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Abstract

Hyperspectral images typically have a large number of band components, over

200 bands for many sensors, and thus the image pixels can be processed as data

points in a multidimensional space. The processed outputs are generally represented

as classification maps, or target detection/material identification maps and/or mate-

rial abundance information maps. However, variable scene constituents and sensor

limitations constrain the accuracy of the processed outputs. Specifically, stochastic

hyperspectral processing techniques are limited by inaccurate models of the data. Pre-

vious work has shown that Mahalanobis distance distributions of the data govern the

performance of stochastic models of the image pixels. Robust models of the tails of

these distributions enable accurate threshold selections for detection and classification

algorithms.

This dissertation develops new estimation methods that fit Johnson distribu-

tions and generalized Pareto distributions to hyperspectral Mahalanobis distances.

The Johnson distribution fit is optimized using a new method which monitors the

second derivative behavior of exceedance probability to mitigate potential outlier ef-

fects. This univariate distribution is then used to derive an elliptically contoured mul-

tivariate density model for the pixel data. The generalized Pareto distribution models

are optimized using a new two-pass method that estimates the tail-index parameter.

This method minimizes the mean squared fitting error by correcting parameter values

using data distance information from an initial pass. A unique method for estimating

the posterior density of the tail-index parameter for generalized Pareto models is also

developed. Both the Johnson and Pareto distribution models are shown to reduce fit-

ting error and to increase computational efficiency compared to the standard model

of a mixture of F -distributions.
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4.16. Upper left: Posterior k density for GP with actual k = 0.3.
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6.4. Probability of exceedance plot showing the performance of each

method used to fit the MD distribution from the SPFC ROI. No-

tice how the F -mixture follows all the most extreme data points.

The MSE and weighted MSE are given in tabulated form in the

next section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
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tail-index parameter. Result are displayed in Figure 6.7. . . . . 159
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F.1. The ROI of an assortment of various coniferous tree types. This

ROI contains 23,411 pixels. It also contains many non-vegetative

pixels, such as the pixels from the road at the top part of the

ROI. The variability in this cluster of pixels is shown in Fig-

ure F.2. The MD data from this cluster are fit with a mixture

of F -distributions, Johnson SL distribution, and GPD with two

optimized estimators for the tail-index parameter. The result is

displayed in Figure F.3. . . . . . . . . . . . . . . . . . . . . . . 225

F.2. The spectral variability for the ROI in Figure F.1. The y-axis

values are units of spectral reflectance. The middle spectrum

is the mean, the next two above and below it are the standard

deviations, and the top and bottom spectra are the minimum

and maximum in magnitude. Notice the increased variability in

this ROI. This is due to the larger number of pixels encompassing

more materials than just coniferous trees in the ROI. . . . . . . 226

F.3. Probability of exceedance plot showing the performance of each

method used to fit the MD distribution from the MCFC ROI.

Notice the larger MD values due to greater variability in the ROI. 226

F.4. The ROI of an assortment of various deciduous tree types. This

ROI contains 11,557 pixels. The variability in this cluster of pix-

els is shown in Figure F.5. The MD data from this cluster are fit

with a mixture of F -distributions, Johnson SL distribution, and

GPD with two optimized estimators for the tail-index parameter.

The result is displayed in Figure F.6. . . . . . . . . . . . . . . . 227

F.5. The spectral variability for the ROI in Figure F.4. The y-axis

values are units of spectral reflectance. The middle spectrum

is the mean, the next two above and below it are the standard

deviations, and the top and bottom spectra are the minimum

and maximum in magnitude. . . . . . . . . . . . . . . . . . . . 227

F.6. Probability of exceedance plot showing the performance of each

method used to fit the MD distribution from the DFC ROI. No-

tice how the F -mixture is affected by the last two data points
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GPD methods and SL will ignore those points. . . . . . . . . . 228
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F.7. The ROI of an assortment of various coniferous tree types. This

ROI contains 9,212 pixels. The variability in this cluster of pixels

is shown in Figure F.8. The MD data from this cluster are fit

with a mixture of F -distributions, Johnson SL distribution, and

GPD with two optimized estimators for the tail-index parameter.

The result is displayed in Figure F.9. . . . . . . . . . . . . . . . 229

F.8. The spectral variability for the ROI in Figure F.7. The y-axis

values are units of spectral reflectance. The middle spectrum

is the mean, the next two above and below it are the standard

deviations, and the top and bottom spectra are the minimum

and maximum in magnitude. Notice the decrease in variability

compared to DFC and MCFC. For this ROI, the variability is

purposely decreased by selecting a more homogenous coniferous

forest area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

F.9. Probability of exceedance plot showing the performance of each

method used to fit the MD distribution from the CFC ROI. The

MD values are smaller due to less variability in the ROI. Here,
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contains a very homogeneous pixel set. However, checking the

weighted MSE in Table 6.5, notice the disparity in fitting the end

of the tail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

F.10. The ROI of an assortment of Loblolly pine tree types. This ROI

contains 14,257 pixels. The variability in this cluster of pixels is

shown in Figure F.11. The MD data from this cluster are fit with

a mixture of F -distributions, Johnson SL distribution, and GPD

with two optimized estimators for the tail-index parameter. The

result is displayed in Figure F.12. . . . . . . . . . . . . . . . . . 232

F.11. The spectral variability for the ROI in Figure F.10. The y-axis

values are units of spectral reflectance. The middle spectrum

is the mean, the next two above and below it are the standard
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F.12. Probability of exceedance plot showing the performance of each

method used to fit the MD distribution from the ALPPC ROI.

Again, the F -mixture tends to follow the largest extremes of the

tail. In this case notice the ”bump” in the region MD = 400
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Robust Estimation of Mahalanobis Distances in

Hyperspectral Images

I. Introduction

Remote sensing of earth objects from airborne platforms and space is of par-

ticular interest to the U.S. Air Force and the Department of Defense (DoD).

Specifically, Hyperspectral imaging (HSI) is of great interest to the DoD due to its

inherent ability to discriminate materials across a wide range of imaging wavelengths

and its accessability to sub-pixel resolution processing. This research investigates the

statistical characterization of HSI pixel data in order to develop the accurate stochas-

tic models necessary for robust target/anomaly detection algorithms and for other

statistical HSI image processing applications.

1.1 Hyperspectral Remote Sensing

Fundamentally, HSI is imaging spectroscopy from a distance [53]. Reflected solar

irradiance data is gathered at discrete wavelengths in order to construct a spectrum for

each pixel. Each material on the ground exhibits a unique spectrum based on how the

material reflects and absorbs sunlight (see Figure 1.1). The resulting pixel spectrum

demonstrates characteristics of the combined spectra of each inclusive material.

HSI offers high spectral resolution over a broad range of wavelengths, commonly

from 0.4 to 2.5 microns. Typically, the spectral resolution samples every 9 to 12

nanometers, depending on the sensor, giving HSI sensors an excellent capability to

not only identify different material classes but also to distinguish between materials

in each class. This capability is primarily due to the fact that individual materials

which occur within a class express variations in composition as slight shifts in peaks

and troughs within a spectral curve continuum. As shown in Figure 1.1, a visual

example of the fundamental HSI concept, different materials have distinct reflectance

spectra.
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Figure 1.1: A diagram of the basic concepts in hyperspectral imaging. An image
is sampled over a few hundred discrete wavelengths so that each pixel represents a
radiance spectrum of its constituent material [24].

HSI data is collected in discrete data sets called hyper-cubes. A series of spatially

continuous hyper-cubes constitutes a single run. Normally, a few runs are made over a

desired scene for multiple looks by the sensor. A typical HSI spectrometer collects on

the order of ∼ 512 lines by ∼ 500 samples by ∼ 200 wavelength bands per hyper-cube.

Figure 1.2 depicts the geometry of a single hyper-cube.

Compared to HSI, multispectral sensing only samples at a few wavelengths,

generally from 5 to 10 bands. The sampling resolution is much lower for multispectral

imaging, on the order of 100 to 200 nanometers, and hence multispectral sensing is

not conducive to material discrimination. A multispectral sensor is not a true imaging

spectrometer, as it does not offer a continuous spectral representation of the target

being imaged, only a mapping of pixel data at discrete bands, where the high number

and higher resolution of HSI sampling bands results in a near-continuous spectrum.
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Thus multispectral data sets do not offer the processing opportunities of HSI sensors.

The work considered here deals exclusively with HSI data exploitation.

Figure 1.2: Geometry of a typical hyperspectral image cube.

1.2 Hyperspectral Imaging Systems

Hyperspectral imagery from the AVIRIS (Airborne Visible/Infrared Imaging

Spectrometer) sensor is used in this work. AVIRIS is a state-of-the-art airborne HSI

sensor developed by NASA Jet Propulsion Laboratory with a spectral coverage of 0.4

to 2.5 μm. The instrument samples over this wavelength range using 224 bands, each

at a spectral resolution of 10 nm per band. A typical AVIRIS hyper-cube contains 512

x 512 pixels, approximately covering a 10 x 10 km swath, at a ground instantaneous

spatial resolution of 20 x 20 m for high altitude imaging [24]. At lower altitudes the

spatial resolution can be 1 x 1 m for a swath size of roughly 0.5 x 0.5 km.

The imagery used here is from a 1999 AVIRIS scene over Fort AP Hill, Virginia,

which is an area that has been studied extensively using different HSI sensors. The site

is a target-rich layout which is heavily “ground truthed” under various environmental

conditions and sensor configurations, making it an attractive data set for HSI research.
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Future work proposed here will use more recent AVIRIS data collects on this site as

well as data sets by similar sensors over the same site.

1.3 Hyperspectral Image Processing

HSI data allows for great versatility in processing and exploitation. Since the

pixels each have a large number of band components (over 200 bands for AVIRIS),

information can be modeled and processed as data points in a multidimensional vector

space. Signal processing techniques that combine matrix manipulation and stochastic

modeling are the most common approaches for exploiting HSI data. Common HSI

applications include (but are not limited to) target/anomaly detection and scene

classification for military purposes, precision agriculture, global change detection,

geology/mining, and space exploration.

There are many algorithms that achieve useful HSI data exploitation [6,30,41,53,

73]. These routines involve generally either geometric data processing or stochastic

data processing methods. The research described here focuses on models that are

involved in methods for stochastic processing.

1.4 Problem Statement

Stochastic data exploitation algorithms require accurate models of the underly-

ing data statistics. Recent research shows that heavy-tailed distributions, i.e., prob-

ability distributions for which the corresponding probability density function decays

slowly (typically following a polynomial instead of an exponential decay law), model

HSI scene information well. Most importantly, it has been shown that the perfor-

mance of detection algorithms is directly tied to accurately modeling the distribution

of Mahalanobis distances (MD) of data comprising the background scene information

in HSI [49].

