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Abstract

Prior to this work, a phenomenological description of mid-wave infrared (MWIR) emissions from high-
explosive (HE) detonation fireballs did not exist, hampering efforts to classify the type and size of HEs from
their electro-optical signatures. In recent field tests, temporally-resolved infrared spe@fa<(0At <
0.12s,2< A < 8cmrt) were collected via a Fourier-transform spectrometer (FTS) from the detonation
fireballs of two types of conventional military munitions (CMM) as well as uncased TNT and four types
of enhanced novel explosives (ENEs). The FTS data is not appreciably corrupted by artifacts due to scene
changes resulting from the fast transient events. The CMM spectra are dominated by continuum emission,
and a single-temperature Planckian distribution, modified for atmospheric attenuation, captures most of the
variation in the data. Fitted CMM temperatures are well described by an exponential decay to ambient at an
approximate rate of.8 s~1. A two-temperature fit to CMM spectra improved results, suggesting variations in
the temperature field are important. Some evidence of selective emission is identified by systematic patterns
in the fit residuals. The behavior of these systematic residuals affords a distinction between the two types of

CMMs studied.

The uncased TNT and ENE spectra appear strongly influenced by both continuum and selective emis-
sion. For the purpose of dimensionality reduction, a physics-based spectral model is developed consisting
of seven parameters—fireball size, temperature, particulate absorption coefficient, and gas concentrations for
H>0, COp, CO, and HCI. Fitting this model to the observed MWIR spectra affords a compact, high-fidelity
representation with physically-constrained features that correlate with both the type and weight of the HE.
For example, the hydrogen-to-carbon ratio) (estimated from the fitted concentrations separates the TNT
and ENE events. Spectrally-determiri@dsalues are somewhat consistent with stoichiometric expectations.
Comparing average values RBffor the uncased explosives with the limiting thermodynamic value (in paren-
theses): TNT 11.3(0.79); ENEOB 92 (21.3); ENE1 49 (6.7); ENE2A 46 (5.8); ENE2B 65 (6.7). Treating

all ENEs as a single class and assunii@beys a normal distribution, Bayesian discrimination revealed a



decision boundary oR = 1.67 with a mean probability of error less thar8®. For a detection probability

of ENE of 99%, the associated false-alarm rate was less that?d.0The Fisher ratio for the two classes

was 174. Temperature decay ratks correlate with charge weighw, following a power-law dependence

kt o« WP with —0.52 < b < —0.25 depending on explosive type. Initial TNT fireball temperatures agree
with optical pyrometry studies. Radiative emission is an important component of the cooling process and the
optical properties of the fireball may be a factor in the observed weight dependdacdrafial emissivities

are between 6-10, and rapidly decay due to a decrease in the particle absorption coeftigigihtnay be
possible that the, decay is evidence of soot oxidation, and the temporal behaviog &lom several TNT

fireballs correlates with recently published temperature-dependent soot oxidation kinetics.
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PHENOMENOLOGICAL MODEL FORINFRARED EMISSIONS

FROM HIGH-EXPLOSIVE DETONATION FIREBALLS

|. Introduction

Consider the following scenario: A suspicious package is found in a public place. The local bomb squad
is dispatched since, in an abundance of caution, the package is presumed to contain an explosive device. The
immediate concern is the public’s safety. Once the scene is properly evacuated, the bomb squad sends in a
robot to fetch the suspicious item. Itis carefully transported to a safe, open location where it can be neutralized
via a controlled detonation. At this point, it is often learned that the suspicious item was nothing more than
an accidentally dropped bag or package. With the heightened sensitivity to frequent acts of terrorism across
the world, packages found in odd, public locations can be forgivably mistaken for more sinister objects. But
sometimes they are. In such cases, the controlled detonation of the suspicious package results in a fiery
spectacle, a detonation fireball fueled by the unknown explosive material inside. This package was placed

with the intention of harming a lot of people. Now it is time to look for the perpetrator.

In both large and small cities across the country, bomb squads are dispatched several times a year
to neutralize suspicious packages. More often than not, the packages never posed a real threat to public
safety. But when actual explosive devices are found, it is important to learn as much as possible about the
weapon. Details about the weapon provide clues needed to apprehend the criminal. However, safety concerns
typically prevent a thorough forensic analysis of the device prior to the controlled detonation. After the device
is neutralized, officers from the crime lab will collect clues about its composition and construction. For
example, the size of the debris field is measured since it correlates with the size and shape of the explosive
charge. Residue samples are collected and can be sent to a laboratory for gas chromatography and mass
spectrometry analysis. This GCMS technique can provide important information about the composition of
the explosive material. However, this procedure takes time, and clues about the device that would help focus

the initial investigation are not immediately available.



Determining the type and size of the high explosive (HE) useithé device is important for several
reasons. Not only do these variables define the HEs damage potential, knowledge of these variables—even
after the fact—provides important clues about the perpetrator and his level of sophistication. For example,
some explosive materials are readily available (e.g., ammonium nitrate in the form of fertilizer) whereas others
are much harder to obtain (e.g., the military-grade explosive HMX). If evidence is found that the device
contained HMX, the authorities would likely consider it the work of a sophisticated terrorist with access
to DoD weapons facilities or with an extensive chemistry background and access to precursor materials.
Similarly, if evidence was found that the explosive was aluminized, the investigation might focus on the
limited number of producers and distributors of powdered aluminum. Knowing how big the original explosive
was is also key. The larger the device, the more likely clues (in the form of store receipts or parcel shipment
logs) can be found regarding the acquisition of the individual components. Finally, information about the
explosive device offers key details needed to build an accurate profile of the perpretratior. Was it the work
of an amateur or did he have training in the construction of explosives? Are its materials and construction
similar to those used in other solved or unsolved crimes? Answers to such questions influence the profile and

improve database searches for related cases and/or repeat offenders.

As just suggested, knowledge about the composition and size of a HE device employed in a crime
provides key information that can lead to the apprehension of the perpetrator. And the more quickly this
information becomes available, the more quickly the investigation can be appropriately focused. What if the
type and size of the explosive material could be ascertained via remote sensors while the device is being
neutralized via detonation? This capability could provide a rapid assessment of these key characteristics, and
do so in a manner which maximizes the safety of the investigators. The purpose of this research effort is
to develop the requisite fireball emissions phenomenology needed to determine if spectra collected from the
neutralization detonation can be used to characterize the underlying explosive material. The extraction of
phenomenological parameters from these measured spectra will be used to guide the search for the appro-
priate discriminating features in fireball emissions signatures. Of course, the capability to “fingerprint” HEs

from their electro-optical (EO) signatures may be useful in ways beyond the forensic scenario just presented.



For example, EO emissions from fireballs may improve batttesgharacterization by providing increased
situational awareness. It is possible that counter-terrorism and homeland security efforts may benefit from

this capability as well.

The detonation of a high explosive results in a luminous fireball. Infrared spectral emissions from the
fireball may reveal key HE characteristics since most absorption and emission features in this wavelength
regime are associated with molecular species. Knowledge of the amounts and temporal behavior of these
detonation by-products—for example, water and carbon dioxide in the case of hydrocarbon exposives—
may be used to infer the type of material used. For example, the quantity®fadd CQ liberated upon
detonation will be influenced by the stoichiometry of the explosive material. Furthermore, the evolution of
these by-products with time is driven by the kinetic pathways governing the oxidative decomposition of the
starting material, and their temporal signature may provide additional clues about the starting material. Visible
spectra of the HE fireball could be used to determine if the HE was metalized (e.g. aluminum particles) by
the presence (or absence) of characteristic metal-oxide emissions in this electromagnetic region. Explosive
size might be best estimated using imagery, and may be inferred from other measured characteristics of the

fireball.

The successful exploitation of emissive signatures from HE detonation fireballs requires an under-
standing of the underlying phenomenology, an understanding which has not been explored and presented
until now. Currently, the conversion of reaction exothermicity to infrared and visible emissions in HE det-
onations is poorly documented. Not surprisingly, no simple model describing the infrared emissions from a
HE detonation fireballs has been previously reported. The problem here is not that the underlying physics
are unknown; rather, the relevant pieces of physics have not been brought to bear on this particular problem.
Which components of the complex phenomena of a reacting fireball dominate the emissive characteristics?
What information content is contained in the emissive signature? Can a HE emissive signature be reduced to
a small set of characteristic descriptors which enable its distinction from other HEs types? With the dearth
of information regarding spectral emissions from HESs, these are questions which had no obvious answers at

the beginning of this project. Answers to these questions are necessary for this research effort, namely the



extraction of key features from fireball emissions. Key feaslare the quantitative, reproducible, physically-
meaningful bits of information contained in the emissions pattern. Ideally, they will be invariant to variables
which cannot be controlled (e.g., atmospheric conditions) and should be distinct for different types of events.
Using these key features, classification algorithms will provide a probabilistic answer to the question of “what
type and how big was that high explosive?” To set the stage for answering this question, a summary of relevant

background material is presented and contrasted with the approach taken in this research effort.

1.1 Background

The detonation of a high explosive (HE) is essentially a combustion reaction under extreme condi-
tions. One unit of the solid or liquid explosive is rapidly converted to several units of gaseous by-products
in a violent, highly exothermic reaction. Under suitable conditions—for example, confining the combustion
process to a small volume—the rapid increase in pressure resulting from the simultaneous increase in number
density and temperature produces a shock wave. The shock wave, in turn, continues to drive this extreme
combustion reaction in the remaining HE material [38]. Several microseconds later, the shock front leaves the
explosive and continues outward inflicting substantial damage on the nearby surroundings. The shock wave
leaves behind a luminous fireball, typically fuel-rich as many HEs are under-oxidized. Turbulence facilitates
mixing with atmospheric oxygen thereby continuing the oxidation of these detonation by-products. In some
systems, this afterburning is more energetic than the initial detonation reaction. However, being unconfined,
the afterburning system is probably more like a typical combustion system compared with the extremes of the
preceding detonation. The instrumentation described in the next chapter used to study the luminous fireball
will primarily sense the afterburning and subsequent cooling stages; the initial detonation occurs too rapidly

to be sensed by the spectrometers and effectively sets the initial conditions for the fireball signature.

There has been much work devoted to understanding the detonation [22, 38] and shock phenom-
ena [65, 66, 72,96, 105,110] in high explosives. Simple empirical relationships have been found for many
common explosives which relate molecular properties such as structure and density to experimentally deter-
mined detonation velocities and pressures [22]. Approximate values for the net energy release, temperature

and final volume after a detonation can be estimated using thermodynamic data [16] and the ideal gas law.



More sophisticated approaches incorporate thermodynagmititgium constants and equations of state tai-

lored to the non-ideal detonation environment. CHEETAH is a computer package which implements this ther-
modynamical approach and is used in the development and performance characterization of explosives [42].
Fundamentally, however, the detonation represents a difficult hydrodynamics problem that is coupled to a
reactive chemical system, and important time-dependent features of this dynamic system cannot be under-
stood from a purely thermodynamical approach. Mader [72] summarizes several decades worth of work that
has been applied to the understanding of HE detonations primarily through numerical thermohydrodynamic
simulations. Here, the evolving flow field is handled by hydrodynamics equations while the chemistry is still

handled by thermodynamic relationships.

Inrecentdecades, experimental work has produced elementary reaction rates for the dominant pathways
found in various combustion mechanisms [6, 44,67]. The National Institute of Standards and Technology
(NIST) Chemical Kinetics Database [84] tabulates Arrhenius rate expressions for more than eleven-thousand
bimolecular reactions. Several specialized collections of rate coefficients are made available for combustion
mechanisms for specific fuels, for example methane [11] or propene [54] combustion. As computational
power has steadily improved, modern multi-phase reactive-flow hydrodynamic codes such as FLUENT now
treat the chemical components via kinetic (as opposed to thermodynamic) equations as discussed in Ref. [18].
While the computations take on the order of weeks to months to perform, they have been successfully applied
to diverse systems including combustion engines [33, 89] and scramjet motors [80]. Upon establishing the
flow field, the results of these computational fluid dynamics (CFD) calculations can be post-processed with
radiative transfer packages such as the Standardized Infrared Radiation Model (SIRRM) [41] or the Fast Line-
of-sight Imagery for Target and Exhaust Signatures (FLITES) [23, 24] to predict the spectral distribution of
radiant energy emitted from the system. In principle, this CFD approach appears well-suited to the prediction
of HE detonation fireball spectra, perhaps enabling HE characterization via matching observed data with a
synthetic spectral library. However, it will be argued in the next section that this approach is hampered by
several technical problems and, while a worthwhile approach to understanding HE detonations, is not the

most suitable tool for the HE characterization problem.



Various laser-based spectroscopic techniques have aidedtterstanding and characterization of con-
trolled combustion processes [5, 63, 64]. For example, coherent anti-Stokes Raman spectroscopy (CARS)
is used to monitor gas temperatures and concentrations in typical combustion flames [103, 104] as well as
laboratory-scale rocket plumes [47]. Cavity ring-down spectroscopy [12,109] is an extremely sensitive tech-
nique allowing low-concentration reactive intermediates suchCi$ [74] and the radical CH [27] to be
measured. Laser-induced breakdown spectroscopy (LIBS) is an atomic emission technique used to study the
elemental composition of combustion flames [37,51], and enables the estimation of the temperature [71] and
the fuel-air ratio [36]. Laser-induced fluorescence spectroscopy (and planar LIF or PLIF) is a widely-used
and high-sensitivity technique for detecting particular chemical species, measuring temperature, and tracking
the fuel-air ratio [64,76,83,95,102]. Furthermore, because it is based on fluorescence (instead of absorption),
PLIF can reveal the spatial dependence of this information as well as other measures dependent on the flow
field [25, 73, 101]. Finally, laser-induced incandescence (LIl) is a spectral technique typically used to study

the time-dependent temperature and size distributions of soot in combustion sources [78, 97].

For the study of detonation fireballs from high-explosives weighing 10—-1000 kg, safety, cost, and tech-
nical issues preclude the use of most active spectroscopic techniques. Instead, passive techniques which re-
motely record the emission from the fireball must be dis&d the extent that the afterburning fireball behaves
like a typical combustion system, it is expected that it can be studied using Fourier-transform spectroscopy
(FTS), as has been done in the study of other combustion soufoe example, FTS has been used to char-
acterize emissions from methane-air combustion flames [99], measure concentrations from hot flue gases at
power plants [19], track chlorinated hydrocarbons found in incinerator exhaust [52], and monitor emissions
from advanced powertrains [1] including turbine aircraft engines [3,53,92] in order to improve performance
and minimize pollution. FTS has even been used by NIST to quantify combustion by-product concentrations

for the development of a standard database for which various CFD codes can be benchmarked [107]. Note that

1in active spectroscopy, a radiation source (e.g. a tunable laser) is passed through the system so its transmittance profile can be directly
measured. In passive (emissive) spectroscopy, the emitted radiance is measured directly, requiring a contrast between the background
and source.

2prism and grating-based spectroscopy are also applicable to the study of HE fireballs and other fast-transients. Since the spectral
features most useful to the HE characterization problem were not kagwiori, FTS was initially chosen over grating instruments for
its ability to collect high-resolution spectra over a wide band pass. In more recent field tests, a visible grating spectrometer was also
deployed but that data set was not analyzed as part of this dissertation.



in these studies, the emissive source is in a near steadyvatéth enables the collection of time-averaged,
high SNR spectra. Unlike the spectroscopy of large HE detonation fireballs presented in this work, many of

the sources just described were conducive to and studied by active spectroscopy.

Common to many of these combustion studies via spectroscopy is the method by which the spectra
are interpreted using simple radiative transfer concepts in conjunction with a spectral database such as Hl-
TRAN [90]. Weiser [106] summarizes key components of the radiative transfer theory, anddiledi]40]
and Modestet. al.[82] provide evidence that this approach works at the high temperatures encountered in
combustion systems. Where the current work differs is in bringing these methods to the analysis of a class of
fast-transient events which heretofore have not been reported on in the literature. The afterburning and cool-
ing fireball, depending on its size can last up to at most a few seconds. The rapidity with which this source
changes prevents signal-averaging. Furthermore, lacking hardened, protected equipment, only emissive sig-
natures from large HE fireballs can be collected, and a model for the fireball behavior is needed to interpret

the collected spectra. To do so, a consideration of the radiative transfer in a fireball will be necessary.

Spectroscopy has been used in several studies of explosives prior to this work. Many efforts have
focused on understanding aging effects on explosives or developing trace detection techniques [75]. Many
common HE materials (TNT, RDX, HMX, etc.) have unique absorption cross-sections in the terahertz por-
tion of the electromagnetic spectrum. Since THz frequencies can penetrate common dielectric materials
(clothing, luggage bags, shoes, etc.), the spectroscopy and instrumentation are being rapidly developed for
stand-off detection of common HEs [39, 70, 98, 111]. Reflectance FTS has been used to examine the ex-
tinguished (and formerly combusting) surfaces of common gun propellants to infer information about the
underlying combustion mechanisms [93, 94]. Rapid-scan FTS techniques have been developed to uncover
the mechanisms governing the thermal decomposition of high explosives such as RDX and HMX [58, 88].
In these studies, thermolysis of the HE was controlled so that combustion did not occur. Instead, thermal
decomposition of the HE occurred over several seconds (~10—-60 s) and at relatively low temperatures (~500—

700K) and pressures (~1000 psi). By contrast, in the detonation of a HE, decomposition occurs in the nano-



to micro-second timescale, temperatures may exceed twesdimal Kelvin, and pressures may be as large as

500,000 atm [42, 110].

Only recently have optical spectra of HE detonation fireballs been published in the literature, and the
work of this research group accounts for most of these publications [4, 30, 32,48, 86, 87]. However, Goroshin
et. al. recently published visible spectra (400-800 nm) of fireballs resulting from the detonation of TNT,
nitromethane (NM), and NM mixed with Al, Mg, or Zr powders [45]. The TNT, NM, NMAl, and NM+ Zr
spectra exhibited strong continuum radiation and some selective emission lines from the metal and metal
oxides were also assigned. The NMMg featured a number of selective emission lines, most of which
were attributed to Mg and MgO. All spectra featured weak to moderate, unresolved Na emission doublet near
590 nm. The visible spectra were captured to enable the appropriate selection of bandpass filters for their
three-color pyrometer. (Assuming a greybody radiator, temperature can be inferred via ratios of the observed
radiance in different wavelength bands. Selective emission in a chosen band will corrupt this temperature
measurement, and the visible spectra indicate those regions which must be avoided for successful temperature
measurements via pyrometry.) No analysis of the fireball spectra was reported apart from assigning several of
the metal and metal-oxide emission lines. Their fireball temperature estimates for TNT measured by optical

pyrometry are compared with spectral estimates resulting from this work in Chslpter

Perhaps the most relevant related work was recently published by Weiser and Eisenreich. They describe
an ideal experimental set-up for capturing time-resolved spectra of pyrotechnic events in the near infrared and
visible regime [106]. Their paper also presents some moderate-resolution spectra from nitromethane and iso-
octane pool fires as well as from exhaust plumes from various propellants. The pool fires and exhaust plumes
are small scale and produced under controlled laboratory conditions. They provide a theoretical framework
for interpreting the spectra similar to what is presented here; however, they employ a random band model and
assume the optically-thin limit to simplify the analysis. The present work differs in several respects, of which
a few technical differences are: (1) actual time-resolved spectra from full-scale, fast-transient HEs fireballs

were collected in the field; (2) full line-by-line calculations are used to match the spectral resolution of the



instrument; (3) the optical depth varies from thick to thinabling the de-coupling of the fireball’s geometric

length and constituent concentrations by using calibrated spectral intensities.

In an effort to identify key features for the HE classification problem, a few former AFIT students
collected temporally-resolved infrared emissions from HE fireballs during several field tests [29, 86]. Inter-
preting and extracting the information content contained within these observed spectra is the essential focus
of this dissertation. In the spirit of reverse-engineering, the data guided the development of a simplified phys-
ical fireball emissions model. The model is successfully fit to the observed HE fireball spectra, collapsing
the dimensionality down to a few physically-meaningful parameters. The model parameters are the fireball
size, temperature, continuum absorption coefficient (for soot emissions), and four by-product concentrations
(H20, CO, CO, HCI). Quantities derived from these fit parameters will be shown to be key features in that
they strongly correlate with the type and size of the high explosive, a result suggesting that discrimination
of HEs from electro-optical signals is possible. By virtue of fitting the data so well, the model also provides
a method of studying fireball behavior, in particular the time-dependence of quantities such as temperature.
Some initial inferences concerning the temporal phenomenology of HE fireballs are also presented in this

document.

1.2 Alternate Approaches to the Classification Problem

Before beginning, it is worth commenting on two other approaches, denoted “Statistics” and “First
Principles”, which might be taken to solve the HE classification problem. In the end, pattern-recognition
tools will be used to ascribe a likelihood that the inputted feature set maps to a particular type of HE. So
in the Statistics approach, one might directly feed the observed data to the classification algorithms, bypass-
ing the phenomenological modeling. Or recognizing that substantial dimensionality reduction is necessary
(a single time-resolved data cube can contain a quarter-million data points), techniques such as principle
component analysis might be used to achieve this instead of a physical model. The problem with such a
non-phenomenological approach is that the remotely collected fireball spectra contain large amounts of both

redundant and extraneous information. A phenomenological model eliminates much of the redundancy and



naturally partitions the information into useful and exeans categories. For example, the fireball model
presented in this work separates the spectral features associated with atmospheric attenuation from the spec-
tral features associated with the fireball emissions. It is difficult for a neural network to “learn” only the
differences in the data resulting from real fireball features when significant extraneous differences are present
in the observed data used to train it. Arbitrary dimensionality reduction achieved by, for example, taking the
first n principle components from a data cube will not, in general, decouple the extraneous and useful bits of

information.

In the First Principles approach, one might attempt to predict the spectral signature that would be emit-
ted from a HE fireball. A spectral library of HE signatures could be developed, enabling measured signatures
to be associated with a HE via spectral matching algorithms. Reactive-flow (RF) computational fluid dynam-
ics (CFD) represents perhaps the best-suited method of generating a spectral library. In practice, this is an
extremely difficult and very demanding task. Chung points out [18, pp 725] that the following processes of
“kinetics, laminar and turbulent hydrodynamics, thermal conductivity, viscosity, molecular diffusion, thermo-
chemistry, radiation, nucleation, surface effects, evaporation, condensation, etc.” must be well understood to
adequately perform such calculations. Barlow, summarizing the current capabilities of CFD in 2007, states

the following [5]:

Direct numerical simulation (DNS) of the fully coupled equations of fluid motion, molecular
transport, and chemical reaction can today be applied only to canonical reacting flows with ide-
alized boundary conditions and to the simplest of laboratory-scale turbulent flames. While such
simulations are excellent tools for fundamental research on specific turbulent combustion phe-
nomena, the leading-edge cases already require hundreds of millions of computational cells and
millions of computer processor hours. Therefore, calculations of practical combustion devices
must rely on a range of simplifying assumptions and computational models, which must in turn
have solid experimental and theoretical foundations if they are to be accurate, predictive, and
robust.

Fortunate for the combustion community, an enormous amount of experimental and theoretical work has been
performed, providing the required foundations to employ simplifications which enable CFD to be practically
applied to various combustion scenarios. However, this is not the case for HE detonation fireballs with little
published work on the afterburning combustion process. Using CFD with SIRRM or FLITES to predict HE

spectral signatures would require significant validation. In fact, the act of performing the radiative transfer in
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post-processing stage may introduce large errors in botstiadlishment of the flow field as well as the spec-

tral radiant emission. In most RF-CFD codes, the radiative energy loss is treated in an approximate way since
coupling a full solution to the radiative transfer component results in a computationally intractable problem.
Typically, only after the flow field is established are accurate radiative transport calculations performed. As
a result of this simplification, important turbulent-radiation interactions (TRI) are ignored. Deshehukh

point out that excluding TRI in CFD calculations (which, when included, accounted for 96% of the CPU time

in their study) can lead to significant errors, including underestimations of radiative flux by 30-50% [28].
In the context of modeling electro-optical signatures, the radiative transfer compstienimost important

part of this problem, and it is difficult to estimate the utility of post-processed spectra from CFD flow-fields

without a substantial validation effort.

Other technical complications in CFD involve the use of experimental reaction rates. While reaction
rates for key elementary combustion reactions are now available, they are typically measured under non-
turbulent conditions. Turbulence affects the rates in ways that have not been fully characterized, limiting
their usefulness in and reducing the accuracy of CFD calculations [18]. Additionally, for most HEs full
reaction mechanisms starting with the unreacted explosive and terminating with its fully-oxidized state are
non-existant. Fortunately, the initial decomposition via detonation to simple gases and solid particulate matter
can be handled using thermodynamic codes such as CHEETAH [42]. However, Weiser makes the case [106]
that the use of equilibrium-based codes and other factors currently limit the ability of CFD calculations
to accurately predict emission spectra from combustion systems. While Beclestedd suggest kinetic
modeling of solid propellants (of which some are also explosives) is not yet predictive due to insufficient
knowledge about the initial decomposition reactions, they provide a review [8] of the theoretical aspects and

progress made toward these predictions and suggest that soon such predictions will become reliable.

In principle, the techniques of RF-CFD might be able to synthesize a HE fireball spectrum for compar-
ison with real data. Such work should be pursued as it would be complementary to and offer relevant insight
for the phenomenological approach described in this document. However, several technical obstacles prevent

RF-CFD from being used to reliably synthesize HE fireball spectra. Furthermore, unlike the simple physical
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model developed in this work, RF-CFD models cannot be usexttact information from a real HE fireball
spectrum, and as a consequence of its inherent high-dimensionality, do not provide an intuitive description of
the dominant features found therein. It is possible, however, that the phenomenological understanding gained
in this research effort may indicate which processes can be simplified (and which cannot) so that CFD can be

more accurately applied to the generation of HE fireball signatures.

1.3 Document Preview

Dimensionality reduction and feature extraction are crucial first steps to solving the HE characterization
problem, and neither a first-principles nor purely statistical approach appear to be suitable approaches to the
solution. The key contribution of this dissertation is the development and validation of a phenomenological
approach to dimensionality reduction that yields key features for HE characterization. An overview of the
emissions data collected by a Fourier-transform spectrometer (FTS) and leading to the development of this
model is presented in Chapiér Ancillary yet importantissues to be discussed includeseralibration, the
effects of atmospheric absorption, and scene-change artifacts due to observation of a dynamic scene by FTS.
In Chaptenll, previous efforts by the author [48, 49] to describe conwsrai military munitions emissions
are summarized for completeness. Chapéeprovides the physical basis for the fireball model along with
an interpretation of results obtained by fitting it to a few fireball spectra. Fits to a large number of distinct
HE emission spectra were performed, and Chaytpresents the behavior of the fit parameters to examine
how information about the size and type of the HE can be extracted. This chapter also sets the stage for better
understanding fireball phenomena by offering a physical interpretation of the time-dependent behavior of the
temperature and particulate absorption coefficient. Finally, conclusions are presented in €hagboeig
with a roadmap for future efforts. Several appendices are also included to provide important yet ancillary bits

of information.
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[I. Experimental data

Over the past decade, the remote sensing group at AFIT has collaborated with various ground-truth teams in
deploying a variety of sensors to characterize transient events. These joint efforts have focused on collecting
electro-optical emissions from short-lived combustion events, for example detonation fireballs and muzzle
flashes from small arms fire. AFIT’s key contributions to these efforts include the introduction of new instru-
mentation for signature collection and, most importantly, the development of phenomenological models for

signature interpretation and subsequent exploitation.

For each field campaign, the ground truth team typically deploys a collection of spectrometers, radiome-
ters, and imagers spanning the visible and infrared regime for signature collection and event characterization.
Conventional munition signatures were collected during the Radiant Brass exercises and tank muzzle-flash
emissions were characterized in the Iron Rose tests. Recent attention has been focused on gathering signa-
tures from improvised explosive devices (IEDs) currently deployed against US and Coalition forces by rogue
organizations. Several field tests were convened to specifically address the IED threat. In particular, two
campaigns (Brilliant Flash | and 1) were executed to collect electro-optical signatures to assess the feasibil-
ity distinguishing engineered explosives (e.g., TNT) from IEDs constructed from readily available materials.
More recently, the Bronze Scorpio exercises characterized the emissive properties of artillery shells detonated
in various configurations to simulate the munitions-based IEDs encountered by US and coalition forces in
Irag. Finally, AFITs remote sensing lab recently designed and executed two tests which quantified the flash-
suppressing characteristics of a novel gunpowder when fired from small-arms weaponnt. Sabi@arizes

several recent field tests involving AFITs remote sensing laboratory.

The field tests just described were costly, dangerous, and designed to provide a rough characterization
of the types of transient events typically encountered in the battlespace. The purpose of this research effort
is to move beyond rough charaterizations of the data and towards a simple physical description of event
phenomenology. This task is difficult as the constraints on and original scope of the field campaigns resulted
in data sets which span many degrees of freedom with limited or no repetitions. For example, in Brilliant

Flash Il, there was only one detonation of each explosive in the 1000 kg weight class. Thus, when considering
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Table 1:  Summary of recent field tests in which electro-optical signatures were collected to enable the characterization of several types of transient events.
The author was involved in the last three field tests: he was responsible for the AFIT team in Bronze Scorpio, and he served as the primary investigator in both
Muzzle Flash I and II.

14’

Field Test

Description

Events

Variables?

Instruments?

