + = +⎜ ⎟

⎤
⎢ ⎥⎜ ⎟− −⎢ ⎥⎝ ⎠ ⎣ ⎦

     (5-6) 

Equation (5-6) shows that the measured circumference is a nonlinear function of gauge 

pressure.  However, it is a weakly nonlinear function, because the pressure term in the 

denominator of (5-6) is small compared to the effective modulus, Et.  Hence, the 
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statistical proportion of explained variation (R2) above 0.9 is quite high for the linear 

curve fit shown in Figures 5-5 through 5-12.  Regression of a least squares fit of the 

nonlinear model of Equation (5-6) to the data provides estimates of the two parameters R0 

and Et.  Table 5-1 shows the resulting R0 and Et for each airbag found by the nonlinear 

least squares regression of Equation (5-6). 

 

Table 5-1: Et Values for Each Airbag 

Airbag c0 R0 Et
3060 95.91 15.26 944 
3072 95.52 15.20 1007 
3084 95.94 15.27 1098 
3660 113.29 18.03 1055 
3672 112.89 17.97 1071 
3684 112.79 17.95 1064 
4072 128.96 20.52 1181 
4084 129.04 20.54 1108 

 
 
 

The measured nominal fabric thickness for all airbags was t = 0.012 inch.  A sample 

nonlinear curve fit for airbag 4084, found from regression of Equation (5-6) and shown in 

Figure 5-4, does not differ significantly from Figure 5-18.  The variation in effective 

modulus of elasticity could be explained by seams. 
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Figure 5-4:  Elasticity Curve Fit for Airbag 4084 

 

2. Experimental Results. 

The elasticity experimental results are shown in Figures 5-5 to 5-12 with labels to 

indicate each airbag.  The elasticity results show the airbag circumference variation with 

airbag pressure.  The linearity of the results was remarkable.  A straight line fit each 

result with a regression R-squared of better than 0.9.  The airbags are named according to 

their nominal inch dimensions with two-digit diameter first followed by two-digit height. 
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Figure 5-5:  Elasticity Results for the Nominal 3060 Airbag 
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Figure 5-6:  Elasticity Results for the Nominal 3072 Airbag 
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Figure 5-7:  Elasticity Results for the Nominal 3084 Airbag 
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Figure 5-8:  Elasticity Results for the Nominal 3660 Airbag 
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Figure 5-9:  Elasticity Results for the Nominal 3672 Airbag 
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Figure 5-10:  Elasticity Results for the Nominal 3684 Airbag 
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Figure 5-11:  Elasticity Results for the Nominal 4072 Airbag 
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Figure 5-12:  Elasticity Results for the Nominal 4084 Airbag 
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Airbag 4072 was the first airbag tested for elasticity and permeability.  Initially, the 

sleeve for the tape measure grabbed the tape and stretched, giving inaccurate readings as 

noted in the figure.  Figure 5-11 shows the elastic results for the nominal 4072 airbag.  

The sleeve was redesigned to be snag-free.  Likewise, the seals kept blowing out at low 

pressure, causing inaccurate readings as seen in the figure.  A 30-lb weight was hung on 

the door to crush the seals tight to solve this problem. 

 
 

E. Permeability Analysis and Experimental Results 
 
 

1. Analysis. 

The permeability measurements were based an airbag pressure and an air mass flow 

rate into the airbag via the 1-inch diameter pipe.  The air mass flow rate was measured 

with a Pitot tube mounted in the air pipe 2 inches from the discharge end.  Because the 

static and stagnation pressure inlets are so close together on a Pitot tube, there is not 

enough distance for significant viscous energy losses; hence isentropic flow assumptions 

apply.  The compressible isentropic gas mass flow rate in a pipe m from [3-2: pg 97] is  

( ) ( )0 1 / 2 1
0 211

2

Mm P A
RT

M
γ γ

γ

γ + ⎡ − ⎤⎣ ⎦
=

−⎛ ⎞+⎜ ⎟
⎝ ⎠

      (5-7) 

where  

P0 = Pitot stagnation pressure in lbf/sqin 

A = 1.060 inch diameter pipe cross sectional area = 0.88247 sqin 

γ = Specific heat ratio, 1.4 for air at 60 oF, (our case) [5-2: pg 844] 

T0 = Pitot stagnation temperature also = airbag quiescent temperature 
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M = Mach number at Pitot tube 

The Ideal Gas Constant is calculated from that given by [5-2: pg 884 and inside front 

cover]. 

3 4 2 2

2 2

2 2

2 2

144 /0.3704 0.3704

32.174 /53.3376 1716.1 247,118.4 

o o

o o

psia ft slug ft in ftR
lbm R s in lbm R
slug ft lbm slug ft in

s lbm R s R s R

= =

= = =
2

2 o

  (5-8) 

The Mach number M for compressible isentropic gas mass flow from [3-2: pg 92] is 

( )1 /
02

1 1
PM
P

γ γ

γ

−
⎛ ⎞= ⎜ ⎟− ⎝ ⎠

2
γ

−
−

       (5-9) 

where P is the static pressure in the Pitot tube.  Equations (5-7) and (5-9) were used in 

conjunction with the measured static and stagnation pressure and temperature to arrive at 

an experimentally determined mass flow rate given in Tables 5-2 through 5-10 for each 

airbag.  The higher speed Pitot readings during the experiments indicated supersonic 

velocities.  Because of falling density at higher Mach numbers, these supersonic 

velocities should have lowered the mass flow rate and hence airbag pressure, but the 

opposite happened.  This type of high speed compressible flow with friction is called 

Fanno flow, which typically tends toward Mach 1 when the pipe is long enough.  

Therefore, when the pressure data indicated supersonic flow, the Mach number was set to 

one. 

2. Experimental Results. 

The permeability results show pounds mass of air that leak out of the airbag per 

second as a function of airbag pressure Pg.  These results are shown in Tables 5-2 through 

5-10 and Figures 5-13 through 5-20 following.  All pressures are in psig, temperature is 
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in degrees Rankine, and in lbm/second.  A column for gauge pressure in the airbag is 

included in the table for later use in Equation (5-10). 

m

 

Table 5-2:  Airbag 3060 Permeability Test Data 
Airbag Pg P0-Patm P-Patm T0 M m  

3060 0.1678 0.2434 -0.104 532.6 0.1837 0.0945 
 0.5197 1.1014 -0.505 531.7 0.3944 0.1999 
 1.1105 2.6456 -1.259 531.4 0.6148 0.3014 
 1.7124 4.577 -2.247 530.8 0.8155 0.3804 
 2.2325 5.9655 -2.961 531.5 0.9365 0.4191 
 2.5558 6.9249 -3.466 531.5 1 0.4401 
 3.2839 9.3271 -4.718 532.5 1 0.4886 
 3.547 10.989 -5.767 532.5 1 0.5224 
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Figure 5-13:  Permeability Results for the Nominal 3060 Airbag 
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Table 5-3:  Airbag 3072 Permeability Test Data 
Airbag Pg P0-Patm P-Patm T0 M m  

3072 0.2409 0.3025 -0.134 536.4 0.2058 0.1054 
 0.5448 1.0354 -0.484 536.2 0.3837 0.1938 

 0.9159 2.0541 -0.995 535.9 0.5435 0.2685 
 1.4139 3.4271 -1.722 536.1 0.7078 0.3374 
 1.7247 4.4467 -2.312 536 0.8139 0.3757 
 0.2703 0.3099 -0.135 531.6 0.2078 0.1069 
 2.4346 6.3893 -3.334 531.2 0.9829 0.4292 
 3.2691 9.1414 -4.981 532.7 1 0.4847 
 3.4781 9.9965 -5.524 534.7 1 0.5011 
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Figure 5-14:  Permeability Results for the Nominal 3072 Airbag 
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Table 5-4:  Airbag 3084 Permeability Test Data 

Airbag Pg P0-Patm P-Patm T0 M m  
3084 0.1466 0.2507 -0.107 532.7 0.1865 0.0959

 0.9178 2.5159 -1.151 531.7 0.5952 0.2934
 1.5347 4.6167 -2.15 531.2 0.8099 0.3802
 1.1901 3.4329 -1.608 531.4 0.6984 0.3369
 1.8218 5.6793 -2.722 531.2 0.9056 0.4116
 2.1795 7.0708 -3.426 531.6 1 0.4431
 2.1217 6.7801 -3.264 531.6 0.9935 0.4371

 2.8736 9.7936 -4.779 532.5 1 0.4981
 3.3269 11.824 -5.813 534.3 1 0.5384
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Figure 5-15:  Permeability Results for the Nominal 3084 Airbag 
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Table 5-5:  Airbag 3660 Permeability Test Data 

Airbag Pg P0-Patm P-Patm T0 M m  
3660 0.118558 0.190905 -0.08306 536.2 0.1631 0.0837 

 0.596993 1.944764 -0.93581 536.3 0.5282 0.2615 
 1.204808 4.995017 -2.50686 536.7 0.8569 0.3916 
 0.608294 2.073749 -1.00222 536 0.5459 0.2695 
 1.276136 5.027064 -2.54236 538.2 0.8613 0.3921 
 2.033754 8.084599 -4.1721 536.5 1 0.4616 
 2.656308 10.69878 -5.56284 537.4 1 0.5141 
 2.926886 11.9694 -6.35183 537 1 0.54 
 3.066346 13.48776 -7.31269 537 1 0.5708 
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Figure 5-16:  Permeability Results for the Nominal 3660 Airbag 
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Table 5-6:  Airbag 3672 Permeability Test Data 