MDs are contours of equal distance from the pixel points in a high-dimensional

image cube with non-unit covariance to the centroid of the points. In contrast, Eu-

4



clidean distance is distance to the centroid of a cube with unit covariance. Euclidean

distance becomes MD after the axes are linearly transformed by a non-unit covari-

ance matrix, as shown in Figure 1.3. The MDs of HSI background data are of interest

because, as explained in Chapter II, MD values above a threshold are important for

modeling detection performance.

Figure 1.3: The MD as a measure determined by the covariance of the data points.

Proper modeling of the MD distribution allows for accurate detector threshold

selection at a given false alarm rate, as shown in Figure 1.4. However, scene variability

introduces substantial error in estimating the parameters that describe heavy-tailed

MD distributions. Thus robust methods for estimating the parameters which describe

heavy-tailed distribution models in HSI are needed.

A hypothesis of this research is that heavy-tailed distribution models of HSI

data, particularly MD distributions from clusters of data, can be improved and op-

timally constructed with parameters robustly estimated using information from the

data. Each of the objectives associated with this hypothesis are listed below and de-

tailed in the next chapter. The heavy-tailed distribution models used in this research

are Johnson distributions and generalized Pareto distributions (GPDs).

Objective 1: Determine a robust Johnson distribution model for HSI MD data: De-

termine a Johnson distribution model for heavy-tailed HSI MD distributions that is

robust to possible outlier and/or anomaly perturbations.
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Figure 1.4: The probability density function that properly models background (H0)
as opposed to target (H1) HSI data optimizes a detection routine by allowing accurate
threshold (η) selection for a specified false alarm probability (PFA = Q). Equating
P (H1|H0) to P (MD > η|H0) is described in Chapter II. Here the MD data is a
dashed line and three models for the data are given by the dark solid line, light
solid line, and dotted line; these models are explained in Chapter III. Probability
of exceedance at a given MD is 1 − CDF , where CDF represents the Cumulative
Distribution Function of the MDs. For this example, the probability of exceeding MD
= 340 is 0.001. Therefore, for a desired PFA = 0.001, a cutoff is set for identifying
pixels with MDs above 340.

Objective 2: Determine a multivariate elliptically contoured density model from

the univariate Johnson distribution: Once the univariate Johnson distribution for

describing HSI MD distributions is found, apply multivariate symmetric distribution

theory to derive the multivariate elliptically contoured HSI data density.

Objective 3: Determine a viable parameter estimation method for obtaining tail-

index values for GPD models of MD: Analyze and assess a suite of tail-index estima-
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tion methods for GPDs that model MD distributions. Perform a sensitivity analysis

of each model with respect to changing MD data size. Identify the best method for

estimating tail-index parameters for GPDs applied to heavy-tailed HSI MD data.

Objective 4: Develop an optimization method for obtaining robust tail-index esti-

mates for GPD models: Apply a feedback mechanism to the best tail-index parameter

estimation method identified in Objective 3. Based on the feedback, optimize, with

respect to the affect of possible outliers/anomalies, the estimator for a resulting GPD

fit to MD distribution data to obtain decreased mean-squared error.

Objective 5: Assess the utility of Johnson and GPD models for stochastic HSI

processing: Assess the relative utility of using Johnson distribution models for heavy-

tailed HSI MD behavior and optimized Pareto models.

1.5 Dissertation Outline

The development and rationale for the objectives is covered in Chapter II. The

methodology roadmap and overview for the current research is also discussed in Chap-

ter II. Chapters III-VI consider the specifics of each objective. Finally, Chapter VII

reviews the objectives, discusses recommendations, and highlights the contributions

of this research.

7



II. Background on HSI Stochastic Processing Methods

This chapter provides the background on hyperspectral data modeling and methods

for hyperspectral data exploitation. It introduces the framework for stochastic HSI

processing and explains the significance of fitting MD distributions accurately. It then

describes the most recent model for MD behavior.

2.1 Hyperspectral Data Model

Hyperspectral imaging sensors passively measure the radiance of materials within

the field of view of the optics, with each pixel area sampling at a large number of

contiguous bands. This operation is summarized in Figure 2.1, which shows different

scene constituents observed by an HSI sensor, and Figure 2.2, which relates the scene

sampling process to an output of a spectrum of contiguous bands.

Figure 2.1: Hyperspectral imaging architecture and pixel spectrum example (from
[55] and modified to show a resulting pixel spectrum).

The contiguous bands may be viewed as dimensions, and the resulting pixel

spectra may be viewed as a vector in the multidimensional space. The architecture

of the hyperspectral image is then interpreted using a linear mixing model

8



Figure 2.2: Relationship of pixel components to reflectance profile (from [63]).

x =
N∑

k=1

akek + n, (2.1)

where x is the pixel spectrum (d-dimensional data vector), e is the kth endmember (the

N endmembers are basis vectors that linearly combine to define any data point in the

d-dimensional space), ak is the mixing coefficient (or abundance value) corresponding

to the kth endmember, and n is a d-dimensional noise vector due to atmospheric

scattering and absorption, secondary illumination, shadowing, pixel resolution, sensor

configuration, and scene variability. The matrix-vector form,

x = Ea + n, (2.2)

may be solved for a using matrix inversion techniques.

2.1.1 Geometric Model. Paralleling the linear mixing model is a geometric

interpretation of the above equations. Boardman et al. explain the d-dimensional

space of the HSI data with a convex hull analogy [6]. In this model the pixel data are

data points residing within a d-dimensional convex hull inscribing the data space. The
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endmembers are the vertex data points defining the shape of the multidimensional

simplex (hence the term “endmembers” - they literally reside at the “ends” of the

space inscribed by the convex hull). This model is illustrated in Figure 2.3.

Figure 2.3: A simple example of a convex hull with endmembers. A simplified data
space resulting from an HSI system using only two bands is shown. The convex hull
is depicted by the dashed line and the endmembers are the data points at the vertices
of the hull.

This geometric approach facilitates orthogonal subspace projection and oblique

subspace projection techniques. In both cases the HSI data is projected onto a sub-

space of reduced dimensionality in which the pixels are identified by the position of

their vectors in the projection space [27]. Subspace projection algorithms are typ-

ically used for target/anomaly detection because anomalously shaped pixel spectra

“stand out” when projected against a subspace where the majority other pixels cluster

around a specific locus. An example of subspace projection in the geometric context

is shown in Figure 2.4.

Geometric models perform well under near full-pixel mixing scenarios, i.e., for

image pixels which contain a majority of one type of material spectra. The resolution

of the sensor is thus sufficient to enable integration of the spectra from a scene that

results in the majority of pixels in the image containing near “pure” spectra, where
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Figure 2.4: An example of subspace projection in terms of geometric manipulation.
In (a) an original data set is represented in three dimensions (similar to viewing HSI
data using only three bands). In (b) a data point is added to the original data set.
Notice that it is difficult to discern whether the added point belongs to the same family
as the original data set. In (c) the original data are projected onto a two dimensional
subspace and a convex hull is drawn to delineate the boundaries of the data set. In (d)
it is clear that the additional point projection is outside of the boundaries specified
for the original data set and is therefore anomalous to the original data set in the
projection space.

a “pure” pixel spectrum is an all grass spectrum, an all asphalt spectrum, etc. With

high spatial resolution sensors, the majority of image pixels contain large abundances

of only a few materials (if not containing 100 percent of the spectrum of a single

material), thus being near-pure. Under such scenarios, the endmembers extracted

from a scene are independent (or nearly independent), and the matrix inversion and

subspace projection techniques are effective.
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Geometric models become ineffective once a high degree of sub-pixel mixing

occurs. In such scenarios the sensor resolution is low and the integration of many

image spectra are realized in one pixel. The sub-pixel mixing of spectra is random, and

greater variability within the scene creates greater pixel-to-pixel mixing variability.

Also, since the majority of the pixels are mixtures of spectra from many materials

taken from the scene, the endmembers are highly correlated (as are the pixels in the

scene) and, therefore, not independent. Matrix inversion and projection techniques are

ineffective under these conditions, and geometric models, and the techniques which

manipulate the geometry of the scene cannot characterize the wide range of pixel

variability.

2.1.2 Stochastic Model. Statistical variability in a scene is better described

using a probabilistic model. The range of d-dimensional pixel values from a d-

dimensional HSI image can be viewed as a scatter plot of points in a d-dimensional

space. The points in this space are the endpoints of vectors defined by the d-

dimensional component values at every HSI wavelength band.

Given a HSI image with only two wavelength bands (the “wavelength” term

will henceforth be eliminated and “bands” will refer to “wavelength bands”), the

endpoints of the pixel vectors may be modeled as a two-dimensional scatter plot.

Figure 2.5 (b) shows the two-dimensional data from 40,000 pixels taken from the HSI

image in Figure 2.5 (a).

Areas where pixels have similar data characteristics are seen to cluster into

groups in the scatter plots. Figure 2.6 (a) shows the image classified using simple

K-means clustering, and Figure 2.6 (b) shows the actual data clustered in the two-

dimensional band space. In K-means clustering the points are assigned to candidate

cluster means, the means are re-calculated, and iteration continues until the cluster

means do not change [19].

In the statistical model, clusters of similar data are assumed to be homoge-

neous, d-dimensional, multivariate distributions. Also, a specific material originates
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(a) (b)

Figure 2.5: (a) AVIRIS HSI image containing 40,000 pixels of spectral data from
the Harrisburg, PA airport [24]. (b) Scatter plot of the data values from (a) for two
bands. The pixel values appear as points at the two-dimensional band coordinates.

(a) (b)

Figure 2.6: (a) Classification of image in Figure 2.5 (a) using K-means clustering.
(b) Scatter plot demonstrating clustering of similar data. Each color represents a
unique class.
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from a unimodal d-dimensional multivariate distribution, which describes all possible

variations of the material. A HSI image is a mixture of these material distributions,

resulting in a multi-modal d-dimensional multivariate distribution. Each pixel in the

image is a random vector from the multi-modal parent distribution associated with

the image. A single pixel is assumed to originate from a mixture probability density

function

fd (x) =
N∑

k=1

akfd (x | Θk) , (2.3)

where fd (x | Θk) is the d-dimensional, uni-modal component distribution, with pa-

rameters Θk from homogeneous material class k and fd (x) is a mixture of the k classes

with probability ak [54].