Radiant Brass III A
2-5 Aug 1999

Aircraft-delivered
CMMs

33

12 (2 HEs, 3 weights, 4
approach vectors)

Bomem MR-154 FTS (Av=7.71 cm’!, At =0.049 s, 1.6-20 um)
4-channel radiometer (InSb, 200 Hz, various filters)

AGEMA MWIR FPA (5 Hz)

Radiant Brass III B
26-29 Oct 1999

Statically-detonated
CMMs

23

4 (3 HEs, 3 weights, 2
detonation methods)

Bomem MR-154 FTS (Av=7.71 cmv’!, At =0.049 s, 1.6-20 um)

4-channel radiometer (InSb, 200 Hz, various filters)
AGEMA MWIR FPA (5 Hz)

Brilliant Flash I
8-17 Jul 2002

ENEs
(IEDs from readily

available materials)

51

9 (3 HEs, 3 weights)

Bomem MR-154 FTS (Av=1.83 cm’!, Ar=0.123 s, 1.6-20 um)

Bomem MR-354 FTS (Av, At unknown)
4-channel radiometer (InSb, 200 Hz, various filters)
Cincinnati Electronics IRRIS FPA (256x256 InSb, 40 Hz)
Indigo AlphaNIR FPA (320x256 InGaAs, 30 Hz, 0.9-1.7 um)
Canon XL-1 3-chip video (720x480 Si, 60 Hz interlaced)

Brilliant Flash 11
2-13 Jun 2003

ENEs

44

9 (3 HEs, 3 weights)

Bomem MR-154 FTS (Av=1.83 cm’!, Ar=0.123 s, 1.6-20 um)
Bomem MR-354 FTS (Av = 1.83 cm’!, Ar=0.029 s, 2-5 um)
4-channel radiometer (InSb, 200 Hz, various filters)
Cincinnati Electronics IRRIS FPA (256x256 InSb, 40 Hz)
Indigo AlphaNIR FPA (320x256 InGaAs, 30 Hz, 0.9-1.7 pm)

Bronze Scorpio

Munitions-based
IEDs

62

11 (3 HEs, 2 weights, 2
detonation methods)

Bomem MR-154 FTS (Av =183 cm’!, At =0.123 s, 1.6-20 um)
Bomem MR-254 FTS (Av =1.83 cm!, Ar=0.029 s, 0.9-5.5 pm)
Bomem MR-354 FTS (Av = 1.83 cm'!, Ar=0.029 s, 2-5 um)
4-channel radiometer (InSb, 200 Hz, various filters)
Cincinnati Electronics IRRIS FPA (256x256 InSb, 40 Hz)

Indigo AlphaNIR FPA (320x256 InGaAs, 30 Hz, 0.9-1.7 um)
Phantom high-speed color camera (800x600 Si windoable, 4.8-150 kHz)

Muzzle Flash I

Small-arms fire

140

4 (2 propellants, 2
bullets)

Bomem MR-154 FTS (Av=1.83 cm'!, A =0.123 s, 1.6-20 um)

Bomem MR-254 FTS (Av =1.83 cm’!, At =0.029 5, 0.9-5.5 um)
Indigo AlphaNIR FPA (320x256 InGaAs, 30 Hz)

Phantom high-speed color camera (800x600 Si windoable, 4.8-150 kHz)

Muzzle Flash II

Small-arms fire

90

2 (2 propellants)

Indigo AlphaNIR FPA (320x256 InGaAs, 30 Hz)
3-channel radiometer (2 Si Vis/NIR, 1 InAs - MWIR, 100 kHz)

aNot all possible combinations of variables were explored in each test
b Instrument data unavailable is displayed in grey




the results presented in subsequent chapters, it is impaot@@member that they are supported by limited

guantities of experimental data.

Despite the challenges imposed by the nature of available data, this research effort focuses on dis-
covering the phenomenology of high-explosive detonation fireball emissions for the purpose of developing a
simple physical model capable of representing those emissions. Motivating the need for a fireball model is the
desire to infer properties of the high-explosive from its electro-optical emissions following detonation. The
approach taken might be described as a reverse-engineering problem since we've started with the observed
data and from that tried to infer the dominant physical processes giving rise to the phenomena. Time-resolved
infrared spectroscopy is the tool by which the phenomenology will be studied. Specifically, spectra collected
by a Fourier-transform spectrometer (FTS) during the Radiant Brass Ill and Brilliant Flash Il exercises are
the data from which a model of fireball emissions is developed in this dissertation. For each of these two
tests, a summary of the instrumentation and signature collection methodology relevant to this work will be
provided and will be followed by a brief presentation of some representative data. Detailed descriptions of the
tests and thorough explorations of the data can be found in the appropriate references [4, 29, 86]. Preceding
this, however, will be a necessary digression into the calibration and use of FTS for measuring transient event

signatures.

2.1 Spectro-radiometry via Fourier-transform interferometry

Fourier-transform spectroscopy is a mature discipline based on interferometry, and this technique en-
joys several benefits over other forms of spectroscopy including the throughput (Jacquinot) and multiplex
(Fellget) advantages [10]. These and other favorable attributes of FTS have lead to its adoption in a multitude
of fields requiring spectral information in the infrared. As a result, FTS is a technology that is continually
being improved and it is now possible to acquire ruggedized, high-speed interferometers for use in non-
laboratory environments, including outer space [9]. However, the transient nature of HE fireballs and the

rough environment in which they are studied pushes FTS near the limits of its ability to collect useful data.
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Table 2:  Definitions, symbols, and units associated with e¢vadiometric quantities. When the terms
involving radiant energyl(, |, andF) are expressed as a functionigfthe result is a distribution function
valid over the infinitesimal rangé [© + d] and cnT! is appended to the units in the denominator.

| Symbol] Name | Units | Definition |
A area cn? projected area of source
R length cm distance between source and collection optic
0 linear angle rad angle between source and collection optic
Q solid angle sr dQ =2
¢ flux w radiant energy reaching collection optic per unit time
L radiance b L= MC%%
I intensity w | =22 = [, L cost dA
F irradiance % F = 0%, Aq = area of collection optic
B; | Planck distribution| W _ B; di = em(hzchﬁ%/zkfﬂ—l dv

After discussing the basic calibration procedure, a briebthtical discussion of FTS will be presented to

unveil potential problems when collecting spectra of transient phenomena.

2.1.1 Calibration. Radiometric terminology follows the Sl convention as presented in Dereniak and
Boreman’s Infrared Detectors and Systems [26]. An important exception to the Sl system is the preference
of using centimeters for length and wavenumbetsm—1) to describe spectral quantities. The wavenumber
v is the reciprocal of wavelength (expressed in cm) and is proportional to a photon’s frequerayd the
energy of a transitior\ E via the relationship = % = % = %. Here, @ is the speed of light in a vacuum

and h is Planck’s constant. Tal?edefines the basic radiometric units and related terminolagylun this

work.

A blackbody with circular aperture of ardg was placed at a distan&®y, from the FTS. The multiple
temperatures of the blackbody @&re much larger than the ambient temperature to ensure ample contrast
between the calibration source and background. Wik > +/App and noting that a blackbody source is

Lambertian, the resultant irradiance distributierat the entrance optic can be expressed as

. Apb -
Fi() ~ — B, Ti) 1)
Ré
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where B is Planck’s distribution corresponding to the source temperaturdmwavenumbers, Planck’s

distribution is specified as

Clﬁ3

"= axoen /T — 1 (2)
p(czv/T) =1

wherec; = 2h (% c2 = hy/kg, and lg is the Boltzmann constant.

At each wavenumber, the spectrometer respois@g were linearly mapped to the entrance optic

irradianced () using a gaind;) and offset &) term determined by a least squares fit tjuations

Vi) = a1(v) G Tatm(®) Fi (V) + ao(v) 3)

The gain term accounts for multiplicative effects such as the quantum efficiency of the detector and instrument
throughput. The offset term accounts for additive terms such as instrument self-emission and background ra-
diance. The scale fact@ accounts for the combined effects of the instruments’ pre-amplifier gain setting

and the presence of attenuating filters (wire mesh or neutral density), both of which may cteesgEomo-

date the wide dynamic range encountered during a field test. The effect of atmospheric attenuation over the
distanceRyp is estimated bylatm using available meteorological data. In principle, separating atmospheric
attenuation from detector response is necessary since the distance between the event of interest is different

from Rpp.

During the field tests, the FTS was triggered several seconds prior to the detonation event. The raw
spectra were converted to intensity using the following method. First, the individual raw background spectra
were averaged together to provide an estimategof Although calibration providesg, the background
radiance observed during calibration is often substantially different from the background radiance observed

during the event collection. The entrance optic flux was computed from

 Vabs(?) — 20(9)
Foos(?) = G @) 2 ) “)

Lideally, a calibration would be performed for each unique combination of pre-amplifier gain and attenuating filters. A compressed
test schedule precluded this possibility for the field tests described in this document. Instead, the manufacturer’s gain factor specifications
were used and multiplicative effects for the various attenuating filters were experimentally determined.
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In principle, the part ofg representing background radiance needs to be scaled to account for the fraction of
the FOV consumed by the soufc&he calibration procedure described here does not perimiagithe sep-

aration of instrument self-emission cannot be distinguished from background radiance. In practice, however,
this detail is irrelevant because (1) the choice of optics typically results in source areas much smaller than the
total FOV and (2) for most detonation fireball specigss(v) > ag(v). These details do become important

as the fireball approaches the ambient temperature, but these late-time spectra are excluded from analysis
because the signal-to-noise ratio (SNR) is poor. For convenience, the measured irradiance is converted to

apparent intensityyps by the distance to the eveR i.e.

lobs(7) = RZFops(¥) = Tatm()lsre(V) (5)

wherelg,¢ is the source intensity anty;m now accounts for atmospheric attenuation oReil he conversion
from irradiance to intensity assumes that the source is a Lambertian radiator, the source diameter is much

smaller than its distance from the spectrometer, and the source under-fills the instrument’'s FOV.

To solidify the preceding discussion, Figurpresents the raw spectral voltage from an early 50 kg TNT
fireball collected during Brilliant Flash 2. Also shown is the average of the background spectra acquired prior
to the detonation. The instrument is configured to accommodate the peak intensity of the detonation fireball,
and as a result, the combination of low gain and attenuating meshes limits the background emission to a tiny
fraction of the total spectral voltage. It is also worth noting that the InSb detector does not have a filter to limit
photons with frequencies higher than the Nyquist limit7900 cnt! for the HeNe laser). Above background
voltages are measured near this limit, and as a result, aliasing may be a problem at high wavenumbers. To
mitigate this effect, the wavenumber axis was truncated at 7108.caplot of the InSb detector response
function (i.e., the gain terma;) as estimated via a calibration is provided in Fig@reFour temperatures
(900, 950, 1000, and 1200 C) were used to estimate the InSb response in terms of photon energies. The

peak response occurs near 1865¢r(b.36 xm). Response falls off rapidly at longer wavelengths (detector

2If the source is opaque, the background behind it does not contribute. If the source is seim-transparent, the photons from the
background are likely altered as they propagate throught it.
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Figure 1:  Raw spectral voltage (black) corresponding to agbDT detonation fireball. For comparison,
the average of the 38 background<{ 0) spectra is displayed in grey.

cut-off) and gradually at shorter wavelengths. Note that if the effects of atmospheric transmittance are not
properly accounted for, the apparent detector response will be underestimated in regions where significant

absorption occurs.

2.1.2 Interferogram processing. In most applications, a properly calibrated FTS will result in
useable spectra with the conversion from an interferogram being automatically handled in software. An
implicit assumption in this process is that the source is not varying during the acquisition of the interferogram.
Detonation fireballs are by nature transient, and it is necessary to briefly examine the process of converting
an interferogram to a spectrum to understand possible problems associated with scene-change artifacts, i.e.
errors introduced into the spectrum because of a non-static source. In the following analysis, the continuous
Fourier transform will be used. Note, however, that the interferograms are converted to spectra using the

discrete Fourier transform.
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Figure 2:  Typical detector response profile (gaipfor the InSb detector in the Bomem MR-154 FTS. The
arbitrary units are energy-based (not photon-based). The grey curve represents the apparent detector response
when viewing a blackbody through a several feet of atmosphere and not compensating for transmittance
effects. Accounting for the atmospheric attenuation results in a better estimate of the detector response curve,
which is shown in black.
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An interferograny is related to the source spectrifhby
(0.¢]
y(4) =/ Y (V) cos(2rvd — ©(v)) db (6)
0

whered is the optical path difference (cm) between the interfering light beam®asd frequency-dependent
phase term accounting for optical, electronic, and sampling effects [46]. For example, imprecise sampling of
the point at which perfect constructive interference occurs (i.e., zero path difference or ZPD) would result in
a linear phase shift (i.e. a ramp in phase space). Electronic filters are typically responsible for imparting a
frequency dependence in this phase term. For instruments that record double-sided interferegfams (

0 < Jdmax Wheredmax is the maximum optical path difference, introduces asymmetry. Noise will also

impart asymmetry in the interferogram. The spectrum can be recovered via the Fourier transform

Y(©) = /_OO y(5) €21 79dy (7)

The true spectrunY will be distributed across the real and imaginary axes in the complex plane. Phase
correction is necessary to rotate the signal into the real plane, leaving noise equitably distributed among both

planes.

The simplest method of phase correction is performed by computing complex calibration coefficients
(a1 andag). Assuming sources of phase remain constant between calibration and event acquisition, the phase
will be accounted for in the complex representatioapéndag. In a controlled laboratory environment, this
assumption is valid. However, vibrations and sudden jolts are common occurrences in the harsh environment
encountered during field tests. Such effects were found to alter the instrument’s sampling grid which resulted
in a new® that differed from the phase function present during calibration. To account for this, all interfero-
grams (including calibration) were phase-corrected using the Mertz algorithm [77] as described by Griffiths

and de Haseth [46], and only the real components @indag were used map raw signals back to irradiances.
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2.1.2.1 Scene-change artifacts. For a transient event, the changeMrwith time may dom-
inate all other sources of asymmetry in the collection of an interferogram. This will impart artifacts in both
the real and imaginary components which in general cannot be fixed by phase correction techniques. The
nature of these scene-change artifacts (SCAs) was recently investigated by Kick [62]. In his work, he con-
sidered a source which smoothly varied between three instantaneous spectra. At the start of the double-sided
interferometric collection, the spectrumYs; at ZPD, the spectrum 0¥;; and at the end of the collection,
the spectrum i%3. For all points in between, the spectrum is described by the unique quadratic polynomial
passing through these three points in time. Assuming an ideal interferometer, the following expression for the

measured spectruly, was derived

1 02 (2Y1 — 4Y, + 2. 1 a(Ys=Y
(21 2+ 3)+| (3~ 1) (8)

Yv®) = Yo — -
u) (4 5max)2 o2 47 Smax ov

wheredmax refers to the largest optical path difference in the interferogram and/—1.

For a scene which changes linearly in tinie = (Y1+Y3)/2 and the second derivative in the real part of
Equation8 will vanish. In other words, the imaginary component will beaidence of SCAs, but the real part
will faithfully represent the instantaneous spectrgn Only when the scene changes quadratically in time
will artifacts impact the real component. Despite this quadratic behavior, the real partis modified by a second-
order correction and may be approximated by the instantaneous source spéctiiok demonstrated that
at moderate resolution (worse thas 8m~1), the measured spectrum was virtually identicat4@ven under
extremely non-linear spectral changes during the measurement time. Kick was not studying high-explosive
detonations, however, and nothing has been presented which enables an estimation of the magnitude of the
correction to the real part in Equati@ Furthermore, he used the continuous Fourier transforrmtalaie
the effects of SCAs. Real instruments employ the discrete Fourier transform, and it is possible that under
some conditions real SCAs will differ from those simulated by the continuous transform. Nonetheless, the
counter-intuitive conclusion that SCAs have little practical impact on the real part of the measured spectrum

will be supported by analysis in Chaptéf.
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2.2 Radiant Brass

Several campaigns under the Radiant Brass (RB) moniker were performed during the late 1990s to
characterize infrared emissions from the detonation of conventional military munitions. AFIT collaborated
with Wyle Laboratories in the testing performed at the Fallon Range Training Complex in Nevada over the
periods 2-5 August 1999 (phase 3A) and 25-29 October 1999 (phase 3B). What follows is a quick overview
of the RB3 tests; consult Orson’s masters thesis [86] for a more thorough discussion. For RB3A, an F/A-18
aircraft was used to deliver 33 general purpose bombs using three different approach vectors, namely 65, 155
or 355 with respect to the instrumentation line-of-sight. 23 of the same types of munitions were statically
detonated during RB3B. The HE was either Tritonal or H-6, and was enclosed in an iron shell. Tritonal is a
mixture of 80% TNT and 20% aluminum. H-6 is comprised of RDX (~45%), TNT (30%), aluminum (21%)
and a binding wax (4%). Three different weapon sizes were studied and are generically labeled small (S),
medium (M), or large (L). The specific high explosive is generically labeled by A or B. Analysis of 18 events

(13 AS and 5 BL) collected during RB3B is the subject of Chafiter

AFIT deployed an ABB-Bomem MR-154 Fourier-transform spectrometer, a dual-channel interferom-
eter, to collect moderate-resolution spectra in the midwave infrared (MWIR). The instrument was configured
with InSb (16-56 xm) and HgCdTe (D—20um) detectors and was typically operated at a nominal spectral
resolution of 16 cmt (Av = 7.71 cnt!) with a collection frequency of 21 Hz. A few detonation spectra
were collected at 4 cmt resolution A% = 1.93 cnT!) which reduced the acquisition rate to roughly 8 Hz.
Data from the HgCdTe detector were noisy and not studied. The instrument was coupled to a 76 mrad full
field-of-view (FFOV) telescope. Detonations occurred betwe2r49 km away from the instruments on a
variety of earth surfaces including clay craters, hard sand, and rock. An illustration of the test geometry and
event locations is provided in FiguBe An Electro Optics LS1050 blackbody placed 76fiom the FTS was
used for calibration. Double-sided interferograms were collected (2048 pts @ 168192 pts @ 4 cm?)
and individually phase corrected via the Mertz algorithm [77] using 384 points on each side of the centerburst.

Co-adding of interferograms was not performed given the transient nature of the events being studied.
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Figure 3:  Test geometry for the Radiant Brass phase 3B fieldtisee

Wyle Laboratories deployed a 4-channel, 200 Hz radiometer using InSb detectors. A different bandpass
filter was used in front of each detector to limit its responsivity to a narrow portion of the midwave infrared.
An Agema (now FLIR Systems) 900 THV camera featuring both an InSb and an HgCdTe focal-plane array
(FPA) (each 272x136 pixels) provided MWIR imagery at 8 Hz. Orson’s initial comparisons of FTS data
integrated over the appropriate bandpass filter transmissions suggested good radiometric agreement with the
Wyle radiometers [86]. Unfortunately, Wyle’s radiometer and imagery data were unavailable for this work,

and a more thorough comparison of instrument data could not be performed.

2.2.1 RB3 data summary. A typical data cube collected by the MR-154 of a statically detonated
AS bomb is presented in Figude The intensity briefly grows with time and is followed by a srttodecay
to background. The rate of this decay is strongly dependent on frequency. This is particularly evident in
Figure5 which compares two spectra from this data cube. After aboutesntensity is near 0 Wsr/cm™1

at 6000 cntl; at 2000 cnt?, the intensity has only decayed to roughly 1/5 of its peak value in the same time.
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Figure 4.  Waterfall plot of apparent intensity from a type A@eentional munition detonation. The
nominal spectral and temporal resolutions are 16tand 21 Hz, respectively.

The estimated atmospheric transmittance profile is also provided in Fscand it is clear that nearly all of

the spectrally sharp features in the intensity profiles correspond to absorption features in the transmittance
function. (Most of the absorption features are due to trace atmospheric gases sugb andHCQ.) It

follows that the fireball source spectrum in the MWIR is a fairly smooth, slowly-varying function of fre-
guency. A rudimentary analysis of the data by Orson suggested that the broadband source behavior could
be crudely fi# to a single-temperature Planckian distribution [86, 87]plavements to this analysis by the
author were reported in the literature [48,49]. Chapiesummarizes these efforts, and it will be shown

that the spectral and temporal behavior of these conventional munition fireballs are reasonably described by

a single-temperature greybody radiator which cools in time.

The imaginary component of the spectruntat 0.10s is also provided in Figurg to assess the
potential impact of scene-change artifacts. The imaginary componentwas multiplied by 5 to make its structure

more evident. In the absence of SCAs, the imaginary component provides a “snapshot” of the noise level

SEffects of atmospheric attenuation were not accounted for in Orson’s analysis.
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Figure 5. Top panel Apparent spectral intensity of a type AS bomhk at 0.1s andt = 0.98 s. Bottom
panel The estimated transmittance profile computed from meterological data collected near the time of this
detonation event.

of the instrument. Examination of the imaginary component does not reveal any obvious structure that is
distinguishable from white noise. This does not rule out the presence of SCAs, but rather suggests that the
impact of SCAs on this spectrum is indistinguishable from other noise sources. In the next section, evidence

of SCAs will be visible in the imaginary spectrum.

2.3 Brilliant Flash

The Brilliant Flash (BF) field tests were convened to characterize electro-optical emissions from det-
onated IEDs constructed from readily-available components. The IEDs studied in the BF tests were termed
enhanced novel explosives (ENESs) as they were formulated with “booster” ingredients that enhance after-
burning and sustain the overpressure duration. Special emphasis was placed on finding characteristics which
distinguish these ENEs from conventional engineered explosives such as tri-nitro-toluene (TNT). The first
campaign (BF1) occurred over the period 9-15 July 2002 at the Air Force Research Laboratory test range at

Tyndall AFB. The second campaign (BF2) occurred during the period 2-13 June 2003 at the Utah Test and
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Training Range (UTTR). The AFIT team collaborated with ATKR@, the lead ground-truth team, during

both field exercises.

The spectrometer configuration during BF1 resulted in many fireballs which over-filled the instrument’s
field-of-view (FOV) and precluded conversion to apparent intensity. The phenomenological model of fireballs
developed in Chaptd¥ requires intensity data to decouple the effects of size ¢ptefl area) and radiance.

As a result, the spectra collected during BF1 were not studied in this work and details of the test will not be

discussed.

The plan for BF2 was to collect signatures from TNT and three types of ENEs. All ENEs have some
baseline ingredients in common. The addition of two distinct “booster” ingredients and the use of different
relative amounts of the baseline ingredients resulting in HEs labeled by ENE1 and ENE2. Midway through the
test, changes were made to the ENE mixtures resulting in a total of 5 distinct HEs labeled ENEOA, ENEOB,
ENE1, ENE2A, ENE2B. The HEs were either 10, 50, 100, or 1000 kg in size and a block of C-4 (10% by
weight) was used to initiate the detonation. The effective stoichiometric composition of the ENESs, accounting
for the C-4 detonator, is provided in Tal8elncluded in the table is each explosive’s oxygen ratio, asuea
of the available oxygen in the HE relative to the oxygen needed to fully oxidize the HE atomic constituents.
The explosives considered in this work contain in various proportions C, H, N, O, and Al; for short they will
be referred to as CHNOAI explosives. The fully-oxidized byproducts of CHNOAI explosives agetCO,
and AbQOg; nitrogen is converted to Nas it is thermodynamically favored over various oxygenated nitrogen
compounds. A total of 44 high explosives were detonated during the test, and the event matrix ih Table

presents the distribution of events according to weight gpel.t

The suite of instruments was located on an elevated knoll approximagdk® from the detonation
zone as illustrated in Figu® The ABB-Bomem MR-154 was configured with the InSb and HgCddtect
tors and successfully collected 40 of the 44 events atZ'amsolution at 8 Hz. Double-sided interferograms
consisting of 8192 points were collected. Phase correction was performed with 384 points on each side of
the centerburst using the Mertz algorithm. The FTS was coupled to a 28 mrad telescope providing a circu-

lar field-of-view with a diameter of approximately 90 m at the target. Several Electro Optics blackbodies
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Table 3:

2H — H20, and 2Al— Al70s3).

Relative amounts of the atomic constituents fourtderdifferent explosives used in the Brilliant
Flash Il field test. The amounts account for the presence of C-4 used to detonate the explosive. Oxygen ratio
denotes the amount of@vailable in the HE relative to the amount needed for full oxidation (e-g COg,

| HE | C [ H | N | O | Al | OxygenRatio]
TNT 1.00| 0.79 | 0.48 | 0.89 | 0.00 0.370
ENEOA | 1.00| 24.02| 12.36| 17.90| 4.08 0.889
ENEOB | 1.00 | 21.26| 10.99| 15.83| 6.12 0.726
ENE1 | 1.00| 6.74 | 2.62 | 4.26 | 3.76 0.388
ENE2A | 1.00| 5.84 | 2.49 | 4.05 | 3.57 0.394
ENE2B | 1.00| 6.71 | 293 | 4.71 | 2.92 0.484

Table 4:
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with temperatures between 900-1000 K were used to calilinategectrometer as described in Dills’ test
report [31]. The MR-154 was approximately 15 m away from the calibration source. At this distance, the
blackbody aperture—which is on the order of an inch—was a small fraction of the instrument’s field-of-view. In
the MWIR, the blackbody temperatures provided ample contrast from the 300 K background scene despite the
small aperture size. However, in the long wave infrared, there was not sufficient contrast as the background
radiance dominated the signal, and the HgCdTe spectra could not be reliably calibrated in the 500=1200 cm
region. The HgCdTe data awaits a proper post-calibration and is not considered in this work. The apparent
intensity of the fireballs spanned a wide dynamic range and scaled with the weight of the high explosive. To
maximize SNR, the MR-154 configuration was taylored to the expected photon levels using a combination of
wire mesh filters and different electronic gain settings. These settings were transcribed in a notebook as the
instrument software could not automatically track the gain level or the presence of mesh filters. In some cases,
insufficient signal attenuation resulted in a few saturated interferograms early in the collection sequence. The

corresponding corrupted spectra were excluded from analysis.

AFIT deployed several other instruments to UTTR which are briefly described. A Princeton Instru-
ments 025 m grating spectrometer was used to collect visible spectra. Infrared imagery was collected by an
Indigo Systems Alpha NIR camera, featuring an InGaA8<{Q.7 xm) FPA framing at 30 Hz. A Canon XL-1
3-chip video camera provided audio-visual documentation of the test and was also used for quantitative anal-
ysis of fireball size. A thorough analysis of the imagery can be found in Dills’ publications [29, 30, 32]. The
ATK/MRC team deployed a 4-channel, 200 Hz radiomfgteach channel featured a different bandpass filter.
They also used an ABB-Bomem MR-354 FTS, an interferometer featuring acquisition rates and input optics
superceding those of the MR-154. The MR-354 collected spectra at 4i@solution at a rate of 34 Hz. The
MR-354 lacked a cold reference and used a different InSb detector, and as a result, the instrument SNR was
poor compared with the MR-154. Furthermore, the effective spectral range was limited to 2000-4%00 cm
A collection of meterological instruments were employed to monitor temperature, pressure, and atmospheric

water vapor and enabled good estimates of atmospheric transmittance profiles in the infrared.

4The radiometer actually sampled at 2 kHz; however, the resulting time profiles were noisy and were downsampled to 200 Hz to
improve the SNR.
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Figure 7:  Waterfall plot of apparent intensity from the dettion of 50 kg of TNT. The spectral resolution
has been degraded to 16 thto improve visibility of the gross structure. The temporal resolution is approx-

imately 8 Hz. The centerburst of the interferogram corresponding to the grey spectrum saturated the detector
so the absolute intensity is uncertain.

2.3.1 BF2 data summary. The data cube collected by the MR-154 of a 50kg TNT detonation
is provided in Figure7. The spectral resolution has been degraded to a resolutité afr! to improve
visibility. Initially, the spectrum is similar to those of conventional munitions. However, the general shape
of the spectrum quickly becomes more complex than the conventional munitions examined during RB3. In
the MWIR, the duration of emissions from a TNT or ENE detonation is betwe®r®, with emissions
from larger explosives being brighter and lasting longer than smaller ones. During that time, the measured
flux spans about three orders of magnitude with a decay that is approximately exponential. For a given HE

weight, the ENE fireballs were brighter than the TNT fireballs.

A view of the spectrum at full resolution is displayed in Fig@&along with the corresponding at-
mospheric transmittance profile. Many absorption features are present in the observed fireball spectrum and
correspond to attenuation by trace atmospheric gases, most notably water and carbon dioxide. Water vapor

is responsible for the majority of the absorption features although carbon dig@g and methan€¢CHj,)
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Figure 8:  Top panel Apparent spectral intensity from the detonation of 50kg of TNT at 0.36s.

The imaginary component of the spectrum has been offset and is shown iBgteym panel The estimated
transmittance profile computed from meterological data collected near the time of this detonation event. Most
of the absorption features are due to water vapor; a few regions are noted in which attenuation is the result of
other trace gases.

strongly attenuate in the indicated regions. Water and carbon dioxide are the fully-oxidized byproducts of
hydrocarbon combustion, and the corresponding atmospheric absorption bands indicate spectral regions in
which emissions from these products would be expected. The high temperature of the fireball enables the
population of ro-vibrational states not accessable at atmospheric temperatures which leads to emission “in the
wings” of the strong HO and CQ absorption bands. It will be shown in Chapkerthat the observed emis-

sion patterns are consistent with this interpretation. The simple Planckian fireball model will be extended to
incorporate these hot-gas emissions and the continuum emission will be described by small particulate emit-
ters. This improved model fits the observed spectra well and provides physical features which distinguish the

TNT fireballs from the various ENE fireballs.

Examination of the imaginary component of the spectrum in Figsueggests evidence of SCAs given
the presence of systematic structure above white noise levels in specific spectral regions. White noise levels

can be estimated by examining the spectral regions with no signal due to total atmospheric attenuation. The
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structure in the imaginary component corresponds to regiomgich the slope of the atmospheric trans-
mittance function is large. This is consistent with Kick’s analysis given that the contributionTggawill
influence the derivatives appearing in Equat®nThe presence of SCAs in the imaginary component, if
visible at all, were discernible only in the first few spectra. After that, the signal had decayed to a level at

which SCAs could not be distinguished from instrument noise.

The impact of SCAs on the real part of fireball spectra cannot be strictly known. However, during the
BF2 test afaster FTS (MR-354, 34 Hz) collected spectra of the same events at the same spectral resolution, and
a comparison of nearly coincident spectra from both instruments enables an order-of-magnitude estimate of
SCAs. A50kg TNT event was randomly chosen and the fireball spectra collected closest intir@e0 s,
At ~ 0.01s§ by the instruments are compared in Fig@reTo mitigate the effects of radiometric errors,
each spectrum was normalized. For reference ther3or level of the noisier MR-354 is provided wherés
the standard deviation about the mean static background spectra acquired prior to detonation. The difference
between the two spectra is small compared with the total intensity and is comparable oléwel3of the
MR-354. Assuming the MR-354 is unaffected by SCAs, this difference provides an upper-bound on the
effect of SCAs on the real component of the MR-154 spectrum. It is likely that other factors, for example
the slight difference in time between the two spectra, also contribute to this difference. Note that if SCAs
were strongly affecting the MR-154 spectrum, a discernable systematic change in the high-frequency “noise”
in the spectral region of 2900-3500 tirmight be expected on the basis of a large second derivative of the
atmospheric transmittance function (chain rule applied to Equ8jionthat region. Encouragingly, this does
not appear to be the case. Rather, the difference between the MR-154 and MR-354 spectra exhibits mostly
broadband variations with wavenumber and the magnitude of the high-frequency “noise” component appears
to trend nicley with the 3 profile from the MR-354. Additional analysis in Chapt&t will demonstrate

more convincingly that SCAs have no practical impact on the real part of the spectrum.