Airbag Pg P0-Patm P-Patm T0 M m  
3672 0.143408 0.269906 -0.12513 536 0.1959 0.1003

 0.527072 2.143781 -1.06447 535.8 0.5579 0.2746
 0.983843 4.320477 -2.23702 536.1 0.8013 0.3714
 1.66362 7.845008 -4.10299 536.4 1 0.4568
 2.083777 10.17792 -5.34957 536.7 1 0.5039
 2.395435 12.00603 -6.46064 537.9 1 0.5403
 2.52829 12.92083 -6.96462 538.7 1 0.5584
 2.758543 14.54457 -7.86724 539.7 1 0.5907
 3.178513 17.78964 -9.03565 539.8 1 0.6562
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Figure 5-17:  Permeability Results for the Nominal 3672 Airbag 
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Table 5-7:  Airbag 3684 Permeability Test Data 

Airbag Pg P0-Patm P-Patm T0 M m  
3684 0.069648 0.135634 -0.0621 536.2 0.1386 0.0712 

 0.338996 1.281372 -0.6102 535.3 0.4281 0.2152 
 0.809485 3.904036 -1.90549 535.2 0.7514 0.3554 
 1.510362 7.648819 -3.8578 535.3 1 0.4532 
 1.856347 9.555015 -4.82909 535.7 1 0.4917 
 2.236534 11.69528 -5.94024 536.5 1 0.5347 
 2.458902 13.0903 -6.7146 537 1 0.5627 
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Figure 5-18:  Permeability Results for the Nominal 3684 Airbag 
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Table 5-8:  Airbag 4072 Permeability Test Data 

Airbag Pg P0-Patm P-Patm T0 M m  
4072 0.443349 0.792348 -0.50928 530.8 0.3564 0.1802 

 0.917938 1.652874 -1.22084 530.8 0.5328 0.2598 
 1.652292 3.015175 -2.44333 531.5 0.745 0.3385 
 2.080483 3.796636 -3.31 532.4 0.8621 0.3697 
 0.120347 0.1566 -0.07878 532.5 0.1512 0.0779 
 1.733361 3.112925 -2.39549 531.3 0.7467 0.3407 
 2.2642 4.033528 -3.54219 531.7 0.8934 0.3774 
 2.839139 5.043936 -4.99159 532.1 1 0.4016 
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Figure 5-19:  Permeability Results for the Nominal 4072 Airbag 
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Table 5-10:  Airbag 4084 Permeability Test Data 

Airbag Pg P0-Patm P-Patm T0 M m  
4084 0.20344 0.62252 -0.3298 531.5 0.3042 0.1551

 0.5145 1.95887 -1.0673 531.5 0.543 0.2679
 0.95994 3.78199 -2.1089 531.8 0.7614 0.356
 1.37868 5.65019 -3.1534 533.3 0.9376 0.4121
 1.92001 7.97663 -4.5834 535.2 1 0.4599
 2.11543 8.89301 -5.1875 536.3 1 0.478
 1.93469 8.1895 -4.7117 535.3 1 0.4642
 2.27933 9.99693 -5.8444 536.2 1 0.5005
 2.63525 11.8577 -6.966 537.2 1 0.5377
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Figure 5-20:  Permeability Results for the Nominal 4084 Airbag 

 
 

 
Figure 5-20 shows the permeability results for the nominal 4084 airbag.  This curve 

was also used for the nominal 4060 airbag since it was not available for permeability 
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testing.  The results are used on a per square inch basis, so the surface area difference 

does not matter. 

The permeability results show pounds mass of air that leak out of the airbag per 

second as a function of airbag pressure, measured by a pressure sensor in a quiescent 

location inside the airbag.  The nonlinear air flow curve at low gauge pressures is an 

indication of flow through the initial pores in the unstrained fabric.  Air flow jumps 

rapidly from zero gauge pressure, because there are open pores in the unstrained fabric 

that pass air with the slightest increase in gauge pressure.  If fixed, these pores would 

choke the air flow to a constant rate as the pressure rose.  Instead, these pores strain 

further open as gauge pressure rises, allowing more air flow.  This occurs in the region of 

the curve that is linear with gauge pressure shown in the experimental results.   

A constitutive model for mass flow rate through the pores that accommodates both 

the initial exponential flow rate through the unstrained pores and the linear variation with 

pressure for strained pores is as follows: 

( )0 01 , where /gP
Lf L g A A Lfm A R P m e m m Aα−⎡ ⎤− = + − =⎣ ⎦ 0     (5-10) 

The leak rate RL is per unit area; therefore, the experimentally measured air mass flow 

must be divided by the fiber leak area ALf of each airbag.  Leak area ALf is a constant for 

the permeability test, but a function of collidant contact area during collisions.  Equation 

(5-10) expresses mass flow rate as a nonlinear function of gauge pressure, depending on 

three parameters, 0Am  (or ), α, and R0m L.  The three parameters were found by nonlinear 

least squares regression of Equation (5-10) to the permeability data as a function of 

pressure.  
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Table 5-11 shows the RL and 0Am values for each airbag.  Airbag height is in inches, 

and ALf is in square inches.  ALf for the permeability experiment is calculated as the 

unstrained fabric area minus the initial pore area.  Ap0 used in the Fanno Equation (3-4) in 

Chapter 3, is measured microscopically to be approximately 0.01.  ALf is essentially A0, 

which is the airbag circumference × height plus the top and bottom circular areas minus 

the door area in the bottom.  The units of 0Am are lbm/(sqin-second).  αPg is 

dimensionless, so α ~ 1/Pg. 

 

Table 5-11: RL and 0Am Values for Each Airbag 

ALf RL

 

Airbag Height 0Am  
 α 

 inches sq in sec/in slinch/sqin-sec  
3060 56.25 6452 2.998E-08 1.011E-07 2.041 
3072 68.5 7577 2.064E-08 9.951E-08 1.457 
3084 79.5 8662 2.613E-08 7.470E-08 2.412 
3660 56.5 8020 2.688E-08 9.762E-08 2.156 
3672 68.5 9324 3.390E-08 7.090E-08 3.100 
3684 79.5 10544 2.731E-08 7.062E-08 2.996 
4072 68.25 10994 1.336E-08 5.820E-08 2.275 
4084 80 12502 2.076E-08 5.607E-08 3.273 

 
 
 

F. Summary  
 
 

Empirical models were developed for airbag elasticity and airbag permeability.  

These results, unique to each airbag, provided values for the dynamic and thermodynamic 

models. 
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VII:  Airbag Simulation and Comparison to Experiments 
 
 
 

This chapter describes the coded mathematical simulation of the experiments.  The 

full graphical results of two single airbag impact simulations are presented and compared 

to physical experimental results.  Peak acceleration and peak pressure results of multiple 

airbag impact simulations are compared to drop test experimental results.   

The mathematical models derived in Chapters 3 and 4 were used to build a simulation 

code for the collidant hitting an airbag.  The airbag permeability model was based on the 

permeability experiments discussed in Chapter 5.        

 
 

A. Simulation Code  
 
 

The simulation code solves the physics and kinematics equations from Chapters 3 and 

4 with an explicit 4th/5th-order Runge-Kutta ordinary differential equation solver [7-1: pg 

5-1].  The ordinary differential equations it solves are Equations (5-10), (3-8), and (3-33) 

for state variables .   , , , andm z z P

An initial conditions file that specifies the collidant downward velocity at initial 

contact with the airbag and the airbag pressure at that time is used to set the starting 

conditions of the simulation.  Initial elevation is calculated as the height of the strained 

airbag dome center at the initial pressure.  Initial mass inside the airbag is calculated as 

0 0m 0Vρ=  where is the standard density at 750 feet above 

sea level at 60

7
0 1.2138 10 slinch/inchρ −= × 3

oF and V0 is the initial Phase 0 strained airbag volume calculated for the 

initial airbag pressure.  The initial condition routine also initializes the appropriate airbag 

and collidant constant parameters.  
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At each time step, the ordinary differential equations for involve other 

state variables. The terminal dome angle θ

, , , andm z z P

t in Phase 2 must be calculated using a non-

linear equation solver for the transcendental equation (4-17).   

The static equilibrium Equations (3-18) and (3-44) are also transcendental equations, 

because they depend on the airbag geometry, which depends on strain, which in turn 

depends on stress through the constitutive Equation (3-3).  Therefore, Equations (3-18) 

and (3-44) also require a non-linear equation solver at every time step. 

Finally, because the geometry varies with azimuth angle of the rectangular collidant 

during Phases 2 and 3, the leak area and volume Equations (4-38) and (4-54) require 

numerical integration.  These integrals were evaluated using adaptive Lobatto quadrature 

[7-1: pg 4-29].  To simplify the coupling of strain with geometry, uniform strain was 

assumed.  Longitudinal stress and strain dependence on azimuth was neglected by 

calculating longitudinal stress for an equivalent cylindrical collidant.  That is, the 

meridional radius, r, appearing in Equation (3-44) for σL was initially determined for a 

cylindrical collidant with the same face area of the actual rectangular collidant.  Once the 

uniform state of strain was fixed at each time step, the area and volume integrations were 

carried out for geometry, including meridional radius, that varied with azimuth angle, φ . 