Usually the finite mixture model of Equation (2.3) is constructed using multi-

variate normal distributions for the k component distributions. In this case fd (x | Θk)

is

fd (x | Θk) =
(
(2π)d/2 |Γk|1/2

)−1

exp

(
−1

2
(x − µk)T Γk

−1 (x − µk)

)
, (2.4)

with the parameters Θk consisting of mean vector µ ≡ E(x) and covariance matrix Γ

≡ E((x − µ)T (x − µ)). The quadratic expression in the exponent of Equation (2.4)

is the squared Mahalanobis distance [19]

Δ2 = (x − µk)T Γk
−1 (x − µk) . (2.5)

For a multivariate (d-dimensional) distribution, contours of constant density are hy-

perellipsoids of constant Mahalanobis distance. Figure 2.7 shows a three-dimensional

distribution ellipsoid with its contours of constant probability projected onto one of

the planes. These contours represent a projection of Mahalanobis distances.
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Figure 2.7: A set of data points in three dimensions. The data set is represented
by a data cloud modeled by a three-dimensional Gaussian density. The Mahalanobis
distance contours are projected onto the two-dimensional plane below it. These con-
centric ellipses represent contours of equal probability for the Gaussian hyperellipsoid.

This statistical distance measure is used in the majority of statistical detection algo-

rithms.

2.2 Statistical Hyperspectral Signal Processing

Stochastic hyperspectral detection algorithms (whether detecting targets or

identifying anomalies) are divided into two categories: full-pixel detectors and sub-

pixel detectors. In the following, “target” describes any signal of interest not consid-

ered part of the natural background of the scene (whether from a man-made source or

an anomalous source) . Full-pixel targets do not contain contamination resulting from

the interaction of target and background spectra. Here “background” spectra refers

to all non-target pixel spectra (usually from naturally occurring scene constituents).

15



2.2.1 Full-pixel Signal Processing. The statistical detection problem is for-

mulated as a classical binary hypothesis test: H0 ⇒ Target not present (background

only), H1 ⇒ Target present (target and background). In HSI the two hypotheses

involve knowledge of unknown parameters from the data set (covariance matrix and

mean vector), which requires that the parameters be estimated and that the target

detector be adaptive. However, the size of the background data set compared to

the target data set creates conditions which make the estimation of these parameters

challenging [51].

All remote sensing HSI target detection scenarios of interest to the DoD entail an

architecture whereby the background data set is the majority of the image, while the

target data set consists of only a few data points. The sparsely populated target set

in the image offers little information for estimating its stochastic model parameters.

Conversely, the large background data set, along with the target pixels in the image,

necessitates the incorporation of the entire image pixel set for modeling background

statistics. These constraints on the information in HSI lead to certain cases of target

detection models, each of which is designed in a generalized likelihood ratio test

(GLRT) framework [49].

The simplest approach models the target and background data sets as multi-

variate normal distributions. The detection hypothesis under this model is

H0 : x ∼ N (µ0,Γ0) Target not present (background only)

H1 : x ∼ N (µ1,Γ1) Target present (target and background),

where the zero subscript pertains to the background model and the unit subscript

refers to the target present model. Assigning conditional probability density functions

to x under each hypothesis, the likelihood ratio is

16



Λ(x) =
p (x | H1)

p (x | H0)
. (2.6)

Using the GLRT methodology, a threshold η is set such that if Λ(x) exceeds η,

H0 is rejected. A Neyman-Pearson detector is constructed using the known stochastic

information under each hypothesis. When the covariances are not equal, Γ0 �= Γ1,

the likelihood ratio is

Λ(x) =
|Γ1|1/2 exp

(
−1

2
(x − µ1)

T Γ1
−1 (x − µ1)

)
|Γ0|1/2 exp

(
−1

2
(x − µ0)

T Γ0
−1 (x − µ0)

) , (2.7)

and the decision statistic in terms of the log-likelihood ratio �(x) is

y = 2�(x) ln

( |Γ1|1/2

|Γ0|1/2

)
, (2.8)

= (x − µ0)
T Γ0

−1 (x − µ0) − (x − µ1)
T Γ1

−1 (x − µ1) . (2.9)

The statistic in Equation (2.8) compares the difference in Mahalanobis distance

of the test pixel spectra from the background mean and target mean. The value for y

that maximizes the probability of detection subject to a specified probability of false

alarm is selected for a Neyman-Pearson test. This test is depicted (in two dimensions)

in Figure 2.8

The test in Figure 2.8 may be compared to the subspace projection example

shown in Figure 2.4. The geometric model defines a target or anomaly as the signal

which exceeds some boundary defined by the geometric configuration of the data set

(the convex hull is given as one type of boundary). A direct analogy to the stochastic

model can be made, where the boundary is now a Mahalanobis distance cutoff (or

exceeding some boundary MD contour). This analogy is shown in Figure 2.9.
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Figure 2.8: Target detector architecture for unequal covariances (the simplest case
using the Generalized Likelihood Ratio Test for Neyman-Pearson criteria). The arrows
to the centers of the data clouds are possible vector representations of points in the
data cluster.

If the target and background classes have the same covariance matrix, then from

Equation (2.8)

y = ϑΓ−1 (µ1 − µ0)x. (2.10)

The result is a Fisher Linear Discriminant [19], where ϑ is a normalizing constant. In

most signal processing applications, Equation (2.10) is

y = ΦT
MFx, (2.11)

where the MF subscript indicates a matched filter operator [49]. The matched filter

is illustrated in Figure 2.10.

The matched filter projects the test pixel spectra in the direction of ΦT
MF . For

optimal separability between the target and background clusters, ΦT
MF must be in the

direction of maximum distance between µ0 and µ1. The common signal processing
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Figure 2.9: An analogy between the stochastic model and geometric model for HSI
processing and the relationship between the Mahalanobis distance decision boundary
in the statistical space as depicted in Figure 2.8 and the convex hull boundary in the
geometric space shown in Figure 2.4. In (a) the data set is shown with a hyperellip-
soid (representing a multidimentional Gaussian density model) and the convex hull
projection. In (b) the hull is replaced with MD contours. In (c) the MD contours
and convex hull are overlayed to demonstrate similarity and to compare distance to a
potential anomalous data point. In (d) a representation of the anomalous data point
belonging to another density is represented by different MD contours. The decision
boundary shown in Figure 2.8 is located between the two MD contour groups.

practice of “whitening” performed on the data [38] achieves this effect, where the

whitening parameter Γ1/2 is applied to x ((z) = Γ1/2x), the test pixel spectra, giving

the detector architecture shown in Figure 2.11.
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Figure 2.10: Target detector architecture for equal covariances, which is also the
case that leads to matched filter detection.

Figure 2.11: Target detector architecture for equal covariances and its transfor-
mation into whitened space, illustrating the optimal matched filter target detector
concept.

As can be seen in Figure 2.11, the optimal matched filter detector measures the

MD between the target and background data sets projected onto the dotted line per-

pendicular to the direction of maximum separation between the two sets. Under the
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assumption of normality for the data, this is the optimal detector architecture. Such a

detector exhibits constant false alarm rate (CFAR) performance, where CFAR means

that the detector probability of false alarm is independent of the noise covariance

matrix [40,49].

However, the matched filter presented here requires sufficient a priori informa-

tion about both data sets for a complete stochastic model. In many common HSI

scenarios, not enough information is available to model the statistics of the target

data set, and the only information available is the background mean and covariance.

Using the GLRT approach and assuming normally distributed data for the simplest

case, the target and background covariances are equal and the adaptive anomaly

detector is constructed [78].

For the anomaly detector, the detection statistic, since only µ0 and Γ0 are

known, becomes the MD of the test pixel spectra from the background mean. The

threshold, defined by the desired probability of false alarm, is a radial distance from

the mean of the background data set in the image data space. An anomaly (possible

target) is detected once the threshold is exceeded by the MD of the test pixel spectra

from the background mean. The anomaly detector is shown in Figure 2.12.

For the majority of HSI, neither the background statistics nor the target statis-

tics are known. In the target detection image scenario the target data sparsely pop-

ulate the image, while the background data form the majority of the image data set.

In this case the background statistics are estimated from the entire image data set. If

only a certain region of interest (ROI) in the image is under consideration, the mean

vector and covariance matrix of the background are estimated from the ROI, provided

that the region is large enough to yield an invertible estimated covariance matrix and

small enough to ensure homogeneity of the background. The target detector for this

architecture is called the adaptive anomaly detector [40].

However, estimating background statistics in this manner results in the loss

of Neyman-Pearson optimality in the detector, and selecting the proper ROI for es-
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Figure 2.12: Anomaly detector for normally distributed data with equal covariances
(transformed into whitened space). The line between the target data set and the
background data set represents the Mahalanobis distance between the two sets. Any
value exceeding the radial threshold around the background data set is classified as a
target.

timating statistics becomes important. Optimality is approached as the quality of

the estimated covariance matrix increases [49]. Also, if the covariance matrix is es-

timated using a data population size greater than three times the dimensionality of

the HSI scene, and if normally distributed data is assumed, then the loss in detection

performance is roughly 3 dB [40].

A clear conclusion, however, is that these detectors rely on a statistic governed

by MD. Properly modeling the MD distribution allows for a proper model of the

distribution of the detection statistic and hence accurate detector parameters (false

alarm rates and detection probabilities). Note that the detectors developed in this

sub-section depend on full-pixel signal fill. The next sub-section investigates the

behavior of detectors under sub-pixel signal mixing.
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2.2.2 Sub-pixel Signal Processing. Examples of target detectors in the pre-

vious section are greatly simplified due to the full-pixel target fill assumption. In

practice, most hyperspectral imagery is taken from a high altitude and with a spatial

resolution that results in target material spectra mixing with surrounding spectra in

each pixel. This scenario, with the addition of noise from various sources such as

the atmosphere, the sensor, and the scene composition, create multiple “sub-pixel”

mixing components (individual spectra) for each pixel, representing the integration

of different materials. Under these conditions, sub-pixel target detection becomes

difficult.

In the stochastic model (sometimes referred to as the Bayesian model in the

presence of noise [39]) for sub-pixel detection, the hypothesis test is altered to include

these effects. The test is

H0 : x = n Target not present (background only)

H1 : x = Ea + n Target present (target and background),

where E is the matrix of endmembers or target data (in columns) representing the

variability in the image data, n is the additive noise modeled as a normal distribution

with zero mean vector and covariance matrix Γ [29, 40, 71], and a is the abundance

vector (the vector of values corresponding to the amount of each endmember (columns

in matrix E) present in the pixel vector x). This unstructured background model [49]

is so-called due to background characterization as a single entity with environmental

noise (atmospheric, sensor, illumination) not separated from the background mixing

process. Using this model as shown in Figure 2.13, x ∼ N (0,Γ) under H0 and

x ∼ N (Ea,Γ) under H1.