5The difference in time is less than the temporal resolution of the MR-354. An examination of the interferograms was performed
to establish precisely when the detonation occurred during the mirror travel. This resulted in an offset applied to each time vector as
reported from each instrument.
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Figure 9:  Top: Comparison of 50 kg TNT fireball spectra cokedby the MR-154 (black,= 0.21s) and
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33



Radiometric agreement between ATK/MRC's radiometer suite MIR-354 was typically good and
fairly consistent. And in some cases, agreement between AFITs MR-154 and ATK/MRC's instruments was
good as well. Figurdl presents a case in which the agreement between the two spetérs and a ra-
diometer is excellent. The spectrometer data was integrated over the filter bandpass used in the radiometer.
The inset plot illustrates the filter transmittance as well as the atmospheric transmission profile in that region.
Unfortunately, the agreement between the MR-154 and the ATK/MRC’s instrumentation was not always this
good, and in some cases peak intensities differed by as much as a factor of 4. Higumamarizes the
relative differences in time-integrated intensity over 248 for the two spectrometétsFor 28 events, the
integrated intensities agreed to within 50%, but relative differencse as large as 125% were found among the
remaining 9 co-observed events. Because of the favorable agreement between the radiometers and MR-354,
the data collected by those instruments were considered the best estimates for absolute apparent intensity.
For each data set, a single multiplicative scale factor was determined for the MR-154 which enabled the best

match to apparent intensities recorded by the ATK/MRC instruments.

6For both instruments, each spectrum in time was integrated over@-5The resulting intensity profile was then integrated over
the duration of the event in time. Periods of time were excluded in which either of the instruments’ data was corrupt due to detector
saturation.
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[11. Greybody Fireball Model

In this chapter, it will be demonstrated that the general behavior of MWIR emissions from conventional mu-
nition detonation fireballs can be described by a single-temperature Planckian distribution. This presentation
represents a brief summary of work previously reported by the author [49], which was built upon the efforts
of previous AFIT students [4, 86, 87]. A short discussion of multi-temperature Planckian fits to conventional
munition detonation spectra will also be provided. The data examined in this chapter comes from the Radiant

Brass IlI-B field test.

3.1 Single-Temperature Model

As discussed in the previous chapter, the spectra of conventional military munitions (CMM) are char-
acterized by broadband emission. Perhaps the simplest possible description of the CMM emissions comes
from assuming a homogeneous fireball in thermodynamic equilibrium, radiating as a greybody. In this case,

the expected intensity as a function of wavenumber and time can be expressed as

lops(V, 1) = T () e A(t) BV, T(1)) (9)

whereT represents the effects of atmospheric attenuatigthe frequency-independent emissivilyis the

area of the fireball as projected into the observation planepBaisdhe Planckian distribution at temperature

T. Inanon-imaged spectrumandA cannot be determined independently, so the results will be discussed in
terms of the emissive ared\. Atmospheric data (pressure, temperature, and wet-bulb temperature) were col-
lected on-site and fed to the radiative transfer code LBLRTM [21] to compute the atmospheric transmittance
profile T. (The atmospheric data was not available at the beginning of this project. This lead to the devel-
opment of a general-purpose method for inverting the atmospheric state from the data itself. This method is

presented in Appendik.)

The results of fitting Equatiof to the initial spectrum of an AS (type A small) CMM fireball are
presented in Figurd2. The optimum fit parameters for this spectrum were=T1732(8)K and ¢ A =

173(3) x 10*cm?. The quantity in parentheses represents the statistical uncertainty in the fit parameter as
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Figure 12:  Top panel Initial observed fireball spectrurm) from the detonation of an AS CMM compared
with the best fit model (solid line). The estimated at-source Planckian intensity distribution is also provided
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corresponds té > 2500 cnTL.

measured by the 95% confidence interval. The fit quality is good, although some systematic error is evident in
the fit residuals lpbs — Imd1) between 1900-2200 and 3000-3500¢mFor comparisont3 sigma bounds

are provided. These bounds are computed from a notional estimate of the instrument noikg, lewbere

lerr = RMS(im(lops(v)) and RMS denotes the root-mean-squared (RMS) value. Note that two ordinate
scales are provided—one fér < 2500 cnt! and the other fod > 2500 cnT—to improve visibility of

the residuals. For this spectrum, the RMS value of the residuals was/§3ah1. In regions where

SNR > 5 andTam(v) > 0.05, the RMS relative error was®®o. In the median, the relative error wag%

in magnitude, suggesting excellent fit quality over most of the spectral region. Subsequent relative errors will
be reported for spectral regions satisfying the SNR arrédquirements just stated. The standard error (SE)

of the fitis 92, i.e. the residuals are on average ~9 times greater than the estimated noikglevel

Performing the same Planckian fit at a later tihe<( 0.73 s) results in poorer agreement with the

data as seen Figuf. There appears to be evidence of a strong selective emissaburé near 2100 crd
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as indicated by the large, narrow, and positive residual is ghectral region. It is likely due in part to
emission from hot CO or C§) both of which are capable of emitting in this region due to nearby fundamental
vibrational modes. Additionally, COwould be expected to have various overtone and combination bands
populated as a result of the high fireball temperature. Inclusion of selective emitters in the fireball model will
be the topic of Chaptdl . Systematic errors smaller in magnitude span the rest ofdhection bandpass.
Despite these obvious systematic errors, the gross behavior of the observed spectrum is captured by the
Planckian fit. The total intensity had decreased by the observation time and the RMS residual value was
76 W/sr/cm™L. The standard error increased taZ4as did the RMS and median magnitude relative errors
which were 14% and.8%. The fitted temperature and emissive area were T21818)K and¢A =

206(14) x 10*cm?. Of course, these values are biased estimates given the presence of systematic errors;
however, they likely serve as decent approximations to the average fireball temperature and emissive area.
It will be shown in §3.4 that inclusion of a second Planckian term dramatically inmpsothe fit to this
spectrum, suggesting that some of the systematic error can be explained in terms of temperature variation

across the fireball.

3.2 Fit Parameter Temporal Dynamics

The temporal behavior of the fit parameters for the AS CMM discussed above are presented in Fig-
ure 14. Temperature smoothly and monotonically decayed with tenggesting that the cooling processes
dominated any exothermic chemistry that might have been occurring at the same time. The temperature curve
is reasonably described by an exponential decay with an initial temperature qR#yB&nd a decay rate
0f 0.76(0.2) s~* . However, an exponential curve does not capture all the variatioft)n & more complete
phenomenological description of temperature dynamics will be postponed until CNapidre ¢ A curve
is more interesting, particularly in the beginning. Assumingpnstant, the fireball initially expands rapidly
before assuming a slower, more constant growth rate. Of course, this initial behavior could also be the result
of a rapid decrease in emissivity with time. The emissive area dynamics await confirmation with MWIR im-

agery. While the temperature is typically accurate to within a few percent, the uncertaimtysr8—6 times
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Figure 14: Spectral estimates of temperatuy@iid emissive area) plotted as functions of time for a

small, type A CMM detonation fireball. The T-axis is on the left andeAeaxis is on the right. Vertical error
bars represent the statistical uncertainty (95% confidence interval) in the fit parameter. The solid black curve
represents an exponential fit to the temperature curve.
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Figure 15: Extracted features from CMM detonation firebdige A small are on the left and type B
large are on the rightTop panels Temperature versus timeMiddle panels emissive area versus time.
Bottom panelsSpectrally-integrated (2008 7 < 2200 cnt?) fit residual versus time. Various colors (or
various grey levels if printed) are used to enhance visibility of individual profiles.

larger. This is a consequence of the Planckian distribution. For example, a 5% uncertainty in a temperature
of 1500 K results in a 30% uncertainty in the peak height of the blackbody radiance curve. The increase with

time in fit parameter uncertainty is primarily governed by the decreasing signal-to-noise ratio.

3.3 Extracted Features from Fireball Model

To assess the reproducibility and possible utility of the model parameters to the munitions classifica-
tion problem, Equatio® was fit to all CMM spectra collected during the RB3B field testvoTtypes of
CMMs were detonated—13 small, type A and 5 large, type B—and the extracted fit parameters are provided
in Figurel5. The AS munitions featured temperature profiles which wereemeproducible than the BL pro-
files. The AS temperature curves were all monotonically decreasing in an approximately exponential fashion.

Initial temperatures were between 1680-1830K. Fits to an exponential curve revealed decay rates between
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0.58-091 s~ with a mean and standard deviation cf®and 012 s™%. Three of the five initial temperatures
for the BL munitions were slightly less than 1600 K and the others were near 1700 K. Some BL temperature
curves displayed secondary maxima and most were poorly represented by an exponential decay. The rate at

which the BL fireballs cooled exhibited substantial variability.

Time-resolved emissive area curves were fairly reproducible for both the AS and BL munitions fireballs.
Initially, ¢ A increased in time for the AS fireballs, whereds initially decreased for the BL fireballs. The
magnitudes of the emissive areas for BL were often smaller than those obtained for the AS events, a counter-
intuitive result. This is likely the result of partial shielding of the BL fireballs resulting from their detonation in
a clay crater. Presumably, the crater partially obscured a portion of the fireball, thereby reducing the apparent
intensity received by the FTS. The AS events were detonated on either rock or hard sand and were in full
view. The long-term behavior afA for both CMM types is a gradual increase, which may be the result of an

expanding fireball.

A third feature was extracted from the spectra in an effort to indirectly capture the apparent selective
emission near 2100 cm provisionally attributed to C& To do so, the fit residudbps(7, t) — Imai(¥, t) was

integrated over the spectral range 2600 < 2200cnT?, i.e.

2200cntl
AL = /2 L (o) = a3 ) (10)

The results of this are provided in the bottom panel of FiglBe In general, the AS fireballs feature a
fairly repeatableA | (t) profile in which an initial rise is followed by a slightly more gradual decay. The
“selective emission” typically lasts betweerb32s. In contrastAl (t) curves for most BL fireballs are
characterized by an immediate and nearly continual decay tg0.\\Dn average, the peak hight and area
under theA | (t) curve was larger for the AS fireballs. If this residual is connected with, @2 difference

in behavior of Al (t) may reflect a difference in the kinetics of its production, and may serve as a key feature

for distinguishing type-A and type-B explosives in terms of fundamental differences at the chemical level.
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3.4 Two-Temperature Model

The most obvious systematic error is the large positive residuals near 218G is due to the ne-
glect of selective emitters in this simple model of fireball emissions. However, a more subtle systematic trend
in the residuals was observed across much of the observation bandpass. This can be seenlf &gare
small negative residual between 2500-3500¢rand as a small positive residual between 5500-6750cm
It is possible that this is the result of a non-uniform temperature field. To begin assessing this possibility, the

following two-temperature Planckian distribution was fit to this spectrum:

Imai(V, 1) = T(®) (¢A)1B®, T1) + (6 A)2B(v, T2)) (11)

Here, the emissive ared@sA); and corresponding temperaturgsare fit parameters. This functional form
imposes a view that the fireball is comprised of two distinct possibly non-contiguous areas, each with a distinct
temperature and possibly with a distinct emissivity. This picture of a fireball is nearly as unrealistic as the
perfectly homogeneous, single-temperature one described by Eqg@atiomever, it introduces additional
freedom to account for, in an approximate way, the effects of a nonuniform temperature field within the

fireball.

Fitting Equationl1 to the same spectrum as presented in Fidiyeesulted in a substantial improve-
ment, the results of which are displayed in Figd® Data points between 2075 7 < 2250 cnT! were
omitted during fitting to prevent biasing by the selective emission in this régitre standard error of the fit
is 5.1, and the RMS and median magnitude relative errors 2% &nd 26%, respectively. These fit statistics

were based on the exclusion of a small portion of low-SNR data as previously described.

The fit residuals a > 2500 cnT! are now only slightly above the estimated instrument noise level. In-
terestingly, there are three regions—3400, 4000, and 4906-exim which the observed spectrum is slightly

larger than the modeled data. These regions are where selective emission from water (3400 and4000 cm

Lignoring data points between 2075 and 2250 émdid not strongly affect the single-temperature fits, and the improved fit results
are almost entirely due to the inclusion of a second distribution.
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Figure 16:  Top panel Observed fireball spectrum ait= 0.73 s () from the detonation of an AS CMM
compared with the best fit, two-temperature model (solid black line). The grey points were excluded from
the fit. The estimated at-source Planckian intensity distribution is also provided (dashed black line). The
individual Planckian basis functions at fitted temperaturgs=T1286 K and B = 703 K and weighted by

fitted emissive areas are also shown as the solid and dashed greBhtesn panelFit residuals (ops— Imdi,

black) compared witherr (grey), which is an estimate of the instrument noise level. The left ordinate is used
for b < 2500 cnT! and the right ordinate correspondsite: 2500 cnvL.
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and carbon dioxide (4900 cm) might be expected It will be seen in ChaptelV that a different class of
explosives emit strongly in these regions and can be explained on the basis of selective emissiopdrom H
and CQ. At the longer wavelength region of the spectrum, the fit residuals are again seen to be large be-
tween 2000-2200 crt. This is not surprising given the likely presence of selective emission; furthermore,
many of these points were omitted from the fitting. It is interesting to note that there is a large positive
residual on the long-wavelength side of the i sorption feature as well as a small positive residual on the

short-wavelength side. This is consistent with emission from3CO

Performing this analysis for all the spectra from this AS fireball yielded the time-resolved fit parameters
presented in Figuré7. Emissive areaé A)1 corresponding to the higher temperature were smaller than the
corresponding values obtained from the single-temperature fits. Oscillation in the magnitude @fAath
and its uncertainty were observed. The source of this peculiar behavior is unknown. The emisgiw@grea
corresponding to the lower temperature was initially the sanfeAg and steadily grew to a size about four
times larger tharie A)1. The oscillatory behavior was not observed in the ratio, indicating that the effect on
(¢ A)1 was balanced by the opposite effect@m®\)2. In general the uncertainties in the emissive areas were

much larger than those from the single-temperature fits.

The larger of the fitted temperatureg Were slightly higher in the two-temperature fits. The same
oscillatory behavior was observed in,Talthough in a more subdued fashion; Was as much as 16%
larger than the single-temperature results, but on average only larger by about 8%. The smaller of the fitted
temperatures F was typically between 600-800K. Initially, the need for a second temperature was not

supported by the data, and this was indicated by the large parameter uncertainties at early times.

2The small positive residuals above the instrument noise level could be emission “in the wings” of the corresponding absorption
bands by water and carbon dioxide.

3The R-branch of the ro-vibrational band begins to head back towards longer wavelengths with increasing rotational quanta. This
occurs near 2400 cit, and in the event that a hot GGource is viewed through a long path of cold £Ghe asymmetry in the
“red-wing blue-wing” emission pattern is expected.
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Figure 17:  Top-left panel Spectral estimates of the emissive area tejrgfresponding to the larger fitted
temperature. This is compared with the emissive area from the single-temperature fit (greydmeight

panel Ratio of the emissive area terms from the two-temperatureBistom-left panelSpectral estimates

of the larger temperature) from the two-temperature fits compared with results from the single-temperature
fits. Bottom-right panel Spectral estimates of the smaller temperature. In each panel, vertical error bars
represent the statistical uncertainty in the displayed quantities.
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3.5 Conclusions

In general, the MWIR emissions collected from two types of conventional military munitions deto-
nations revealed spectra which were qualitatively very similar. Spectra from both types of fireballs were
dominated by continuum emission with some evidence of possible selective emission near 210Dem
spite these qualitative similarities, fitting the spectra to a single-temperature Planckian distribution afforded
a dimensionality reduction which preserved much of the original fidelity. In general, CMM fireballs can be
considered greybody radiators which cool from 1600-1800 K to ambient within 3—4 s. The AS temperature
curves were nearly exponential with a decay rate ne&8 €. The BL temperature curves were not as

simply described and occasionally featured secondary maxima.

Early temporal behavior of the emissive area indicates differences in fireball behavicrATdueves
initially increased for the AS events, yet initially decreased for the BL events. Future tests should include
MWIR imagery so that the emissivity behavior can be separated from the fireball area. Such a distinction
is important to an improved phenomenological understanding as temporal changes in emissivity are likely
connected to chemical processes (e.g., soot oxidation) whereas area changes are linked to the underlying flow

fields.

The systematic error near 2100 thobserved in the spectral fits may be the result of selective emis-
sion. The temporal behavior of this feature clearly distinguishes the AS fireballs from the BL fireballs. The
AS fireballs are characterized by a rise and subsequent decay (in whereas the BL fireballs feature a

Al (1) profile which decays from the moment of observation.

The inclusion of a second Planckian distribution term enables a better fit to the observed spectra. The
broadband fit errors are substantially reduced, leaving behind only a small amount of systematic error. In ad-
dition to the large residual near 2100 thsmaller systematic patterns in the residuals emerge and reinforce
the view that selective emission is needed to fully describe observed detonation fireball spectra. The follow-
ing chapter will provide the radiative transfer framework needed to properly include these effects, although
at the price of assuming only a single-temperature distribution. Once selective emission is included, the com-

putational costs are increased by several orders of magnitude, and the inclusion of spatial variations in the

47



temperature field will be excluded. The Brilliant Flash Ilaaet will be used to develop the improved fireball
model as the observed spectra contain much stronger evidence of selective emission, and thus a much better
test of an improved fireball model. Furthermore, the BF2 spectra appear less influenced by a spatially-varying

temperature field.
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V. Selective Radiator M odel

In the previous chapter, a single-temperature Planckian distribution reasonably described the intensity distri-
butions of detonation fireballs of conventional military munitions, suggesting the dominant role that contin-
uum emitters played in the fireball. Examination of the fit residuals indicated that a small amount of selective
emission from water and carbon dioxide may have contributed to the spectrum as well. Spectra collected
from uncased TNT and several types of IEDs during the Brilliant Flash Il field test indicated a much stronger
contribution from selective radiators. This first part of this chapter provides a physical basis for incorporating
selective emission into a fireball emissions model. The derivation, which is based on a solution to the conti-
nuity equation of radiative transfer, is presented below as it entails several necessary simplifying assumptions
which may seem questionable. The assumptions will not be rigorously justified; instead, they will be judged
as useful approximations by comparing observed data to the model derived from them. The fireball model
will be fit to some representative BF2 spectra demonstrating that a high-fidelity dimensionality reduction of
infrared fireball emissions is possible, a crucial step towards robust discrimination of high explosives. The
reduced dimensionality is obtained by a minimal set of parameters (size, temperature, particulate extinction,
and four byproduct concentrations), and their temporal behavior will be briefly explored. The hydrogen-
to-carbon ratioR as estimated from the relevant byproduct concentrations is found to correlate well with
the thermodynamic values expected from explosive stoichiometry. Since this ratio will prove to be a useful
feature for HE discrimination, a sensitivity study is performed assessing the impact of non-ideal collection

parameters on estimates7®f

4.1 Radiative Transfer

The transfer of radiation along a path is influenced by the intervening material. At any point along
the direction of travel, the local properties of the participating material determine the amounts of photon ex-
tinction and augmentation. Photons can be absorbed and converted to other forms of energy or they can be
scattered out of the line-of-sight (LOS). Photons can also be “born” due to both spontaneous and stimulated
emission, and scattering can also result in photons being redirected into the LOS. Radiative Transfer is the

methodology of accounting for these various phenomena, and the components necessary for the development
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of a fireball model will be presented as adapted from Modedtd&8dl Chandrasekhar [15]. Several simpli-
fying assumptions will then be introduced which will enable an approximate, analytic solution for fireball

emissions.

The following differential equation governs the transfer of a pencil of radidtipalong a patls = s$

by accounting for the various extinction and augmentation phenomena:

10L;
c ot

8 VL = kB — (5 ) Lo + 4 [ Lo(8) 0506, 9 d0 (12
Ar

Here,c is the speed of light in the material (which for practical purposes is the speed of light in a vacuum),

K; is the absorption coefficieiem™71), 4; is the scattering coefficielitm=1), and®; is the scattering phase
function. The differential terms on the left hand side represent the changes in radiance as a function of time
and location. The right hand side accounts for the different phenomena leading to such changes. The first term
accounts for spontaneous and stimulated emission from the participating material. The second term accounts
for photons either absorbed or scattered out of the LOS. The phase function describes the probability that a
ray from the directior will be scattered into the LOS, the integral over the solid angler4r accounts

for all in-scattered photons. All quantities appearing in Equati®ican vary with location in space, time,

and wavenumber, and the radiance and phase function also depend on direction. EtRiatoaunts for

all possible sources and sinks of photons and can be considered an equation of continuity, i.e. an expression
for the conservation of energy. In practice, the differential t(%r%p can be neglected as the timescales
associated with photons traversing a mean-free path in typical materials are much shorter than characteristic

times associated with fluid dynamic phenomena [110, pp. 133].

Equation12 implicitly assumes that the material is in local thermodyi@equilibrium (LTE) so that

in a small volume surrounding the poigitthe distribution of energy states is governed by the Boltzmann
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distribution and hence a local temperature exists. If thieevm®t the case, the energy state distribution would

need to be specified and the texgB; would need to be modifiéd

The assumption of LTE—or at least quasi-equilibrium—is fundamental to solving radiative transfer
problems. Zel'dovich [110, pp. 120] defines a state in quasi-equlibrium if certain energy modes equilibrate
quickly (e.g., by collisions) and if the interaction between these and other energy modes is small. In this
work, the assumption of LTE will be made to enable a solution of Equaoilote that the LTE assumption

has been used to successfully treat stellar atmospheres [14] and shock-front luminosities [110, Ch. 9].

Dropping the time-dependent term, recognizfng?Lﬁ = ddLsﬁ, and introducing some new terms,
Equationl2can be compactly rewritten as
dL; R
— L5 = S(L5,9) (13)
dr;
wherer; is the dimensionless optical depth given by
S
6= [ o) ds (14)

The source terng; (L, 8) represents sources contributing photons to the LOS and is given by

sg(La,é>=(1—wa)Ba+@/ Ls(§) 05(§, 8 de (15)
Ar Jaz

where the terna; is defined by the ratio of scattering and total extinction quantities, i.e.

B
Ky + By

Wy =

(16)

This term is commonly referred to as the material’s single-scattering albedo.

1Gamache and Rothman treat this problem in general [43]. For a two-level system with energy levels labeled jognd an upper
state populations;, the termic;; B; would be replaced by Ajj hci /4z [81, pp. 328], where);j is the Einstein A coefficient governing

the rate of transition fromto j via spontaneous emission.
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Solving the integro-differential equation (ELB) is difficult in general due to the presence of scattering,
and is the subject of many astrophysical texts, e.g. ChandraseRstiative Transfef15]. For the purposes
of deriving a simple, closed-form solution for fireball emissions, the effects of scattering will be ignored.
Paraphrasing Modest [81], in most hydrocarbon combustion systems, the sizes of the gaseous and particu-
late (soot) byproducts are small enougtd(@—Q08 «m diameter for soot) that Rayleigh’s scattering theory
holds in the MWIR. From this, particulate scattering efficiencies can be derived and are approximately three
orders-of-magnitude smaller than the corresponding absorption efficiencies. Furthermore, the particulates are
sufficiently small enough that their temperature is the same as the surrounding gas. (If this were not the case,

the condition of LTE would not hold.)

By ignoring scatteringf; = w; = 0), Equationl3 simplifies to

dL;
+L;=B; 17)

%
dr;

which can be solved by introducing the integrating faefoerand initial conditionL ; (0):
Lot = L@ e + [ By(he vy (18)
0

L; (0) is the background radiance and its attenuation via absorption is modeled by If there are no
appreciable sources of photons after that, i.e. the integral is zero, then this is simply the exponential form
of Beer’'s law. When the participating material can radiate, the terms within the integral account for both
the production of photons at any given point along the LBSdr;) and their subsequent Iossegw"é))

incurred along the remaining pathlength.

4.2 Simplified Radiative Transfer for Fireball Spectroscopy

The general solution to the radiative transfer equation for a non-scattering source in LTE is not suitable
for modeling detonation fireball spectra without further simplifications. For example, the temperature and

matter fields are not knowa priori. Reactive-flow computational fluid dynamics calculations might enable
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an estimate of the spatial variations of matter and temperatiowever, such calculations consume enormous
computational resources and require accurate reaction rates for the 100s of important reaction pathways. For
many novel explosives, the kinetic pathways have not been studied. Furthermore, this approach is antithetical

to this effort of developing a simple, efficient tool for quickly extracting information from fireball emissions.

To solve Equatiord 8 for detonation fireballs, the following simplifying assungpts will be made:

1. the fireball geometry is a cubef lengthr

2. the temperature and matter fields are homogeneous within the fireball vélume?

3. the FTS is at a large distan&efrom the fireball(R > r)

4. L(0) is small and can be removed from observed data via background subtraction (recalllfrigure
5. the atmosphere between the FTS and fireball is homogeneous

6. emission from the ~300 K atmosphere can be ignored

The first three assumptions lead to a simple, one-dimensional form for fireball radiance. The fourth assump-
tion is based on experience with observed fireball spectra. The last two assumptions are justified as follows.
Over the short horizontal path encountered in the field tests, the atmosphere can be reasonably treated as a
uniform, well-mixed gas. And at terrestrial temperatures, the MWIR emission from the atmosphere is negli-
gible compared with emissions from the fireball. FigliBllustrates the geometry of the simplified fireball

and instrumentation in a Cartesian coordinate system.

Based on these assumptions, only the line-of-sight alongeds to be considered. The homogeneity
allows the optical depth parameter to be expressed;as-d-«; dx so that at the point, Equationl8can be
solved:

Lo(r) = (1—€7") By(T) (19)

2Radiative transfer for the (slightly) more appropriate spherical geometry is more complicated and is treated in AppE&indixs
which result from the homogeneous assumption are expected to introduce more systematic error than errors associated with the choice
of fireball geometry.
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Figure 18:  Depiction of the fireball and instrumentation getwillustrating several of the assumptions
introduced to enable a simple solution of the radiative transfer equation.

The exponential term in parenthesis is the fireball transmittdncand Kirchoff's law enables the entire
parenthetical term to be recognized as the fireball emissivifye. ¢ = 1 — T. Equationl19 represents

the source fireball radiance. To arrive at the apparent radiance at the FTS, the source radiance needs to be
augmented by the transmittance of the atmosphgg i.e.L; (R) = Tatm(¥) L; (r). (Assumption 6 allowed

the term representing atmospheric emissidns- Taim) B (Tatm), to be ignored.) The projected area of the

cube is used to convert apparent radiance to apparent intensity:

I5 = Tatm(@) r?e(@) By (T) (20)

4.3 Computation of Apparent Intensity

The absorption coefficient; is the sum of absorption cross-sectiensy) weighted by the absorber
concentrationg;, i.e.

Ky = Zj & oi (D) (21)

Two forms of matter will be considered, namely gases and particulates. For particulates, an accurate de-
scription of o (V) requires detailed knowledge of the size distribution and the material’s complex index of
refraction. Particulate absorption can be wavelength dependent, but it is difficult to estimate this functional

dependence without knowledge of these properties. In many combustion systems the particulate matter is
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treated as a grey [106p (V) = const). This approach will be taken here arg will serve as a model

parameter, noting that the effects of concentration and cross-section cannot be separated in the grey case.

The absorption cross-section for a gas is defined @y = Zj Sj f (j —; Pj), where the absorption
line at wavenumbed; is characterized by a linestreng® and a normalized lineshape profife which is
itself described by a collection of lineshape paramefgrsUnder LTE,S; varies with temperature accord-
ing to the Boltzmann distribution. The lineshape parameperdescribe the width of and pressure-induced
shifts in the line profile as functions of pressure and temperature. A Voight profile was used as pressure and
doppler effects will both contribute to the lineshape in the high-temperature fireball at atmospheric pressure.
Spectral databases such as HITRAN [90,91] or GEISA [57] can be used to deterrfonearious small
molecules at temperatures up to 600 K. The elevated temperatures encountered in combustion systems make
molecular states thermally accessible which are difficult to measure at low temperatures and which require
substantial effort to accurately predict usatginitio or extrapolation techniques. As a result, spectral param-
eters suitable for high-temperature simulations exist for only a few small molecules. Fortunately, parameters
for three prominant hydrocarbon combustion byproduct®&;HCO,, and CO-have been tabulated in the
high-temperature (HITEMP) extension to HITRAN and the Carbon Dioxide Spectroscopic Databank [100]

(CDSD), and have been found suitable [40, 82] for temperatures up to 1500 K.

The Line-by-Line Radiative Transfer Model [21] (LBLRTM) was used with HITEMP and CDSD to
pre-compute molecular cross-sections foHCQO,, and CO at temperatures spanning 275-3000K in 25K
increments. Evidence for emission from HCl was later found in the data, and line parameters for this molecule
were taken from HITRAN since high-temperature parameters were unavailable. The wavenumber axis was
uniformly sampled withA? = 0.003 cnTt and covered 1500-7800 crth Cross-sections at an arbitrary
temperature were estimated via linear interpolation using the two nearest sampled temperatures. To facilitate
comparison with observed data, the monochromatic source spectrum of Eqe@ti@s multiplied by the

(monochromatic) atmospheric transmittance funciigin(v) and convolved with the FTS instrument line

55



shape (ILS) giving the following model of intensityg)

Imai () = / Tatm(@) 13/ ILS (5 = 0') o’ (22)

LBLRTM efficiently performed this convolution using a pair of Fourier transforms and the Hanning (cosine)
apodization filter to match the output of the MR-154. A Levenberg-Marquardt nonlinear optimization routine
was used to fit each observed fireball spectrum to Equa@day adjusting the fireball size temperature T,
particulate absorption coefficierp, and the gaseous concentratignsvherei is one of BHO, CQ;,, CO, or

HCI. For completeness, the functional form of the fireball model is explicitly expressed as
I3 1, T, Kp, &) = LS % Tam() 12 (1— e (ot HamGT)) gy () (23)

wherex denotes convolution and it is understood that all wavenumber-dependent terms are “monochromatic”.
Tatm IS parameterized by several meteorological inputs, namely the local temperature and pressure, as well
as the concentrations of several trace gases such@s €, N2O, and CH. Temperature, pressure and
water vapor concentration will be taken from meteorological instruments on site during BF2 testing. The
June 2004 average G@oncentration of 380 ppywas taken from the La Jolla Pier monitoring station in

California [60]. The remaining trace gases were estimated using current values from the IPCC report [56].