State variable time histories and peak accelerations and pressures are plotted as a 

post-processing step.  Since the Fanno equations do not enter the simplified differential 

equations, pore flow quantities such as pore resistance force are also calculated as a post-

processing step.    
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B. Single Airbag Simulation Curves Compared to Impact Experiment  
 
 

The simulation was run with our experimental permeability data.  Simulation results 

are plotted on the same figure with the impact experimental results for comparison.  Two 

cases were chosen for comparison with the experimental results.  One was the nominal 

14-inch by 18-inch gondola (designated as 1418) with 357 lb weight, dropped from 15 

feet, hitting a nominal 40-inch diameter, 60-inch tall airbag (designated as 4060).  The 

second was the 1418 gondola with 477 lb weight, dropped from 15 feet, hitting a nominal 

30-inch diameter, 84-inch tall airbag (designated as 3084).  The impact chronology is 

traced with video gondola kinematic data and airbag pressure data.   

The initial contact starting time was determined for the experiment as the time when 

the gondola acceleration rose above −1 G.  The problem with this ideal was that for most 

of the experiments the acceleration data was collected only after the acceleration had 

risen above −1 G.  In the few cases with −1 G data, its timing was compared to the 

pressure data, which was comprehensive.  The airbag pressure was steadily falling as the 

inflation tank blew down until impact; then it rose rapidly.  The pressure nadir occurred 

approximately 16 milliseconds after the gondola acceleration broke above −1 G for the 

case of the 2525 gondola weighing 447 lbs hitting a 4072 airbag, one of the few cases 

with this much recorded pre-history.  Therefore, 16 milliseconds before the pressure nadir 

was chosen as the starting point for initial gondola airbag contact for all cases.  The 

gondola elevation and velocity and the airbag pressure at this time were used as the initial 

conditions for all the simulations.  The simulations begin at first contact between the 

collidant and airbag, calculated as the height of the airbag when inflated to the initial 

condition pressure.    
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The experimental impact chronology begins for the first case with the gondola lower 

face falling at −268 inches/second and contacting the airbag upper face, as indicated by 

the gondola acceleration rising above −1 G in Figure 7-1 at the 0 millisecond mark.  The 

drop test data is indicated by the thin blue line designated “Impact”.  The simulation 

results are the magenta line with square data points designated “Sim”.   
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Figure 7-1:  Gondola Smoothed Acceleration 

 

The peak accelerations were different for the simulation and the experiment.  The 

experiment peak was 8.45 G’s, whereas the Sim peak was 0.87 G’s or 10.3% lower at 

7.58 G’s.   
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Airbag pressure starts at 0.396 psig and falls a bit at first before rising again a few 

dozen milliseconds later as Figure 7-2 shows.  The initial fall in pressure shows up in 

both the drop test data and the simulations.  The simulations show that the airbag actually 

increases in volume after initial impact as the top of the airbag moves from a 

hemispherical dome shape to a more flat-headed cylinder.  This increase in volume 

lowers the airbag pressure.  This effect seemed faster and more pronounced in the 

simulations than the drop test.  The actual airbag had a more elliptical shaped dome than 

the hemisphere assumed for the simulation. 
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Figure 7-2:  Airbag Smoothed Pressure 
 

 

The peak pressures were different for the two simulations and the experiment.  The 

experiment peak was 4.21 psig, whereas the simulation peak was lower by 0.25 psig, or 

6.0%, at 3.96 psig.   
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The durations of the acceleration and pressure event in the simulations were slightly 

longer than the drop test.  This longer duration, typical of a longer airbag, is probably 

due, at least in part, to the hemispherical dome being higher than the true elliptical dome.  

Unfortunately, the inflated airbag height at initial contact could not be determined 

precisely from the video instrumentation for direct comparison.   

Gondola elevation was 123.7 inches at the 0 millisecond mark, as calculated by the 

simulation, and continues to fall, but less rapidly than in the experiment, as shown in 

Figure 7-3.  Initially, the simulations track the experimental data closely.  But the 

rebound occurs earlier in the simulations than the experiment.  The rebound trajectory for 

the simulation follows the slope of the experimental rebound closely.  The gondola 

penetrates an extra ~30 milliseconds and an extra 9.48 inches into the airbag during the 

experiment versus the simulations.  The choice of starting time for the initial contact 

affects this outcome. 

  

Displacement Comparison

70

80

90

100

110

120

130

140

0 50 100 150 200 250 300 350 400

Time (milliseconds)

El
ev

at
io

n 
(in

ch
es

)

Impact
Sim

 
Figure 7-3:  Gondola Smoothed Elevation 
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The simulation elevation reaches its nadir at about 185 milliseconds and nearly 

recovers to impact elevation another 185 milliseconds later.  Full recovery would occur in 

the conservative simulation of an impermeable airbag, which would have no energy 

dissipation.  In contrast, the experimental elevation reaches its nadir at about 210 

milliseconds.  Another 210 milliseconds later, its recovery to the initial contact elevation 

of 123.7 inches was less complete.  This potential energy loss may be due to two sources 

of energy dissipation.  One is friction of the gondola sliding along its guide cables, 

assumed to be negligible.  The other is energy loss through pore flow of the permeable 

airbag fabric.  This result would indicate that the experimentally determined permeability 

may have been under-recorded.  The latter explanation is most likely because of the large 

amount of energy involved and because adjusting the permeability model improved the 

curve fit substantially. 

Another measure of energy loss is the difference in kinetic energy loss.  Gondola 

velocity was experimentally determined to be –268 inches/second at the 0 millisecond 

mark and remains negative during initial impact as seen in Figure 7-4.  Initially, the 

simulations track the experimental data closely.  The difference in minimum velocities is 

12.08 inches/second.  But the rebound is ~30 milliseconds earlier in the simulations than 

the experiment.  The slope of the rebound velocity of the simulation is close to the slope 

of the experimental rebound velocity.  The peak rebound velocity of the simulation is 

266.2 inches/second, only 34.3 inches/sec higher than the experiment (231.8 

inches/second), therefore retaining more kinetic energy.  In fact, the kinetic energy loss 

for the simulation is only 20% versus 50% for the experiment, as noted at the end of 

Chapter 6.  The lower predicted kinetic energy loss likely indicates that the 
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experimentally determined permeability is too low.  The slopes of the final velocities for 

both cases match, because there is no collidant airbag contact, and gravity rules. 
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Figure 7-4:   Gondola Smoothed Velocity 

 
 
Figure 7-5 shows plots of the simulation airbag geometric parameters, L, R, r, s, and z 

as well as dome meridional (bubble) angle θt.   Solid lines depict values of kinetic 

variables at the collidant corner ( Cφ φ= ) and dashed lines at the collidant side ( ).  

Approximately two thirds of the duration of the impact, the airbag was in Phase 3 impact 

geometry, from 60 milliseconds to 300 milliseconds as seen in Figure 7-6.  The large 

errors in acceleration and pressure occur during the Phase 2 simulation, from 20 to 60 

milliseconds, leading one to believe that the model or assumptions of Phase 2 are 

inaccurate.  Fidelity improves during Phase 3. 

0φ =
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Figure 7-5:   Simulated Airbag Dimensions 

 

Figure 7-6 also shows the simulation’s impact phases as well as the airbag volume.  

Mixed Phase 1 at the corner and Phase 2 at the side is indicated as Phase 1.5 at 

approximately 20 milliseconds.  The airbag volume is compressed about 15%.  Figure 7-

7 shows plots of the simulation airbag air mass dropping off by about 4%.  This high air 

retention might explain the higher rebound velocities relative to the experiment.   
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Figure 7-6:   Airbag Volume and Impact Phases 
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Figure 7-7:  Airbag Air Mass 

 

Figure 7-8 shows the airbag strains.  Hoop strains are dominant, reaching almost 9%, 

whereas longitudinal strain stays below half a percent.  As a result, the Poisson effect of 
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the hoop stress overwhelms the longitudinal stress effect on longitudinal strain, making it 

negative.  The effect of the assumption of uniform longitudinal strain around the azimuth 

should be small, given the small amplitude of the strain.  Accurate hoop strain modeling 

is important given its large amplitude.  The variation in hoop strain with azimuth caused 

by the Poisson effect would be small given the low amplitude of longitudinal strain.  

Moreover, strains have an integrated effect on airbag pressure and collidant dynamics.  

Therefore, the assumption of uniform hoop strain is probably accurate to the experiment.  
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Figure 7-8: Airbag Hoop and Longitudinal Strains 

 

Figure 7-9 shows the airbag pore flow resistance force, which is comparable in 

magnitude to the trampoline force, shown for comparison.  It is essentially equivalent to 

the gauge pressure acting over the same pore area of an impermeable fabric.  Thus, 
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ignoring the Fanno flow resistance force and replacing it with airbag pressure times pore 

area is a good simplification. 
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Figure 7-9: Airbag Pore Flow Resistance 

 
 

Choosing a 16 millisecond later time in the experiment for the initial contact in the 

simulation yields a much closer fit to the experimental curves as shown in Figures 7-10 to 

7-13.  Simulation peak acceleration was within 7.1% of the experiment versus 10.3% for 

the 16 millisecond earlier contact.  The simulation peak pressure was within 3.3% of the 

experiment versus 6.0% for the 16 millisecond earlier contact.  The simulation’s lowest 

elevation was within 4.81 inches of the experiment versus 9.48 inches for the 16 

millisecond earlier contact.  The simulation peak rebound velocity was within 25.7 

inches/second of the experiment versus 34.3 inches/second for the 16 millisecond earlier 

contact.  The collidant kinetic energy loss was only 19.7% versus 50% for the 

experiment.  This result most likely indicates that collision experiment airbag had a 
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higher permeability than the simulation airbag.  The simulation results show other 

symptoms of lower permeability, for instance, more airbag pressure retention, hence 

higher early and late pressures and hence higher early and late collidant accelerations.  