In the unstructured background model it is assumed that the test pixels and

endmembers are independent. Also, the spectra intermingle on the sub-pixel level
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Figure 2.13: Sub-pixel mixture model. Pixels inside the dotted circle have varying
proportions of background and endmember spectra (target spectra).

in an additive manner (i.e., endmembers and background pixel spectra are added in

proportion and not replaced). Using the GLRT approach with this model and the

maximum likelihood estimate of the covariance matrix Γ̂, the RX detector is derived

with the statistic [65]

y = xT

(
N

N + 1
Γ̂ +

1

N + 1
xxT

)−1

x, (2.12)

where the RX detector is a CFAR adaptive anomaly detector [1] and is a common

detection algorithm for HSI. As N becomes large, the RX detection statistic converges

to

y = xT Γ̂x, (2.13)

which is the Mahalanobis distance from the zero-mean background data set.
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The unstructured background model is still an oversimplification. The structure

of spectral mixing within pixels is such that (since different pixels contain different

abundances for each material present in the scene) the background term for each

hypothesis is different. Under this modification, the hypotheses are

H0 : x = n Target not present (background only)

H1 : x = Ea + σn Target present (target and modified background),

where σ represents the differing background component present in the mixed pixel.

This modification implies that the covariance matrix for the target and background

are different. Using this model, x ∼ N (0,Γ) under H0 and x ∼ N (Ea, σ2Γ) under

H1 [49].

Kraut, Scharf and McWhorter [43] address the above problem by constructing

the CFAR Adaptive Subspace Detector for Coherent Detection. In the whitened space

it is

y =
zT Ẽ

(
Ẽ

T
Ẽ
)−1

Ẽ
T
z

zTz
, (2.14)

where Ẽ = Γ̂
−1/2

E. This detector is also called the Adaptive Cosine Estimator

because the detection statistic compares a threshold to the cosine of the angle the

test pixel makes with the target data in noise with an unknown covariance structure.

It is one in a family of adaptive Matched Subspace Detectors they discuss [43], and,

with the matched filter and anomaly detector, comprise three of the four adaptive

detectors considered in their paper. The fourth adaptive detector deals with subspace

detection in structured backgrounds.

Modifying the unstructured background model to fully define the effects of en-

vironmental noise and background mixing noise yields hypotheses
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H0 : x = Ba0,0 + n target absent,

H1 : x = Ea1,1 + Ba1,0 + n target and structured backgroun,

where B is a d×Q matrix of background materials (the columns of B are the means

of clusters of similar HSI data (background)), and E is a d × P matrix of target

material spectra (P is the number of columns and, therefore, the variability of the

target set). If the target spectra are sparsely located within the image and resolved

at sub-pixel levels, then the image data are a mixture of materials from the Z = [EB]

(which is a concatenated matrix) space. The parameter a0,0 is the mixing coefficient

(abundance value) of the background material under the null hypothesis, a1,0 is the

mixing coefficient of the background material under the alternative hypothesis, and

a1,1 is the mixing coefficient of the target material under the alternative hypothesis.

This architecture is depicted in Figure 2.14.

The target detector for this set-up is based on the assumption that the columns

of B and Z (the means of the clusters for their materials) originate from a multivariate

Gaussian distribution

p(x|a,Γ) = (2π)−
d
2 (|Γ|)− 1

2 exp

[
−1

2
(x − Za)T Γ−1 (x − Za)

]
, (2.15)

where (x − Za)T Γ−1 (x − Za) is the MD of the pixel x from the cluster mean vector

Za. Here, depending on whether the pixel is in the target-plus-background configu-

ration or background only, the a values take on their appropriate coefficients.

Given this model, the GLRT decides H1 if

L(x) =
p(x|â1, Γ̂1)

p(x|â0, Γ̂0)
> γ.
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Figure 2.14: The uniform data cloud represents a background pixel variability
structure not influenced by the target pixel(s). The data cloud with the inner cloud
represents the variability of background experienced by pixels infiltrated by the target
data.

The detection statistic for this architecture reduces to [39]

D(x) =
(
Γ̂0 − Γ̂1

)
Γ̂1

−1
. (2.16)

Noting that the maximum likelihood estimate MLE of the covariance matrix is given

by

Γ̂ =
(x − Za)T (x − Za)

N
,

the detection statistic is
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D(x) =
xT
(
PB

⊥ − PEB
⊥)x

xTPB
⊥x

, (2.17)

where PB
⊥ and PEB

⊥ represent the orthogonal subspace projection operators for

the background and target-plus-background, respectively. The distribution of this

detector statistic is [39]

D(x) ∼ Fd,N−P under H0,

D(x) ∼ Fd,N−P (λ) under H1,

where Fd,N−P is the F -distribution with d andN−P degrees of freedom and Fd,N−P (λ)

is the noncentral F -distribution with non-centrality parameter λ. The fact that the

detection statistics are F -distributed is important for the non-normality of HSI data

considered in the next section.

The expressions for the distribution of the test statistic relate to the MD distri-

butions evidenced within the HSI data clusters. Expanding (2.17), using the MLEs

for the covariances yields

D(x) =
(x − Ba)T Γ1

−1 (x − Ba)

N
− (x− Za)T Γ1

−1 (x − Za)

N
, (2.18)

which is a scaled difference between the MD of pixels containing only background

in the cluster of target-plus-background and the MD of pixels containing target and

background in the same cluster. Therefore, D(x) exploits the information in the MDs

evidenced by the data. This scenario is depicted in Figure 2.15.

Equation (2.17) is also the CFAR Matched Subspace Filter for non-coherent

detection as defined by Scharf [44] and is the fourth and final in the suite of adaptive
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Figure 2.15: Detector for the structured background hyperspectral model. The
dashed line in the data cloud represents the MD between a pixel containing target
and background and a pixel containing only background.

statistical target detectors common in exploiting signals in subspace architectures.

The detectors presented here overview the exploitation tools for the assumed models.

A more detailed taxonomy of the different types of detectors for HSI data exploitation

is given by Keshava, et al. [41], Manolakis, et al, [53], and Stein, et al. [78].

Having established the significance of MDs in the over-arching framework for

HSI signal processing, the next section describes the effect of MD distributions on the

metrics obtained from the detectors. Models of MD distributions from HSI data clus-

ters are then considered. Next, the latest work, including work from this dissertation,

in modeling MD distributions is introduced.
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2.3 MD Effects on Metrics

In addition to the design of a target detection algorithm, its performance must

be measured. A common metric for target detection is the Receiver Operating Char-

acteristic (ROC) curve. A brief description of ROC curves associated with the first

two target detectors introduced in the previous section is given here.

For the matched filter (under the full-pixel model), since x is assumed nor-

mal under both hypotheses and the log-likelihood ratio of the hypotheses is a linear

transformation of the variable x, the detection statistic is [70]

y ∼ N
(
0,Δ2

)
under H0

y ∼ N
(
Δ2,Δ2

)
under H1,

where Δ2 represents the squared Mahalanobis distance (MD). The probability of

detection and the probability of false alarm are then calculated using the above dis-

tributions under each hypothesis. The ROC curve for the matched filter is given in

Figure 2.16.

Obviously, from Figure 2.16 and from Equation (2.8), as the test pixel resides

closer to the target in the HSI space (i.e., larger Δ2 from the test pixel to the back-

ground space), the detector performance increases. For the anomaly detector of Figure

2.12, the detector statistic is

y ∼ (x − µ0)
T Γ−1 (x − µ0) . (2.19)

Since the expression is quadratic, the detector is distributed as a non-central chi-

squared distribution. The distribution under the two hypotheses is [49]
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Figure 2.16: ROC curves for the matched filter target detector. ROC curves for
different Mahalanobis distance (Δ2) values are given.

y ∼ χ2
d(0) under H0

y ∼ χ2
d(Δ

2) under H1,

where χ2
d(ρ) is a non-central chi-squared distribution with d degrees of freedom (cor-

responding to the dimensionality of the data) and non-centrality parameter ρ. The

probability of detection and the probability of false alarm are then calculated us-

ing the above distributions under each hypothesis. The ROC curve for the anomaly

detector is shown in Figure 2.17.
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Figure 2.17: ROC curves for the anomaly detector. The ROC curves for different
Mahalanobis distance (Δ2) values are shown.

The detection statistic for the unstructured background anomaly detector is

distributed as a student-t, and for structured backgrounds it is distributed as an F -

distribution [43, 44, 49]. Therefore, the performance of the detector depends on the

distribution of the detection statistic. Proper modeling of the detection statistic leads

to optimized performance for the target detector.

2.4 Distribution Model for Hyperspectral Data

In order to achieve the correct distribution for the detection statistic, the dis-

tribution of the data model under each hypothesis must be correct. In each of the

detectors given in the previous section, the HSI data model is assumed to be Gaussian.
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However, previous work [46, 54, 61] has shown that the underlying data distribution

for HSI is not Gaussian.

Recent papers on this topic show that the data tend to follow a family of

elliptically-contoured EC distributions [33,48,51,56], of which the normal distribution

is a small subset. Specifically, MD data tend to follow univariate heavy-tailed distri-

butions, which imply multivariate heavy-tailed EC distributions. An EC probability

density function is characterized by [8,21]

p(x|Σ) = c (|Σ|)− 1
2 h(Δ2), (2.20)

where Σ is a scale matrix, c is a normalizing constant, and h(Δ2) is a function of

Mahalanobis distance. The normal distribution is a special case of this family for

which h(Δ2) = e−
Δ2

2 .

The distribution of the MDs may be used to describe a multivariate data set.

For example, MDs are distributed as univariate chi-squared with d degrees of freedom

for a population of d-dimensional multivariate normal random data vectors [37]. Thus,

the normality of a multivariate data set can be tested by observing the behavior of its

MD distribution [67]. Specifically for HSI data, by observing the distribution of MDs

from clusters of similar pixel spectra, the underlying distribution of scene variability

may be determined. The distribution of cluster data is fundamental for analyzing

variability in the entire HSI scene.

In Equation (2.3), a single pixel is modeled as resulting from a mixture of

pure spectra from pixels originating in hypothetical material class distributions. This

equation can be interpreted as

fd (x) =
N∑

k=1

akfd (x | Θk) , (2.21)

where fd (x | Θk) is a single unimodal d-dimensional multivariate distribution for clus-

ter k, ak is the probability that cluster k is a constituent of the scene, also known as
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the abundance value, N is the total number of clusters defined by the materials in

the scene, and Θk is a vector of parameters that describe the distribution associated

with cluster k.

The parameters Θk may be readily determined by implementing any of a number

of parameter estimation routines. However, the expectation maximization method

and its variant, stochastic expectation maximization (SEM), are the more robust

routines applied for HSI [18, 54]. Once the parameters are estimated, the individual

clusters describing the separate classes of materials in the image are developed.

The left image in Figure 2.18 shows a small HSI subsection. The image data

is clustered into material classes that display similar properties using the SEM al-

gorithm. These properties are parameterized by the means µk and covariances Γk

which describe the distribution of the material class within each cluster. The right

image in Figure 2.18 is a two-dimensional representation of data clustering in the

d-dimensional space in which the image is classified, with each color representing a

different class of material (i.e., a unique cluster).

Upon identifying the clusters, it can be seen (particularly in the classification

image) that there is some variability within each cluster. For example, for the tarmac

cluster in the left image of Figure 2.18 (largest class), three of the building tops are

grouped into the tarmac cluster. This variability within clusters leads to the different

shapes apparent in each MD distribution for each cluster.