4.3.1 Model limitations. Equation23 represents the simple model to which spectra will be fit for
the primary purposes of dimensionality reduction and the extraction of key features. The best key features are
ones that strongly correlate with real phenomena so that when the phenomena differ, the key features might be
used to discriminate between them. Several drastic assumptions were made to arrive at R8uatibthe
resulting inbuilt systematic errors suggest caution in interpreting the physical meaning of the fit parameters.
Nonetheless, it will be demonstrated that the spectral fit parameters are physically reasonable and where
possible compare favorably with other data sources. This may suggest that the systematic biasing of fit

parameters is not unacceptably large, and more importantly, that the correlations between the fit parameters
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and the underlying phenomena are mostly preserved. Chaptemonstrates that the features extracted from

the fireball spectra clearly distinguish the two different classes of HEs examined during BF2.

The functional form of EquatioB3also suggests a mathematical set of limitations. First, ssppoor
calibration resulted in an intensity scale off by some multiplicative v&@lu&he size and concentration terms

will need to be corrected for this radiometric scaling factor via

e = rm\/6
& =én/VC (24)
Kpt = Kp,m /\/E

where the subscriptandm denote the true and measured quantities, respectively. It is important to note that
a radiometric scaling error only affects the interpretation of the size and concentration-based parameters. It

does not affect the fit quality, nor does it change the estimated fireball temperature.

Another potential problem with Equati@8 occurs if the fireball is optically thin. In this case, the size

and concentration terms become highly correlated as evidenced by the following Taylor series expansion

1— e (+SiEa®) ~ (e 1 301 (7)) (25)

In fitting Equation23 to spectra, the parameter correlation matrix was used tdifgemhen this was a
problem. In practice, this was a minor issue as there was sufficient “optical thickness” at enough frequencies
so that higher-order terms in the expansion would be needed. These higher-order terms effectively decouple

sizer from concentratiod; allowing both to be determined from well-calibrated spectral intensities.

Finally, in some fireballs, the optical depth can be large enough that the source spectrum appears like a
blackbody. All of the conventional munition fireballs collected during RB3 appeared like this. Initial spectra
collected during the BF2 tests also were highly Planckian. In the limit of lagge the fireball emissivity

tends to 1 and selective emission is not observed. The spectrum could also appear to be free from selective
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emission in the event that, > Xi&io;. Note that sufficient frequency-dependent selective emission is
needed to reliably distinguish between the effects of emissivity and area. In the perfectly grey case where
e # &(V), Equation23 reduces tdmqy = (er?)B;(T). In this casea priori knowledge ofs is needed to

compute the true projected an¢a

4.4 |deal Fireball

Presented in Figur&is a synthetic spectrum generated by EquaZidfor the following set of param-
eters:r = 1000 cm, T= 1800K,xp = 2 x 10~*cm™L, and B,0, co,, &co, EHal] = [4.99, 10, 5,0.01] x
10 mole/cm®. The apparent, source, and Planckian intensities are all provided at a spectral resolution of
4 cm! to match BF2 experimental conditions. The Planckian intensity represents the source intensity if the
emissivity were 1. Many of the spectral features from water and carbon dioxide emission are attenuated by the
atmospheric transmittance profile. However, the large fireball temperature does permit substantial emission
in the wings of the strong absorption bands efHand CQ. Below, the total fireball emissivity is also shown
and compared with the particulate emissivify= e~" “p, which is about ®. Across most of the MWIR, the
emissivity is influenced by both particulate and selective emission. However, near 618Ctbmemission

is dominated by the grey particulate matter.

Individual emissivity curves for each of the included gaseous byproducts are provided at instrumental
resolution to indicate the shape and location of their contributitm¢he overall spectrum. At 4 cnt res-
olution, the water emissivity is dominated by a broadband variation with frequency. Some narrow emission
features are present on top of this broadband structure. Thee@@ssivity profile varies smoothly with
frequency and lacks spectrally sharp features. This is a consequence of the large number of overlapping com-
bination and resonance lines that are thermally accessible at high temperatures. This combinegwith CO
large molecular cross-section for many lines leads to emissivities of 1 in two bands under these conditions.
CO substantially overlaps with Gbetween 2000—2200 crh. The overtone transition near 4200 thwill

be important in determining CO concentrations. The emission lines of HCI are resolved at dasolution.

3The total emissivity is not the product of individual emissivities, however. Instead, the total gas-phase emissivity is, to a good
approximation, one minus the product of individual gaseous transmittance profiles=ie—[]; T.
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Figure 19: Top panel Apparent (black) and source (solid grey) intensity for an ideal fireball. The source
intensity for an ideal blackbody (Planckian) radiator of the same size is also provided (dashed grey). The next
panel illustrates the total fireball emissivity (black) and the greybody contribution from particulates (grey).
The next four panels provide in order the individual emissivities foOHCQO,, CO, and HCI. The bottom

panel presents the atmospheric transmittance profile ov@6&ks pathlength for reference.
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Figure 20: Top panel Observed fireball spectrur @tt = 0.24 s from a 50 kg TNT detonation compared
with the best fit model (solid black). The estimated at-source spectrum is provided (solid grey) along with the
Planckian intensity distribution (dashed greghttom panelFit residuals (ohs— Imdl, black) compared with

lerr (grey), which is an estimate of the instrument noise level. The left ordinate is us@d<fd@500 cnrt

and the right ordinate correspondsite- 2500 cnt .

Because the low-temperature HITRAN spectral linelist was used, an abrupt cutoff of the HCI lines is evident
at 2400 cnml. However, the cutoff is near the G@tmospheric absorption band and will not strongly affect
fitting Equation23 to the observed data. For reference, the emission featutas aidividual gases can be

compared with a typical atmospheric transmittance profile for the BF2 tests.

4.5 Analysis 060 kg TNT Fireball Spectra

A 50kg TNT spectrum at = 0.24 s is compared with the best fit to Equat@®in Figure20. The
source spectrum and Planckian intensity distribution are also provided. At this early time, the spectrum is
dominated by the particulate emission and has much of the underlying Planckian shape. The fit residuals
(lobs— Ima1) are provided and in many spectral regions are on the order of the instrument’s noise level. Some

regions exhibit systematic errors, particularly between 2000-2250 and 3300-3500Ear comparison,
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+3sigma bounds are provided. These bounds are computed from an estimate of the instrument noise level,
wherelerr = RMS (im(lops(P)) and RMS denotes the root-mean-squared (RMS) value. Note that two ordi-
nate scales are provided—one for< 2500 cnt! and the other fof > 2500 cnm*—to improve visibility

of the residuals. For this spectrum, the RMS value of the residuals was 8381, In regions where

SNR > 5 andTaim(?) > 0.05, the RMS relative error was5%. In the median, the relative error wa8%

in magnitude, suggesting excellent fit quality over most of the spectral region. Subsequent relative errors will
be reported for spectral regions satisfying the SNR arrédquirements just stated. The standard error (SE)

of the fitis 31, i.e. the residuals are on average ~3 times greater than the noise level estimiated by

Att = 0.49 s, the spectrum shows evidence of much more selective emission, and the data and fit are
compared in Figur@1 (a). Systematic errors are more prevalent in the fit residugtie negative residual
between 4100-4400 cmindicates a large over-estimation of the carbon monoxide concentration. Likewise,
the negative residuals near 3400 and 4900%toorrespond to over-estimated carbon dioxide concentration.

The biasing of concentrations occurred as a response by the least-squares minimizer to mitigate the larger sys-
tematic errors between 2000-2250¢mBoth CO and C@ emit strongly in this region. Unfortunately, the
distribution of intensity in this spectral band cannot be adequately accounted for by this model without the in-
troduction of systematic errors elsewhere in the spectrum. The RMS and standard errors wgse/861W

and 60, respectively. Relative errors where SNR5 andT (7)) > 0.05 were 12% (RMS) and 5% (median

magnitude).

Eliminating wavenumbers less than 2500dnf4 > 4 xm) during fitting dramatically improves the
results at shorter wavelengths as demonstrated in FRfu(b). The systematic errors noted previously for
the CQ and CO emission bands have disappeared. Comparing both sets of it residiials 2600 cnt?,
the RMS error dropped from 22 to 13M/cm~! when excluding wavelengths greater thanm. On the
same region, the SE improved tcb2and the relative errors improved to6% (RMS) and 3% (median
magnitude). Some patterns in the residuals still remain, especially in the wings of the water absorption band

centered at 3750 crd.
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Figure 21: (a)Top panel Observed fireball spectrum)(@tt = 0.49s from a 50kg TNT detonation
compared with the best fit model (solid black). The estimated at-source spectrum is provided (solid grey)
along with the Planckian intensity distribution (dashed gr&gttom panelFit residuals (ops — Imal, black)
compared withlg;, (grey), which is an estimate of the instrument noise level. The left ordinate is used for
7 < 2500cnTt?! and the right ordinate correspondsita> 2500 cnt?. (b) Same observed data, but fit and
residuals obtained when fitting only to wavenumbers greater than 2500 cm
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For thet = 0.49 s fit, the optimum parameters and associated parameter uncertainties (95% confidence
interval) are presented in Taldle Each uncertainty valdeprovides a measure of the sensitivity of the data to
the associated parameter, and also accounts for the effects of inter-parameter correlation. (In general, the less
sensitive a model is to a particular parameter, a greater the amount of uncertainty will be associated with it.
Likewise, when two parameters are highly correlated, i.e. a change in one parameter can be compensated by a
change in another parameter, the uncertainty in both parameters will be larger.) Particular significance should
not be attributed to the magnitude of the fit parameter uncertainties as they are computed under the assumption
that the model accurately describes the data to within an unknown, but normally-distributed random variable.
(If this were the case, there would be a 95% chance that the real value of the pargmesteontained in
the interval [p; — dpi, pi + dpi] wheredp; is the uncertainty just described.) The fit residuals, while small,
indicate the presence of systematic errors and thus violate this normal error assumption. Nonetheless, the
uncertainties do provide relative measure of confidence in the fit parameters. Temperature and fireball size
are well-defined with low uncertainties, whereas only limited confidence in the CO and HCI concentrations
is warranted. The parameter correlation ma@ixs displayed in Tablé to indicate in relative terms how
correlated each pair of fit parameters®ar&he parametens and xp were moderately correlated, indicating
that an increase incould be partially compensated by a decreasgirThis type of correlation was expected

given the discussion in 4.3.1

Fitting each of the 50 kg TNT spectra resulted in the time-dependent parameters presented iBZ-igure
Results from fitting to wavenumbers satisfyifig- 2500 cnT! are prominently displayed in black. Including
A > 4 um changed the some parameters slightly and others considerably. For completeness, the time behavior

of these fit parameters are displayed in grey. The large, systematic patterns in the fit residuals strongly

4 Assuming normally-distributed errors, fit parameter uncertainties estimated in the following manner [68, 68](i Legpresent
theit" observed data point (1 total points) and/c(i) = f(i; {p;j}) represent the modeled value at that point, which is a function of the
set ofM parameter$pj : j = 1...M}. DefineJ as the matrix of partial derivatives viik = %p{kpj}). The optimized parameters are

those that minimize the standard error SE/x2/(N — M) where;(2 = Ei’il (yO(')_);Ci(“{p' ])) and o is the uncertainty associated
with the ith data point. The parameter uncertainty is computedms= fg5(N — M) SE,/V; ; where fg5(N — M) is the 95%
student t-value foN — M degrees of freedom and is the variance-covariance matrix, which can be expressed in terms of the partial

derivative matrixV j = (Jt X J)_l. Matlab’snl i nf i t provides a numerical approximation to the matii¥rom which the parameter
uncertainties are then computed.

5The correlation matrixC is computed from the variance-covariance matrdxCag = Vi j//Vi,iVj,j [68]. V is defined in the
previous footnote.
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Table 5:  Optimum fit parameters and associated uncerta{{@58é) for thed > 2500 cnt? fit to a 50 kg
TNT fireball spectrum at = 0.49s.

Param  Value Error % Error Units
r 1008 15 1.5 cm
T 1680 9 0.5 K
K» 1.97E-04 7.70E-06 3.9 cm'!

$m,0 3.45E+17 2.33E+16 68  molec /cm?
fco2 6.02E+17 3.78E+16 6.3  molec /cm3
§co  2.81E+15 9.65E+14 34  molec /cm?
Enal 4.92E+14 1.21E+14 25 molec /cm3

Table 6:  Fit parameter correlation mat@ixfor thed > 2500 cnt? fit to a 50 kg TNT fireball spectrum at
t = 0.49s. Diagonals and elements with magnitudes less ttvaar@ displayed in grey.

r T Kp $mo  $co, §co Sua
r 1 -0.568 -0.846 -0.744 -0.550 0.182 -0.104
-0.568 1 0.090 0.022  -0.237 -0.067 0.298
Kp  -0.846 0.090 1 0.792 0.775 -0.173 -0.050
szo -0.744 0.022  0.792 1 0.662 -0.116 -0.213
§c02 -0.550 -0.237 0.775 0.662 1 -0.156 | -0.098

¢co  0.182 -0.067 -0.173 -0.116 -0.156 1 -0.314
fua -0.104 0298 -0.050 -0.213 -0.098 -0.314 1
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Table 7:  The magnitude of the largest correlation matrix @alax(abgC)) at each time step for the

7 > 2500 cnT? fits to the 50 kg TNT fireball spectra. For this data set, the correlation betwaedrx, was

always the largest of any two-parameter pairs. At the first time step, the fireball was essentially an optically-
trapped Planckian radiator (no apparent selective emission) and the numerical approximation to the Jacobian
could not be inverted to estimate the correlation matrix.

1 [s] 0.12  0.242 0.363 0.485 0.605 0.727 0.847 0.969
max (abs(C))  —  0.841 0.883 0.846 0.843 0.810 0.866 0.923

suggest that these parameters are biased by the model’stintzbproperly describe the longer wavelength
regime. In other words, the temporal profiles of the fit parameters obtained by fitting t8500 cnt! are

preferred and are expected to better represent the state of the fireball. The following discussion will focus
on the fits to the restricted spectral range unless otherwise specified. Error bars represent the statistical fit
uncertainties associated with the parameters. For some spectra the CO and HCI concentrations could not be
reliably estimated due to ill-conditioning of the Jacobian and is responsible for some gaps in the concentration

profiles found in Figur2.

Initial fireball size was approximately®m and, after some oscillation, increased to a peak value of
10.5 m with time. The uncertainty in steadily grew with time. Including all wavelengths in the fits results
size estimates roughly.Am larger. For comparison, the square root of the peak area obtained from NIR
imagery for this event was 1®m. The image from the NIR FPA corresponding to this peak area is provided
in Figure23. The reasonable agreement suggests that fireball size catitmated from a well-calibrated,
non-imaging FTS. A more thorough comparison of fireball sizes extracted from spectral fits and NIR imagery
will be presented in .5.1 Note that at later times, the degree of correlation betwesrd x|, increased as

indicated in Table.

The temperature approximately followed a linear decay from 1900 to 1200K in 1s. Slightly lower
temperatures were obtained when including 4 um in the fits. The initial temperature compares favorably
with results from two optical pyrometry studies of TNT fireballs. Ogetal [85] examined TNT charges
spanning 1-100 kg and found that microseconds after detonation, temperatures were between 7000-10000 K.

The fireballs rapidly cooled to between 1700-1900 K by ~5 ms and remained in this temperature range up to
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Figure 22:  Time-resolved fit parameters and derived quastéiktracted from a 50kg TNT detonation
fireball. Error bars represent fit parameter uncertainties at the 95% confidence level. Results froinfits to
2500 cn® are shown in black and results from fits to all spectral data are shown in grey. First spectrum was
dominated by particulate emission and corresponding concentrations and derived quantities were unphysical
and omitted. Top panel fireball size (left) and temperature (rightMiddle panel particulate absorption
coefficient (left) and gaseous concentrations (rigipttom panel total quantity of hydrogen and carbon
compared with expected values (left) and the ratio of hydrogen and carbon amounts compared with theory
(right). Gaps appearing in the plots indicate where model parameters could not be reliably determined.
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Figure 23:  Image captured by the Alpha NIR FPA (32056) during the detonation of 50 kg of TNT. The
square root of the fireball area, defined by the number of saturated pixels, is approximd&ehy 10

about 150 ms, which is approximately the timescals of a single scan of the FTS used in this study. Goroshin

et al[45] recorded a temperature of 2150150 K for a 32 kg TNT charge between 10-50 ms.

The particulate absorption coefficient decays rapidly with time. The fireball size and absorption co-
efficient can be used to compute the particulate transmittanc&pvia e *r". For this fireball, T, mono-
tonically increased from.04—nearly opaque—to.91—nearly transparent—over the observation time. The
presence of particulate material is expected as TNT is underoxidized with a needed:available oxygen fraction
of 0.37. Underoxidized hydrocarbon combustion typically results in soot taking the form of graphite and
diamond [17]. The decay with time ef, is consistent with the possibility that soot oxidation is occurring as

atmospheric oxygen is turbulently remixed with the fireball.

Concentrations of pO and CQ are fairly static during the observation time with mean valfigs ~
3 x 10" moleg/cm?® andéco, ~ 5.5 x 10t moleg/cm®. Some fraction of the water concentration is due to
atmospheric water vapg| ;g present in the volume of the fireball, and this value must be estimated so that
the concentration attributable to the Hﬁ'on, can be determined. The atmospheric contribution is estimated
using the ideal gas law with the fireball temperature, pressure, and water vapor mixing ratio (which is on the

order of 16—10* ppm, during BF2). The fireball pressure is assumed to have returned to atmospheric pressure
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by the observation time. For this event, the mean valu§@ =~ 0.4 x 10'" moleg/cm® so that?/J is about
87% of the observed water concentration. A similar correction to the carbon dioxide concentration revealed
thatg‘gg’; is ~0.2% of 55'52 The correction is much smaller as the £€ncentration is about 380 ppm

Quantities derived from the extracted concentrations will use the corrgtfedalues.

The initial concentration of CO is approximately3D of the CQ concentration and rapidly decays
below the limit of detectability, which is on the order of@nolec/cm? given the noise level of the spectra.
This limit is also strongly influenced by fireball temperature. As the temperature drops, so does the thermal
accessibility the overtone transition giving rise to the CO emission feature near 4000-4400\Wfhen
wavelengths < 4 um are excluded, this is the only CO band which can reasonably contribute to the emission
spectra. The presence of CO is not strongly supported by the observed data and the estimated concentrations
are low enough that the gas emissivity is not strongly influenced by its inclusion in the model. In most
oxygen-rich hydrocarbon combustion systems (which the fireball would be upon turbulent remixing with
atmospheric @), CO is often a short-lived intermediate which is quickly oxidized to formpQ@4]. As
previously mentioned, inclusion of all wavelengths in the fits results in over-estimated CO concentrations

which are not supported by the data in the overtone band 4000-4400 cm

HCI concentration grew slightly with time, but was approximately three orders of magnitude smaller
than the HO concentration. Initially, HCI was not an expected combustion by-product. However, unlike CO,
its presence was visually recogniféd structured fit residuals near 2700 th This can be seen in Figugg

which shows this residual pattern and its subsequent disagpee upon inclusion of HCI.

Two derived quantities are also presented in Figtze The number of thé!" gaseous molecule can
be computed from the volume and concentrationNja= r3¢&. In the same fashon, the total number of
hydrogen (H) and carbon (C) atoms can be accounted forNgig= r3(2§HH2EO + &Hel)- Ny and N¢ were
computed and compared with expected values based on the weight and stoichiometry of the TNT charge.
Both H and C are less than the theoretical maximum values. This could be a result of radiometric inaccuracy,

or might indicate a non-trivial presence of carbonaceous soot which, in various combustion systems, can

6Thanks to John Selby of Northrop Grumman for recognizing this at'thBignnial HITRAN Conference in June 2006.

68



0.15F T

0.1f YYARTAY AR AY RN 111

1,,(¥) [arb.]

005
obs

Imd 1

P L
0.02
I 0.01

Imdl

I obs
[l

-0.01

e
0.02 — —

| 0.0IW _
VI g elipat TG

2600 2700 2800 2900 3000 3100

Imdl

I obs
[l
T

v [cm’l]
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emission features of HCBottom panelFit residuals after including HCI as a model parameter.
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Figure 25: 30 Hz imagery sequence of a 50kg TNT detonationdirelptured by the Alpha NIR FPA
(320 x 256). Time increases from left to right and top to bottom.

contain up to 40% (by number) hydrogen [81]. Furthermore, the discrepency between the measured and fully-
oxidized values ofN; suggest less efficiency for the carbon oxidation pathways. This behavior is expected
given Cooper’s [22] or the Kistiakowsky and Wilson’s [2] empirical rules described in Appé&ndiydrogen

is oxidized to HO before carbon is oxidized to GJ22]. The behavior ofNy and N¢ with time is fairly

static. The ratio of these valueR, = Nn/Nc, also compares favorably with the expected value.@B0

This indicates that fireball spectra can provide information about the HE starting material. Note that when all
wavelengths are included in the fits, the behavioRoE substantially altered and suggests kinetic behavior

which is no longer consistent with the empirical rules just mentioned.

4.5.1 Comparisons between NIR imagery and fireball mod&equential imagery captured at 30 Hz
in the NIR of the 50 kg TNT detonation fireball described in the preceding section is provided in Bgure
The pixel intensities corresponding to the fireball were well-separated from reflected light. As a result, simple
thresholding can be used to estimate the fireball size [29]. Each pixel FOV is known, so the NIR fireball area
Anir is simply the sum of individual fireball pixel areas. For comparison with the fireball model, the area is

reduced to a linear dimension by taking its square root. For this event, the fireball saturated the detector and
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Figure 26: Top panel 50 kg TNT detonation fireball size (square root of area) as captured by the Alpha
NIR FPA () compared with the size estimated from fits to the corresponding MWIR spegtrgrfor bars
associated with represent its uncertainty at the 95% confidence IeBettom panel Comparison of mean
pixel radiances estimated from the FPA)(and computed using the fireball modEel)( The radiance scale

is arbitrary and the curves are scaled to matah-at0.43 s, which is the point when fireball pixels no longer
saturated the FPA.

pixel intensities greater than 95% of the FPA's dynamic range were attributed to the it. The temporal evolution
of the fireball size is presented in Figu26. The fireball reaches its peak size of A instantaneously and
maintains that size for approximately28s. Then the size appears to decay to 0 m hp58. This is an
artifact of the thresholding. The fireball has cooled and the pixel intensities have fallen below the cutoff
value. Examination of the imagery sequence in FiBeonfirms the fireball dims while the area remains
approximately constafit Prior to this dimming in the NIR, the spectrally determineetall sizer compares

favorably with imagery.

"The dynamic range of the imagery is reduced upon printing making the claim appear unlikely. This approximately constant nature
of the fireball is more apparent when viewing the electronic version of this document on a computer monitor.
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Each pixel captured by the NIR FPA scales linearly with radéaprovided the detector is not near
saturation. Thus, to within a scale factor, mean fireball radiance can be estimated by averaging over pixel
response values corresponding to the firébdtihagery reveals a non-homogeneous fireball, so an average
radiance value enables comparison with the fireball model. As the fireball cools, systematically distinguishing
fireball pixels from other above-ambient, non-fireball pixels is more difficult. To alleviate this problem, mean

pixel radiancgL pix) was computed for the set of pixels which initially saturated during the first frame.

The fireball model can predict pixel radiances using the extracted fit parameters. Ignoring the contribu-

tion from the selective emittets(L pix ) IS estimated via

(Low) = (1= 070) [ By (T o (26)
NIR

where NIR indicates integrating over the imaging detector’s response curve. The Alpha NIR uses an InGaAs
FPA with a response ovgf.9 < 1 < 1.65um). For simplicity, the response was taken as unity over this

bandpass.

Figure26 provides the time-dependent, average pixel radiance meghbyrthe NIR FPA and compares
them with the radiance estimates from Equat& The scale is arbitrary as the FPA was not calibrated.
Radiance levels are not accurate when the majority of fireball pixels are saturated—these points are shown
in grey. Neart = 0.43s, the number of saturated pixels comprising the fireball is less than 2%, so the
subsequent decay in radiance is reliable. To facilitate comparison of the NIR and model radiances, both
are scaled to match &t= 0.43s. At all subsequent times, the experimentally estimated and theoretically
computed radiance profiles are in excellent agreement. It is possible that the radiance profiles still differ
by a constant scaling factor. Nonetheless, the predicted decay rate in mean pixel radiance remains in good

agreement with observation.

8Although the NIR camera was not calibrated, a non-uniformity correction leveled individual pixel responses, preserving the ability
to meaningfully average pixel values.
9Selective emission from gases could not be included as molecular cross-sections were not computed for the NIR.
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4.5.2 Recommended Method of Fitting. Improvements to fit quality and large reductions in sys-
tematic errors were observed when excluding 2500 cnt?! from fits to all fireball spectra collected during
BF2. This illustrates a deficiency of the fireball model at longer wavelengths and suggests a practical method
of avoiding it, namely omitting the longer wavelengths. All forthcoming results are derived from fits to
7 > 2500cnTl. The underlying cause of the discrepancy at long wavelengths is unknown but certainly
stems from the restrictive assumptions used to derive the fireball model. One possible explanation for the
deficiency may be the assumption of a homogeneous temperature field. By including the effects of a cooler,
above-ambient shell surrounding the hot fireball core, the long-wavelength region of the spectrum can be

more accurately fit, a result which is briefly examined in Apper@iix

4.6 Analysis 060 kgENE Fireball Spectra

An abbreviated examination of fits to the detonation fireball spectra from a 50 kg detonation of ENE2B
is now provided. The fits to the observed spectrurh at 0.24 s are presented in Figug¥. The fit was
restricted tay > 2500 cnT?, but the full spectrum and fit residuals are provided. The fit to this ENE spectrum
was good with RMS and standard errors of 433¥cm~ and 63, respectively. In regions where SNR5
andTam(v) > 0.05, the relative error was 8% RMS and 5% median magnitude. Examination of the residuals
reveals some systematic structure between 2800-3408 sfight broadband curvature near 4700¢yand
two narrow spikes at 6539 and 6592th The source of these two emission lines is presently unknown. It
will be demonstrated in Chapt¥tto be a useful feature for distinguishing the “enhanced” esipes ENE1

and ENEZ2 from the baseline explosive ENEO.

The temporal evolution of the fit parameters are provided in Fi@8reThe initial fireball size was
about 9m and grew to slightly less than 12 m after 1s. The initial fireball size estimated from the MWIR
spectrum was about 3 m smaller than the peak area from NIR imagery. Although the imagery and spectral
estimates of the fireball size differ, the temporal behavior of the average pixel radiance from the NIR camera
still compares favorably with the predictéld,ix) trend. Figure29 compares the size profiles and normalized

radiance curves as estimated from the NIR FPA and predicted by the fireball model.
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Figure 27: Top panel Observed fireball spectrum)(att = 0.24 s from a 50 kg ENE2B detonation

compared with the best fit of the fireball modelito> 2500 cnt! (solid black). The estimated at-source
spectrum is provided (solid grey) along with the Planckian intensity distribution (dashed Bogtgm panel

Fit residuals [ops— Imal, black) compared witthe; (grey), which is an estimate of the instrument noise level.
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Figure 28:  Time-resolved fit parameters and derived quastiktracted from a 50 kg ENE2B detonation
fireball. Error bars represent fit parameter uncertainties at the 95% confidenc&tgvelanel fireball size

(left) and temperature (rightMiddle panel particulate absorption coefficient (left) and gaseous concentra-
tions (right). Bottom paneltotal quantity of hydrogen and carbon compared with expected values (left) and
the ratio of hydrogen and carbon amounts compared with theory (right).
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Figure 29: Top panel 50 kg ENE2B detonation fireball size (square root of area) as captured by the Alpha
NIR FPA () compared with the size estimated from fits to the corresponding MWIR spegtrgrfor bars
associated with represent its uncertainty at the 95% confidence leBettom panel Comparison of mean
pixel radiances estimated from the FPA)(and computed using the fireball modEel)( The radiance scale

is arbitrary and the curves are scaled to matah-at0.37 s, which is the point when fireball pixels no longer
saturated the FPA.
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The initial temperature of the ENE2B fireball was 2270 K, muoltdr than the initial TNT tempera-
ture. This is likely due to the presence of aluminum. Oxidation of aluminum is highly exothermic. It can be
oxidized to AbOs by reaction with the gaseous byproductgHand CQ. This has the effect of increasing

detonation temperatures, even when the explosive material is under-oxidized [2, pp. 94].

The ENE fireball was less optically thick with a particulate absorption coefficient that was much smaller
than that of TNTx quickly decreased with time, and the corresponding particulate transmittance monoton-
ically increased from ®5 to Q93. The smaller particulate absorption coefficients may reflect improved
combustion efficiency (relative to TNT) with more of the HE being fully oxidized to gaseous species in the
initial detonation reaction. This is consistent with the availability of more oxygen in the ENE2B starting
material relative to that in TNT. (See Tal8¢ It may also be related to the much smaller fraction of carbon

in the HE compared with TNT.