These conditions cause less airbag penetration, hence lower peak pressures and peak 

accelerations.  
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Figure 7-10:  Later Contact Collidant Acceleration 
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Airbag Pressure Comparison
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 Figure 7-11:  Later Contact Airbag Pressure 
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Figure 7-12:  Later Contact Collidant Elevation 
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Velocity Comparisons
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Figure 7-13:  Later Contact Collidant Velocity 

 
 
 

Given the higher fidelity of Phase 3 versus Phase 2 in the simulation, the case of an 

airbag that spends an even larger fraction of the impact in Phase 3 is examined.  This case 

is a 3084 airbag with a 477 lb gondola.  The heavier gondola penetrates deeper.  The 

smaller diameter means smaller r and hence shorter Phase 1 and 2.  Figure 7-14 shows 

the accelerations for this case.  The fit is tighter than the 4060 airbag case.  The 

difference in peak acceleration is only 3.6% (about a third of the 4060 error).  The time at 

which peak acceleration occurs in the simulation is coincident with the experiment, 

versus leading by 20 milliseconds in the 4060 case.   
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Figure 7-14:  Acceleration for Airbag 3084 with 477 lb Gondola 

 
 
Figure 7-15 shows the pressures for this case.  The fit is tighter than the 4060 airbag 

case.  The difference in peak pressure is only 2.1% (about a third of the 4060 error).  The 

peak pressure in the simulation is coincident with the experiment as in the 4060 case.  

The major error occurs during Phase 2 of the impact (from 20 to 60 milliseconds).  The 

other looseness of fit occurs on the down slope where the simulation probably has too 

much air still in the airbag, leading to added pressure.  
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Smoothed Airbag Pressure
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Figure 7-15:  Pressure in 3084 Airbag 
 
 

Figure 7-16 shows the gondola displacements/elevations for the 3084 case.  The fit is 

tighter than the 4060 airbag case.  The difference in minimum elevation is only 3.28 

inches (about a third of the 4060 error).  The minimum elevation in the simulation is 

almost coincident with the experiment versus leading by 30 milliseconds in the 4060 

case.  The looseness of fit occurs at least in part, due to the accumulated velocity errors. 
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Figure 7-16:  Gondola Elevation for 3084 Airbag 

 
 

Figure 7-17 shows the gondola velocities for the 3084 case.  The fit is tighter than the 

4060 airbag case.  The difference in minimum velocities is only 6.63 inches/second 

(about 55% of the 4060 error).  The zero velocity in the simulation is almost coincident 

with the experiment versus leading by 30 milliseconds in the 4060 case.  The difference 

in maximum velocities is 22.40 inches/second (about 65% of the 4060 error).  The 

discrepancy occurs, at least in part, due to the accumulated acceleration errors during 

rebound.  Under-predicting permeability may also be at fault, because the predicted 

velocities are consistently more positive than the experiment. 
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Gondola Smoothed Velocity
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Figure 7-17:  Gondola Velocity for 3084 Airbag 

 
 
 

C. Multiple Airbag Simulation Peaks Compared to Impact Experiments  
 
 

1. Peak Accelerations. 

The peak accelerations predicted by the simulations were consistently lower than the 

experimental impact results.  Table 7-1 shows the peak collidant accelerations from 

simulations and impact experiments, the difference, and the percentage difference with 

the impact as the reference.  The gondola for these experiments was the 1418 gondola, 

and the drop height was 15 feet.  Figures 7-18 to 7-26 show these differences graphically. 
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Table 7-1: Comparison of Peak Accelerations from the Measured Permeability 
Simulation to the Drop Test 

 Gondola 1418 Weight (lbs)        
 357    477    597    
Airbag Sim Exper Diff. Diff. % Sim Exper Diff. Diff. % Sim Exper Diff. Diff. %
3060 7.56 8.89 -1.33 -15.0 6.95 8.57 -1.62 -18.9 6.58 7.33 -0.75 -10.3
3660 7.71 8.71 -1.00 -11.5 7.06 7.92 -0.86 -10.9 6.64 7.23 -0.59 -8.1
4060 7.58 8.45 -0.87 -10.3 6.91 7.86 -0.95 -12.1 6.48 7.35 -0.87 -11.8
3072 6.60 6.9 -0.30 -4.4 6.04 6.4 -0.36 -5.7 5.7 6.67 -0.98 -14.6
3672 6.46 6.87 -0.41 -6.0 5.88 6.28 -0.41 -6.5 5.5 6.1 -0.6 -9.8
4072 6.55 7.01 -0.46 -6.6 5.96 6.47 -0.51 -8.0 5.57 6.11 -0.54 -8.8
3084 5.65 5.86 -0.21 -3.6 5.15 5.34 -0.19 -3.6 4.83 5.1 -0.27 -5.3
3684 5.46 5.68 -0.22 -3.9 4.96 5.25 -0.29 -5.6 4.64 5.01 -0.37 -7.4
4084 5.61 6.21 -0.60 -9.7 5.08 5.56 -0.48 -8.6 4.74 5.17 -0.43 -8.3

 
 
 

The simulation results regarding peak accelerations were consistently lower than the 

drop test results, varying from 3.6% to 18.9% lower.  The differences between the 

simulations and the drop tests were fairly consistent on a percentage basis over the 

various airbags and gondola weights.  No major trends emerged, except that the error 

between simulation and experiment shrunk as the airbag height increased.  The taller 

airbags spend a larger fraction of impact time in Phase 3 of impact.  Perhaps Phase 3 is 

better modeled than Phase 1 and 2.  The hemispherical geometry assumption of Phase 1 

and 2 may be less accurate than an elliptical shape assumption, but simpler to model.  Of 

the remaining minor trends, the most significant one was that the middle diameter (36-

inch) airbags showed the most consistently close fit between the simulation and the drop 

test.   

The simulation matches the slope and curvature of the experimental data in most 

cases.  The experimental motion data had some random jitter in the image analysis 
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software that caused the centroid to jump around inside the flashlight image, causing 

displacement measurement noise. 
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Figure 7-18:  Peak Acceleration Comparisons 5-foot Tall Airbag 
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Figure 7-19:  Peak Acceleration Comparisons 6-foot Tall Airbag 
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Figure 7-20:  Peak Acceleration Comparisons 7-foot Tall Airbag 
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Figure 7-21:  Peak Acceleration Comparisons 5-foot Tall Airbag 
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Figure 7-22:  Peak Acceleration Comparisons 6-foot Tall Airbag 
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Figure 7-23:  Peak Acceleration Comparisons 7-foot Tall Airbag 
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Figure 7-24:  Peak Acceleration Comparisons 5-foot Tall Airbag 
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Figure 7-25:  Peak Acceleration Comparisons 6-foot Tall Airbag 

 

                                                                 7 - 24



Peak Acceleration Comparison 597lb Gondola 7' Tall Airbag

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

30 32 34 36 38 40 42

Airbag Diameters (Inches)

A
cc

el
er

at
io

n 
(G

's
)

Sim
Impact

 
Figure 7-26:  Peak Acceleration Comparisons 7-foot Tall Airbag 

 

2. Peak Pressures. 

The peak pressures predicted by the simulations were consistently lower than the 

experimental impact results.  Table 7-2 shows the peak airbag pressures from simulations 

and impact experiments, the difference, and the percentage difference with the impact as 

the reference.  The gondola for these experiments was the 1418 gondola, and the drop 

height was 15 feet.  Figures 7-23 to 7-31 show these differences graphically. 
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Table 7-2: Comparison of Peak Pressures from the Simulation to the Drop Test 
 Gondola 1418 Weight (lbs)        
 357    477    597    
Airbag Sim Exper Diff. Diff. % Sim Exper Diff. Diff. % Sim Exper Diff. Diff. %
3060 5.72 6.21 -0.491 -7.9 6.89 7.71 -0.82 -10.7 7.98 9.23 -1.25 -13.6
3660 4.75 4.95 -0.197 -4.0 5.72 6.11 -0.39 -6.4 6.61 7.19 -0.58 -8.0
4060 3.96 4.21 -0.252 -5.98 4.76 5.15 -0.39 -7.6 5.5 6.02 -0.52 -8.6
3072 5.22 5.39 -0.174 -3.23 6.30 6.55 -0.26 -3.9 7.31 7.78 -0.47 -6.0
3672 4.16 4.21 -0.045 -1.07 5.01 5.1 -0.09 -1.7 5.8 6.09 -0.29 -4.7
4072 3.55 3.61 -0.056 -1.56 4.28 4.39 -0.11 -2.4 4.96 5.14 -0.18 -3.4
3084 4.64 4.7 -0.059 -1.26 5.61 5.73 -0.12 -2.1 6.53 6.73 -0.2 -3.0
3684 3.66 3.53 0.129 3.67 4.42 4.31 0.107 2.5 5.13 5.06 0.07 1.4
4084 3.13 3.2 -0.073 -2.29 3.77    3.83 -0.06 -1.6 4.37 4.41 -0.04 -0.8

 
 
 