Nominal procedures in hyperspectral imaging for remote earth sensing dictate

that large land cover areas be encompassed in the field of view. This requirement re-

sults in many different material types as constituents of the data set. The variability

of the different materials is collectively modeled as a multi-modal multivariate distri-

bution. Separating each material into its respective class yields multivariate cluster

distributions that exhibit unimodal multivariate shapes, where “class” refers to ma-

terial type and “cluster” refers to collections of samples of a material type [54, 77].

Figures 2.19 - 2.22, created using ENVIR© [76], illustrate these concepts. Each cluster
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Figure 2.18: Left: Grayscale image of Harrisburg International Airport taken by
the AVIRIS [24, 45] HSI sensor (left top quadrant = grass, right lower quadrant =
tops of buildings, right top quadrant = three airplanes on tarmac, left lower quadrant
= three different airplanes on tarmac). Right: Image showing the different materials
found by the clustering routine. Note that some building tops are grouped into the
tarmac cluster.

of data results in a unique MD distribution for the data set. Some examples of the

distributions are given in Figure 2.23.

2.5 Fitting MD Distributions

Figure 2.24 shows a typical histogram of MDs from a HSI cluster and a plot of

a univariate chi-squared distribution. Notice that the chi-squared distribution poorly

models the shape of the data, especially in the tail region. This result implies that the

underlying distribution of the cluster data set, which creates the MD distribution, is

not Gaussian. The distribution must be determined to generate a correct statistical

model for developing detection hypotheses.

In [54] it is shown that a mixture of F -distributions models the MD distribu-

tion data more accurately. Specifically, it is demonstrated that a mixture of two

F -distributions, one modeling the body of the data and another incorporating infor-
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Figure 2.19: HSI data points (250,000) from an image projected onto bands 20, 37,
and 50 out of a total of 224 bands. The points are the resultant of the vector created
by the coordinates in three axes (pixel intensity at the given band). The result is a
three-dimensional representation of the multi-modal 224-dimensional distribution of
the data.

Figure 2.20: The same 250,000 HSI data points plotted against three different co-
ordinates (bands). Notice the changing shape of the data cloud and the concentration
of data points in certain regions as the axes are rotated. These concentrations are
clusters of similar data.
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Figure 2.21: The same 250,000 HSI data points plotted against another three differ-
ent coordinates. The results show that the data cloud is different when examined in
different dimensions. Also plotted are 8 clusters of data (clustered using the K-means
algorithm). The figure on the right shows the clusters only (with the un-clustered
data left out).

Figure 2.22: The same clusters shown in the previous figure. Here each ellipsoid
represents the material cluster distribution from which the majority of the spectral
information for the corresponding clustered pixels originates (assuming that each pixel
is a full-pixel representation of only one material).
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Figure 2.23: Distribution of a cluster of data taken from the 250,000 hyperspectral
data points given above (cluster determined using the K-means algorithm). Notice
the long tail of the distribution.

mation from the tails of the data, creates an accurate overall model. An example of

this derived distribution for the above data set is shown in Figure 2.25.

Visual inspection indicates a better fit to the data. However, here a quantitative

test is performed to better assess the fit. As in [54], plots of the probability of

exceedance of the data and the fitted distribution are generated. The probability of

exceedance is the probability of exceeding a given value in the range of a distribution

and is Q(y) = 1−G(y) , where G is the cumulative distribution function. For example,

the probability of exceedance for y = 0 when f(y) is a normal distribution with zero

mean and unit variance is 0.5, since half of the distribution lies on one side of y = 0,

and as y increases from zero the probability of exceedance decreases. This decrease
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Figure 2.24: Histogram of Mahalanobis distances from a cluster taken from the
250,000 hyperspectral data points given above and a Chi-squared distribution fit
(smooth curve). Notice the poor fit in the tail of the distribution.

is due to the decreasing portion of the distribution (the tail) as y increases. The

probability of exceedance is a suitable metric for comparing tails of distributions, as

varying tail widths generate different probability of exceedance values.

Probability of exceedance is plotted in Figure 2.26 for the MD data of Figure

2.25 and for the fitted distributions. A method for comparing these curves is the

mean squared error MSE between the probability of exceedance curve for the fitted

distribution and the probability of exceedance curve of the data. This metric is used

because probability of exceedance incorporates the “tails” of the data in determining

the shape of the model (more so than other model fit metrics, such as chi-squared).

In [54] it is shown that it is in the shape of the “tails” that HSI data modeling is most

important.
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Figure 2.25: Histogram of 17,453 MDs and a mixture of two F -distributions
(smooth curve). The fit in the tail region is improved.

Figure 2.26 shows that the mixture of F -distributions models the data better

than the chi-squared distribution. The mixture of F -distributions is developed by

weighting an F -distribution that models the body of the MDs along with an F -

distribution which models the behavior of the tails [54]. F -distributions are a member

of the heavy-tailed univariate distribution family [36], and thus the MD data may be

modeled by other heavy-tailed distributions. A mixture of F -distributions that models

the MD distribution of a cluster implies that the underlying distribution describing

the statistics of the HSI data set is a mixture of multivariate t-distributions [58,74,79].

The multivariate t-distribution is

xt ∼
Γ(d+ν

2
)

(πν)
d
2 Γ(ν

2
)
|Σ|− 1

2

(
1 +

Δ2

ν

)− d+ν
2

. (2.22)
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Figure 2.26: Exceedance plot for the MD distribution of a cluster of HSI data
(dashed line), Chi-squared distribution (dark solid curve) and F-mixture distribution
(light solid curve). The Chi-squared plot is obtained if the MDs are distributed
normally. Notice the heavier tail exhibited by the MD distribution.

where Γ(ξ) is the gamma function with argument ξ, Σ is a scale matrix, ν is the degree

of freedom, and Δ2 is the MD term. The multivariate t-distribution is a member of

the multivariate EC family (in agreement with the statements made in first part of

Section 2.4). If ν = 1, the distribution is multivariate elliptical Cauchy, and if ν → ∞,

the distribution is multivariate Gaussian [79].

The multidimensional distribution of a hyperspectral image data set is therefore

modeled as

td (x | Θ) = w · td (x | Θ1) + (1 − w) · td (x | Θ2) , (2.23)

where w is a mixing coefficient such that 0 ≤ w ≤ 1 and Θi are the respective

parameter sets for each t-distribution. The MD distribution model is then
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MD ∼ w · Fd,ν1 + (1 − w) · Fd,ν2 . (2.24)

Here the body of the MD distribution is modeled by the first term in Equation (2.24)

and the tail is modeled by the second term.

Manolakis and Marden [54] show that by modeling the data with multivariate

t-distributions, the performance of the adaptive anomaly detector improves. By mod-

eling the MD distributions with a mixture of F -distributions, the detector threshold is

more accurately selected and considerably lower false alarm rates are obtained (com-

pared to modeling under the multivariate normal assumption). Also, robust synthetic

data with the same distribution as HSI data is generated by using a mixture of multi-

variate t-distributed random d-dimensional vectors. Such simulated data (previously

unattainable) are valuable for evaluating detection and classification algorithms.

The significance of MDs in the stochastic model for HSI signal processing is

developed, and their effects on the metrics associated with the output of these pro-

cesses is demonstrated. It is also shown how variability in HSI data causes varying

MD distribution shape. This shape is not properly modeled by Gaussian assumptions

for the HSI data set, which result in inaccurate models for the MDs and, therefore,

processing limitations.

By fitting MD distributions with a mixture of F -distributions, a more accu-

rate model of the statistics is obtained. Specifically, F -distributed MDs result in

multivariate t-distributed data, a heavy-tailed member of the EC distribution fam-

ily. This result implies that heavy-tailed distributions are suitable for modeling MD

distributions and, hence, for obtaining a robust stochastic model for the HSI data set.

A limitation of using a mixture of F -distributions to model the MDs is the lack

of computationally efficient methods to solve for the parameters ν1 and ν2. Current

methods involving bi-variate exhaustive search techniques and maximum likelihood

estimation methods are computationally inefficient and often result in sub-optimal

solutions [54, 58, 74]. Therefore, there is a need to develop automated, robust, and
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computationally efficient methods for modeling MD distributions. The next chapter

addresses this goal.

2.6 Research Roadmap

This section provides a brief methodology roadmap and lists the objectives for

the present research given the above described phenomena. The first step identifies

which families of distributions include members with parameter values that result

in heavy-tailed distribution behavior (as MD distributions exhibit heavy-tails). Ini-

tial research shows that the Johnson family of distributions contains a subset that

describes heavy-tailed behavior and provides a method for estimating parameters

efficiently from the data set [35, 75]. Also, there is vast literature in the fields of

econometrics and actuarial sciences in extreme value statistics which suggests the

use of Pareto models to fit heavy-tailed behavior [3, 9, 10, 12]. An investigation by

Manolakis [52] points to the feasibility of extreme value statistical methods in HSI

modeling. Therefore, these two areas are investigated as described below.

Objective 1: Determine an optimal Johnson distribution model for HSI MD

data. The Johnson distribution system covers a wide range of different distribution

types. An initial investigation into fitting MD distributions with the Johnson system

is performed. Once a specific Johnson distribution type is identified, the model is

optimized for robustness against possible outliers and perturbations in data sets, and

is automated for maximum computational efficiency. This model is then compared to

the F -distribution mixture model.

Objective 2: Determine a multivariate elliptically contoured distribution model

from the univariate Johnson distribution modeling the MDs. A multivariate EC model

is derived from the univariate Johnson distribution modelling the MD data. This

multivariate model is developed using the definitions described by EC theory. The

model is compared to derivation of the multivariate t-distributed EC model from the

univariate F -distribution of MDs.
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Objective 3: Determine a viable parameter estimation method for obtaining tail-

index parameters for GPD models. Different parameter estimation methods are ana-

lyzed for fitting a generalized Pareto distribution (GPD) to MD data. The different

methods are tested with respect to suitability for HSI MD data models, and to sen-

sitivity of the estimators to smaller subsets of an entire MD data set. The most

robust estimation method is determined and most effective data subset threshold is

established. A smaller subset of the entire MD data set may be used for greater

computational efficiency.

Objective 4: Develop an optimal method for obtaining robust tail-index estimates

for GPD models of MD distributions. Once an efficient estimation method for GPD

models for MD distributions is identified, the method is optimized to generate mini-

mum MSE with respect to possible outliers and perturbations in data. An automated,

robust, and computationally efficient algorithm is developed for the identified GPD

parameter estimation method most suitable for HSI data processing.

Objective 5: Assess the utility of Johnson and GPD models for stochastic HSI

data processing. The Johnson model is compared against the GPD model, and the

estimation methods and their robustness under different data configurations are as-

sessed. The method which yields better results and provides more information about

the process is then determined.