Carbon dioxide concentrations were much smaller for the ENE fireball, consistent with the material’s
stoichiometry. Initially, both the C@and CO concentrations were the sa@@e& 108 moleg/cm?). Following
this, the CQ concentration increased to abouk2L0*” moleg/cm?®. The increase in C®coincided with an
order-of-magnitude drop in CO concentration. The HCI concentration was betweex 28i®moleg/cm?.
Total gaseous hydrogen atoris; accounted for about 2/3 of the expected stoichiometric value, whereas
the measured and expected valuesNegrwere the same. This lead ® values that tended to somewhat
underestimate, yet agree to with within fit uncertainties, the expected v&ludTiis indicatesk may be a
useful feature for the fireball classification problem: it is strongly correlated with the HE starting material

stoichiometry and clearly distinguishes the TNT and ENE2B fireballs.

4.7 Sensitivity Analysis G2

Examples of fits to TNT and ENE spectra reveal that Equa2®successfully describes the observed
MWIR emission features using a few physical parameters. Results from fitting all BF2 data will be more
thoroughly explored in Chaptef. As hinted at above, it will be demonstrated tffatindeed correlates

strongly with the HE material. In anticipation of these key findings, it is important to explore measurement
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factors which impact the estimation®f. Three measurement factors are explored below which can adversely
corrupt the estimation dR via spectral fits. They are (1) radiometric accuracy, (2) atmospheric water vapor
concentration, and (3) spectral resolution. The first two factors represent possible sources of error with
respect to the BF2 data set. Understanding the third factor might influence future field tests as the trade-off
between spectral and temporal resolution will be understood in terms of key feature extraction. Furthermore,
understanding all three factors might inform design trade-offs should an operational sensor for méasuring

be pursued.

4.7.1 Radiometric Accuracy. Frequent calibrations were performed, but discrepancies existed
between instruments collecting over identical spectral bands. Radiometric accuracy might best be considered
good to within a factor of 2. As demonstrated in Equati@dsa radiometric scaling factor corrupts the
fireball size and concentration terms. Since heated atmospheric water vapor can represents a sizable fraction
of the measured water concentration, an accurate intensity scale is needed to ensure a good estigation of
In the presence of a multiplicative intensity scaling fa&oit can be shown that the estimateRfis affected
as follows:

28,0+ Ehel — 255,5//C

R = 27
2co, + ¢co — &&ay/VC @D

This form is encouraging as the presence/ lessens the degree to which radiometric accuracy affects
R. The impact oriR is presented as a function 6fin Figure30 for three environments. The solid curve
represents a 1% water mixing ratio (by volume) corresponding to the atmospheric state during BF2 testing.
The two dashed curves demonstrate both extremes, an arid environn2&%)J@nd a humid environment
(2.5%). Note that the x-axis is logarithmic and spans two orders of magnitude. Not surprisingly, the more
humid the environment, the more sensitiReis to radiometric accuracy. With the atmospheric conditions
during BF2 the test conditions, a 200% error in the intensity S@%e< C < 2) only introduces a maximum
uncertainty inR of 5%. For comparison, in a humid environment, the uncertainfy increases to 13%, and

in an arid environment, the error drops to 1%.
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Figure 30: Sensitivity ofR with respect to a multiplicative intensity scale factor erroCof The error
in R depends on atmospheric water content. The solid curve represents BF2 test conditignsutdthe
dashed lines represent extremely humid¥a,, — — —) and arid (025%,, — - — -) conditions.

4.7.2 Atmospheric Water Vapor Concentration.Concentrations of most trace gases which absorb
in the MWIR are well-known and vary slowly with time and geographical position [56]. As a result, their
influence on the total atmospheric transmittance curve is easily estimate. However, water vapor can vary
rapidly in both time and location. In the MWIR, it is a dominant absorber over moderate path lengths, so
accurate estimates fejﬁyg are crucial for predictingatm and thus apparent intensit&,ﬁ;g was taken from
meteorological instruments deployed during BF2 and was not a free parameter during the spectral fitting
previously described. To assess the influence of atmospheric water vafor @sequence of fits to the
50 kg TNT spectrum described above were performed at several different valtj,@ggof\/alues forg“ﬁ‘;'g
were taken betweet50% of the meteorological value. Trends were similar W‘f\%@ was either under- or

over-estimated. For brevity, only the over-estimation case will be presented.

Residuals from the fits to the = 0.24s TNT spectrum are presented in Fig3te The residual

structure grows in magnitude as the water concentration is increasingly over-estimated. Also provided in
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Figure 31:  Top panel Water transmittance profile over a28 km pathlength andﬁ;g = 9595 ppmy.

Bottom panel Residuals resulting from fits to tite= 0.24 s spectrum of a TNT fireball Whec@% was
varied up to a 50% over-estimation of the meteorological value.

Figure31is the water component of the atmospheric transmission dyrye Many of the residual structures
can be matched up with absorption feature3iigo. Thus, in cases when bad meteorological data leads to

poor estimates oj‘,"_’};g, the fit residuals will suggest that a modification is needed.

When accurate meteorological data is unavailable, an understanding of the sensitRity @frrors
in atmospheric water vapor is appropriate. FigB2alisplays the dependence®fon fﬁ;g for several time

steps in the TNT data cube. Extract®d/alues were very sensitive fﬁ;g for thet = 0.12 s spectrum, over-

estimating the true value by a factor of 10 with only a 25% over-estimation of the water vapor. Larger values

of 11 and 150 (not shown) were obtained for the 33 and 50% over-estimations. This is not surprising; the first

spectrum is dominated by particulate emission so that the gaseous emission appears small. Consequently, an
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Figure 32: Sensitivity ofR with respect to atmospheric water vapor concentration. An increasing time
offset is applied to spectra fit with increasing water vapor concentrations. Error bars represent propagation of
errors based on fit parameter uncertainties (95% confidence level).

accurate transmittance function is needed in order to extract reliable selective-emitter concentrations. Fortu-
nately, the associated uncertainties grow as well, indicating tha® th&timate is unreliable when the wrong
atmospheric transmittance profile is used. Bad estimatéﬁ;@f have a much smaller impact 6d when

selective emission begins to dominate the emission spectrum. For example, the average difference between

the “true” R and that obtained with 25% over—estimatiorf,ﬁﬁzg was 20% for spectra satisfyiig> 0.24 s.

In an operational setting, two important variables may be unknown. First, good meteorological data
may be unavailable for estimatiraﬁgg. Furthermore, the range to the fireball may be unknown. Both of
these factors influenc&;m. The range term is also important for scaling detector irradiance to intensity,
and thus obtaining physically meaningful fit parameters. The attenuating effect of water vapor imparts a
spectrally-varying fingerprint on the apparent intensity (or irradiance) reaching the detector. As a result, it is
possible to trea&ﬁ;g as another fit parameter when meteorological data is unavailablg alS®@imparts a
frequency-dependent absorption pattern in the MWIR. Since its concentration is, for the most part, temporally
and geo-spatially stable at approximately 380 pptinis information can be used to infer range to the target

allowin o be a fit parameter as well. For exam represents the best fit parameter at a
by allowing && to be a fit p t Il. F plec3t rep ts the best fit p ter at
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Figure 33:  Comparison of meteorological and fitted pararsetetracted from a 50 kg TNT fireballop
panel Results forfﬁ;g compared with experimental value of 9595 ppfitom local weather statiorBottom
panel Results forg‘égzn compared with experimental value of 380 ppfrom La Jolla Pier C@ monitoring
station. Error bars represent fit parameter uncertainty at the 95% confidence level.

guessed target range B, the true rangd can be inferred via

=

R= 380 ppmy

Ry (28)

For the 50kg TNT fireball spectr&ﬁgg andégg;‘ were introduced as free parameters, bringing the

total number of variables to 9. Figud8 presents the fitted valuesgﬁtzg andfgg‘; for several spectra in this

data set. In almost all cases, the fitted values agree with the meteorological values to within the parameter

uncertainties. Mean values fqﬁgg andfgg‘z‘ via fits were 9375 and 418 ppirrespectively. Meteorological

values for water and carbon dioxide were 9595 and 38Q,ppmtroducing these atmospheric parameters did

not significantly alter the fireball parameters. If range to the target had not been known, the estimate based on

fgg‘; would have been.87 km and the intensity would have been scaled up by a facto26f Yiewing this

as a radiometric scaling errd®, would have been altered by onlyl®s.
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These results demonstrate that both the atmospheric wader &ad range to target do not need to be
knowna priori. This information is encoded in the fireball spectratga, and can be retrieved with accuracy

sufficient enough for the reliable extraction7f

4.7.3 Spectral Resolution. The trade-off between spectral and temporal resolution is common to
nearly all spectral instrumentation. Increasing spectral resolution requires more acquisition time per spectrum
thereby reducing the temporal resolution. In FTS, decreasing spectral resolution improves SNR and lessens
the impact of scene-change artifacts. At the same time, multiple sharp emission features become broadened
and may overlap, thereby reducing the ability to uniquely assign spectral features to particular emitters. For
the present application, improved temporal resolution could enable a better understanding of event kinetics
and lead to additional key features. Also, lesser demands on spectral resolution enables the development of
a smaller, cheaper, and more readily deployed operational sensor for med8uprayided this key feature

can still be robustly estimated.

The effects of decreased resolution on spectral estimatRsvedre studied by the truncation of inter-
ferograms during post-processing. The 8192Jpuble-sided interferogram was symmetrically trimmed to
lengths of 4096, 2048, and 1024 pisr corresponding resolutions &y = 3.9, 7.7, and 154 cm L. The
appropriate ILS was used to modify the fireball model (Equat®rior fitting to the lower-resolution spectra.

The effects of reducing resolution on the data and fit are presented in Bgtoethet = 0.49 s spectrum

of the 50kg TNT fireball. The top panel displays both the data and fit in black along with the fit residual,
multiplied by 10, in grey. Panels below show the same data, fit and residual at subsequently reduced spectral
resolutions. Each halving of spectral resolution would have been accompanied by nearly a doubling in the

acquisition rate had the FTS system been so configured.

Examination of the fit residuals at decreased resolution reveals that many of the systematic errors are
broadband in nature. As resolution is degraded, the apparent “white noise” disappears but the broadband
systematic errors remain. This result is important for two reasons. First, this is strong evidence that SCAs

are not responsible for any of the major sources of systematic error. In fact, if SCAs are at all present in the
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Figure 34: 50kg TNT fireball spectrum, { = 0.49s) and fits (black line) at spectral resolutions of

AD = 1.9,3.9,7.7,154cm L. The corresponding fit residuals are shown in grey and are scaled up by a
factor of 10 for clarity.
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real component of the spectrum, their effect is difficult tstidiguish from the high-frequency white noise.
Secondly, the improved SNR with decreasing spectral resolution indicates that additional information content
is still present in the fit residuals. At the original spectral resolutidi & 1.9 cmi™Y), the standard error

of the fit was 25. That is, the residuals were only aboub farger than the instrument noise level, naively
suggesting that most of the information content in the spectrum had been extracted by the fireball model. In
fact, this is an artifact of the poorer SNRs accompanying single-scan, high-resolution spectra. The standard
error, in order of decreasing resolution, increases. 5o @3, and 158. Thus, despite the surprisingly good

agreement between the observed and fitted spectra, there is room for improvements to the fireball model.

Fitted concentrations changed by as much as 11% with variations in spectral resolution. Changes
in temperature and size were less notabte3%). Decreases in spectral resolution resulted in increased
uncertainties for all fit parameters. For example, as resolution degradedAffors 1.9 to 154 cm?,
parameter uncertainties increased by a factor of2-Phis means that the smearing and spectral mixing of
the fitting “basis functions” imparted more uncertainty than was gained by an improved SNR. Fortunately,
changes in the gaseous concentrations occurred in a manner which mostly prégerVéds is seen in
Figure35, which illustrates the temporal changesRnas a function of resolution. Thus, while uncertainty
in R grows as resolving power is reduced, the H:C ratio is still obtainable at moderate to low resolution.
Increased concentration uncertainties might represent a worthy trade-off if increasing temporal resolution

nets an improved understanding of fireball dynamics.

4.8 Conclusions

Midwave infrared emissions from several types of uncased, CHNOAI-based high explosives can be
described by a basic physical model. The model enables high-fidelity dimensionality reduction of apparent
intensity using seven physical parameters obtained by fitting. The fit parameters appear reasonable: fireball
sizes estimated by fits to the (non-imaging) MWIR spectra agree favorably with NIR imagery and the initial
TNT temperature is consistent with optical pyrometry studies. The extracted concentrations can be used to

estimate the relative amounts of hydrogen and carl#onwithin the HE starting material. For TNT and
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Figure 35:  Temporal evolution of extract®lvalues at different spectral resolutions. An increasing time
offset has been applied & values extracted from increasingly degraded spectral resolutions. Error bars
represent propagation of errors based on fit parameter uncertainties (95% confidence level).

ENE2B, theR agreed with the thermodynamically expected values to within the fit uncertainties, suggesting
the utility of R to the HE classification problem. Because the model reduces dimensionality and produces
key features which are connected to a physical fireball model, the prospect of remote HE identification from

emission signatures has been substantially enhanced.

SinceR is important to the HE identification problem, its sensitivities to radiometric accuracy, atmo-
spheric state, and instrument resolution were examined. In general, radiometric errors have only a small
impact onR, and only become important in the most humid environments. When meteorological data and
range-to-target are unknown, they can be treated as model parameters and estimated well and do not hamper
the reliability of extracted? values. Finally, spectral resolution can be relaxed without substantially altering
estimates ofR. Analysis of the fit residuals at various spectral resolutions also indicated that SCAs minimally
impact the real component of the spectrum, demonstrating that FTS can be used to study detonation fireballs.

These results may relax several design constraints of potential fieldable systems for méasuring
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In the next chapter, fits to all spectra collected during BFR ke examined and discussed in the
context of phenomenological insight. The correlation betwResnd HE type will be made more explicit.
Scaling relationships will be explored, and a radiometrically-invariant method of estimating the HE size will
be presented. Thus, the development of the fireball model in this chapter brings closer the ability to answer
the following question of fundamental importance in the battle space: “what kind and how big was that

explosive?”
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V. Fireball Phenomenology and Discrimination

In the previous chapter, a highly simplified physical treatment of fireball emissions resulted in a model which
provides a high-fidelity representation of observed spectra via nonlinear regression. The primary purpose of
dimensionality reduction had been achieved and the physics-based features showed promise for distinguish-
ing high explosives. This chapter examines the results of fitting the fireball model to all Brilliant Flash Il data

to more carefully assess the potential utility of the extracted features to the HE classification problem. Specif-
ically, type and size represent fundamental pieces of information about a high explosive. The ability to infer
these key HE characteristics via the remote sensing of fireball emissions could significantly enhance battle
space awareness and improve battle damage assessments. The results presented in this chapter demonstrate
that the fireball model can reveal these key HE characteristics for the five classes of explosives examined
during BF2. After summarizing the quality of the spectral fits to BF2 data, the temporal dynamics of each
fit parameter will be discussed. Relationships to HE stoichiometry or weight will be explored as appropriate.

It will be shown thatR =H:C serves as a robust parameter to distinguish TNT explosives from the class

of ENE explosives. Among the ENE explosives, an unknown emission feature can be used to distinguish
the “boosted” ones (i.e. ENE1 and ENE2) from the baseline mixture (ENEO). Several parameters serve as
valuable estimators of HE weight. The most useful of these is the temperature decay rate, since it provided

the best discriminating ability and it has the additional advantage of being radiometrically invariant.

Before discussing the fitting results, however, it bears repeating some important limitations. First, the
model used to extract the physical parameters to be discussed in this chapter was developed by making drastic
simplifying assumptions about fireballs. Since it would be cumbersome to preface the discussion of each fit
parameter with the necessary caveats, they will be discussed as if they are real properties of the fireball. The
understanding is that the fit parameters are likely correlated with the physical phenomena they purport to
describe. For example, the fitted water concentrafign represents some type of weighted average value,
where the weighting accounts for the effects of spatial non-uniformity in both the matter and temperature
fields. Of course, neglecting these effects also introduces some systematic €pey. iDespite thiséq,o
will be described as “the” water concentration of the fireball. Second, only 44 high-explosives—spanning five

HE types and four HE sizes—were detonated during the Brilliant Flash 1l field exercise. As a result, some
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combinations of HE type and size were not tested and other icatidns were tested only once. Empirical
scaling relationships derived in this chapter will be affected by this and should only be considered as indicators

of how HE size affects fireball dynamics.

In addition to examining the fit results for empirical relationships connected to bulk HE properties,
some preliminary attempts will be made to infer a deeper phenomenological understanding of detonation
fireballs. This is motivated by the operational need to further reduce data dimensionality, and in this case
it will be across the time axis. Some of the efforts in this chapter indicate possible avenues to be taken
towards this goal. For example, it will be demonstrated that radiative cooling is likely responsible for the
observed temperature dynamics. It will also be shown that the temporal behavior of the particulate coefficient
might be connected to soot oxidation kinetics. These observations lead to simple physical models which
could eventually be used to fit the temporal behavior @) &ndxp(t). However, the limitations mentioned
above are compounded by relatively few observations in time. Due to the rapidly decaying signal, on average
only about 10 observations in time could be fitted by the fireball model. It is stressed that the temporal
phenomenology presented below is preliminary and only serves as a direction toward which future efforts

might be focused.

Finally, a brief analysis on discriminating between TNT and the ENEs will be presented. This will
serve as an illustration of how classification potential is quantified and will demonstrate utility of the key

featureR =H:C in discriminating these two classes of high explosives.

5.1 Fit quality summary

In general, fits to all of the BF2 spectra were as good as the specific results presented in the preceding
chapter. Table8 summarizes key fit statistics for each class of high explosiZach statistic represents
the mean result for all spectra within a HE class, and the corresponding standard deviation is reported in
parentheses. In general, TNT spectra were slightly better represented by the fireball model with the best
relative fit errors and second best standard errors. Fits to ENE spectra exhibited slightly larger systematic

errors and consequently had larger relative errors.
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Table 8:  Average fit statistics for each class of high expmsi8E is the standard fit error, RMS RE is

the root-mean-squared relative error, niRE| is the median magnitude of the relative error. Relative errors

are expressed in per cent and were computed over spectral regions satisfying SERITatm(D) > 0.05.

Values are averaged (mean) for all fitted spectra within the HE class. Values in parentheses represent the
standard deviation within the same HE class.

[ HE | SE | RMSRE (%)] med [RE] (%)]
TNT |22(1.1)] 10.8(3.9) 4.3 (2.9
ENEOB | 2.0(1.1)| 14.1(25) 6.4 (2.1)
ENEL | 3.2(2.1)| 13.2(3.5) 5.7 (2.3)
ENE2A | 2.7(1.7)| 14.1(4.2) 6.0 (2.2)
ENE2B | 2.6 (1.4)| 10.9(3.4) 5.3(1.9)

5.1.1 Non-grey parameter. Before discussing the results of fitting the BF2 spectra, a parameter
will be introduced to help assess the uncertainty of the spectral fit parameters. The approximate Jacobian
achieved via finite-differencing during nonlinear fitting can be used to estimate fit parameter uncertainties.
While a helpful measure of confidence, these statistical uncertainties are not strictly valid due to the presence
of systematic errors in the model. As a result, this method of uncertainty estimation does not always yield
intuitive results. For example, parameter uncertainties are expected to increase with increasing optical depth
in the observed fireballs. This trend is was typically not realized in the statistical uncertainties derived from the
Jacobian. This is demonstrated in Fig86an which the relative errors in water concentraticﬁﬁ@zo/szo)
are plotted against the minimum fireball emissivity. Water-concentration uncertainty tended to increased only
slightly as the minimum emissivity approached 1. It is highly unlikely that the water concentration is known

to within 20% when the minimum emissivity is greater tha®3as a few data points suggest.

A different measure of confidence in the fit parameters is proposed which is connected to the math-
ematical limitations discussed in&g3.1 For example, when the spectrum is nearly black<( 1) or grey
(1 > & # €(v)), the extracted concentrations will not be seen as reliable. As selective emission becomes more
dominant, concentration values will be more reliable. A metric might capture this behavior by comparing the

difference between the full and particulate-only fireball models to the instrument noise level. Denoting this
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Figure 36:  Relative fit uncertainty for water versus minimuralfall emissivity obtained by fitting to the
TNT spectra collected during Brilliant Flash Il field test. The results are categorized by weight.

metricG, it can be expressed as

~ 2 5 ~ _
G= Rl\/ls(Ta”“(")r ?V(B)(E(V) gp)) (29)

wheree(V) = 1 — TpTy(¥) is the total fireball emissivityT, = ™" is the particulate transmittance,

Ty(P) = e %<9 js the selective emitter transmittance, and= 1 — Tp, accounts for the contribution

of greybody particulates to emissivit§a might best be interpreted as the average “selective-emission signal-

to-noise ratio” and for brevity it will be denoted as the non-grey parameter. Approaching either the black

or grey caseg — ¢p andG — 0 and fitted concentrations would be unreliable. When a spectrum is

dominated by selective emission and particulate contributions are minimal, the numerator becomes large

andG increases. The degree to whiGhincreases is tempered by the noise level of the spectrum. This is

especially important when the effects of continuum and selective emission are comparable. For example,

if the particulate emitters are such the ~ 0.1, the determination of gaseous concentrations is based on
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Figure 37:  Non-grey parameté&for fits to the TNT spectra collected during BF2. Confidence in extracted
gaseous concentrations increases with incredsinglues.

spectral variations in emissivity betwee®G< ¢(v) < 1. Thus, a good SNR is needed to establish accurate
concentrations over this limited dynamic range. As the particulate emission subsides, confidence in gaseous

concentrations is increased (or SNR requirements are relaxed).

The time-dependent behavior & is presented in Figur87 for all TNT fireball spectra collected
during BF2. Initially, the spectra were dominated by continuum emissiorGaisdsmall. As the continuum
emission subsided; increases suggesting improved reliability in the fitted concentrations. FiGatinds to
decrease with the decreasing SNR brought upon by the fireball cooling. The fireball resulting from the 1000 kg
appeared nearly Planckian throughoutits duration. This resul@d/adues smaller than 12 despite excellent
SNR for this event. Whes < 3, concentrations will be viewed as unreliable and those corresponding data
points will either be excluded or greyed out as necessary for visualization in several plots to be presented in

subsequent sections.
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Figure 38: Left panel Fireball sizer obtained from fits to spectra collected from the detonation 06),0 (

50 (@), 100 ¢), and 1000 kg<) charges of TNT. Dashed lines represent the weighted mean vatutpf

each weight class. Error bars indicate uncertainty but at early times are often smaller than the symbol
size.Right panel Corresponding sizes estimated from NIR imagery with dashed lines representing the mean
peak sizes for each weight class.

5.2 Size(r)

The fireball sizes extracted from fits to the TNT spectra are provided in F@fjreategorized by
weight. The dashed lines represent the weighted arithmetic mean firebalk singthin a weight class

computed by

(r) = ZZ%;“ (30)

Here, the sum ovéraccounts for all times of all individual events identical in HE weight and HE composition.

The weight termso; are just the inverse of the statistical uncertainties jn.e. wj = 6ri_1. As expected,

larger HE charges resulted in larger fireballs. For comparison, size estimates from NIR img@&giy ) are

provided, and the dashed lines represent the average peak areas in each weight class. Agreement between
(ry and NIR imagery was excellent for the larger fireballs, butwas almost 40% smaller thagfAnr

for the 10kg charges. In general, the agreement between fitted sizes and NIR imagery was poorer for the
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Table 9:  Comparison of MWIR spectral estimates of firebak siith NIR imagery. The values under the
MWIR Fit columns represent the weighted average for each HE and weight class. The values under the NIR
columns are the average peak area for each HE and weight class. Reported values are in cm.

e 10 kg 50 kg 100 kg 1000 kg
MWIRFit| NIR |MWIRFit] NIR |MWIRFit| NIR |MWIRFit|] NIR
TNT 577 911 889 1121 1436 1456 2585 2407
ENEOB 586 n/a 846 1043 n/a 1303 n/a n/a
ENE1 557 n/a 875 1325 1164 1601 2400 2698
ENE2A 469 801 827 1390 1103 1627 1665 2390
ENE2B n/a n/a 860 1172 998 1403 1636 2197

ENE explosives. The same trend occurred, however, with hafgieement at larger fireball sizes. TaBle
summarizes the results for) across HE class and weight, and those results are compared with NIR peak
areas. The temporal trends for the 10, 50, and 100kg fireballs were fairly similar for all types of high
explosives. The fireball size was initially fairly static and then began to increase with time. The time at which
the increase im occurred varied with explosive weight; however, the increase tiypically began when

the fireball had cooled to between 1200-1400 K. The size dynamics of the 1000 kg HEs were considerably
different:r increased quickly to a local maximum and subsequently decreased with time. The 1000 kg ENE
fireballs did exhibit a secondary increase inpon reaching a temperature of about 1200 K. This trend was
not observed for the TNT fireball. In general, earlyalues were in reasonable agreement with NIR imagery.
The long-term behavior af awaits confirmation with MWIR imagery. The intriguing temporal dynamics of

r are connected to the fluid dynamical behavior of the fireball and warrant a deeper investigation beyond the

scope of this effort.

The discrepancy between observed and fitted fireball sizes might be the result of the geometrically
simplifying assumption of a cubic fireball. Imagery indicates that the fireballs are more spherical or dome-
like. In a spherical homogeneous fireball, the optical depth will be larger through the middle of the sphere
and decrease with distance from the center. Thus contributions to the apparent intensity will be lower from

the periphery of the spherical fireball, and this will result in an under-estimatiobpassuming it is a cube.
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Figure 39:  Ratio of fireball sizes (square root of projectezhay predicted by the cubic fireball model
and the spherical fireball model plotted versus the cubic fireball modet si@eirves shown correspond to
various absorption coefficients between 1 and 10001,

To assess the magnitude of this biasing, the radiative transfer solution for a spherical, homogeneous fireball

of radiusf' derived in AppendidB will be used:

— 2kt —2kf _ 1
ph =f2( 1+ + =) BG, T (31)
Kf Z(Kf)

For a fixedx, the value off which makeslsph equal to that predicted for a cubic fireball of sizevia

Ima1 will be computed. The results for several different valuex @fre presented in terms of the ratio of

the square roots of areQ§2/nf2 in Figure39. As x increases, the edge effects become less important

and both models will recover the same fireball projected area. While the observed fireballs are not perfect
spheres, this analysis demonstrates that the cubic assumption leads to size estimates which can be too small
by as much as 10%. This discrepancy is more pronounced for smaller fireballs or fireballs with smaller

values due to the decreased optical depth. Furthermore, the observed trend of ENE fireball sizes having larger
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discrepancies with NIR imagery is predicted by this analySI$E’s have smaller initiatp valueg than TNT.

For example, average initial, values for each explosive class are as follows+2% (TNT), 10+ 3 (ENEO),

1441 (ENE1), and 2@ 12 xm~! (ENE2). However, the observed size differences between imagery and the
spectral fits cannot be explained by this phenomena alone. For the 10 and 50 kg charges, the frdesl

between 60-80% of the estimates from imagery. One highly speculative possibilityss thées on a radial
dependence, decreasing with distance from the center. Such a radial dependence could be the result of the
size distribution of soot generated during the detonation. Assuming each soot particle has an equal amount
of kinetic energy imparted by the expansion wave, larger particles would be found closer to the center and
smaller particles would be found nearer the edges. The result of such a scenario would be more significant

edge effects than that predicted by a homogeneous fireball.

Fireball sizer is the most intuitive indicator of the explosive’s weight. Larger HE charges are
expected to produce larger fireballs and this trend was recognized in fits to the BF2 spectra. The uncertainty-
weighted mean fireball siZzewas computed for each set of time-resolved spetttaptures the early, static
behavior ofr (t) as a result of the uncertainty weighting. The growtlr () observed at later times was
accompanied by much larger uncertainties. Note thiat different from(r): T represents an average for
a single event whereds) represents an average for all events related by a common HE and weight. The

relationship between and the HE weight is presented in Figut@for the TNT events.

Both axes are logarithmic and the apparent linear behavior suggest a power-law relationship. To account

for this, the following equation was fit to the data,

r=awP (32)

and the solid black curve represents the best fit with: 278+ 74cmkg™® andb = 0.33+ 0.05. The

number of points within each weight ranges from 1-4, so outliers could have a large influence. To examine

INote that fireball area estimates from remote imagery are dependept Ghere are spectral regions in whielp) is larger thancp
because of selective emission from®or CO,. However, atmospheric attenuation by these same gases over several kilometers tends to
strongly mitigate these contributions to the band-integrated intensity measured by an FPA. It turns out that the spectrally-averaged value
weighted by the atmospheric transmittance functionef@n is typically only a few percent larger tharp.
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Figure 40:  Uncertainty-weighted mean fireball sizevérsus high-explosive weight for the TNT detona-
tions. Error bars indicate the standard deviationfar each event. Solid black curve represents a power-law
fit to the data. Grey curves are all possible power-law fits in which a single data point was excluded.

this possibility, the fits were performed on all subsets in which one point was excluded. The results, displayed
in grey in Figure40, were nearly identical except when the 1000 kg point was rexhofveraging over the
leave-one-out fits resulted m = 272(24) cmkg® andb = 0.33(0.03) where the numbers in parentheses
represent the standard deviation. Interestingly, the expdnent/3 might be expected under the conditions

that the combustion chemistry and long-term fireball density are independent of the HE weight. If so, the total
number of by-product8l would scale linearly with weight, i.eN = r3%;& o« W. Introducing a constant

of proportionalitya and solving forr, Equation32 is recovered witth = 1/3. The same power-law analysis

was performed for the ENE explosives and the scalingwith weight is displayed in Figurdl. Fit results

for TNT and the ENEs are summarized in Tab@ Fits to ENE1 were similar to TNT. However, both ENE2
mixtures featured a weaker weight dependence Wittalues near 4. In ENE2A, the single 1000 kg data

point has a large influence, and its removal results in a substantially different scaling relatitnship42
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Figure 41:  Uncertainty-weighted mean fireball size Y versus high-explosive weight for the different

ENE detonations. Error bars indicate the standard deviatiodfaneach event. Solid black curve represents

a power-law fit to the data. Grey curves are all possible power-law fits in which a single data point was
excluded.

versush ~ 0.23). Substantially more data are needed to make this analysis statistically relevant and robust as

well as to assess the validity of the power-law scaling description.