The simulation results regarding peak pressures were consistently lower than the drop 

test results, varying from 0.83% to 13.55% lower.  The differences between the 

simulations and the drop tests on a percentage basis over the various airbags and gondola 

weights showed a major trend – fit improved as airbag height increased.  The taller 

airbags spend a larger fraction of impact time in Phase 3 of impact.  Of the remaining 

minor trends, the most significant one was that the airbags showed better fit as their 

diameter increased.  The slopes and curvatures of the simulations and experiments match 

in every case. 
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Figure 7-27:  Peak Pressure Comparisons 5-foot Tall Airbag 
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Figure 7-28:  Peak Pressure Comparisons 6-foot Tall Airbag 
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Figure 7-29:  Peak Pressure Comparisons 7-foot Tall Airbag 
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Figure 7-30:  Peak Pressure Comparisons 5-foot Tall Airbag 
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Figure 7-31:  Peak Pressure Comparisons 6-foot Tall Airbag 
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Figure 7-32:  Peak Pressure Comparisons 7-foot Tall Airbag 
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Figure 7-33:  Peak Pressure Comparisons 5-foot Tall Airbag 
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Figure 7-34:  Peak Pressure Comparisons 6-foot Tall Airbag 

 

                                                                 7 - 30



Peak Pressure Comparison 597lb Gondola 7' Tall Airbag

4

5

6

7

8

9

10

30 32 34 36 38 40 42

Airbag Diameters (Inches)

Pr
es

su
re

 (p
si

g)

Sim
Impact

 

Figure 7-35:  Peak Pressure Comparisons 7-foot Tall Airbag 

 

All the initial conditions for the simulations and experiments described in this chapter 

are shown in Table 7-3 as a summary of inputs to the simulation.  The elevation for the 

simulation is the top of the airbag when the collidant initially contacts it.  The variation in 

these heights with each simulation is caused by the different initial airbag pressures 

producing more or less longitudinal stretch.  The elevation for the experiments is the 

height of the image centroid of the flashlight, which was attached at the top of the 

gondola, relative to the bottom of the image frame at 16 milliseconds before the nadir in 

experimental airbag pressure.  The variation in these elevations is larger than the 

simulations.  These variations may be caused by inadvertent movement of the camera or 

ambiguity in determining time of contact from acceleration data.    
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Table 7-3: Initial Conditions for Simulation and Drop Test 
Airbag & Wt millisec Psig. In/sec Elev Inch Calc Elev
3084-357lb 1168 0.322 -250 137.25 86.11
3084-477lb 902 0.357 -251 137.49 86.12
3084-597lb 1010 0.395 -251 137.67 86.13
3072-357lb 994 0.324 -266 125.68 75.08
3072-477lb 1054 0.251 -267 125.22 75.07
3072-597lb 1152 0.346 -268 125.39 75.08
3060-357lb 1153 0.358 -274 120.15 62.85
3060-477lb 1122 0.297 -281 115.39 62.84
3060-597lb 1063 0.305 -277 119.27 62.84
3684-357lb 913 0.363 -240 139.19 87.28
3684-477lb 936 0.370 -237 140.26 87.28
3684-597lb 910 0.338 -247 135.91 87.28
3672-357lb 953 0.321 -257 131.86 76.27
3672-477lb 980 0.322 -258 131.59 76.27
3672-597lb 1078 0.319 -258 133.25 76.27
3660-357lb 949 0.308 -270 123.08 64.28
3660-477lb 1091 0.306 -273 121.63 64.28
3660-597lb 1065 0.334 -273 123.59 64.28
4084-357lb 941 0.392 -237 143.81 88.90
4084-477lb 964 0.371 -239 144.11 88.90
4084-597lb 1068 0.360 -237 145.40 88.89
4072-357lb 1042 0.396 -246 138.35 77.12
4072-477lb 977 0.388 -251 136.35 77.12
4072-597lb 1265 0.396 -253 135.42 77.12
4060-357lb 1101 0.396 -268 123.73 68.87
4060-477lb 1227 0.407 -272 122.00 68.87
4060-597lb 1130 0.397 -267 125.85 68.87  

 
 

D. Summary  
 
 

The simulations agreed fairly well with the experimental data in accuracy and trend.  

Peak collidant accelerations were within 20% and airbag pressures were within 14% of 

the drop test results at most.  On average, accelerations differed by 8.7% and pressures by 

only 3.9%.  The agreement could have been improved by modeling the initial dome at its 

top end of the airbag as an ellipse rather than a hemisphere.  Duration of the impact event 

was modeled remarkably well with the simulation agreeing with the experiment within 

about 5%.  The initial drop in pressure predicted by the simulation was much less 
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pronounced in the experiment.  A 20 millisecond or so longer delay before a rise in 

pressure was observed in the experiment.  

The longer airbags had better match between the simulation and experiments.  A 

larger fraction of the dynamics was caused by Phase 3 impact with the longer airbags, 

leading one to believe that Phase 3 impact modeling was more faithful to the experiment 

than Phase 1 or 2.  Phase 1 and 2 relied on an airbag geometry model that had a 

hemispherical dome on top and ignored the dome on the bottom of the airbag.  This 4 

inch high dome on the bottom may have a significant effect on Phase 1 and 2 dynamics 

by either collapsing or stretching during initial impact.  The dome on the top of the airbag 

is more in the shape of an ellipse than a hemisphere.  This shortness of height changes the 

timing and dynamics of Phase 1 and 2 initial impact.  Modeling the upper dome as an 

ellipse would require changing the meridional radius r with meridional angle θ, as well as 

possibly changing the origin of r as Phase 2 progresses.  Investigating these 

complications is left to future work. 

The drop in gondola kinetic energy was 50% with the experiments but only 20% with 

the simulation.  Since air leaking out of the airbag is the major source of dissipation, the 

simulation airbag permeability may be understated.  Investigating this possibility is left to 

future work. 
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Chapter VIII:  Conclusions and Recommendations 
 
 
 
A. Conclusions  
 
 

The most accurate airbag model compared to experimental results, and fastest airbag 

impact simulation relative to any extant in the literature, was developed.  Experimental 

collidant rebound velocities exceeded the desired 15 feet/second munition ejection speed 

with airbag pressures below nine psig.  Experimental collidant impact peak accelerations 

were below 18 G’s, much less than the 50-G threshold for human injury for collisions up 

to 30 mph.  

Major contributions were made to the understanding of low pressure airbags. 

1. The most extensive publicly available data on impact response of low pressure 

airbags was collected.  It provides a rich source of experimental data to design 

low pressure airbags. 

2. A kinematically complex, yet low-order, math model of a permeable, elastic, 

cylindrical airbag was derived.  It is offered as a candidate benchmark model 

to verify more complicated finite element or finite volume models.  The 

resulting simulations of this model run in four to five processor minutes and 

provide an efficient tool suitable for design trade studies. 

3. The experiments demonstrated that munition-ejection accelerations and safe 

collision decelerations are achievable with practical low-pressure airbags.   

A total of 435 airbag collision tests were performed, a larger and more diverse set of 

experiments than any other in the literature.  Conducting the world’s most comprehensive 

set of public airbag experiments revealed new knowledge in airbag behavior.  Trends 
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gleaned from the experiments provide guidance in determining the geometric parameters 

of an airbag design.  Lengthening airbags reduced collidant peak accelerations and airbag 

peak pressures the most of any airbag parameter.  Somewhat surprisingly, increasing 

airbag diameter had little effect on collidant peak accelerations but significantly reduced 

peak airbag pressures.  Increasing collidant face areas increased peak accelerations and 

peak airbag pressures.  For a given airbag, increasing collidant mass reduced peak 

accelerations but increased airbag peak pressures.  Although not an airbag parameter 

trend, the experiment confirmed that increasing collidant impact velocities had the 

greatest effect on peak accelerations and peak pressures, increasing both, as expected. 

The lesson for airbag engineers is that lengthening the airbag is the best way to 

reduce injuries.  For ejectors, this lesson shows that a longer airbag stroke can achieve 

higher ejection speeds with equivalent or lower force on the projectile.  In the case of a 

bomb bay, there is a stroke length limitation; but the airbag design should use the full 

stroke length.  

The simulation results were closer to their drop test experimental results than any 

other simulations in the literature.  On average, simulation peak accelerations were within 

8.7% and peak pressures were within 3.9% of the experiments.  Two thirds of the peak 

accelerations had single digit agreement between simulations and experiments.  Only 6% 

of the airbag pressure simulations were more than 10% different from the experiments.  

A minor adjustment to initial contact times brings even closer agreement between the 

simulations and experiments.  Using more realistic airbag permeabilities would also 

improve the fit. 
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The dynamic airbag model of the dissertation compared more favorably to 

experimental results than any of the model validations found in the literature.  Moreover, 

it is validated over a larger range of experiments and with more parameters varied and 

tested.  The airbag models in the literature that varied the most from their experiments 

had significant permeability or vent holes.  The better performance of the dissertation’s 

model is probably due to better permeability physics modeling.  The dissertation has a 

realistic permeability model that accounts for actual leak areas, combined with 

reasonably accurate volume calculations based on assumed geometry, and reduction to an 

efficient 12 degree-of-freedom mathematical model.   A key contribution was the insight 

that led to effectively integrating of multi-disciplinary equations into a model that 

captures the most important effects of a complex fluid-structure interaction problem. 

The experimental measurements presented sources of error.  Though most of the 

sensor noise was filtered out, the image analysis software added non-physical dynamics 

by moving the image centroid around inside the flashlight image when the image 

expanded beyond the centroid window.   

The simulation model used simplifying assumptions that led to inaccuracies.  

Assuming the top of the airbag was a perfect hemisphere may explain distortions in Phase 

1 and 2 of impact dynamics when the flattened dome may be better represented as an 

elliptical shape.  Likewise, neglecting the dome on the bottom of the airbag was a 

modeling simplification but a distortion of reality.  Accounting for the ballooning at the 

bottom of the airbag and more accurately representing dome flattening at the top of the 

airbag may reduce the simulation error.  The airbag permeability affects the simulation 

significantly also.  Some doubts about the air mass flow rates during the permeability 
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tests, as well as large difference between kinetic energy for the experiment versus the 

simulation, point to more accurate permeability measurements as a major means of 

affecting the simulation fit. 