The chapters that describe the research involved in achieving the objectives are

as follows:

Chapter III: initiates the research with the goals described in Objectives 1 and

2. A specific Johnson distribution is selected based on properties similar to MD data

behavior. Fitting the distribution to MD data is optimized with respect to potential

outliers (secondary processes) which create irregularities in forecasted data behavior.

A new metric for gauging goodness-of-fit is developed and applied to the new model.

Chapter IV: objective 3 is addresses with results and initial conclusions on

the method developed. Specifically, the theory of extreme values is reviewed and
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threshold methods are applied to HSI data with a number of corresponding parameter

estimation techniques. The families of estimation techniques are evaluated and an

optimal routine is identified for fitting GPDs to HSI MD data. The routine is analyzed

with respect to threshold sensitivity and an optimal threshold level is obtained.

Chapter V: the estimation method identified in the previous chapter is opti-

mized for robustness against noised and possible outliers in the data. A two-pass

algorithm is developed which uses a feedback mechanism to adjust estimated param-

eters based on a predetermined level of irregularity in the data model. The robust

estimation method is applied to HSI MD data to verify performance enhancement.

Chapter VI: all information from the previous chapters is used to assess the

utility of using the Johnson distribution and extreme value methods, and a final

assessment is reported on each method as described in Objective 5.

Chapter VII: final conclusions, a summary of all research is compiled, and

suggestions for further research are provided.
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III. Johnson System Models of MD Distributions

Of the five objectives outlined in the previous chapter, the first two deal with identify-

ing a Johnson distribution for modelling heavy-tailed MD distributions. This chapter

analyzes the Johnson distribution system and its application to modelling MD distri-

butions. Specifically, the most efficient and robust form of a Johnson distribution for

the task is analyzed and applied.

3.1 Johnson Distributions

3.1.1 Background. The Johnson system estimates an empirical distribution

by applying a transformation to a standard normal distribution [28, 75]. The three

types of Johnson distributions, SU , SL and SB, cover a wide range of distribution

families. In the univariate case the SU distribution is

z(x|γJ , ηJ , εJ , λJ) = γJ + ηJ sinh−1 x− εJ
λJ

, −∞ < x <∞, (3.1)

where z is a standard normal variate, εJ and γJ are location variables, and ηJ and

λJ affect scale and shape. The SU distributions include the Gaussian distribution,

t-distribution, Cauchy distribution, and other families of unbounded distributions

where the support is from negative to positive infinity. The SL distribution is

z(x|γJ , ηJ , εJ , λJ) = γJ + ηJ ln
x− εJ
λJ

, x ≥ εJ , (3.2)

which covers the F -distribution, χ2 distribution, and others where the logarithm of

the random variable follows the normal distribution. Finally, the SB distribution is

z(x|γJ , ηJ , εJ , λJ) = γJ + ηJ ln
x− εJ

λJ + εJ − x
, εJ ≤ x ≤ εJ + λJ , (3.3)

which includes distributions bounded by (εJ , εJ + λJ), such as the beta and uniform

distributions.
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3.1.2 Mechanics. The Johnson parameters are obtained by applying an

autonomous algorithm developed by Slifker and Shapiro [75]. This algorithm is based

on selecting four equally spaced percentiles (quantiles) from the standard normal

distribution indicated by −3z, −z, z, and 3z. Usually, these quantiles are selected

at z = 1, −z = −1, 3z = 3, and −3z = −3, corresponding to normal distribution

percentiles of 84.13%, 15.87%, 99.87%, and 0.13%, respectively. These percentiles are

then determined for quantile locations on an unknown distribution represented by

x−3z, x−z, xz, x3z.

Slifker and Shapiro demonstrate that [75]

mn

p2
> 1, for an SU distribution,

mn

p2
< 1, for an SB distribution,

mn

p2
= 1, for an SL distribution.

where m = x−3z − xz, n = x−z − x−3z, and p = xz − x−z. Using these criteria, a

candidate Johnson transformation (one of Equations (3.1), (3.2), or (3.3)) is selected

to fit the unknown distribution by transforming a normal distribution accordingly.

For this research, only the Johnson SL distribution is used. Since MD distri-

butions are positive (bounded at MD = 0) and un-bounded toward +∞, the only

applicable distribution is the Johnson SL. The other two are either un-bounded in

the positive and negative direction (SU), or bounded on both sides (SB).

3.1.3 Simulations. In what follows, different distribution forms are simu-

lated by generating data from a set of known distributions. In particular, 10,000 MD

values are generated randomly for specified parameters of a given distribution, and

the parameters of the Johnson SL distribution which result in a minimum squared
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error fit to the data are found. An exceedance log-plot of the data and the Johnson

SL distribution fitting the data are given to show the fit at the tail of the data more

clearly.

The first simulated distribution is a gamma distribution, which in the Pearson

system is a type III distribution, of which the χ2 distribution is a special case. The

univariate χ2 distribution of MD is obtained for a multivariate Gaussian distribution

of the data (the general assumption about HSI data until recently). A Johnson

SL distribution fit to the gamma distributed data, where the gamma distribution

parameters are shape = 10 and location = 155, is shown in Figure 3.1.
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Figure 3.1: Johnson SL distribution (dotted line) fit to 10,000 values generated
from a Gamma distribution with parameters: shape = 10 and location = 155 (solid
line).

Figures 3.2, 3.3, and 3.4 depict Johnson distributions fit to Weibull, Lognormal

and F -distributed data, respectively, where the parameters used to generate the plots
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are given in the Figure caption. These distributions are selected because of their

heavy tails (tails that decrease more slowly than asymptotically exponential). It is

well-known that HSI MD data exhibits this heavy-tailed property. Figure 3.5 depicts

a Johnson SL distribution fit to data from a mixture of two F -distributions, which is

the model recently used to model the variability in HSI MD distributions [54]
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Figure 3.2: Johnson SL distribution (dotted line) fit to 10,000 values generated
from a Weibull distribution with parameters: scale = 25 and shape = 10 (solid line).

3.1.4 Motivation. From Figures 3.2 - 3.5, notice that the Johnson SL distri-

bution fits all of the simulated data well, which reflects the type of distribution and,

therefore, the amount of information in the tails with respect to the body. Graph-

ically, this phenomenon can be traced to regions on the β1, β2 chart [79] shown in

Figure 3.6. Parameter β1 is a measure of skewness (i.e., if β1 = 0, a distribution is

symmetric, and increasing values of β1 denote increased positive skew) and β2 is a
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Figure 3.3: Johnson SL distribution (dotted line) fit to 10,000 values generated
from a Lognormal distribution with parameters: mean = 155 and variance = 2 (solid
line).

measure of kurtosis (larger values for flatter distributions and smaller values for a

higher degree of peakedness). The range of distributions fit by the SL distribution

(depending on threshold width) is defined in Figure 3.6. With mn/p2 = 1 the SL

distribution is confined to the lognormal line. However, in practice, the SL criterion

is given a bandwidth mn/p2 = 1 ± w, where w is a constant that allows the SL

distribution to define a region above and below the lognormal line.

Here it is determined that w = 0.3 above the lognormal line, and w = 0.6 below

the lognormal line, which allows the SL distribution to fit the range of Pearson Type

VI distributions (F -distribution, Weibull forms and lognormal distribution), as well

as those approaching Pearson Type III (Gamma distributions and another Weibull

form). Also, this choice enables fitting to a wide range of Type IV distributions (some
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Figure 3.4: Johnson SL distribution (dotted line) fit to 10,000 values generated
from a F -distribution with parameters: ν1 = 155 and ν2 = 100 (solid line).

Bessel distributions and other exotic distributions that lack a closed form, which have

infinite support in both directions but are shifted such that values approaching zero

and less than zero are extremely small, are unimodal, and take on various right-tail

weights).

Based on the research conducted here, the region in Figure 3.6 just below the

Pearson Type III line and to the right of β1 = 1 locates the majority of HSI MD

distributions. This region corresponds to asymmetrical distributions with longer and

heavier tails characteristic of MD distributions. Johnson SL distributions may be

used to estimate any distribution in this region. Also, based on the value of mn/p2 ,

the system gives information on distance from the Pearson Type III line or lognormal

line. For example, in fitting the Gamma distribution in Figure 3.1, the value is 0.83,

indicating that the SL fit is closer to the Type III line (Gamma distribution locale). In
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Figure 3.5: Johnson SL distribution (dotted line) fit to 10,000 values generated
from a mixture of two F -distributions with parameters: ν1 = 155 and ν2 = 100 for
the first F -distribution and ν1 = 155 and ν2 = 10 for the second F -distribution, and
mixed at 20 % of the first distribution and 80 % of the second (solid line).

fitting the lognormal distribution in Figure 3.3, the value is 1.01, indicating that the

SL fit closely approaches the lognormal line. In Figure 3.5, the value is 1.48, indicating

that the mixture of two F -distributions resembles an F -distribution approaching the

Type V line. For this feature (which imparts information about the distribution

family) and for the same imposed limits, the Johnson SL system is selected to model

HSI MD distributions.

3.2 Fitting HSI MD Distributions with Johnson SL

Johnson SL distributions are used to model the MD distributions of five clusters

taken from an AVIRIS data collect at Ft A.P. Hill, VA [24]. The image and cluster

52



Figure 3.6: A β1, β2 chart showing different regions for Johnson system distributions
and Pearson system distributions. The lightly shaded lower left triangle represents the
Johnson SU distribution region, The hashed region below the ”Impossible Area” shows
the Johnson SB distribution region. The types of distributions fit by the Johnson SL

reside in the region between the Type III line and the Type V line. The circled area
represents an area of heavy-tailed distributions where HSI MD distributions tend to
be located.

map are shown in Figure 3.7. The clusters are obtained by performing SEM analysis

on the data set (see Appendix A), and the image data is clustered into five classes

of material. A mixture of two F -distributions is also fit to the data, as in [54], for

comparison.

The estimated Johnson SL distributions are then compared to the F -distribution

mixtures using the MSE of the exceedance curves. For example, Figure 3.8 shows

the exceedance curve of a mixture of F -distributions and the exceedance curve of a

Johnson SL distribution fit to a MD distribution, where the data is from cluster 1 in

Figure 3.7. The MSE between the exceedance curve of the data and the exceedance

curve of the mixture of F -distributions is 1.8 × 10−4 , whereas the MSE between the
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Figure 3.7: Left: False-color image of the Ft A.P. Hill, VA, AVIRIS hyperspectral
data. Middle: Image showing pixels grouped into five different clusters by the SEM
algorithm. Right: Color key for identifying clusters.

exceedance curve of the data and the exceedance curve of the estimated Johnson SL

distribution is 0.11 × 10−4 .