The power-law scaling relationship between fireball size and weight is interesting and is likely con-
nected to the fluid dynamical processes which govern fireball growth. Understanding the physical basis for
this relationship will not be pursued. However, with typical valueb odnging from 021 to Q34,7 enjoys
only limited sensitivity with respect to HE weight. Thus, estimating HE weight fratemands low statisti-

cal uncertainties and good radiometric accuracy. Judging by the error bars in MQamed4 1, estimates of

Table 10:  Results from fitting the power-law equat@W? to F. Fit parameter uncertainties are provided
in parentheses. ENEOB was excluded as only two of the four weight classes were populated.

HE | a[(cm/kg)P] | b |
TNT 278 (74) | 0.33(0.05)
ENEOB n/a n/a

ENEL 255 (30) | 0.32 (0.02)
ENEZ2A | 340 (144) | 0.23(0.08)
ENE2B | 377 (112) | 0.21(0.05)

98



1800

1600

Z 1400

1200

1000

800y, oy e
0 0.5 1 1.5 2 2.5 3

Figure 42:  Temperature versus time curves obtained by fitsebdil spectra of 10, 50 (J), 100 ),
and 1000 kg<€) charges of TNT. Error bars represent fit parameter uncertainties at the 95% confidence level.

HE weight fromr would be highly uncertain. Nonetheless, the expected trend of increasing fireball size with

HE weight was captured by the spectral fits, building confidence in the fireball model.

5.3 TemperaturéT)

The time-resolved temperatures extracted from the TNT fireball spectra are provided ind2gline
mean initial temperature was 1850 K and this value was highly repeatable with a standard deviation of 50 K.
Temperatures collected at times satisfying 200 ms were considered initial temperatures. All initial TNT
temperatures were between 1756 and 1916 K. These results agree with the range of 1700-1900 K obtained
via optical pyrometry at comparable observation times [85]. Temperature decayed in an approximately linear
fashion, with moderate departures from linearity at the earliest and latest observation times. The tempera-
ture curves were all monotonically decreasing, which implies that the cooling processes (radiative emission,

expansion, etc.) dominate the effects of any exothermic chemistry that may be happening concurrently. Ac-
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Figure 43:  Linear temperature decay riteversus HE weight for the TNT charges. Error bars represent
uncertainties associated with observation time. Black line represents power-law fit to all points and individual
grey curves represent leave-one-out power-law fits.

counting for some of these physical processes to understand and model the obgenadves will be

postponed until $.3.1

The rate of decay is highly dependent on the HE weight. To capture this weight dependency, the time
t1200k at which T= 1200 K was recorded for each evenf conservative estimate of the error associated
with t1200K Was taken as /M At where At is the time to acquire a single spectrtinTaking the reciprocal
provides one measure of the cooling rate and is denotdd by 1/t1200k. The weight-dependence kf is
displayed on a log-log scale in Figu48. Larger high-explosives produced fireballs that took mucigéy to
cool than smaller HEs. The dependence appears linear on the logarithmic scale, again suggesting a power-law

relationship withw. Fitting the following equation

kT = aV\/b (33)

2A higher temperature could have been chosen, but less separation among different weights would be evident. Likewise, selecting a
lower temperature would have resulted in greater separation of weights, but at the expense of 10 kg data points.
3Examination of the raw interferograms results in an improved estimation of the time at which the detonation occurred.
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Figure 44:  Temperature versus time curves obtained by fitsebdil spectra of 10, 50 (J), 100 ¢),

and 1000 kg<¢) charges of various ENEs. Not all HE sizes were represented in each class of explosive. Grey
lines represent linear extrapolations te=T1200 K for those events in which the final temperature was greater
than T= 1200 K.

to the TNT temperature curves resultediie= 7.8+ 2.0 s kg~P andb = —0.48+ 0.08. Averaging over the

leave-one-out results produced identical valuesfandb to within the reported precision.

The temperature dynamics for the ENE fireballs is presented in Higliae general, the ENE detona-
tions resulted in higher fireball temperatures. Mean initial temperatures and associated standard deviations—
in order of ENEO, ENE1, ENE2A, and ENE2B—were as follows: 160@0), 2260(90), 2300(240), and
2100(120) K. The large standard deviation for ENE2A was the result of two initial temperatures in excess of
2500 K. The average ENE2A temperature, excluding those two events, iS&30®Q Each of the “booster”
ingredients is observed to increase initial fireball temperatures by 300-500 K above that obtained by the base-
line ENEO mixture. The ENE temperature profiles are more linear than the TNT profiles. This observation
was used to extrapolate a few of thé@ lcurves to T= 1200 K in order to computeer. This extrapolation was
based on a linear fit to the last three recorded temperatures, and was only performed when the final recorded
temperature was greater than 1200 K. The extrapolated curves are shown grey indBigiitee weight-

dependence dfr is provided in Figurels. The results of power-law fits to each of the HEs are summarized
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Figure 45:  Linear temperature decay rkteversus HE weight for the TNT charges. Grey points corre-
spond tokr values estimated by linear extrapolations @f)T Error bars represent uncertainties associated
with observation time. Black line represents power-law fit to all points and individual grey curves represent
leave-one-out power-law fits.

in Table11l. In general, the behavior of ENEOB and ENE2A was similar to T&lthough the ENEOB result

is highly uncertain as only two distinct weights were used. ENE1 exhibited the truest power-law relationship
with the smallest relative fit errors. The behavior of ENE2B is difficult to judge as the 100 kg event appears
anomalous with &t value commensurate with the 50 kg values. Interestingly, the fireball size for this event

as measured by imagery and estimated by spectral fitting is also commensurate with the 50 kg values.

Table 11:  Results from fitting the power-law equat@W® to kt. Fit parameter uncertainties are provided
in parentheses.

HE ‘ a[(s1/kg)®] ‘ b ‘
™NT 72(L8) | —0.46(0.08)
ENEOB | 14 (19) | —0.52(0.34)
ENEL | 4.1(0.7) | —0.33(0.05)
ENE2A|  4.9(20) | —0.40(0.12)
ENEZ2B | 2.7(25) | —0.25(0.22)
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In terms of estimating HE weight, the decay rate as measuré&g bgs some advantages overrirst,
radiometric accuracy is unimportant in measuring temperatusecond, the only major sources of uncer-
tainty in estimatingkt are the uncertainties in T and the measurement timetax&atistical uncertainties
in temperature were the lowest of all fit parameters, on the order3ef306. The fit uncertainty is almost
exclusively a function of instrumental SNRANd third, the sensitivity okt, as captured by the exponent
b, was larger in magnitude than the corresponding values obtain&d fidriese characteristics improve the
confidence in weight estimates obtainedkpyrelative to the direct measure of fireball size viawith more
field tests, it might be possible to develop rules-of-thumb by which explosive size can be estimated from the

observed temperature decay.

5.3.1 Temperature phenomenology .The rate at which the fireball temperature changes with time
reflects the balance between the production and dissipation of energy within the fireball. For example, pro-
cesses which dissipate energy include expansion, non-radiative heat transfer (e.g., conduction, convection, tur-
bulent mixing), and photon emission. Many HEs are under-oxidized so that their detonation results in residual
fuels which can continue burn as atmospheric oxygen become available. This after-burning serves as a source
of energy. At constant pressure, the balance between these sources and sinks of gnergy(d— gsnk)
represents the differential change in enthatpyand is related to the fireball temperature by its heat capacity
Cp, i.e.

dg=dH = CpdT (34)

Itis both difficult and beyond the scope of this work to carefully estimate all contributiortsftar @ turbulent
fireball. The point of this section is to develop a reasonable (albeit purely heuristic at this point) physical
explanation for the empirically observed scaling of the cooling rate with HE weight. In doing so, a simple,

parametrized differential equation is found which affords dimensionality reduction of the temperature profiles.

40f course, in a spectro-radiometer such as a FTS, relative calibration between frequency bins is critical.

SHighly accurate temperature measurements could be made at much higher temporal resolution by taking advantage of the improved
SNR which accompanies reducing the spectral resolution. Likewise, a pair of radiometers with appropriately-chosen bandpass filters
could provide high-SNR temperature measurements at a temporal resolution on the order of 100s of kilohertz.
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Noting that the fireball is initially very hot (1808 T < 2800 K), radiative cooling might be expected
to dominate thegsnk term due to the variation in emitted radiant energy with Tonvective cooling will
be proportional to the difference in fireball and ambient temperaturelfy, whereas radiative cooling will
approximately vary with T— ng. Turbulence will enhance the temperature decay as cool air is entrained via
swirling eddies. Bhattacharjee and Grosshandler [13] in their analysis of flames define the radiation/convec-

tion paramete® as
— 4 4
osgrr Tt —T

O — w 35
piliCpi Tr =T (39)

whereosp is the Stefan-Bolztmann constantjs the Planck mean absorption coefficients the linear di-
mension of the flame (fireball), and the quanjpfyu; represents the mass flux of material with heat capacity

Cp,i broughtinto the flame. The three temperatures are the flame, wall, and inlet temperaguiies, (Tf;).

For the present fireball case, the wall and inlet temperatures are both equal to the ambient background temper-
ature of approximately 300 K. The quantjiyu; Cp; is difficult to estimate, but can be expected to increase

with the amount of turbulent mixing. However, Grosshandler notes [50] note that large fires can have large
ratios indicating the importance (and in some cases, dominance) radiative emission can have on the cooling
process. It will be assumed that the HE detonation fireballs sabisfy 1 early in the cooling process. This

will permit both a possible explanation for the observed scaling of cooling rate with HE weight and produce
functional form that can be used to reduce the dimensionality of the temperature profile to a single fit parame-
ter. However, an improved understanding of the fluid dynamics—in particular, the effects of turbulent mixing

on temperature—will be needed to ascertain the degree to which the following developmentis valid.

So as afirst step at understanding the observed temperature dynamics, it will be assumed that the fireball
only radiatively cools and that the exothermic chemistry has completed so the source term can be neglected.
Furthermore, the ambient temperature of approximately 300 K will be neglected since inifiatly ng.

Finally, it is assumed that the fireball will instantaneously thermally equilil§tatéth these approximations,

6This assumption is needed to assume a single temperature. Itis more likely that temperature gradients are introduced as the periphery
of the fireball begins to cool.
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Equation34 can be recast as the following ordinary differential equal@DE)

—_— = —— T 36
" c, osB (36)

whereep, is the hemispherical emissivity, ar®lis the fireball surface area. In general,is a complicated

function of the geometry and optical properties of the system. However, it can be shown [110, pp. 167] that
the hemispherical emissivity behavescgs~ | /r for an optically thick source with a photon mean free path

ofl. In an optically thick medium, is small and photons emitted from the center participate less in radiative
cooling than surface-born photons as a result of their increased chances of re-absorption. This effect becomes
more pronounced as the geometrical fireball dimension becomes larger and thérrati@counts for this.

This limiting form is only valid when the photon mean-free path is much smaller than the linear dimension of
the fireball, i.el /r « 1. Typically, this condition is satisfied at times less thab8-05 s for the HE fireballs
examined in this work. Assuming all variables in Equat8@iare independent of time excepttT, it can be

integrated obtaining

| 3505.3t) -1/3

T = (10 +g; @)
p

where T0) is the initial temperature anglrepresents a geometry-dependent factor that would be present in

the optically-thick limiting expression for the hemispherical emissiwity= gl /r.

The effects of HE weight on the initial cooling rate can now be considered. Suppose that HE weight
affects no fireball variables apart from the total number of particles and that the density is preserved. (The
constant density assumption seems valid for TNT fireballs as it was discoveresi2rttr o« WY/3). It
follows thatS o< r2  W2/3. The heat capacity will scale linearly with weight, i@, o« W. Keeping mind

of thel /r term, this can be expressed as

T = (TO™*+ aW_2/3t)_l/ ’ (38)
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with a being the collection of physical and proportionality constants. The expression above supports the
observation that fireballs from larger HEs cool more slowly than smaller HEs. Thetirequired to decay
to a temperature T can be solved for yielding

_TOB3-T3 23

= 2T (39)

T

From the previous section, the decay rate= 1/t1 with T = 1200 K and this result suggests that exponent
for the power-law relationship in Equati@®3 should be—2/3. This value is somewhat larger in magnitude
than the observed values reported in Table Over much of the observation time,is roughly constant,
and the heat capacity isn’t strongly influenced by temperature changes. Howeilebe seen to vary with
time in a manner that is weight-dependent (look ahead to Fig@reso some variation from-2/3 is not
unexpected. For example, in the case thatcreases linearly with time starting from a small value, i.e.
| ~ mt, a similar analysis yieldkr o« W~1/3, Initially, the growth ofl is approximately linear, coinciding
with the rapid decrease iy,. Note that in most BF2 fireballs,grows in time to values larger thanso that

the long-time behavior of the hemispherical emissivity does not treag asl /r.

The photon mean free path represents the average distance traveled by a photon before being reab-
sorbed. Specifically, in a medium characterized by an absorption coeffidienton average only /e pho-
tons of frequency will not be absorbed after traveling a lendth= 1/x(v). In optically trapped media, the

average photon mean free path is computed using Rosseland’s weighting scheme [110, pp. 153] via

Y ()]
| = /O o (40)

where the integration is performed over the dimensionless vanegldcyv /kg /T. The weighting function

f is the derivative of Planck’s distribution with respect to temperature, and in termsafiven by

15 uteu
fuy=-— 5

- 41
474 (1 _ e—u) (41)
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Figure 46: Photon mean free pdtliersus time for the TNT fireballs, grouped according to weight: 10
(o), 50 (0), 100 ¢), and 1000 kg<).

Larger absorption coefficients reduce the average length traveled by a photon before absorption. For each
spectrum, the monochromatic absorption coefficient and fitted temperature was used to dorRputhe

TNT events, the temporal dependencé & provided in Figurel6. The mean free path increases with time

at a rate that is dependent on HE weight, with smaller explosives featuring faster increlaséh itime. The

behavior ofl is strongly influenced by the particulate absorption coefficient as will be discusseésl4n §

In the preceding discussion, a simplistic picture of fireball cooling leads to a plausible explanation for
the observed dependence of the temperature decay rate with HE weight, namely that larger HEs have larger
thermal mass and more optical trapping, and thus cool more slowly. Moreover, the differential equation
(Equation36) leads to a method of further dimensionality reduction. Tdragerature curves can be repre-
sented by an initial condition and a single fit parameter which is adjusted to minimize the squared differences

between the observedfl) and the solution to the following equation:

((jj_'tl' = —krosg T (42)
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Figure 47: Spectrally estimated temperature profie@m various BF2 fireballs compared with single-
parameter fits to Equatiofi2 (— — —) based on radiative cooling (RC). The solid curves (—pyesent the
solution to a three-parameter differential equation (Equati®nwhich includes an exponentially-decaying
energy source term from additional combustion (RC+AC). Results from a 50 (black) and 100 kg (grey) deto-
nation are shown for TNT, ENEO, ENE1 and ENE2. Each panel also features a log-log inseﬂﬁal()ﬂrofn

fitting to Equatiord?2) versusW demonstrating the expected scaling is preserved with the single-parameter fit
to the temperature curves.

Here,kr is a parameter representing the time-averaged contributions of the hemispherical emissivity, heat
capacity, and surface area to the cooling ratélatlab’sode45 solvef was used to numerically integrate
Equationd2for a givenkr with the initial condition matching that of the first observed temperature. A Nelder-
Mead simplex method was used to find tewhich minimized the sum of squared differences between the
measured and predicted temperatures. Figdreompares the spectrally-estimated temperatures with the

fitted solutions to EquatioB6 for several BF2 fireballs.

"Accurately estimating these physical parameters for an arbitrary, unknown HE may not be possible from spectral measurements.
For example, the fireball's heat capacity cannot be reliably estimated if the HE contains a large amount of nitrogen. Most nitrogen is
converted to N and its concentration cannot be estimated by emissive FTS due to its lack of a permanent electric dipole. Furthermore,
turbulent mixing at the surface of the fireball, even if small enough not to invalidate the assumption that radiative emission dominates
the cooling process, can increase the effective surface area of the fireball. In this case, estimating the surfaBe-aBe fas a cube
or S= 4zr? for a sphere may lead to an underestimation of the radiative cooling rate. Finally, the hemispherical emissivity is strongly
dependent on the geometry of the system, and analytic expressions can only be found for simple systems.

8While Equatiord2is analytically integrable, the numeric ODE solver was usearder to provide a framework for exploring other
functional forms which have no analytic solution (see e.g. EqudtBn
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The specific examples presented in Figdirare fairly representative of the results obtained in analyz-
ing all BF2 fireballs. In general, the fitted temperatures based solely on radiative cooling compare favorably
with the observed ENE temperature profiles. However, the TNT fireballs generally exhibited a less satisfac-
tory agreement. For all ENE evenks, ranged from 11-105 cfi /J depending on weight and RMS fit errors
were 64 K on average. The average relative error associatediths 18%. For the TNT events; ranged
from 11-160 crAK /J and RMS fit errors were larger at 114 K on average. Relative errors associated with
kr were 33% on average. While the ENE profiles are well-described by the fits, it is clear that Edization
cannot reproduce the TNT profiles with high fidelity. Also siow Figure47 are log-log plots okt versus
HE weight. Note that fitting Equatiof2 to the temperature curves results in a similar power-lawiogiahip
that was empirically observed in the previous section. And despite the mediocre fits to the TNT curves, the

scaling relationship appears to be preserved for that class of HEs as well.

According to Equatior2, the initial decay rate will be the largest, i.e. the slopeudtidoe negative
and largest in magnitude at early times. For many of TNT fireballs, the largest negative slope occurred in
the third to fifth sample of the temperature profile, which is a temporal variation that cannot be modeled by
Equationd2. There are possibly several reasons for this behavior. Cuesiille explanation is that at early
times, the fireball is still combusting, adding energy to the system and initially slowing the net cooling rate.
As a first approximation, the effects of possible combustion on the temperature profile are accounted for via
an exponentially-decaying energy source term. Introducing two additional parameiedd, the solution
to the following modified differential equation was also fit to the observed temperature profiles:

ar

i ae P — kyogg T (43)

The best-fit solutions are also provided in Figdiéas the dashed lines. The mean RMS fit errors were
reduced to 16 and 30 K for ENE and TNT, respectively. However, parameter uncertainties were considerably

larger (on average- 87% for ENEs and~ 140% for TNT), and this is partially a consequence of having
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only a few more data points than fit paramelef®ecause of this, analysis of the fit parameters will not be
explored. Instead, the improved fits demonstrate the possibility that a decaying energy source term may be

responsible for the initially slow decay rate observed in the TNT temperature profiles.

Before continuing, it is important that the preceding results are put into a proper context. Eq@6tions
and43 serve as useful dimensionality reduction tools which captioe observed weight scaling. The simpli-
fied physical picture ascribed to HE fireballs resulted in a model which enabled good fits, suggesting only that
the model is consistent with the observed data. While this is a first step towards understanding the tempera-
ture dynamics of fireballs, the nature of the data precludes firm conclusions about the physical underpinnings
of the empirical observations. The observed temperature profiles were sparsely sampled in time (typically
only 3-15 points per HE) and exhibited a variation with time that could be represented by many simple
mathematical forms. In other words, the observed temperature profiles do little to limit the scope of possible
explanations. To improve the understanding of the temperature dynamics, future tests should incorporate in-
strumentation capable of capturing highly sampled temperature profiles (e.g. high-speed two- or three-color

pyrometry).

With the above caveats aside, radiative emission may play a key role in the temperature dynamics
of HE fireballs. Furthermore, it is possible that continued combustion may have a measurable effect on
the decay rate as late as several hundred milliseconds after the detonation. It is interesting to note that the
particulate absorption coefficient decays with time in an approximately exponential fashigyislin fact
connected with the optical properties of soot, its decay with time may be the result of oxidation. Such
oxidation would serve as a source of energy, perhaps leading to a source term similar to the exponential form
used in Equatiod3. However, in this work no effort has been made to explicitigrmect the two phenomena.
Nonetheless, the temperature curves may provide one method of interrogating the phenomenology of this
continued combustion. In the next section, the temporal behaviep @fill be discussed and its possible

connection with soot oxidation will be explored.

9There were a few data sets in which only three temperatures were extracted via fitting. They were omitted from the three-parameter
fits.
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5.4 Particulate absorption coefficie(xp)

Particulate dynamics for the TNT events are presented in F§fir€he grey points indicate when the
non-grey parameter was less than 3. The circled points indicate when the fittatlies resulted in minimum
emissivities greater thandB, and should be viewed as highly uncertain. Ovexgltjecreases with time. The
rate of decay is initially large and becomes less pronounced at later times. Except for the largest HE charge,
the decay rates are all similar. The 1000 kg charge only decreases slightly with time in a manner substantially
different from the other HEs. The particulate material in the fireball is responsible for a significant portion of
the optical trapping of light. This can be seen by compakip@nd 1/1, which represents a weighted mean
absorption coefficieAf. This comparison is provided in Figu#®. Considering all data simultaneously, the
correlation betweerp and V1 is 0.98, and their magnitudes are very similar. Given that the magnitude and
temporal behavior dfis strongly influenced by, it appears that the dynamics of the particulate material is
important in the radiative cooling of the firebadly is an important contributor to the average emissivity over
the MWIR. The mean initialt( < 0.2 s) emissivity for the TNT fireballs was&b with a standard deviation

of 0.20.

For completeness, thg, curves are provided in Figud9 for the ENE events. Thep(t) curves were
more reproducible for the ENE events, and no anomalous behavior was observed for the 1000 kg events. The
combination of fireball sizes and particulate absorption coefficients resulted in initial emissivities that were
less than the TNT events. Mean initial emissivities and corresponding standard deviations for ENEO, ENE1,

ENE2A, and ENE2B are as follows:@D+ 0.14, 074+ 0.11, 081+ 0.24, and 072+ 0.15.

The fireball model enables time-resolved spectroscopy to be used as a tool to begin understanding the
kinetics of the afterburning fireball. What follows is one possible interpretation of the kinetiggtofwhich
is preliminary, speculative, and approximate in nature. The deocgyappears consistent with the possibility
that the particulate material is being consumed by oxidation. This view is adopted in Reference [85] to explain
the optical pyrometry results. Apart from this study, however, soot oxidation in detonation fireballs has not

been studied. To assess this possibility, the analogous oxidation process in a simple combustion system will

10Recalll () = 1/x(7) and EquatiortO.
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Figure 48: Top panel Particulate absorption coefficier, versus time for 104), 50 (J), 100 ¢),
and 1000 kg <€) TNT detonation fireballs. Error bars represent fit parameter uncertainties (95% confidence
level). Bottom panelParticulate absorption coefficient versus the inverse Rosseland photon mean-free path,
a measure of the average total absorption coefficient. Grey symbols denote spectra iGwhighCircled
points indicate when the fittec), resulted in a minimum emissivity of @8 and are thus highly uncertain.
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Figure 49: Particulate absorption coefficieptversus time for 104), 50 (J), 100 ¢), and 1000 kg <€)

ENE events, separated by HE type. Grey symbols denote spectra in Ghict8. Error bars represent fit
parameter uncertainties (95% confidence level).

be considered. Recently, Robeets al. reported [55] an experimental technique to study the oxidation rates

of soot produced in an ethylene diffusion flame. A differential mobility analyzer (DMA) was used to select
monodisperse soot particles from the flame. Most soot particles were between 20 and 220 nm in diameter with
80-100 nm being the peak of the size distribution. Transmission electron microscopy revealed that the soot
particles were agglomerates of spherical particles with diameters ranging between 20-30 nm. DMA was used
to select three agglomerated soot particle sizes; in terms of diametesy were 40, 93, and 130 nm. The

soot particles were introduced into a high-temperature flow reactor, and a second DMA was used to monitor

changes in particle size with time at various temperatures. The measured size decrease rate were described

by the following modified Arrhenius expression

dD
5 = —av/Te B/RT (44)
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with a fitted activation energy £= 164 kJ and a pre-exponential factarwhich depended on the initial
particle size. Fitted values farwere 0019, 0026, and 032 cm K /251 for the 40, 93, and 130 nm sized

particles.

There are several complications which preclude assessing the applicability of Egi4ettidhe tempo-
ral dynamics ofcp. First, the chemical composition of the fireball soot likely differs from that produced in the
ethylene flame, and differences ig Bre expected. Only the carbon-rich TNT explosives will be considered
as they will better match the ethylene soot characteristics compared with the aluminized, carbon-lean ENE
explosives. Second, the pre-exponential faatdepends on particle size and the soot size distribution in the
fireball is unknown. Third, the concentration of the fireball particulate mé&gtes unknown. Finally, the fire-
ball is a turbulent system whereas the oxidation study involved soot produced in a laminar flame. Nonetheless,
some simplifying assumptions will be introduced to assess if the behavig Dfis in qualitative agreement
with the dynamics predicted by Equatidd. First, the soot particles are assumed to be opaque and ldack s
that their absorption cross-section is equal to their geometrical cross-section. Wity tbés) be expressed
as

Kp = Epop = Epm D?/4 (45)

Second, effects of the soot size distribution will be ignored and initial particulate sizes will be taken as 130 nm.
Third, it will be assumed that sufficient atmospheric oxygen is available for soot oxidation. Otherwise, O
availability would influence the oxidation rate. Finally, it will be assumed that under the time scale of con-
sideration, the concentration of agglomerated particulates is unchanging. This means that the deggease in
with time is due entirely to reduction in surface area resulting from oxidation. Until a soot particle is com-
pletely oxidized, its contribution tgp is constant. Under these assumptions, Equatinis solved forD and

differentiated with respect to time yielding

— = (46)
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Figure 50: Soot oxidation rates as measured by the diamegsofahange for four TNT fireballs. Es-

timates fromxp are denoted by and the grey points represent the theoretical prediction from a modified
Arrhenius rate law.

So under the assumptions described above, the soot oxidation rate as measured by changes in particulate
diameter can be compared with Equatihto within an unknown scale factor representedégy Using
extracted fireball temperatures, Equathwas used to estimate the particulate oxidation rate. This was
compared with Equatiod6 in which central differences were used to numerically apjpnaexe the time-
derivative ofip. Sincesy is unknown, it was used to scale the result to match Equd#doihe results of this
analysis for four TNT fireballs are presented in Figbfe Qualitatively, the observed oxidation rate is in good
agreement with the theoretical predictions for these four events. The initially large oxidation rate occurs at
high temperature and as the fireball cools, the rate approaches zero JWhids a free parameter, it is worth

noting that the shapes of the curves are in good agreement. By extension, the overall temporal behavior of the
oxidation rates are in good agreement. Furthermore, the assumption was made that the initial soot particles
were 130 nm in diameter. For the four events, the free paranigteas found to be on the order of 80
Plugging these values into EquatidBigive an initial absorption coefficient on the order of f@m=1. This

is only one order of magnitude smaller than the observed inifi@alues. Given the good agreement with the

shape of the rate curves and absolute magnitudes consistent to within an order of magnitude, it is plausible
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Figure 51: Concentration versus time profiles extracted ffd¢in fireballs for HO, COy, CO, and HCI.
The different sized explosives are denoted in the following mannerol®0 (1), 100 ¢), and 1000 kg
(¢). The water and carbon dioxide values have been corrected for heated atmospheric contributions to the

observed values. Concentrations extracted from spectra with the non-grey parameter s&istyBgere
omitted. Error bars represent fit parameter uncertainties (95% confidence level).

that the dynamics ofp are connected to soot oxidation with temperature-controlled kinetics described by
familiar Arrhenius behavior. Active spectroscopic techniques such as laser-induced incandescence (LII) may
be a useful tool to better monitor and understand the soot kinetics. While such an experimental set-up is likely
impractical for field work, small scale laboratory experiments involving controlled micro-detonations might
be possible which enable firmer conclusions to be drawn about the phenomenology underlying the temporal

behavior oficp.

5.5 Molecular concentration&;)

Time-resolved concentrations of four gaseous combustion by-product®-&0,, CO, and HCl—are
provided in Figureés1 for the TNT events. The concentrations have been correctembfdributions to emis-
sion from heated atmospheric gases. In general, the HE weight had no influence on the magnitude or shape of

the extractedj’s, supporting the notion that fireball density is independedds suggested in 8.2 Both
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the water and carbon dioxide concentration profiles areyfatdtic with some propensity to decrease with

time. One 50 kg event displayed an increase in both concentrations with time. The carbon monoxide con-
centration rapidly decayed to below the detectability threshold typically within 1-2 scans of the instrument,
i.e. within ~Q25s. The 1000 kg event exhibited longer-lived CO concentrations. The observed behavior is
consistent with the oxidation of carbon-rich soot. Glassman [44, pp. 463] points out that at temperatures
above 1500 K, C@is not found near the soot surface. Instead, only CO is made at the soot surface, and as
it diffuses away from the particle, it may encounter additional oxygen and become fully oxidized;to CO
Thus, on the basis of the kinetics of the soot oxidation, it is not unreasonable to expect emissions from CO in
the fireball spectra when the temperatures are high. However, it should be stressed that only a single, small,
and weak emission band—the-2 0 overtone—is used to establish the CO concentration. Furthermore, the
necessity of CO for describing the observed fireball spectra is not as visually evident as for the other species
included in the model. On the other hand, HCI emission was easily observed in the spectra, and this might
appear counter-intuitive given the relatively large error bounds on the HCI concentrations. It is possible that
HCl initially increases and subsequently decays, but the large parameter uncertainties caution such an inter-
pretation. Apart from CO, the mostly static nature of these profiles may indicate that the bulk of the oxidative
chemistry had completed prior to the observation times. If so, this would suggest higher temporal resolution

is needed to interrogate the reactive kinetics of the gaseous species in TNT fireballs.