 
 

B. Recommendations  
 
 

The airbag permeability tests should be rerun with a better apparatus.  A 2-inch 

diameter fill pipe should be used, so all air flow velocities would be subsonic and hence 

more accurately measured.  The Pitot static pressure sensor measuring vacuum should be 

a vacuum measurement sensor rather than a gauge pressure sensor operating off scale.  

The Pitot tube flow instrument should be calibrated against the OMEGA-Alicat-1400 

compressible gas flow meter at the lower flow rates, or a high-flow meter should be used 

to measure mass flow directly. 

The drop tests should be rerun with a better apparatus.  A way to detect first contact 

between the gondola and the airbag should be developed.  A small flashlight on the top of 

the airbag would indicate when the gondola hit it and provide an elevation for the top of 

the airbag.  In this way, the initial conditions can be determined more accurately.  Adding 

an accelerometer to the gondola would be a second source of acceleration data to the 

differentiation of the video displacement (especially since such differentiation is 

inherently noisy). 

The math model should be improved to include the doming at the bottom of the 

airbags.  Accounting for this phenomenon may reduce the fit error.  A flatter dome on the 

top of the airbag might reduce errors in Phase 1 and 2 dynamics.  Replacing the 

hemispherical dome with an elliptical dome may prove to more accurately capture the 
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volume changes that were less accurately modeled in Phase 1 and 2 than in Phase 3.  

Accounting for the varying stress and strain in the airbag dome would give more precise 

volumes and strain energies.  This effect is assumed to be in the few percent region.  

Tracking wrapped or wrinkled fabric against the collidant would reduce the strain and 

stress in the unwrapped fabric.  This effect is also assumed to be in the few percent 

region.  The effect of wrapping and wrinkling was videoed for dozens of experiments.  A 

grid was drawn on the dome of the airbag and filmed from above during impact.  This 

effect is as yet not analyzed.  Modeling the inflation process for an ejector application has 

yet to be done completely.  This inflator needs to recreate the conditions in the airbag that 

were achieved during the collision rebounds on a timely basis. 

In order to confirm the hypothesis that poor permeability modeling accounted for the 

large errors compared to experimental results in the literature, the proposed permeability 

properties from this research could be used in the high fidelity finite element simulations.  

Since LSDyna, for example, only permits permeability to be modeled as a simple 

function of pressure, the current permeability model, which also accounts for leak area, 

would have to be fit to a function of pressure a priori.  Such a simulation might also lead 

to better understanding of Phase 1 and 2 geometries, if it proved more accurate. 

 8 -    5



Bibliography 
 
Chapter I: 
 

1-1 Hallquist, John.  LSDyna Theoretical Manual.  Livermore, CA: Livermore 
Software Technology Corporation, 1998. 

 
Chapter II: 
 

2-1 ---. Catholic Encyclopedia: Joseph-Michel Montgolfier.  New York: New 
Advent Publishing, 1914. 

 
2-2 Brown, Glenn, Roy Haggard, Brook Norton. “Inflatable Structures for 

Deployable Wings,” AIAA, A01-29254 (2001). 
 
2-3 Sherman, Donald.  “Blink of an Eye,”  Motor Trend, v45 n5 (May 1993). 
 
2-4 ---. “Air Bags Handle the Heavy Lifting,” Machine Design, (October 21, 1999). 
 
2-5 Ehrich, R.D. and J.R. Beaty.  “Precision Delivery of Unguided Submunitions 

from a Tactical Standoff Missile,”  AGARD Guidance, Control and Positioning 
of Future Precision Guided Stand-Off Weapons Systems, (SEE N87-16000 08-
15) (1986). 

 
2-6 Taylor, Anthony P.  “Investigation of the Application of Airbag Technology to 

Provide a Soft Landing Capability for Military Heavy Drop,”  AIAA, A01-
29283 (2001). 

 
2-7 Huxley-Reynard, C.S.  “An Airbag Landing System for the Beagle2 Mars 

Probe,”  AIAA, A01-29306 (2001). 
 
2-8 Brown, Glenn, Roy Haggard, and Brook Norton. “Inflatable Structures for 

Deployable Wings,” AIAA, A01-29254 (2001). 
 
2-9 Struttman, James.  “”Inflatable Spaceborne Antenna Structures,”  The Second 

Space Technology Alliance Workshop on Inflatable Structures, Wright Patterson 
Air Force Base: (April 26, 2000). 

 
2-10 ---. “Soft Landings,”  Ward’s Auto World (June 2001). 
 
2-11 Dreher, Peter A.  “System for Collision Damage Reduction,”  U.S. Patent & 

Trademark Office. #6,106,038 (August 2000). 
 
2-12 Strother, Charles and Richard Morgan.  “The Efforts of the National Highway 

Traffic Safety Administration in the Development of Advanced Passive 
Protection Systems and Child Restraint Systems,”  SAE Conference 

B - 1 



Proceedings P-53.  Santa Monica CA: The RAND Corporation Reports 740580, 
1974. 

 
2-13 ---.  “Federal Motor Vehicle Safety Standard 208,”  49 Code of Federal 

Regulations Chapter V (10-1-02 Edition) Section 571.208. 
 

2-14 Nefske, Donald.  “A Basic Airbag Model,”  SAE 2nd International Conference 
on Passive Restraints.  Detroit, MI: Society of Automotive Engineers 720426, 
May 22, 1972. 

 
2-15 King, Howard A.; Sneden, Kilian. “Weapon Integration: Key to the ‘Clean 

Machine’,” Aerospace America, AIAA, August 1984.  
 
2-16 Vendetti, Vince. “Preliminary Compressed Air Dispense Simulator”, Naval 

Surface Warfare Center, Dahlgren Division. Dahlgren, VA: Technical Report, 
September 2003. 

 
2-17 Malcolm, David J., Peter G. Glockner.  “Collapse by Ponding of Air-Supported 

Membranes,”  Journal of the Structural Division, Proceedings of the American 
Society of Civil Engineers. Vol. 104, No. ST9, September 1978. 
 

2-18 Szyszkowski, W., P.G. Glockner.  “Finite Deformation and Stability Behavior 
of Spherical Inflatables Under Axi-Symmetric Concentrated Loads,”  
International Journal of Non-Linear Mechanics. Pergamon Press Ltd., Great 
Britain, Vol. 19, No. 5, 1984.  

 
2-19 Nieboer, J.J., Wismans, J., de Coo, P.J.A. “Airbag Modeling Techniques,” 

SAE (Society of Automotive Engineers) Transactions, v 99, n Sect 6, 1990, p 
1855-1870 

 
2-20 Bruijs, W.E.M., de Coo, P.J.A., Ashmore, R.J., Giles, A.R. “Airbag Simulations 

with the Madymo FEM Module,”  SAE Special Publications, n 906, Analytical 
Modeling and Occupant Protection Technologies, 1992, p 19-27 

 
2-21 Fitzpatrick, Michael U., Thompson, Kelly E. “PASSIM-PLUS, a Multi-element, 

Passenger Airbag Model,”  SAE Technical Paper Series, 1991, 12p 
 
2-22 Cooper, Michelle, Sinclair, Robert, Sanders, John, Frigerio, Jacapo. “Design 

and testing of an airbag landing attenuator system for a generic crew return 
vehicle,” Collection of Technical Papers - 18th AIAA Aerodynamic Decelerator 
Systems Technology Conference and Seminar, Collection of Technical Papers - 
18th AIAA Aerodynamic Decelerator Systems Technology Conference and 
Seminar, 2005, p 146-168 

 
2-23 He, Wen, Zhong, Zhihua, Yang, Jikuang. “Research on experimental validation 

of computer simulation of working performance of automobile airbag,” Jixie 

B - 2 

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bNieboer%2C+J.J.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bWismans%2C+J.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bde+Coo%2C+P.J.A.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bBruijs%2C+W.E.M.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bde+Coo%2C+P.J.A.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bAshmore%2C+R.J.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bGiles%2C+A.R.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bFitzpatrick%2C+Michael+U.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bThompson%2C+Kelly+E.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bCooper%2C+Michelle%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bSinclair%2C+Robert%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bSanders%2C+John%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bFrigerio%2C+Jacapo%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bHe%2C+Wen%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bZhong%2C+Zhihua%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bYang%2C+Jikuang%7d&section1=AU&database=1&yearselect=yearrange&sort=yr


Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, v 38, n 4, 
April, 2002, p 126-129 

 
2-24 Xiao, Fan, Wang, Hong-Yan. “Numeration of occupant with restriction system's 

dynamic response in frontal impact,”  Tongji Daxue Xuebao/Journal of Tongji 
University, v 32, n 9, September, 2004, p 1220-1224 

 
2-25 Wawa, Charles J., Chandra, Jim S., Verma, Mukul K. “Implementation and 

validation of a finite element approach to simulate occupant crashes with 
airbags: Part I - airbag model,” American Society of Mechanical Engineers, 
Applied Mechanics Division, AMD, v 169, Crashworthiness and Occupant 
Protection in Transportation Systems, 1993, p 269-286 

 
2-26 Wawa, Charles J., Chandra, Jim S., Verma, Mukul K. “Implementation and 

validation of a finite element approach to simulate occupant crashes with 
airbags: Part II - airbag coupling with crash victim,” American Society of 
Mechanical Engineers, Applied Mechanics Division, AMD, v 169, 
Crashworthiness and Occupant Protection in Transportation Systems, 1993, p 
287-309 