The exceedance MSE gives a scalar value for a fit to the data set. The plot

in Figure 3.8 has a logarithmic scale on the y-axis, and the tail of the fit suggests

a large deviation from the Johnson SL distribution. However, on a linear scale the

differences are minute. An exceedance plot of a χ2 distribution with d degrees of

freedom is plotted for comparison to large fitting error (relatively, small fitting errors

on this logarithmic scale show a fit closer to the data, while large fitting errors plot

closer to the χ2 exceedance plot).

The comparable accuracy of the F -mixture distribution and the Johnson SL

distribution in Figure 3.8 is evident. However, the Johnson distribution appears to

model the body of the data more accurately. The body of the data refers to the higher

density region of the distribution (compared to the lower density region in the tails).

This better representation of the data in the body, as well as comparable accuracy
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Figure 3.8: Probability of exceedance versus MD for 14,243 data points from cluster
1 (dashed curve), F -mixture distribution (light solid curve), Johnson SL distribution
(dotted curve), and χ2 distribution (thick curve). Notice that the Johnson SL distri-
bution performs comparably to the F -mixture distribution.

in the tails, is evident in the more-than-an-order-of-magnitude improvement in the

MSE value of the Johnson SL distribution over the F -mixture distribution exceedance

plots. Figure 3.9 shows a zoom-in on the body of the data.

For the remaining four clusters only exceedance plots are given. The y-axis is

scaled from one to 10−4 on each plot. However, the x-axis varies based on the range

of MDs.
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Figure 3.9: The body of the probability of exceedance versus MD for Cluster 1
(dashed curve), F -mixture distribution (light solid curve), Johnson SLdistribution
(dotted curve), and χ2 distribution (thick curve). Notice that the Johnson SL dis-
tribution fits closer to the data as expected. The Johnson system parameters are
estimated directly from the data, and the MD data gives over 10,000 data points to
finely tune the parameter estimates.

3.3 Results from Fitting HSI MDs with Johnson SL Distributions

From Figures 3.8 - 3.13, note that the Johnson SL distribution is comparable

to the F -mixture distribution for fitting MD distributions. Also, Table 3.1 shows

the MSE for each method fit to the data. In the majority of cases the Johnson SL

distribution outperforms the F -mixture distribution by nearly an order of magnitude.

The Johnson SL distribution performs well in the majority of cases because

it fits the body as well as the tail to a high degree of accuracy. The mixture of

F -distributions fits the tail well but not the body. However, since the tail of the dis-

tribution is where small probability of false alarm thresholds occur, it is advantageous
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Figure 3.10: Probability of exceedance versus MD for Cluster 2 (dashed curve),
F -mixture distribution (light solid curve), Johnson SL distribution (dotted curve),
and χ2 distribution (thick curve).

Table 3.1: Summary of MSE for Johnson
SL Distribution and F -distribution Mix-
ture Fit to MD Data.

Cluster Mean Square Error Mean Square Error
Number F-distribution Mixture Johnson Distribution

(×10−4) (×10−4)
1 5.14 1.11
2 1.62 0.25
3 6.88 1.01
4 5.85 1.11
5 2.77 0.62

to modify the fitting metric such that the fit at the tails is weighted more than the

body. Therefore the MSE is modified as
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Figure 3.11: Probability of exceedance versus MD for Cluster 3 (dashed curve),
F -mixture distribution (light solid curve), Johnson SL distribution (dotted curve),
and χ2 distribution (thick curve).

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (xi)

β1, (3.4)

where xi are the MD values, yi are the data exceedance values at xi, ŷi are the fitting

function exceedance values at xi, and β1 is the skewness value for the data. Notice

from Figure 3.6 that the region where HSI MD data distributions occur result in

β1 values on the order of 1 to 3, with larger skewness values implying heavier tails.

Therefore, the MSE metric is modified adaptively, according to the thickness of the

tail of the MD distribution. Figure 3.14 shows two plots of β1 values common to

heavy-tailed distributions. Notice that the larger β1 value results in higher weights

for MD values in the extremities of the tail. The result is that weights on the MSE

around the body region are smaller than weights on MSE values at greater extremities
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Figure 3.12: Probability of exceedance versus MD for Cluster 4 (dashed curve),
F -mixture distribution (light solid curve), Johnson SL distribution (dotted curve),
and χ2 distribution (thick curve).

of the tail. Specifically, the weighting term (·)β1 compensates for the fact that heavy-

tailed distributions decrease geometrically [3, 36]

Table 3.2 shows the performance of each distribution fit to the data using the

weighted MSE metric. Notice that the new metric for fitting yields the same con-

clusion; for the majority of the fits the Johnson SL distribution fit outperforms the

F -mixture fit.

Also of importance in comparing the two modeling techniques, and one of the

evaluation criteria in achieving the objective for this part of the research, is com-

putational efficiency. Whereas the determination of F -mixture distributions requires

minutes of computational time on a conventional Pentium 4 processor, the Johnson

SL distribution is derived within seconds of data input. This increase in computa-

tional efficiency is important for determining the best algorithm for data analysis.

59



100 150 200 250 300 350 400 450
10

−4

10
−3

10
−2

10
−1

10
0

Mahalanobis distance

P
ro

b
ab

ili
ty

 o
f 

ex
ce

ed
an

ce

 

 

Figure 3.13: Probability of exceedance versus MD for Cluster 5 (dashed curve),
F -mixture distribution (light solid curve), Johnson SL distribution (dotted curve),
and χ2 distribution (thick curve).

Table 3.2: Summary of tail-weighted
MSE for Johnson SL Distribution and F -
distribution Mixture Fit to MD Data.

Cluster Tail-weighted Mean Square Error Tail-weighted Mean Square Error
Number F-distribution Mixture Johnson Distribution

(×10−3) (×10−3)
1 1.03 0.87
2 1.12 0.99
3 0.85 0.86
4 0.66 0.62
5 0.94 0.79

HSI data exploitation demands the manipulation of large data sets over short periods

of time, and computationally efficient routines are more applicable.
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Figure 3.14: Weighting on MD values for the modified MSE metric. The mod-
ified MSE is weighted such that tail values (especially extreme tail values) in the
distribution fit error are penalized more than errors in the fit to the body

3.4 Improving the Johnson SL Distribution Fit for Robustness Against

Perturbations

3.4.1 Definition of a Perturbation in the Data. Currently, the effect of per-

turbations is not taken into account, which can be detrimental to the performance of

the Johnson SL distribution fit. Here, perturbations in the decrease of an exceedance

function are termed “outliers,” i.e., anomalous observations that show up as “outly-

ing” data points with respect to the shape of the exceedance function. In a standard

statistical definition for univariate data, outliers are points that lie outside of three

standard deviations from the mean of the distribution [60]. However, this defini-

tion ignores data naturally located in the extremities of the tails of the distribution.
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In most cases, an adaptive method is needed which takes into account sample size,

non-Gaussian nature of the data, and robust measures of mean and covariance.

Here these factors are taken into account by examining outlier effects on the

exceedance curves of the MD distributions. Generally, outliers are observations re-

sulting from a secondary process and not extreme values ensuing from the cluster

distribution. These secondary processes are seen as multi-modality in what should be

unimodal MD distributions [54]. Multi-modality is noticeable in exceedance plots as

a change in the rate of decrease of the exceedance curve of the data.

Thus outliers suggest multi-modality in the exceedance curve of cluster MD dis-

tributions. This multi-modality is evidenced as a change in first and second deriva-

tives of a curve. The first derivative decreases as the rate of descent changes direction.

However, for a rate of descent common to most distribution tail regions, the second

derivative of the curve is positive (i.e., the curve is concave up). When the second

derivative of the curve decreases and then increases again, the exceedance curve has

an unnatural “bump” caused by an outlier. A type of “bump” in the exceedance

curve is shown in Figure 3.15.

Taking into account this phenomenon, an approach to determining outliers for

HSI clusters called “Leave-One-Out-Smoothness” (LOOS) is used here. LOOS is

based on using the integrated squared second derivative to measure the smoothness

of an exceedance curve. Random data points from a specific region in the MD distribu-

tion are left out (hence, “Leave-One-Out-Smoothness”) in order to find the smoothest

representation. Once this representation is determined, data points left in the cluster

are analyzed for Minimum Covariance Determinant (MCD).

The MCD algorithm estimates the proper size of data samples in a cluster with

respect to leaving out possible outliers [68, 69]; it determines the proper subset of

data of size g that minimizes the determinant of the sample covariance matrix [22].

Size g is usually specified by the user (based on previous analysis) with the correct
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"bump" caused by possible outliers

Figure 3.15: An example of exceedance curve behavior under the influence of “out-
liers”.

data members of size g determined by MCD to produce a robust model. Here g is

determined by the number of data points left by LOOS.

3.4.2 Proper “Outlier” Regions. For computational efficiency, the entire

exceedance curve need not be examined in implementing LOOS. Out of the approx-

imately 20,000 data points which normally comprise a MD distribution exceedance

curve, only a portion of the tail needs analysis. Here the portion examined is near

the 10−3 region on the exceedance curve; outliers are examined only in this area due

to their significant impact on the shape of the distribution. For example, a subset

of MDs from cluster 4 in Figure 3.7 is distorted by the addition of random outliers

in three regions of the tail: exceedance values at 10−2 ± 0.005, 10−3 ± 0.0005, and

10−4 ± 0.00005. Varying numbers of outliers are placed in these regions, and the be-
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havior of Johnson distributions in fitting the exceedance curve is tracked. The changes

in the parameters associated with the Johnson distributions are given in Figures 3.16,

3.17, and 3.18. Only the behaviors of the ηJ and γJ values are tracked in this analysis

because these values are associated with the shape of the distribution (the εJ and λJ

values are linear translation variables that do not alter shape).

Also, in the figures SU and SL Johnson distributions are used to monitor param-

eter change to emphasize the fact that a distribution will change its “type” (Pearson

type/Johnson type) when secondary process data infiltrate the distribution of the

process of interest. In practice one can use the Johnson SU distribution to model MD

data by shifting the distribution so that its left tail returns values very close to zero

beyond x-axis ≤ 0. However, in principle only the Johnson SL distribution should be

used to model MD data.

Figure 3.16: The ηJ and γJ values of Johnson distributions fit to an MD distribution
(see text) with a varying number of outliers in the 10−2 ± 0.005 region of exceedance.

From the plots it is evident that outliers in the 10−2 region do not greatly affect

the shape of a distribution. The small changes in η and γ do not significantly alter

the shape of the Johnson distribution type. But outliers in the 10−4 region have a

great impact. However, outliers in this region and beyond are “legitimate outliers,”

in that they reveal information about a secondary process of interest in the cluster.

For example, a target partially hidden in foliage in an HSI scene generates an extreme
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Figure 3.17: The ηJ and γJ values of Johnson distributions fit to an MD distribution
(see text) with a varying number of outliers in the 10−3±0.0005 region of exceedance.