In general, the ENE concentration profiles exhibited interesting kinetic behavior, and were more sug-
gestive of reactive chemistry occurring during the observation!iniehe individual concentration profiles
are provided in Figure§6-59 at the end of the chapter. Differences in the shapes ofjithg curves were
evident both across HE type and HE weight. However, a substantially larger number of events would be
required to assess whether this is the result of inherent variance in the data or due to differences in chemistry
and weight. Nonetheless, the more interesting kinetic behavior at long time scalezgpPmight be expected

since the ENEs are aluminized explosives. Miller points out [79] that the presence of aluminum in composite

11t is possible that the observed dynamics are the result of changes in fireball volume with time. However, the total number of water
or carbon dioxide molecules also exhibited similar temporal trends, indicating tha(therofiles were driven by something other than
size dynamics.
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explosive materials often results detonation reactionshithvsignificant amounts of energy are released at
much later times compared to non-aluminized, more ideal explosives such as TNT. This behavior is a result
of the diffusion-limited process by which atomic aluminum and the oxidizer @, or H>O) traverse the

flame front surrounding the aluminum particle [2,7,79]. The diffusion rate is much slower compared with the
reaction rates of the gas-phase oxidation of the non-metallic HE material. The net effect is a more sustained

reaction period with higher temperatures due to the extremely exothermic oxidation of aluminum.

With an eye towards future field tests, a quick digression regarding aluminized explosives is in or-
der. The oxidation of aluminum to form condense@@d is understood to proceed through AlO as an
intermediary [7, 45]. At detonation temperatures, AlO gives off visible light via an electronic transition
(B2x* — X2z t) between roughly 450-550 nm. This spectrum has been recorded in many aluminum com-
bustion studies and has recently been observed in the detonation of aluminized nitroAfdéBindlime-
resolved visible spectra of the AIO B> X transition would reveal the time scale of the combustion process
and help the interpretation of the concentration profiles fg®tdnd CQ. With sufficient spectral resolution
(A4 =~ 0.05nm), its temperature can be estimated from the spectrum, and would serve as a check of extracted
temperatures from the MWIR spectrum. Furthermore, the presence or absence of this electronic transition in
visible spectra would likely discriminate aluminized explosives from non-aluminized ones. Because of this,

the deployment of visible spectrometers is strongly recommended for future field tests.

A sense of the general differences in gaseous concentrations among the HEs can be obtained in the form
of group-averaged values. Weighted mean concentrations of'taseous constituent were computed for
each class of high explosive, irrespective of HE weight, in the same manner as in E@@afitve individual
contributions of¢; (t) to the mean were weighted hy = G/d¢ (t) whereG accounts for the degree of
selective emission in the corresponding spectrumdand) is the statistical uncertainty associated with the
fitted & (t) value. Weighted standard deviations were also computed to measure the degree of scatter about
the mean among the better estimates of concentration. The mean concentrations and associated standard

deviations, weighted as just described, are provided in Teblén general, gaseous concentrations were all

12The visible spectra presented in Reference [45] represent the only known detonation fireball spectra presented in the literature apart
from articles by the AFIT remote sensing group.
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Table 12:  Group-averaged concentrations for each class afdttihated during the Brilliant Flash Il field

test. The average value is the weighted mean where the weights are defi@gddy Weighted standard
deviations are represented in parentheses. The weighted mean ratio of observed to theoretical carbon and
hydrogen amountd\c/N" andNy /N, are also provided.

‘ HE ‘g /1017mo|ec ‘ & /1015molec‘ N /N ‘gHzo/loﬂmolec ‘ n CI/1014molec‘ N /N

TNT 5.0 (1.8) 0.7(25) |05(0.2)] 2.9(0.8) 36(1.8) |08(0.2)
ENEO 1.9 (1.2) 0.4(0.7) | 1.0(0.6)| 9.2(4.1) 10.8(7.5) | 0.5(0.1)
ENE1 1.7 (1.2) 0.1(0.8) | 0.8(0.5)| 4.7(2.0) 3.9(32) |0.7(0.2)
ENE2A 1.7 (1.6) 0.6(4.1) |05(0.4)| 5.3(2.9) 2.9(4.1) |04(0.3)
ENE2B 1.6 (0.6) 0.9(1.8) |04(0.2)| 5.1(18) 5.6(2.5) | 0.4(0.2)

within the same order of magnitude—4®nolec/cm? for H,O and CQ, and 13*molec/cm? for CO and
HCI. TNT had relatively larger concentrations of €@an any of the ENE’s. Likewise, the ENE’s exhibited
larger water concentrations than that of TNT. Such behavior is not unexpected on the basis of the relative

amounts of carbon and hydrogen in the high explosive starting materials. (Se&)able

Also provided in Tabld 2 are the total gaseous hydrogeé¥) and carbonKc) values relative to the
upper bounds fixed by the stoichiometry of the HE materials. These ratios speak to the efficiency in which
the carbon and hydrogen in the HE are converted into gaseous molecules. ENE1 was the most efficient in
this regard with ~80% of carbon and ~70% of hydrogen being converted to gaseous forms. Likewise, ENE2B
appeared to be the least efficient with conversion factors of only ~40% for both carbon and hydrogen. It is

reassuring to note that on average no unphysical efficiencies were obtained.

The concentration profiles contain a substantial amount of information about the combustion chemistry
occurring in the fireball, and by extension, about the high-explosive precursor. Properly extracting this wealth
of information awaits a chemical kinetics model for the detonation and afterburning processes, the develop-
ment of which is beyond the scope of the present investigation. Nonetheless, the relative amounts of hydrogen
and carbon may give clues about the underlying HE stoichiometry as suggested in Chapigindicated in
Tablel2 The basic idea is that despite the temporally-evolvinggaseoncentrations, the HE stoichiometry
will influence in an overall sense the relative quantities of hydrogen- and carbon-containing species. Since

the ENEs substantially differ from TNT in this regard, = H:C may be a useful discriminant. To assess
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Figure 52: Time-resolve® values extracted from spectra of the TNT charges detonated during the

Brilliant Flash Il field test. The dashed grey line represents the hydrogen-to-carbonratio in the high-explosive
mixture. Points corresponding ® < 3 have been omitted. Error bars represent propagation of errors based
on fit parameter uncertainties (95% confidence level).

this, the temporal dynamics & are presented in Figut for the TNT explosives and in FiguS for ENE

compounds. For comparison, the hydrogen to carbon ratio from the HE starting material is provided.

For TNT,R(t) is fairly static with values typically slightly above the stoichiometric ratio 9f0 This
is consistent with some carbon taking the form of so&.ohly accounts for gaseous carbon in the form of
CO; and CO, and gaseous hydrogen in the form e®Hand HCI.) For TNT, the static nature & agrees
with the suspicion that most of chemistry has already occurred by the observation time scdle2§.0
Oguraet. al.[85] estimate via pyrometry that the after-burning in TNT detonations ranging from 1-100 kg
is completed within 50—100 ms after the initial detonation. However, some chemistry appears evident in the
decay ofkp with time in the TNT system if it's attribution to soot oxidation presented above is correct. This

appears to be at a small enough scale as to not strongly influenRetéren.

The ENEs, in particular ENE2B, were more dynamic with initial valuegRomuch larger than the

stoichiometric ratio. This behavior is consistent with the Cooper [22] and Kistiakowsky-Wilson [2] empirical
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Figure 53:  Time-resolve® values extracted from spectra of the four types of ENEs detonated during the
Brilliant Flash Il field test. The dashed grey line represents the hydrogen-to-carbonratio in the high-explosive
mixture. Points corresponding ® < 3 have been omitted. Error bars represent propagation of errors based
on fit parameter uncertainties (95% confidence level).

rules which predict formation of #O to precede the production of GO Within about 035s, R(t) had
decayed to near the stoichiometric ratio. The only exception to this was ENEOB, which decayed to about
half of the value predicted from the chemical composition. The ENE profilé& ioidicate that the fireballs

may be chemically reacting as late as 200-300 ms after detonation. After this time, it appears that the bulk
of the reactive chemistry is finished. As suggested above, the observation of chemistry at long timescales is
consistent with the non-ideal nature of the ENE explosives. ENE2B had the most repro@®igibteirves.

The long-term{ > 0.355s) group averages f@ are provided in Tabl&3, and it is clear that TNT is readily
distinguished from the ENEs in this manner. Distinguishing among the different ENEs is more difficult as
several have similar stoichiometries and all exhibit more spread about theirneslnes. For all explosives

examined, there is no discernible dependenck oh weight.
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Table 13:  Comparison of group-averagedalues with the H:C ratio in the HE starting material. Standard
deviations are represented in parentheses. The average value is the weighted mean where the weights are
defined byG/J0R, whereG is the non-grey parameter an® represents the uncertainty’®. The average

was performed for times satisfying> 0.35 s to avoid influence by the initial dynamic behaviofaf

| HE [ mearfR(t)) | Stoichiometry]|

TNT | 1.13(0.14) 0.79
ENEOB | 9.2(2.5) 213
ENEL | 4.9(L5) 6.7
ENE2A | 4.6(2.6) 58
ENE2B| 6.5(15) 6.7

Alluded to in §4.6 was the presence of an unknown emitter as evidenced by twesiemitnes?3
near 6539 and 6592 cm. Figure54 presents the time-resolved intensities integrated achesspectral bins
containing the emission lines for all of the detonation events. These emission lines were strongly evident in
early spectra obtained from ENE1 and ENE2 events. Conversely, there was no evidence for the unknown
emitter in either the TNT or ENEO fireballs. While the cause of this emission signature is unknown, the
results may shed some light on possible explanations of the observed emission feature. Note that the unknown
emitter was found only in the aluminized explosives with high initial temperatures (ENE1 and ENE2). The
aluminum-containing ENEO did not exhibit this emission feature, and the initial fireball temperatures were
between 1790 and 2020 K, much lower than the “boosted” ENEs. (Of course, true initial temperatures are
unknown given the limitations of the 8 Hz FTS scan rate.) Much higher temperatures (2900-3000 K) are
needed to initiate aluminum combustion in air as the aluminum oxide shell must be softened and elemental
aluminum vaporized [34]. One initial “boosted” ENE temperature was near this threshole=a2 7167 K,
a few others were greater than 2400 K, and several ENE1 and ENE?2 initial temperatures were above the
~ 2325 K melting point of AJO3. These results suggest an exploration of temperature-dependent, aluminum-

based transient species may be worthwhile in an effort to assign the unknown emission feature.

In spite of the uncertainty regarding the cause of the emission signature, its presence in the spectrum is

strongly indicative of whether or not the ENE contains either of the two “booster” ingredients. Determining

13Recall from Chaptetl that an optical filter does not appear to be present in fronheflbSb detector so that aliasing may be
a problem at shorter wavelengths. It is therefor possible that the apparent emission doublet is in fact a pair of lines above the HeNe
Nyquist limit of 7901 cnm near 9210 and 9263 ¢}, These lines would have to be extremely bright since the response of the InSh
detector would be very weak in this region.
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Figure 54:  Time-resolved intensities at unknown emissieguencies for each HE type detonated during

the Brilliant Flash Il field test. The intensity was integrated ay@r) whereq = 1if 6535< ¥ < 6554 cnT?!
or 6587 < i < 6598cnt! andq = 0 otherwise. Both the ENEO (white) and TNT (grey) intensities are
provided in the top left panel.

the cause of the emission will be an important next step. For example, it may be that the emission is connected
to an impurity introduced during the mixing of ENE1, ENE2A, and ENE2B explosives. In this case, the
emission may not be a signature which generalizes to the problem of distinguishing boosted from un-boosted
ENE mixtures. However, if the observed emission can be related to the detonation chemistry of the bulk

explosive, then this feature has the potential of being an extremely useful signature.

5.6 Distinguishing TNT from ENE

TNT and the various ENEs differ greatly in molecular composition, and the spectrally-determined
‘R =H:C captures this variation among the HEs examined in this study. While each of the ENEs are distinct
in composition, collectively they contain a much larger fraction of hydrogen (relative to carbon) than TNT,
and all of the ENEs contain a common baseline mixture. In some cases, it may be desirable to distinguish
between TNT and ENE. There are a multitude of classification algorithms that can be applied to this problem.
To demonstrate by example of how HE discrimination might be performed, the fedtwid be used to

make a statistical inference about which of the two classes (TNT or ENE) the event most likely belongs.
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Bayesian decision theory is a common approach to featuredlmdassification. A brief summary based
on Pattern Classificatiomy Dudaet. al.[35] is presented for the case of distinguishing between two classes,
denoted{w1, wpz} using a single feature. Takingx as a continuous random variable dependent on the state
of naturew; (i.e., state of the fireball), lep(X|wi) represent its probability density (i.e., the distribution
of x values all corresponding ;). Thea priori probabilities are denoteB(wj) and represent the prior
knowledge about the likelihood of the event beiagknown before the measurement. (In this case, the
assumption is that TNT and ENE events are equally likely, imply#i@1) = P(w2) = %.) Thea posteriori
probability P (wi |X) represents the likelihood that the event wagiiven the measuremenrtand is expressed
by Bayes formula

P(X|wi) P(wi)

P(wi|x) = W (47)

For a givenx, wheneverP(w1|x) > P(w2|X), Bayes decision rule is to choosg; otherwise w; is chosen.
An error occurs wheneves is chosen instead of the true staig wherei # j. It can be shown that the

Bayes decision minimizes the average probability of error, which can be written in the following form

P(error) = /OO min [P (w1|X), P(w2|X)] Zi p(X|wi) P (@) dx (48)

Assuming identical costs for a mis-classification into either class, no costs for proper classification, and equal
a priori probabilities, the point(sj at which the likelihood ratigp(x|w1) / p(X|wz2) is unity define the decision

boundaries for classification.

This Bayesian analysis was applied to the BF2 data in the following way. Each of the ENEOB, ENE1,
ENE2A and ENE2B events were collectively labeled ENE. Using the single fe®&urormal (gaussian)
probability densities were estimated for both TNT and ENE. The probability densities include all explosive
weights (10, 50, 100, and 1000 kg). Each spectral estimafe whs used as a separate observation. For
example, a time-resolved data cube for a single TNT fireball may result in muRigstimates, and each
estimate is considered a separate observaRovalues with uncertainties greater than 20% were excluded to

minimize the effects of outliers, arfd measured prior tdo = 0.35 s were excluded to minimize the influence
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of initial kinetic behavior. Under these conditions, therer&v27 individual TNT events with a mean and
standard deviation of.17 + 0.15. For the ENESs, there were 46 events with a mean and standard deviation
of 4.81+ 1.22. The additional spread in the ENEs is not unexpected given that several different explosives

which differ in relative carbon and hydrogen amounts are considered a single group.

Figure 55 displays the probability distribution functions (PDF) footh the TNT and ENE classes.
The actualR observations are projected onto each PDF. dpesterioriprobabilities are also provided, and
indicate the probability that the event belongs to a particular class. For example, the probability an event is
TNT is near unity wherR = 1.1. Likewise, the probability an event is ENE is near unity whenr= 5.0.
However, wherlR = 1.67, the probabilities are equal that the event corresponds to TNT or ENE. This
represents a decision boundary, i.e. when&er 1.67, the event is more likely belongs to the ENE class.
There is a second boundary7at= 0.56, so that at values less than that, it is also more likely an ENE event.
This is a result of the broad nature of the ENE PDF with a tail that, although miniscule in magnitude, is larger

than the tail of the TNT PDF in that region.

An estimate of the mean probability of errorfgerror) = 0.28%. This was computed by performing
the integration in Equatiod8 over the finite limits ofR € [—9.9, 19.5]. This domain represents a distance
of 12 ENE standard deviations to the right of the ENE mean and to the left of the TNT mean. The low error
probability indicates the excellent separation of TNT and ENE&hahables. Another way of examining the
separation between these two classes is by considering the receiver operating characteristic (ROC) curve. The
ROC curve captures the functional dependence of the detection probdBijtegl the false-alarm probability
(Pe). For the TNT vs. ENE case, the ROC curve (Figa bottom panel) indicates that high-probability
ENE detections are accompanied by extremely low false-alarm rates. For exampg% probability of

ENE detection has an associated false-alarm probability of less th&faL0

To put these detection results in perspective, they are compared with Dills’ results [29] on distinguishing

ENE from TNT events using features derived from imagery recorded on many of the same fireballs analyzed

125
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Figure 55:  Top panel TNT (solid black) and ENE (dashed black) probability densities based on spectrally-
extractedR values and assuming a normal distributiGhobservations for TNT«) and ENE ¢) are projected

onto the corresponding curves. The solid and dashed grey lines correspangbgieriori probabilities
assuming TNT and ENE to be the only possible choiBegtom panelThe receiver operating characteristic
(ROC) curve displaying the detection probabilRy as a function of the false-alarm probabili®¢ for the
discrimination of ENE from TNT using the normal distributions in the top panel.
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in this work 4. Dills performed Fisher linear discrimination [35, 82], a technique in which some linear
combination of features is chosen on the basis that it affords the best discrimination between multiple classes.

The metric for selecting this combination of features is the Fisher ratio

— - \2
cr_ DYz (X = %)) 49)

whereX; and s; are the mean and standard deviation ofitheclass,C is the total number of classes, and

D is the number of unique between-class differences. The larger the Fisher ratio, the better the combination
of features can be used to distinguish among the various classes. By maximizing FR, the between-class
distances (numerator) are maximized as much as possible while concurrently minimizing the within-class

spread (denominator) as much as possible.

Dills found that the time required for the fireball area to reach a maximum value (in NIR imagery)
was the best single discriminant between TNT and ENE. TNT fireball areas peaked between 40-160 ms after
detonation, whereas the ENE fireball areas peaked between 0-60 ms. With this single feature, Dills obtained
a Fisher ratio of 5 indicating moderate discrimination capability of this feature. The single feature which
provided the largest Fisher ratio was the peak of the “blue” area as measured by a visible-wavelengths RGB
video camera with FR= 4.4. (While the maximum area in the blue offered a larger Fisher ratio, Dills
discusses other factors which suggest the time-to-peak feature is a more robust predictor of ENE or TNT.) By
comparison, in this work the Fisher ratio usiRgis FR = 17.4 indicating a much better separation of TNT
and ENE events. In his work, Dills suggested phenomenology-based features would provide better separation

between the TNT and ENE classes, and the present analysis confirms this suggestion.

This quick analysis confirms the intuitive expectation tRatvould serve as an excellent discriminant
for TNT and ENE events. However, there are a few important caveats to be considered regarding this analysis.
First, only a limited number of TNT and ENE events comprised the BF2 test and it is unclear if the natural

variance ofR was captured for each class. Second, this analysis only minimally demonstrates the utility

14Note that Dill's work includes imagery data from Brilliant Flash I. Recall that spectra from that field test were not analyzed in this
dissertation due to the technical issues mentioned2r88
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and good performance of phenomenologically-based feaituteg TNT vs. ENE classification problem. It
is expected that the incorporation of additional features (e.g., initial temperatures, presence of the emission
feature near 6600 c, kinetic behavior ofR, etc.) along with the use of more sophisticated classification

algorithms will significantly enhance the already promising prospect of HE classification.

5.7 Conclusions

This chapter presented the results of fitting all spectra collected during the Brilliant Flash 11 field test.
Several important discoveries were reported. First, extragtedlues from TNT fireballs are substantially
different from those obtained from ENE fireballs, suggesting that this metric can be used to distinguish the
engineered explosive from the improvised ones. Bec&uapproached the stoichiometric H:C values of the
known starting materials, this metric is an important key feature that connects observed infrared emissions to a
fundamental property of the bulk HE. A Bayesian classification approach @sindicated a clear separation
between TNT and all ENE events. To the extent that the estimated PDFs for TNT and ENE are representative
of the true distribution oRR values for each class, the mean probability of error in distinguishing between each
classis< 0.3%. The Fisher ratio, which provides measure of class separability, was FR4. Itis expected
that the hydrogen-to-carbonratio will be useful for distinguishing between many types of CHNOAI explosives
that differ in relative amounts of carbon and hydrogen. For the ENE firefakshibited interesting temporal
behavior, suggesting that additional information possibly related to the underlying combustion kinetics can
be extractedR also appears useful in distinguishing ENEO from the “boosted” ENE1, ENE2A, and ENE2B
materials. However, there is enough variabilityRnvalues that the statistical confidence may not be high
enough for classification purposes. Fortunately, the presence of an unknown emission featire 6880

and 6592 cm! clearly distinguishes ENEO from the boosted materials.

Initial temperatures of the TNT fireballs of 1756—1916 K were consistent with a previous optical py-
rometry study. ENEO (baseline ENE mixture) fireballs were slightly hotter on average. The presence of the
“booster” materials substantially increased initial temperatures by 400-600 K. Thus, initial temperature also

serves as an indicator of the type of high explosive material. The temperature decay rate was dependent on
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the weight of the HE with larger HEs requiring more time to cdoVestigation of this phenomenon revealed

that the dominant mode of cooling in fireballs appears to be through radiative emission, a conclusion drawn
by the excellent agreement between the observed TNT temperature profiles and those predicted by the sole
process of radiative cooling. If the HE type is knowpriori, it may be possible to estimate HE weight from

temperature decay, and this estimate will be independent of absolute radiometric accuracy.

Fireball size can be estimated by fits to the non-imaging FTS data. Comparison of estimated sizes with
those from NIR imagery revealed an under-estimation of size for the smaller HE charges. Estimates improved
with HE weight, and estimates were better for the TNT explosives. This behavior may be partially explained
by the approximation of sphere-like fireballs as cubes. Fireball size scaled with HE weight that was dependent
on the HE material. If the HE type is already known, it may be possible to estimate the HE weight provided
is estimated from high SNR spectra. This presumes that the intensity axis will be free from radiometric errors
or other effects which alter the apparent intensity (e.g. an opaque object partially obscuring the instrument’s

view of the fireball.)

The particulate absorption coefficient decayed with time. The rate of decay was initially large and
rapidly decreased with time. This phenomenon appeared connected with temperature in a manner suggesting
Arrhenius-like kinetic behavior. One reasonable explanation is#pds a measure of sooty particulate
material and its disappearance in time is the result of oxidative chemistry reducing its surface area. Assuming
this to be the case, nice agreement was observed between the time-derivaj{ aihd that predicted by

the results from a recent study on the kinetics of soot oxidation.

Interpretations of the temporal behavior of T aryare preliminary and other explanations may also
be found which describe the observed behavior. However, the interpretations provided in this chapter are
consistent with observation. Moreover, they illustrate how the spectral model for HE fireballs enables the

underlying phenomenology to be remotely studied by techniques such as FTS.
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Figure 56: HO concentration versus time profiles extracted from fireballs resulting from the detonation
of the four types of ENE fireballs. The different sized explosives are denoted in the following manner: 10
(o), 50 (@), 100 ¢), and 1000 kg<€). The concentration values have been corrected for contributions from
the heated atmosphere. Concentrations extracted from spectra with the non-grey parameter atisfging
were omitted. Error bars indicate the fit parameter uncertainty (95% confidence level).
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Figure 57: CQ concentration versus time profiles extracted from fireballs resulting from the detonation
of the four types of ENE fireballs. The different sized explosives are denoted in the following manner: 10
(o), 50 (@), 100 ¢), and 1000 kg<€). The concentration values have been corrected for contributions from
the heated atmosphere. Concentrations extracted from spectra with the non-grey parameter atisfging
were omitted. Error bars indicate the fit parameter uncertainty (95% confidence level).
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Figure 58:  CO concentration versus time profiles extraciau fireballs resulting from the detonation of
the four types of ENE fireballs. The different sized explosives are denoted in the following manngy;:5® (

(0), 100 ¢), and 1000 kg<€). Concentrations extracted from spectra with the non-grey parameter satisfying
G < 3 were omitted. Error bars indicate the fit parameter uncertainty (95% confidence level).

ENEO <10 ENEI

oW b

—

&ycr [molec/em? |

=)

&y [molec/em?|

Figure 59:  HCI concentration versus time profiles extractenhffireballs resulting from the detonation of

the four types of ENE fireballs. The different sized explosives are denoted in the following manngy;:5® (

(0), 100 ¢), and 1000 kg<€). Concentrations extracted from spectra with the non-grey parameter satisfying
G < 3 were omitted. Error bars indicate the fit parameter uncertainty (95% confidence level).
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V1. Conclusions

6.1 Summary of Key Findings

Before discussing key findings of this research effort, the most salient results are briefly summarized.

1. A seven-parameter model was developed enabling MWIR spectra (2500—-71H®éiHE detonation
fireballs to be fit with residuals on the order of a few percent; model represents the radiative transfer in

a homogeneous, non-scattering fireball in local thermodynamic equilibrium

2. Nonlinear regression enables a reduced dimensional representation of fireball spectra in terms of phys-

ical parameters that can be used to discriminate the type and size of HEs

(&) The derived paramet@& = H:C distinguishes TNT and ENE fireballs; obser7ed/alues corre-
spond to thermodynamic expectations based on known stoichiometry of starting materials: TNT
1.13+ 0.14 measversus 079 expect ENEOB 92 4+ 2.5 versus 213, ENE1 49+ 1.5 versus 67,

ENE2A 46 + 2.6 versus 3B, and ENE2B &% 4+ 1.5 versus 67.

(b) Bayesian classification between TNT and ENE fireballsRiassuming normal distributions for
each class resulted in well-separated PDFs. If estimated PDFs are representative of true TNT
and ENE PDFs, the decision boundary®f = 1.67 enables a mean probability of error of
P(error) < 0.3%. For a 99% probability of detecting ENE, the associated false-alarm probability
is less than 10%%. Fisher ratio measuring the separability between these two classes was FR

17.4.

(c) Presence of an unknown spectral emission at 6539 and 6592distinguishes the “boosted”

ENE1 and ENE2 explosives from the non-“boosted” ENEO explosive and TNT

(d) The estimated temperature decay katend mean fireball size correlate with HE weightV in

a power-law formkr o WP with —0.52 < b < —0.25 andf o« WP with —0.33< b < —0.21

3. Interpreted spectral data reveals several aspects of fireball phenomenology

(@) Uncased TNT and ENE charges between 10-1000 kg produce fireballs with a diameter between

450-2600cm
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(b) Sizes determined from the non-imaging spectral dataarsistent with NIR imagery (slight un-
derestimation of imagery results observed for lower HE weight, an effect which may be partially

attributed to representing a more spherical fireball by an idealized cubic geometry)

(c) Initial temperatures of TNT fireballs are between 1750-1950 K with a weight-dependent initial

decay rate between®-3 s7; initial temperatures agree well with reported pyrometry studies

(d) Temperature dynamics of the ENE fireballs can be fit to a single-parameter differential equation
motivated by the consideration of only radiative losses. TNT fireballs appear to require both
a radiative loss term and a decaying energy source term. The ittedpture the power-law

weight dependence that was empirically observed.

(e) Average optical depth is dominated by continuum absorption; its decay with time may be the
result of soot oxidation; this possible interpretation appears consistent with recently-published

temperature-dependent Arrhenius soot oxidation rates

(f) TNT and ENE fireballs consist of #0 and CQ concentrations on the order of #Gnoleg/cm?,
HCI concentration near #dmoleg/cm?®, and possible CO concentration neat“ioleg/cm?;

concentrations appear independent of HE weight
(g) Cased conventional military munitions (CMM) spectra dominated by continuum emission
(h) CMM temperatures decay from about 1600-1800 K to ambientin 3-5s

(i) Emissive area dynamics and apparent selective emission in CMMs provide limited discrimination

capability

4. Moderate-resolution spectra (4 thresolution) of detonation fireballs lastingg9-3 s can be captured
by “slow” (8 Hz) FTS with scene-change artifacts that do not impact interpretation of the real compo-
nent of the spectrum (evidence for SCAs are found in the imaginary component, but, if present in the

real component, appear indistinguishable from white-noise and do not hamper the spectral fits)

5. Developed a general-purpose, robust method of decoupling effects of atmospheric attenuation from

spectrally-smooth source emission; extracted water and trace-gas concentrations from CMM spectra
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are within a few percent of measured and historical concéotis for uncased TNT and ENE fire-
balls, absorption from §D and CQ can be treated as additional model parameters in the event that
atmospheric conditions are unknown; comparison of the fitted and well-knowrc@t@entration pro-

vides a good estimate of range to fireball

6.2 Concluding Discussion of Key Findings

Prior to embarking upon this research project, the frequency-dependent emissive phenomenology of
detonation fireballs was largely unstudied and, apart from the publications of the remote sensing group at
AFIT, not reported upon in the literature. At the outset, it was unclear which physical attributes of the reacting
fireball were most important in defining its emissive signature. This lack of understanding precluded the
confident use of time-resolved spectroscopy as a robust forensic tool for the determination of the underlying
HE starting material. As indicated in the introduction, such a forensic tool would be invaluable in aspects
of homeland defense. Furthermore, such a capability could improve battle space awareness in both friendly
and unfriendly theaters. Fortunately, the fruits of this effort demonstrate that key information about both the
type and size of a HE is contained in the time-resolved infrared spectrum. More importantly, a method for

extracting this critical information is a product of this work.

This project serves as an important first step towards understanding the key phenomenological aspects
of infrared spectral emissions from high explosive detonations. A physically reasonable albeit highly simpli-
fied model of a HE fireball was developed. The low-dimensional model enables a high-fidelity description of
a single MWIR spectrum in terms of seven physically meaningful parameters: size, temperature, particulate
absorption, and four molecular concentrations. With nearly 2400 points between 2500-710@raroh
of the information in a raw fireball spectrum is either redundant or extraneous. The efficient dimensionality
reduction afforded by the model is both necessary for and will substantially enhance classification efforts
via pattern recognition tools. Moreover, some of the physically meaningful parameters which are extracted
from the MWIR spectra are demonstrably useful discriminants. For example, the hydrogen-to-carbon ratio

as estimated by fitted concentrations clearly separated TNT from the enhanced novel explosives, and among
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the ENEs, could distinguish ENEO from its “boosted” countetpENE1 and ENE2. Notonly iR =H:C a

useful discriminant, its ability to distinguish TNT from the ENEs is understood in terms of the stoichiometry
of the bulk explosives. In addition to demonstrating the physical interpretability of the model parameters,
this result builds confidence that the model might also distinguish between other CHNOAI-based HEs which
differ in their relative amounts of carbon and hydrogen. Of course, such hopeful yet reasonable expectations

should be tested with future field experiments.

Initial temperatures also served to separate the ENE explosives from TNT. ENE fireballs were hot-
ter than TNT fireballs, and the “boosted” ENEs were much hotter than ENEO. Initial TNT temperatures
were consistent with optical pyrometry studies, and the higher initial temperatures of the ENE fireballs were
consistent with expectations given their aluminum content. The agreement with prior work and theoretical

considerations builds confidence in the fireball model proposed in this work.