 
2-27 Mu, William, Sheng, Jianping, Chen, Chao. “Relationship of driver airbag 

design parameters to an out-of-position small female thorax injury,” American 
Society of Mechanical Engineers, Applied Mechanics Division, AMD, v 237, 
1999, p 219-231 

 
2-28 Kim, Hyunsun, Kirby, Bryn P. D. “Investigation of external airbags for 

rotorcraft crashworthiness,” Journal of Aircraft, v 43, n 3, May/June, 2006, p 
809-816 

 
2-29 Lakshminarayan, V., Lasry, David. “Finite element simulation of driver folded 

air bag deployment,” SAE (Society of Automotive Engineers) Transactions, v 
100, n Sect 6, 1991, p 1969-1977 

 
2-30 Matsumoto, Hiroyuki, Sakakida, Masafumi, Kurimoto, Koji. “Parametric 

evaluation of vehicle crash performance,”  SAE (Society of Automotive 
Engineers) Transactions, v 99, n Sect 6, 1990, p 635-646 

 
2-31 Hoffmann, Rainer, Ulrich, Dirk, Protard, Jean-Baptiste, Wester, Harald, Jaehn, 

Norbert, Scharnhorst, Thomas. “Finite element analysis of occupant restraint 
system interaction with PAM-CRASH,”  SAE (Society of Automotive 
Engineers) Transactions, v 99, n Sect 6, 1990, p 1901-1912 

 
2-32 Lu, Zi, Chan, Philemon.  “Finite Element Simulation Study of Airbag Load 

Phenomena,”  SAE 2005-01-0301, SAE Technical Papers, 2005 
 

B - 3 

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bXiao%2C+Fan%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bWang%2C+Hong-Yan%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bWawa%2C+Charles+J.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bChandra%2C+Jim+S.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bVerma%2C+Mukul+K.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bWawa%2C+Charles+J.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bChandra%2C+Jim+S.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bVerma%2C+Mukul+K.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bMu%2C+William%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bSheng%2C+Jianping%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bChen%2C+Chao%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bKim%2C+Hyunsun%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bKirby%2C+Bryn+P.+D.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bLakshminarayan%2C+V.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bLasry%2C+David%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bMatsumoto%2C+Hiroyuki%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bSakakida%2C+Masafumi%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bKurimoto%2C+Koji%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bHoffmann%2C+Rainer%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bUlrich%2C+Dirk%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bProtard%2C+Jean-Baptiste%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bWester%2C+Harald%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bJaehn%2C+Norbert%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bJaehn%2C+Norbert%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bScharnhorst%2C+Thomas%7d&section1=AU&database=1&yearselect=yearrange&sort=yr


2-33 Personal communication with Mr. Steven Pitroff, Chief Airbag Engineer, 
Delphi Corporation. 

 
Chapter III: 
 

3-1 Fox, Robert, McDonald, Alan.  Introduction to Fluid Mechanics.  New York, 
John Wiley & Sons, 1973. pg 530 

 
3-2 Saad, Michel.  Compressible Fluid Flow: 2nd Edition.  Englewood Cliffs, NJ: 

Prentice Hall, 1993.  
 
3-3 Tsai, Stephen, H. Thomas Hahn.  Introduction to Composite Materials.  

Westport, CT: Technomic Publishing, 1980.  pg 17 
 
Chapter IV: 
 

4-1 Martins, Joaquim, Sturdza, Peter, Alonso, Juan.  “The Connection between the 
Complex Step Derivative Approximation and Algorithmic Differentiation,”  
AIAA-2001-0921, 2001. 
 

Chapter V: 
 
5-1 www.ni.com/labview/ 
 
5-2 Cengel, Yunus.  Introduction to Thermodynamics and Heat Transfer.  McGraw-

Hill, New York, NY, 1997. 
 
5-3 Popov, E. P.  Mechanics of Materials, 2nd Edition.  Prentice-Hall, Englewood 

Cliffs, NJ, 1976. 
 

Chapter VI: 
 

6-1 www.endevco.com/products  
 
6-2 www.photron.com  

 
6-3 Myers, Raymond, Douglas Montgomery.  Response Surface Methodology.  New 

York: John Wiley & Sons, 1995. 
 
6-4 Neter, John, William Wasserman, G.A. Whitmore.  Applied Statistics.  Boston: 

Allyn & Bacon, 1978. 
 
Chapter VII: 
 

7-1 MATLAB Math for Use with MATLAB.  Natick, MA, The MathWorks, Inc., 
2006.  

B - 4 



APPENDIX A 

 

A. Pore Flow Resistance Force 

 
The shear force on the fabric pore is caused by compressible flow with friction 

through the pores based on Fanno flow equations.  The force acting on the pores is the 

shear force on the edge of the pores of the viscous gas blowing by – so called 

compressible flow with friction.  Dr. Fanno modeled this type of flow, and it now bears 

his name.  Fanno flow equations provide a flow resistance force Rx applied to the walls of 

the channel.  Figure A-1 shows a fabric pore and its control volume, through which 

Fanno flow applies. 

From [3-1], Rx is a function of pressure drop across the pore and the mass flow rate 

times the change in velocity across the pore. 

( ) ( )x p a p a pR P P A m u u= − + −        (A-1) 

The subscripts indicate the airbag inside surface of the pore with p and the outside 

surface with a where the static pressure is atmospheric.   
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Figure A-1:  Fanno Flow through the Airbag Pore 

 

The remaining unknown in Equation (A-1) is the pore exit flow velocity ua.  From [3-2], 

the pore exit flow velocity ua is a function of Mach number Ma at the pore exit and the 

critical velocity u* at an imaginary exit in a Fanno conduit long enough to achieve Mach 

1, where the asterisk indicates properties at Mach 1. 

( )
*

2

1
2 1a

a

u u M
M

γ
γ
+

=
+ − a        (A-2) 

The γ is the ratio of specific heats, 1.4 for an Ideal Gas, typical of airbags.  The critical 

velocity u* can be calculated from the pore entrance conditions.  

( ) 2

*

2 1
1

p
p

p

M
u

u
M

γ
γ

+ −
+

=         (A-3) 

Pore exit Mach number is a function of pore entrance Mach number and the ratio of the 

known pressures.  
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( ) ( )* 2 *

1 1 1 1
2 1 2 1

pa a a

a a p p p

PP P P
P M M P P P M M

γ
γ γ

⎛ ⎞+
= = = ⎜

⎜+ − + −⎝ ⎠
2
p

γ +
⎟
⎟

   (A-4)  

Since the properties at the pore entrance are known, the equation is rearranged to be a 

quadratic in Ma.  The lowest positive real root is the only practical answer.   

( ) ( )
2 2

2

1 1 1where
1 2

a
a

p p p

b b PM b
b P M

γ γ
γ γ

⎛ ⎞− + + − +
= = ⎜

⎜− +⎝ ⎠1 M
⎟
⎟−

  (A-5) 

The resulting expanded equation for ua is 

2

2

2 1

2 1

p
a p

a

M
u u

M

γ

γ

+ −
=

+ −
        (A-6) 

Substituting back into the flow resistance equation (A-10) yields 

2

2

2 1
( ) 2 1

p
x a p p p

a

M
R P P A mu

M

γ

γ

+ −
= − +

+ −
      (A-7) 

where Pp is known from Equation (3-13) and up is known from Equation (3-5). 

 

B. Dynamic System of the Fabric and Collidant 

 
To find the longitudinal stress, a model was made of the dynamic system of the fabric 

and collidant.  Longitudinal strain energy in the airbag is part of the potential energy of a 

dynamic system comprising the airbag and the collidant but not the air inside or outside 

of the airbag.  This Fabric-Mass system is shown in Figure A-2. 
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Figure A-2:  Dynamic System of Airbag and Collidant 

 

The energy equation for the Fabric-Mass system has external work applied to it by 

gage pressure inside the airbag times its change in volume plus the shear work of the air 

escaping through the pores.  The energy inside the system is the strain energy of the 

airbag, П, as well as the kinetic and potential energy of the collidant, since the airbag 

mass is negligible.   

a. Work Applied to the Dynamic System. 

The PδV boundary work in Equation (A-8) is negative during compression, with 

pressure increasing as volume decreases in the inelastic case.  It reduces kinetic energy of 

the collidant; therefore, the sign of PδV on the left side of the energy equation is positive.  

This boundary work does not act on the unblocked pores, hence it applies to the moving 

surface areas, ALf and Aface, excluding the pore area, even though δV applies to all the 

moving surface areas, AL and Aface.  The boundary work is adjusted appropriately. 

Flow through the pores applies a shear force on the fabric adjoining the pores in the 

direction of the flow and in the direction of the fabric motion (increasing volume); hence 
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it behaves in the same direction as PδV, and it, too, is positive on the left hand side of the 

energy equation.  Hence 

21
2

Lf face
g shear

L face

A A
P V W Mz Mgz

A A
δ δ

+
+ = + +

+
Π      (A-8) 

The shear work is caused by compressible flow with friction through the pores based 

on Fanno flow equations.  The Fanno flow provides a flow resistance force Rx.  This 

force times the control surface average displacement is the approximate shear work.  The 

shear work actually only results from the displacement of the leak area, but lacking a 

simple way to calculate this displacement, we use average boundary displacement.  

shear x
L fac

VW R
A A e

δδ =
+

        (A-9) 

Rx was defined in Equation (A-7), hence 

( ) 2 2 2

2 2( ) 1 1 1
1 1

shear p a p p
p L

b VW P P A mu
M Ab b

δ
γ γ

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟= − + + + −
⎜ ⎟− +⎢ ⎥+ + −⎝ ⎠⎣ ⎦ faceA

 (A-10) 

Though the rate of shear work is not a function of longitudinal stress, it is a function of 

airbag pressure P via the pore pressure and Bernoulli’s equation. 