The most striking feature for distinguishing the “boosted” ENEs from the baseline mixture (ENEO)
came in the form of an unidentified emission feature near 6539 and 6592 drhis feature should be the
topic of future study as its understanding is crucial to determining is utility for the ENE classification problem.
Itis not yet clear whether this feature is due to the bulk properties of ENE1 and ENE2 or whether it indicates
the presence of an impurity introduced during the on-site mixing of the HEs. It seems reasonable to expect
that the unknown emission is in fact related to some property of the bulk HE. Neither the TNT nor ENEO

explosives featured the emission, and all HE charges were mixed on-sight under similar conditions.

In addition to being able to distinguish different classes of explosives based on extracted spectral in-
formation, some evidence has been found that estimating the size of explosives via spectral measurements is
also possible. The size of the fireball is a natural fit parameter and was found to correlate with HE weight as
expected: bigger HEs produce larger fireballs. In fact, for the larger HES, the fittedrgiaggded well with
size estimates from NIR imagery. The smaller HEs resulted in fitted sizes which were too small, and suggest
simple geometrical improvements in the fireball model that might afford improved size estimates. However,
anything which leads to errors or unexpected deviations in the apparent intensity will impact the ability to

estimate HE size from. If the radiometry is off by a factor of two, the radius estimate will by wrong by a
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factor of /2. Other effects which would reduce the apparent intensitgsmed by remote sensors include

obstructions along the line-of-sight and scattering. In the midwave, scattering effects can be ignored. How-
ever, it would be both advantageous and straightforward to extend this model to the near infrared. In doing
so, the effects of scattering will need to be carefully examined since the photon wavelengths will be on the

order of the fireball particulates.

Fortunately, a radiometrically-invariant parameter was found which strongly correlates with HE weight.
Fireball temperatures can be measured without a calibrated intensity scale in as few as two bands. The rate
at which the fireball temperature decayed varied with HE weigfjt (Larger explosives produced fireballs
which took longer to cool. This decay rate roughly followed a power-law fortkrof WP with —0.52 <
b < —0.25. This weight scaling is consistent with the interpretation that the fireball cools predominantly
by radiative emission at early times. Since temperature can be estimated with a low statistical uncertainty,
this observed dependence should be useful in estimating HE weight provided the type of explosive can be

ascertainea priori, for example via the behavior &.

The primary focus of this research effort was to develop a model which could be used to extract re-
producible, discriminating information from MWIR fireball signatures. In this regard, this research effort has
borne much fruit. However, in addition to providing key features for the classification problem, the success-
ful development of a fireball model also yields significant insight into the dominant processes occurring in a
detonation fireball. Exploring the physical significance of the temporal aspect of fireball phenomenology—for
example, understanding the time-dependent temperature profile—was not a stated goal of this effort. How-
ever, a cursory analysis of the time-resolved fit parameters proved too tempting, and some initial thoughts
regarding their interpretation are offered to begin a dialogue with the combustion and hydrodynamics com-

munities.

The change in optical depth with time is driven almost entirely by a rapidly decreasing particulate
absorption coefficientd). It is possible thak is connected with the presence of carbonaceous soot in the
fireball. Inthe case of TNT fireballs, the rate at whighdecays with time is remarkably consistent with what

might be expected given published soot oxidation rates which follow an Arrhenius temperature dependence.
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However, this conclusion is preliminary and based on a pe@plved time scale. It is entirely possible that

other explanations exist which are both physically reasonable and consistent with the observed data.

6.3 Roadmap for future efforts

As with the completion of most research projects, a new and more expansive set of questions are uncov-
ered. In the author’s view, the two most pertinent and interesting questions are now discussed. First, the steps
needed to transition the results of this research project into an operational forensic tool will be explored. Fol-
lowing this, an answer to the question of “how might phenomenological understanding of fireball emissions
be improved?” will be discussed. The answer to this question will be provided in the form of an ideal (and
incomplete) instrumentation suite along with the expected insight each sensor may provide. It is worth noting
that there is a synergy between the avenues taken to answer each of these questions. As phenomenological
understanding is improved, additional key features may be found which enable more robust HE classification.
Likewise, as classification methodologies are developed, they will indicate which features are the most salient

for the discrimination problem, thereby focusing the efforts to understand fireball phenomenology.

6.3.1 How can these results guide the transition to an operational forensic toorhe purpose of
this project was to learn how time-resolved infrared spectra could enable the discrimination of various high
explosives, i.e. extracting the HE signature from the signal. Two key signaturé® &oedistinguishing
HE type andkt for estimating weight. The next step is to develop the operational capability to classify HE
type and weight using these features. In this sense, classification is the process of feeding information into a
decision-making algorithm (for example, a trained neural network, a Fisher linear discriminator, etc.). These
systems are typically trained with truth data, and as new observations are collected, the algorithm can be used
to estimate the probability that it was of a particular type. (For a relevant example, refer to Dill’s dissertation
[29] which discusses the problem of HE discrimination via features derived from imagery.) Of course, for this
classification system to be useful dictates that a substantial number of HEs have been examined; if features
from an unstudied HE are fed to the algorithm, the results will be, of course, meaningless. Furthermore, to get

statistically meaningful confidence bounds from the decision algorithm requires that sample sizes in the truth
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data are sufficient to span the natural variance of the indalidvent types. If an individual event's inherent

variability is unknown, the algorithm'’s reported uncertainty will be of limited utility.

It should be evident from this discussion that a substantial number of future field tests will be needed
to provide the appropriate data to train the decision-making algorithms. It should also be clear that a field test
like BF2 is not sufficient for meeting these goals with the lack of reproducibility being its largest shortcoming.
For reasons of economy, a test plan with carefully stated objectives will be needed. Important questions for
developing such a plan include: (1) for which types of HEs is discrimination necessary; (2) what tgpes of
priori information will be available; (3) what confidence level associated with the classification algorithm is
needed; (4) how many repetitions of a given event type are needed to achieve the desired confidénce level

(5) which types of sensors will be or could be available in an operational setting.

The last question about sensors is an important one. The sensor suite used during the Brilliant Flash
field tests are not tailored for operational deployment. They are heavy, bulky, and demand much in terms of
support (liquid nitrogen, computers, operators and technicians, etc.). However, it is likely that the key features
R andkr could be extracted from a much simpler and more readily deployable sensor. As an example,
consider a multi-channel radiometer, which with some engineering can be made quite small. Two bands in
the region of continuum emission could be used to determine the temperature dynamics, dqd thiss
also possible that a small number of appropriately chosen bands could enable the determirfatidrnef
fireball model resulting from this project would be importantin finding the optimum, minimal set of bandpass
filters for this task. Of course, there are readily available spectral sensors with a smaller footprint than the
ABB-Bomem system used in this project. As for how to optimally configure a spectral system, additional
study could guide the selection of spectral and temporal resolutions since to enhance one the other must be
degraded. In ChaptdY, it was found that reducing the spectral resolution incrédise SNR, but not enough
so that the uncertainty i® was reduced. However, with increased temporal resolution, additional features

relating to the kinetic evolution of detonation fireballs may be found, and such a trade-off may pay off.

IThis question is difficult to answer. As a start, a minimum of 10—15 repetitions should be considered a minimum.
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6.3.2 How can the phenomenological understanding of deiftaméiteballs be improved? With the
development of the fireball model that accurately matches observed HE fireball data, it is natural to want to use
this tool for more than its data reduction purposes. The physically meaningful and constrained parameters
offer insight into the complex phenomena of the afterburning process. The results presented in Chapter
suggest interpretations of this process which are consisiémthe observed data. Future tests are needed to
validate these interpretations as well as expand upon them. With an appropriately chosen set of instruments,
a rich data set which explores and explains HE fireball phenomena can be collected. Presented now is a
“wish-list” of instruments along with a brief, informal list of phenomenological questions those instruments

might help answer.

e Imaging FTS — AFIT's Remote Sensing laboratory will acquire the Telops FIRST MW-E imaging
spectrometer in the Fall of 2007. This will be the world’s fastest midwave imaging FTS built to date.
For example, at a rate comparable to the non-imaging FTS used in BF2, the Telops instrument will be
able to collect a 12& 128 hyperspectral image, with each point consisting of a 16'crasolution
spectrum. This instrument will enable a number of questions to be answered, such as: How homoge-
neous are detonation fireballs? Is there an easily describable temperature and/or concentration gradient,
for example one with a smooth radial dependence? Or are there stochastically-distributed regions with
different temperatures and compositions? Are there important edge effects besides those already at-
tributed to a difference in optical path length? For example, is there evidence of reactive chemistry
occurring at the turbulent boundary layer? How do fluid dynamics issues affect the spectral signature?
(This will be somewhat difficult to answer with this instrument because the frame rates are still slow
compared to the fluids time scales.) Why does the highly-simplified homogeneous assumption result in

a model which matches non-imaging FTS spectra so well?

e Visible spectrometer — Grating-based instruments are inexpensive and can provide adequate temporal
and spectral resolution in the visible spectrum. Although more expensive, FTS instruments are now
available which can collect high SNR spectra in the visible as well. Visible spectroscopy is important

for answering the following questions. Can metalized and non-metalized explosives be distinguished
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on the basis of metal oxide emissions in the visible regime?®v Hoes aluminum oxidation affect
the kinetics of water and carbon-dioxide production in aluminized explosives such as the ENEs? Is
there evidence for continuum emission in the visible? If so, how important is scattering in this spectral

region? Does the visible temperature match the MWIR temperature?

Faster non-imaging FTS — AFIT has acquired an ABB-Bomem MR-254 spectrometer. It is capable of
collecting 4 cnT? resolution spectra at 38 Hz, a nearly 4mprovement over the MR-154 used in the
BF2 test. With faster acquisition rates, answers to following questions will likely be found in the data.
What will the time-resolved fit parameters look like with improved temporal resolution, particularly
early on? Can a reasonable mathematical model be developed for the observed kinetiCsavfcH

COp?

Banded radiometers — Simple radiometers can be operated at temporal rates of kilohertz to megahertz
thereby providing a highly-resolved look at the initial kinetic behavior of detonation fireballs. Ex-
tremely high acquisition rates enable an investigation of the initial detonation process and also provide
a method of testing filter combinations which enaRléo be measured without spectral instrumenta-

tion. Examples of interesting questions to which radiometric data would help answer include: What are
the timescales of combustion? At what point does combustion end and why? Can appropriately cho-
sen bandpass filters be used to study the kinetig3 &hd CQ? With a highly-resolved temperature

profile, is it possible to infer the degree to which combustion processes are ongoing?

High-speed visible and infrared imagery — the remote sensing lab has recently acquired two Phantom
high-speed visible cameras which can frame at rates approachind®@ictures per second. The
Telops imaging FTS can be run in an image-only mode with frame rates ne@0d @ictures per
second. Imagery serves as an important tool to understanding the fluid dynamics of fireballs and the
hydrodynamic influences on remotely-sensed spectra. High-speed imagery in multiple bands will be
beneficial in answering the following questions. What can be learned about the fluid dynamics? What
is the “size” of the fireball as a function of observation wavelength? Is there a radial temperature

dependence? When does the shock wave separate from the luminous fireball? What balancing forces
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keep the fireball at the size that it is? How important is tughtimixing on the reactive chemistry?

What does the temperature field look like and why?

Reducing the data collected by these instruments is a formidable task, and the proper interpretation
of this wealth of information could serve as the subject of several dissertations. In the author’s opinion,
continuing this research effort is worthwhile. First, this dissertation provides a framework for understanding
of HE fireball emission thereby setting the stage for future scientific inquiry into this largely unstudied topic.
And more pragmatically, the positive results of this work strongly suggest that the future efforts outlined
above will pay dividends in the form of enhanced operational capabilities, impacting each of the homeland

security, department of defense, and intelligence communities.
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Appendix A. Atmospheric Correction Assuming a Smoothy Mgu§ource Spectrum

Many remote sensing problems pose the challenge of interpreting the spectral signature from an unknown
or uncharacterized source when its signal has been attenuated by an atmosphere whose state is imprecisely
known. In this appendix, a novel method is developed which decouples the atmospheric correction problem
from the spectral and temporal characterization of the detonation fireball. Prior to beginning, however, it
should be noted that the method has not been fully vetted by laboratory experiments nor has the algorithm
been completely characterized. It was developed in response to initially not having access to weather data that
was collected during the Radiant Brass lll field test. In the end, this technique proved unnecessary as access
to the atmospheric data was eventually provided. However, the ability to decouple the effects of atmospheric
absorption from source emission is a general problem in remote sensing, and the method developed here may
be desirable when accurate weather data is unavailable. An initial characterization of the detonation fireball
spectra suggested that they were dominated by continuum-like emission. This in turn indicated that it may
be possible to leverage this knowledge to de-tangle the effects of spectrally-sharp atmospheric absorption
features from the spectrally-smooth source. The method assumes that the source ikje(sity is pre-
dominantly broadband in nature and its variation witk much more gradual than the atmospheric absorption
features found in the observed spectrlygs(v, t). It does not, however, assume a particular functional form

for lgrc.

The observed intensity is the convolution of the attenuated source with the instrument response,

lobs(P, 1) = /0 T [176) tsre@, ) ILS@ — ") d’ (50)
j#

whereT; denotes the high-resolution transmittance function foritheatmospheric constituent, th'ﬁ 's
represent the high-resolution transmittance functions for the remaining atmospheric species, and ILS is the
instrument lineshape function. With the assumption thai(v, t) varies slowly withv, it can be pulled out

of the integral. We can then express the observed intensity as

lobs(V, 1) = Ti (V) Tji (V) Tt (V) Isre(V, 1) (51)
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whereT; is the low-resolution transmission function for constituefe.g.i < H20),
o A
Ti (D) =/ TE)ILS® — v dv’
0

Tji is the product of low-resolution transmission functions for the remaining constituentg (esgCO;, CHa, N20,

etc.),

Tjzi (9) =/O [TTiG)HILSG - ) di’
j#i

andTjs is a fix-up term given by
. T
Tt (V) = ~7)~
Ti() Tj (V)
with T representing the low-resolution transmittance function for the atmosphere (which includes attenuation

from all absorbing species), i.e.,
00 A
T®) :/ HTk(ﬁ’)ILS(G — ) d’
0

The fix-up term is needed because the convolution of a product of functions does not equal the product of
individually-convolved functions. TypicallyT; is near one except in spectral regions in which substantial
overlap of absorption lines exists between tfeand remaining species. Equatibfh is mathematically
equivalent tolops(v) = T (D) Isre(P). For a pair of frequencie@ii, v2), the ratio of Equatiorbl can be
expressed as

I_obs = Ti Tj;si Tf I_src (52)

where the bar denotes the ratio of terms, for examgde = lobs(V1, t)/lobs(P2, t).

An iterative method based on Equatié@ has been developed which allows for the estimation of
atmospheric absorber concentrations from the observed spectrum. The method is based selecting closely-
spaced frequency pairs associated with the peaks and valleys of sharp absorption features. For appropriately

selected frequency pairs, the source ratio tégrg is near unity and concentration of th® absorber can
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be adjusted to minimize the error in Equati®2 Furthermore, while the influence of; on Equation52

can be made small by the choice of frequency pairs, its eff@ethe estimated by defining,¢(v,t) =

Fllons(¥, 1)/ T(¥)}, whereF indicates the application of a smoothing filter. Starting from a guess of the
atmospheric constituent concentrations, Equadbis used in conjunction with a large number of appropriate
frequency pairs to estimate the concentration of the most prominent absogker, \Mith this improved
estimate of the water concentration, Equatithis then reformulated for Cg&) the next most important
absorber, and its concentration is estimated using appropriately chosen frequency pairs. In the same fashion,
CH4 and NO concentrations are also estimated. This process is then repeated until the relative change in
concentrations between iterations is less tharf10ypically only three iterations are needed. Details about

the algorithm are now presented.

For the atmospheric constituent of interest, a set of all possible frequency pairs satisfying the following

criteria was generated:

|i2 — 71| = nov, wheredi is half of the instrument resolution (usually 8thandn =1, 2, ...5

|1 —Ti | > 102 to ensure that frequency pairs correspond to absorption features and not flat regions

of the transmission spectrum

T(¥1) > 1072 and T (#2) > 10~2 to remove opaque regions of the spectra from this analysis

The SNR for bothgps(V1, t) andlops(v2, t) is greater than 10

The I g terms were based on an estimatel g&(7, t), which was computed by applying a robust
LOESS algorithm [20] tdops(P, 1)/ T (¥) in regions wherel (7) > 102 using a 500 cm® window. The
ratios for each term in Equaticb2 were computed using all detonation fireball speétiso that a single
concentration for HO, CO,, CH4, and NhO was determined for each data cube. As discussed below, the det-
onation fireballs behaved as Planckian radiators with a small amount of structured non-Planckian emission.
Frequency pairs picked from spectral regions containing this structured emission produced large outliers for

Equation52. Because the number of outliers was small, the concentrafieach absorber was determined

1After about 100 frames, few frequency pairs could be found satisfying the SNR constraint.
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using a robust fitting procedure. The difference betweendfiednd right-hand sides of Equatié2 were
weighted according to the bisquare method. The sum-squared-error of this weighted difference was mini-
mized by adjusting the concentration of iff&absorber. The transmittance functions were computed using
the Line-by-Line Radiative Transfer Model [21]. The transmittance function used to start the iterative process

was based on the Mid-latitude Winter standard atmosphere described in the Infrared Handbook [108].

Results from this atmospheric inversion method are provided in Tebfer the RB3 conventional
munitions detonations collected by the FTS at 16émresolution. As expected, water concentrations varied
throughout each day. The remaining trace gases were stable with standard deviations about 2-3% of the av-
erage value. The extracted concentrations for the trace-gases were comparable to accepted values reported
in the literature [56, 59, 61]. The measured water concentrations were estimated from the weather data col-
lected on site. The station pressure (P), temperature (T), and wet-bulb temperature (Tw) were used to estimate
the water-vapor mixing ratio. Spectrally-extracted water concentrations were always slightly higher than the

values computed from P, T, and Tw.

Good agreement between extracted trace-gas concentratip®s ¢0,, CHs, and NO) and their
historical averages was found. Spectral estimates @ Hgreed well with meteorological data collected
on-site. This reasonable agreement between expected and spectrally-derived concentrations suggests that
the presented method can be used to decouple the effects of atmospheric attenuation from fireball source
emissions. The only characteristic about the fireball source emissions used in this method was its observed
variation with frequency that was much “slower” than the atmospheric transmittance function. Thus, this
technique is expected to work with other spectrally smooth sources. In the event that the event distance is
unknown, it is reasonable to expect that this technique might be used to estimate target range since trace-gas

concentrations are stable and known.
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Table 14:  Concentrations of several species with prominé@hwave infrared absorption profiles computed

from the statically detonated fireball spectra. Mean and standard deviations were not computgl &sritd

varied throughout the day. For comparison, recorded atmospheric variables (station pressure P, temperature
T, and wet-bulb temperature Tw) were used to determine the water vapor content for comparison.

Time (GMT)  [H,O] ppm [CO,] ppm [CH,] ppm [N,O]ppb P (atm) T(C) Tw (C) [H,O] ppm [H,O]"err

26-Oct-99 07:01 2338 372 1.63 302 0873 6.0 0.0 2183 1860-2509
26-Oct-99 07:25 2479 368 1.61 288 0873 60 -0.5 1550  1230-1872
26-Oct-99 08:15 2352 378 1.59 296 0873 7.0 0.0 1395  1074-1722
26-Oct-99 08:37 2240 371 1.57 285 0873 40 2.0 1266 957-1580
26-Oct-99 09:00 2264 369 1.55 291 0873 40 2.0 1266 957-1580
26-0Oct-99 09:20 3089 364 1.58 297 0873 40 2.0 1266 957-1580
26-Oct-99 09:40 4243 355 1.56 289 0873 35 2.0 1657  1347-1972
26-Oct-99 10:18 3885 362 1.54 283 0873 35 -1.0 2886  2569-3206
30-Oct-99 05:00 4602 377 1.54 286 0876 85 25 3487  3170-3855
30-Oct-99 07:47 4660 384 1.50 293 0.877 40 0.0 3725  3432-4082
30-Oct-99 09:39 4559 365 1.56 305 0878 20 -1.0 4030  3745-4383
30-Oct-99 09:59 4593 370 1.57 298 0878 15 -1.5 3803  3520-4152
30-Oct-99 10:32 4649 368 1.50 280 0878 05 2.0 3972 3693-4320
mean (stdev) — 369 (8) 1.56(0.04) 292(8) — — — — —
historical avg  0-2.5% 365° 1.75" 314° — — — 0-2.5% —

“Mean October 1999 value from Mauna Loa observatory in Hawaii
" 1998 values as reported in the 2001 IPCC Climate Change Report

“Value estimated from station pressure (P), temperature (T), and wet-bulb temperature (Tw)
¢ Error calculated assuming a £0.25 C uncertainty in both T and Tw, each of which were reported in 0.5 C increments
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Appendix B. Radiative Transfer in a Spherical, Homogeneaeabll

Observed fireball spectra can be described surprisingly well as if the emission was from a homogeneous,
non-scattering cube of combustion gases and particulates in local thermodynamic equilibrium (LTE). Not
surprisingly, imagery indicates that real fireballs are more sphere-like in their geometrical appearance. It
was found that size estimates from the cubic model tended to underestimate the imagery results for small
HE charges. A possible explanation is that the tapering of optical depth near the fireball edges is reducing
those regions net contribution to the apparent intensity. To account for this possibility, a highly simplified yet
geometrically more accurate radiative transfer equation is developed. The temperature and matter fields are
still taken to be homogeneous & T(s) andx; # x;(S)), and scattering is still ignoreg{ = 0). However,

now the fireball will be treated as a sphere. The integral appearing in the radiative transfer equation (Equa-
tion 18) is trivial in @ homogeneous, non-scattering environmerpreéssing the result here for convenience,

the radiance along a line of sighthrough an optical medium can be written as
Li(s) = Lp(0) €7 + (1 —e77%) By(T) (53)

where optical depth has been expandedgies «;s.

The irradiancd; reaching the detector is determined by integratingver the differential solid angle
dQ = dA/R? of the spherical fireball. To do this, the differential arefid expressed in terms of the impact

parameter’, i.e. dA = 2z r’dr’ (see Figuré0), leading to
~ ~ 2n ' / / /
F‘j = Tatm(v) / Lf)' dQ ~ Tatm(])) @/0 Lf) (S(I’ )) r dl’ (54)

Herer is the fireball radius andR is the distance between the fireball and instrument. (It is assumed that

I <€ R, so the distance traversed by photons emitted from any part of the spherical surface is essentially just
R, allowing it to be pulled out of the integral.) The pathlengttinrough the sphere at the impact parameter

r’ can be expressed in terms of the fireball radius(e§ = 2+/r2 — r’2. Assuming the background radiance

is negligible L;(0) =~ 0) and performing the integral in Equatié#d results in the following expression for
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Figure 60: Slice through an ideal spherical fireball of radiughe impact parameter;, is the perpen-
dicular distance between the center of the fireball and the instantaneous line-of-sight being considered in the
radiative transfer equation. At an impact parametar gthe length of the instantaneous line-of-sight can be

expressed as= 2+/r2 —r’2,

irradiance

F = Tatm(v) f‘v (r) Bs(T) (55)
whereA = zr2 is the projected area of the sphere and the effective emissiity has the form

e—ZK,jI‘ e—ZK‘;I’ -1

+ 2
fe T 2(x5r)

() =1+ (56)

For convenience, the fireball can be treated as a point source leading to an expression for intensity given by

Imdl = R2 F;.
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Appendix C. Approximate Model for a Non-Homogeneous Fitebal

Modeling detonation fireballs as perfectly homogeneous works surprisingly well considering the likelihood
of heterogeneity in a real fireball. Systematic underestimation of the observed interisity 8500 cnT!
evidenced by large fit residuals was noted in Chapfer These errors may be the result of a distribution

of temperatures across the fireball. In ChapMeevidence is presented that fireball cooling is dominated by
radiative emission, and the initially large optical depths indicate that early on, this cooling process will be near
the surface of the fireball. (The center parts of the fireball don't participate in cooling because most photons
emitted internally will be re-absorbed.) It is also possible that chemistry at the fireball edges is enhanced
by its proximity to the surrounding cool, oxygen-rich environment, leading to a different composition of
gaseous and particulate matter in this region. Assuming a spherical fireball which cools at the surface and
ignoring turbulent effects, it is possible that the resultant temperature and matter fields would obtain a radial
dependence as indicated in Figérke Keeping with the cubic geometry which greatly simplifies theiative
transfer, a two-zone approximation to this radial dependence is also provided. Working through the radiative

transfer results in the following functional form for apparent intensity:

Imdi(¥) = Tatm(¥) (A1L1(V) + AzL2(V)) (57)

where the individual radiance; and Ly correspond to the two distinct pathways (parallel with the distant
collection optic) through the cube, weighted by the projected Aea |2 and Ay = 12 — 12, In terms of the

distinct temperatures; Ttransmittanced;, and emissivities; = 1 — T;, each radiance term is given by

L1 = T1(T1e2B(T2) + €1B(T1)) + £2B(T2) (58)

Ly = e3B(T2) (59)

This more complicated form enables the model to account for, in a highly approximate way, the effects

of a temperature gradient. The effects of HCI were ignored leading to twelve distinct fit parameters: two
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Figure 61: lllustration of a radial temperature distribatio a spherical fireball and its approximation by
two cubic regions. Solving the radiative transfer equation for a remote optic perpendicular to the right side of
this cube requires the consideration of two distinct photon pathways denoted Path 1 and Path 2.

fireball dimensions, two temperatures, two particulate absorption coefficients, and individdaCia, and

CO concentrations in each region. As demonstrated in FigRrétting this model to all wavelengths of the

same 50 kg TNT spectrum presented in FigRieof ChaptedV enables the longer wavelength region to be
better represented. For comparison, the residuals from this fit are compared with the residuals obtained with
the homogeneous model for fits to both all frequencies and those satisfyin@500 cnT. Considering
wavenumbers greater than 2500 ¢hthis model performs slightly better than the homogeneous model fitted

to ¥ > 2500 cnt! (SE of 243 versus 29).

The dimensionality is increased by ~15% in going frorms 2500 to all frequencies. With the addition
of four extra parameters, it is neither surprising that the fit quality is improved nor is it strong evidence that
a spatial distribution in the temperature and matter fields are responsible for the long-wavelength behavior.
Rather, the purpose of this exercise is to demonstrate that such a distrimaiope responsible for the
inability of the homogeneous model to perform well between8#4n. A real test of this idea can be made

when the BF2 data from the MCT detector is properly post-calibrated.

Now if there does exist a temperature and matter distribution by which Equafi@a reasonable
approximation, then this analysis does indicate that the neglect of longer wavelengths in CWagptssme-
what justified. This can be seen by considerpndn the bottom panel of Figuré2. First, the emission from

Path 2 only strongly contributes at the longer wavelengths. At wavenumbers greater than 25Gthchin
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Figure 62:  Top panel Observed fireball spectrur) @tt = 0.49 s from a 50 kg TNT detonation compared

with the best two-temperature, eleven-parameter model (solid black). The estimated at-source spectrum is
provided (solid grey) along with the Planckian intensity distribution for each temperature (dashed grey).
Middle panel Three sets of residuals from (a) this model, (b) the seven-parameter model fitied- to

2500 cnT!, and (c) the seven-parameter model fitted to all frequencies. The left ordinate is used:for

2500 cnt ! and the right ordinate correspondsite: 2500 cnt . Bottom panelEstimated emissivity profiles

for the distinct regions along Path 1.

151



the transparent regions of the atmospheses small. The lower-temperature Planckian term is also rapidly
decreasing withy in this region. Furthermore, since the emissive term is small at shorter wavelengths, the

effects of self-absorption—which are ignored in the homogeneous assumption—will also be small.

Since only one spectrum was fit with this model, it seems unwise to offer any interpretation of the
optimized fit parameters. For completeness, they are recorded in the following table. However, it is worth
noting that the CO concentration is negligible in the fireball core, and has a large presence in the cooler
surrounding shell. This does seem puzzling given that oxygen availability is expected to be enhanced where
the fireball meets the surrounding atmosphere. Perhaps it is an indicator that the CO parameter is serving as

a proxy for another emitter in the 2000-2200Thnegion.

|i/m Ti/K Kp,i/,um ng 0. /1017 molec §C02|/1017 molec fcol/lols molec

Inner cube| 10.0 | 1752 161 2.5 4.9 35

Outer cube| 28.9 813 14 0.1 45 86

152



Appendix D. Rules for Estimating Detonation By-Products

Given a particular high explosive, predicting the by-products of its detonation is a formidable task. The
detonation conditions (pressure, temperature, charge geometry, etc.) all influence the reaction pathways taken
in this extreme oxidative decomposition. During World War 11, Kistiakowsky and Wilson (K-W) developed
some rules-of-thumb to predict the detonation products of CHNO-explosives based on empirical observation
and thermodynamic considerations [2]. The following K-W rules apply to explosives with an oxygen Balance

of —40% or greater.

1. Carbon atoms are converted to carbon monoxide CO

2. If any oxygen remains, then hydrogen is oxidized to water{HH,0)

w

. If any oxygen remains, then carbon monoxide is oxidized to carbon dioxide{GTDy,)
4. All the nitrogen is converted to nitrogen gasjN

For explosives with a larger negative oxygen balance (i.e., are more oxygen deficient), the modified K-W

rules are to be used:

[

. Hydrogen atoms are converted to water-HH>O

2. If any oxygen remains, then carbon is oxidized to carbon monoxide (CO)

w

. If any oxygen remains, then carbon monoxide is oxidized to carbon dioxide{GTQDy,)
4. All the nitrogen is converted to nitrogen gasjN

Cooper [22] appends to the modified K-W rules that when the explosive contains nitrogen, a small amount of

NOy will be formed.

To illustrate with an example, the detonation decomposition of TNT with an oxygen balarc&i6b

would, according to the modified K-W rules proceed via

C7H5N30 —» 3.5CO+35C+25H0+ 15N, (60)

1oxygen balance is the weight percent of oxygen liberated upon complete decomposition of the high explosive. For example, TNT
(C7H5N30g) has a molecular weight of 227gol and an oxygen balance 674%.
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