The left hand side of the energy equation (A-8) expands to an equation where 

definition of the coefficient Pf  is convenient for future calculations. 

( )g Lf face xLf face
g x

L face L face L face

P A A RA A VP V R V P V
A A A A A A

δ
fδ δ

+ ++
+ = =

+ + +
δ   (A-11) 

  b. Fabric Strain Energy. 

Fiber strain energy is different in the leak area AL from the collidant contact area AC.  

In the leak area of the fabric, both hoop stress and longitudinal stress are active.  In the 

collidant contact area of the fabric, the fabric is unloaded in the hoop direction as it folds 
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around the collidant, but remains taught in the longitudinal direction; hence longitudinal 

stress remains active, though hoop stress does not.  Because of the single direction of 

stress in the collidant side contact area, the strain equation is only /side L LEε σ= .  The 

strain energy is only ( )2 / 2L L sideE tAσ .    

On the bottom face of the collidant, the longitudinal stresses cross the face 

orthogonally, hence causing a Poisson effect and doubling the strain energy on the face.  

Because of the active Poisson effect in the collidant bottom face contact area, the strain 

equation in one direction is ( )1 /face L L LEε σ ν= − .  The total face area strain energy is 

( )( )2 1 /L L L faceE tAσ ν− . 

As a first-order approximation to this total fabric strain energy, the strain energies are 

integrated over the fiber leak area and the fiber contact area, multiplied by fabric 

thickness, and averaged over the range of total strain and assumed uniform over their 

respective areas. 

( )

( ) (( ))

( ) ( )( )
2

1 2
2

2
2

2 1
2

Lf side face

H H L L L side L face
A A A

H H L L Lf L side side face face

L
H H L L Lf side L face

L

t dA dA

t A A A

t A A A
E

σ ε σ ε σ ε σ ε

σ ε σ ε σ ε ε

σσ ε σ ε ν

⎡ ⎤
⎢ ⎥Π = + + +
⎢ ⎥⎣ ⎦

= + + +

⎛ ⎞
= + + + −⎜ ⎟

⎝ ⎠

∫ ∫ ∫ dA

Π

   (A-12) 

c. Differential Form of Energy Equation. 

The differential form of the energy Equation (A-8) reveals  

( )fP V M g z z= + +         (A-13) 

The strains are detailed with the constitutive equation (3-12).  Expanding fabric strain 

energy rate yields 
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( ) ( )

( )( ) ( )( )

( )

2

2
2 2 1 2 1

2

2

H H H H L L L L Lf H H L L Lf

L L L
side L face side L face

L L

H L L L H H
H H H L L L Lf

H L L H

L L
Lf H H L L side

L

t A A

A A A A
E E

t A
E E E E

A A
E

σ ε σ ε σ ε σ ε σ ε σ ε

σ σ σν ν

σ σ ν σ σ νσ ε σ σ ε σ

σ σσ ε σ ε

⎡Π= + + + + +⎣

⎤
+ + − + + − ⎥

⎦
⎡⎛ ⎞⎛ ⎞ ⎛ ⎞

= + − + + −⎢⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣

+ + + ( )( ) ( )( )
2

2 1 2 1L
L face side L face

L

A A A
E
σν ν

⎤
+ − + + − ⎥

⎦

 

           (A-14) 

Collecting the time derivatives 

( )( ) ( ) ( )( )
2

2

2 2 1 2 1

H L H L H L
H Lf H L Lf L

H H L L

L L
L side L face Lf H H L L side L face

L L

t A A
E E E E

A A A A
E E

σ σ ν σ σ νσ ε σ ε

σ σσ ν σ ε σ ε ν

⎡ ⎛ ⎞ ⎛ ⎞
Π = + − + + −⎢ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣
⎤

+ + − + + + + − A ⎥
⎦

/

 

           (A-15) 

From Ref [3-Tsai-p17], /H H L LE Eν ν= , which allows use of the constitutive equation to 

simplify further.     

( ) ( )( )

( ) ( )( )
2

2 1

2 1
2 2

L
Lf H H L L L side L face

L

L
Lf H H L L side L face

L

A t t A A
E

t tA A
E

σσ ε σ ε σ ν

σσ ε σ ε ν

Π= + + + −

+ + + + − A
    (A-16) 

Substituting back into the differential form of the energy equation  

( )

( ) ( )( )

( ) ( )( )
2

2 1

2 1
2 2

f

L
Lf H H L L L side L face

L

L
Lf H H L L side L face

L

P V M g z z

A t t A A
E

t tA A
E

σσ ε σ ε σ ν

σσ ε σ ε ν

= +

+ + + + −

+ + + + − A

   (A-17) 
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Before collecting terms of Lσ , two other unknowns are defined.  The hoop stress rate is a 

function of airbag pressure rate and longitudinal stress rate found by differentiating 

Equation (A-17). 

( ) ( ) ( )
( )

( ) ( )
( )

2
0 0 0

2
0 0

0 0
2

0 0

g H H L g H H L g g H H L
H

H g H g

g H H L g H H H L

H g H g

P R E P R E P P R E
E t P R E t P R

P R E P R E t E
E t P R E t P R

ν σ ν σ
σ

ν σ ν σ

− + − −
= +

− −

− −
= +

− −

ν σ

  (A-18) 

A more accurate expression is found by differentiating Equation (A-18), but is not used 

here to avoid the complication of incorporating xR .  To simplify subsequent calculations, 

hoop stress rate is simplified to its partial derivatives 

, ,
LH H P H LP σσ σ σ= + σ         (A-19) 

where 

( )
( )

0
2

0

, H H H L
H P

H g

R E t E

E t P R

ν σ
σ

−
=

−
       (A-20) 

0

0

,
L

H g
H

H g

P R
E t P Rσ

ν
σ

−
=

−
        (A-21) 

d. Differential Form of Longitudinal Stress. 

Likewise, the airbag volume change rate is a function of longitudinal stress rate.  As 

shown in Chapter 4, Volume depends only on the kinematic state variables z, εH, and εL.  

Hence the equation for V depends on the partial derivatives of V with respect to those 

variables multiplied by , , andH Lz ε ε respectively. 

{ } [ ], , , , ,
H L

T H
z H L z

L

V V z V V V z V Cε ε ε

σ
ε ε

σ
⎧ ⎫

= + + = + ⎨ ⎬
⎩ ⎭

    (A-22) 

       A - 8



Alternatively, 

{ }, , , , ,
H

T H
z z H

L

V V z V V z V Vσ σ

σ
L Lσσ σ

σ
⎧ ⎫

= + = + +⎨ ⎬
⎩ ⎭

    (A-23) 

where 

{ } { } [ ], ,T TV Vσ ε= C         (A-24) 

Substituting (3–36) into Equation (A-17) yields 

( )
( ) ( )( )

( )( )

( ) ( )( )
2

, , , , ,

, ,

2 1

2 1
2 2

H L L

L

f z H P H L L

Lf H P H L H L L

L
L side L face

L

L
Lf H H L L side L face

L

P V z V P V

M g z z A t P

t A A
E

t tA A
E

σ σ σ

σ

σ σ σ σ

σ σ σ ε σ ε

σσ ν

σσ ε σ ε ν

⎛ ⎞+ + +⎜ ⎟
⎝ ⎠

= + + + +

+ + −

+ + + + − A

    (A-25) 

Collecting terms and rearranging, separates out Lσ . 

( ){
( ) ( )( )

( ){
( )( )

2

, , , ,

2 1
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2 1
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H L L L
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f H Lf H H L

L
side L face

L

M g z z P V z V P A t P

t tA A
E

P V V A t

t A A
E

σ

σ σ σ σ

A

σ σ ε

σσ ε σ ε ν
σ

σ σ ε

σ ν

⎛ ⎞+ − + +⎜ ⎟
⎝ ⎠

⎫
+ + + + − ⎬

⎭=
⎛ ⎞+ − +⎜ ⎟
⎝ ⎠

⎫
− + − ⎬

⎭

ε

, z

   (A-26) 

To simplify subsequent control volume calculations for , longitudinal stress rate is 

simplified to its partial derivatives 

P

,L L L zP Pσ σ σ= +         (A-27) 

where 
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H

H L L L

Lf H P H H P f

L P
L

f H Lf H H L side L face
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E
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σ σ σ σ

σ ε σ
σ

σσ σ ε ε ν

−
=
⎧ ⎫⎛ ⎞+ − + − + −⎜ ⎟⎨ ⎬⎝ ⎠⎩ ⎭

 

           (A-28) 

( ) ( ) ( )( )

( ) ( )( )

2

, , , 2 1
2 2,

, , , , 2 1
H L L L

L
z f Lf z H H L L side z L face z

L
L z

L
f H Lf H H L side L fa

L

t tM g z V P A A A
E

tP V V A t A A
Eσ σ σ σ

σσ ε σ ε ν
σ

σσ σ ε ε ν
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=
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⎝ ⎠

,

ce

(A-29) 

, , andLf side faceA A A are functions of z only; therefore, , , , ,Lf Lf z face face zA A z A A z= = and 

,side side zA A z= . 
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