Figure 3.18: The ηJ and γJ values of Johnson distributions fit to an MD distribution
(see text) with a varying number of outliers in the 10−4±0.00005 region ofexceedance.

outlier data point in the MD distribution (exceedance of 10−4 and beyond), as is shown

in the four exceedance curves in Figure 3.19, where a synthetic pixel is inserted into

a vegetative cluster (a subset of cluster 3). The synthetic pixel is a metallic spectrum

from an airplane in Figure 2.18 gradually mixed with tree spectra (simulating partial

coverage under foliage at different levels).
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(d)

Figure 3.19: Target spectrum mixed with a background spectrum and inserted into
a cluster of tree spectra (see text) at (a) 0 % target, 100 % background, (b) 20 %
target, 80 % background, (c) 40 % target, 60 % background, and (d) 60 % target, 40
% background. The dashed line represents the exceedance curve of the data and the
solid line is a χ2 exceedance curve.
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Cases (c) and (d) in Figure 3.19 are extreme cases but can occur due to SEM

redistribution of pixel spectra from clusters deemed too small for proper parameter

estimation. However, the more likely case (b) shows the difference one small alteration

in a pixel spectrum can cause with respect to the background MD distribution. If

five or more of these types of altered pixels appear in the cluster, then these data

cause a significant change in the shape of the tail extremity. However, as mentioned

previously, these are the “outliers” of interest.

“Outliers” at 10−3 ± 0.0005 exceedance have a noticeable impact on the shape

of the distribution. As indicated in the figures, perturbations in this region can alter

the ηJ and γJ parameters so that the type of distribution changes from SL to SU

(two different families of distributions). Therefore, LOOS is applied to outliers in this

region.

Figure 3.20: Original exceedance plot of subset of MDs from cluster 4 in Figure 3.7.
The Johnson distribution fitting this data is an SL distribution with parameters γJ =
-12.66 and ηJ = 2.79. The mixture of F -distributions fitting this data has parameters
ν1 = 50, ν2 = 16, and w = 0.97. The MCD for the cluster data is 1.14.
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Figure 3.21: Fifty simulated outliers added at 10−3 ± 0.0005 exceedance. The
Johnson distribution fitting this data is SU with parameters γJ = -3.10 and ηJ =
2.21. The mixture of F -distributions fitting this data has ν1 = 30, ν2 = 100, and w
= 0.56. Cluster MCD is 40.04.

3.4.3 Mitigating “Outlier” Data. The MCD for the subset of MDs from

cluster 4 in Figure 3.7 is calculated to verify that the smoothing creates a decrease in

the determinant of the covariance for the cluster of data. For the example presented

here, simulated outliers are added to the exceedance plot of the MD distribution

from a cluster of hyperspectral data. Then LOOS is applied to exceedance data and

the MCD is calculated for pre-smoothed and smoothed cluster data. The results are

shown in Figures 3.20, 3.21, and 3.22.

By applying the LOOS smoothing to the exceedance curve affected by the out-

liers, distortion in the shape of the Johnson and F -mixture distributions is mitigated.

Note that insertion of outliers greatly changes the parameter values for both the John-

son and F -mixture distributions (the Johnson distribution type also changes from SL

to SU). Note that in eliminating some of the outliers (as a result of applying LOOS),

the parameters are driven back toward their original values.
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Figure 3.22: Exceedance plot from Figure 3.21 smoothed by LOOS. The Johnson
distribution fitting this data is an SL distribution with parameters γJ = -12.83 and
ηJ = 2.47. The mixture of F -distributions fitting this data has ν1 = 60, ν2 = 26, and
w = 0.77. Cluster MCD is 10.50.

3.5 Multivariate EC Model from the Univariate Johnson SL

Objective 2 is developed for determining the multivariate model of the HSI data

given the univariate MD information. Here the theory of EC distributions (sometimes

referred to as multivariate symmetric distributions [21]) is used to obtain a multivari-

ate HSI data model from the univariate Johnson SL distribution fit to the MD data.

Once the multivariate data model is determined, d-dimensional data based on this

model is generated.

A multivariate EC distribution is characterized by a d-dimensional probability

density function (PDF)

p(x|Σ) = c |Σ|− 1
2 g(Δ2), (3.5)
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where Σ is the covariance matrix, c is a normalizing constant, Δ is MD, and g is a

specified function. The normal distribution is a special case of this family for which

g(Δ2) = e−
Δ2

2 .

The distribution of MDs may be used to determine the distribution of a mul-

tivariate data set. For example, MDs are distributed as univariate Chi-squared with

d degrees of freedom for a population of d-dimensional multivariate normal random

vectors [34]. Thus the normality of multivariate data can be tested by observing the

behavior of its MD distribution.

Manolakis et al. [54], show that the distribution of MDs obtained from clusters

in HSI data follow a mixture of univariate F -distributions. This result implies that

the multivariate data follow a mixture of elliptical t-distributions (another member of

the EC distribution family). The mixture of F -distributions is developed by weighting

an F -distribution that models the body of the MDs with another F -distribution that

models the behavior of the tails.

3.5.1 EC Distribution Theory. Fang, et al. [21] state that a d × 1 random

vector x has an EC distribution (contours of equal probability are concentric ellipses

about a mean value) with parameters µ(d × 1) and Σ(d × d) (mean vector and

covariance matrix, respectively) if

x ∼ µ + ATy, y ∼ Sd(φ), (3.6)

where A is a (n× d) matrix such that ATA = Σ, and Sd(φ) denotes a d-dimensional

spherically symmetric distribution (spherical distribution) with characteristic gener-

ator φ. The characteristic generator is a scalar function such that

ψ(t) = φ(t′t), (3.7)
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where ψ(t) is the characteristic function of a spherical distribution. A spherical dis-

tribution is defined such that for a d× 1 random vector y,

Ωy ∼ y (3.8)

for every Ω, where Ω is a d × d orthonormal operator. Similarly, y is spherically

distributed if

y ∼ rUd, (3.9)

where r is a random variable indicating distance (radius) in spherical coordinates, in-

dependent of the d-dimensional random unit vector Ud, which is uniformly distributed

on the unit sphere in 
d.

As an example from [21] of an EC distribution, if y ∼ Nd(0, Id), where Nd(0, Id)

denotes a d-dimensional normal distribution, or, equivalently, y ∼ Sd(φ) with φ(u) =

exp(−u
2
), µ is d× 1, and A is d× d such that ATA = Σ, then

x ∼ µ + ATy (3.10)

has an EC distribution x ∼ ECd(µ,Σ, φ). For this example x is multivariate normal

with Δ ∼ χd (χ-distribution with d degrees of freedom). Likewise, Δ2 has a χ2-

distribution.

From [21] and [8], if x ∼ rUd, then x has a density generator g(Δ2), which

defines a density for cg(Δ2), where c is a normalizing constant, such that Δ2 has a

density

f(Δ2) =
π

d
2

Γ(d
2
)
(Δ2)d/2−1g(Δ2), (3.11)

where Γ(·) is the Gamma function. For densities of random vectors x1,x2, . . . ,xn,
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Δ2 = (x − µ)T Σ−1(x − µ). (3.12)

One can then write x ∼ ECd(µ,Σ, g), where x ∼ µ + ATy and

x ∼ Cd|Σ|− 1
2 g((x − µ)T Σ−1(x − µ)), (3.13)

where Cd is the normalizing factor [21]

Cd =
Γ(d

2
)

π
d
2

∫ +∞

0

(Δ2)d/2−1g(Δ2)dΔ2. (3.14)

If Cd = (2π)−
d
2 , g(Δ2) = exp(−Δ2

2
), Σ = Id, and µ = 0, then x is a multivariate

normal distribution.

Note that (x − µ)T Σ−1(x − µ) is the term for the MD measure. Therefore,

one can use Equation (3.11) to determine the configuration of the density generator

g(Δ2) from the univariate distribution of MDs, and, in turn, an expression for the

multivariate distribution using Equation (3.13).

For example, consider random vectors with MDs following an F -distribution

MD = Δ2 = (x − µ)T Σ−1(x − µ) ∼ Fd,ν(
Δ2

d

ν

ν − 2
), (3.15)

where

Fd,ν(
Δ2

d

ν

ν − 2
) ∼ Γ(d+ν

2
)

Γ(d
2
)Γ(ν

2
)
ν

−d
2 (Δ2)

d
2
−1(1 +

Δ2

ν
)−

d+ν
2 . (3.16)

Using 3.11 yields

Γ(d+ν
2

)

Γ(d
2
)Γ(ν

2
)
ν

−d
2 (Δ2)

d
2
−1(1 +

Δ2

ν
)−

d+ν
2 =

π
d
2

Γ(d
2
)
(Δ2)

d
2
−1g(Δ2). (3.17)

Substituting z = Δ2
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cg(z) =
Γ(d+ν

2
)

Γ(ν
2
)

(πν)
−d
2 (1 +

z

ν
)−

d+ν
2 . (3.18)

The normalizing constant Cd is

Cd =
Γ(d

2
)

π
d
2

[∫ +∞

0

(z)
d
2
−1(1 +

z

ν
)−

d+ν
2 dz

]−1

. (3.19)

With the substitution u = 1 + z
ν

in the integration term, du = ν−1dz, and the

expression in the brackets becomes

ν
d
2

∫ +∞

0

(
1 − u−1

) d
2
−1
u

−ν
2
−1du.

Letting p = (1 − u−1) results in

ν
d
2

∫ +∞

0

p
d
2
−1

(
1

1 − p

)ν+2

dp,

which results in [23]

ν
d
2
Γ(d

2
))Γ(ν

2
)

Γ(d+ν
2

)
.

Therefore,

Cd =
Γ(d

2
)

π
d
2

[
ν

d
2
Γ(d

2
))Γ(ν

2
)

Γ(d+ν
2

)

]−1

=
Γ(d+ν

2
)

(πν)
d
2 Γ(ν

2
)
,

and thus
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g(Δ2) =

(
1 +

Δ2

ν

)− d+ν
2

, (3.20)

which is a common representation of the generating density for a multivariate t-

distribution [2]

xt ∼
Γ(d+ν

2
)

(πν)
d
2 Γ(ν

2
)
|Σ|− 1

2

(
1 +

Δ2

ν

)− d+ν
2

. (3.21)

3.5.2 Multivariate EC Density from Univariate Johnson SL Density. Fol-

lowing the same steps, a multivariate EC density function may be derived as a result

of a MD distribution described by a Johnson SL distribution. For example, given the

Johnson SL density function

f(Δ2)SL
=

ηJ√
2π(Δ2 − ε)

exp

(
−1

2
η2

J

[
γ∗
ηJ

+ ln(Δ2 − εJ)

]2
)
, (3.22)

where γ∗ = γJ − ηJ ln(λJ) from Equation (3.2), and using Equation (3.11), the form

of g(Δ2) is

ηJ√
2π(Δ2 − εJ)

exp

(
−1

2
η2

J

[
γ∗
ηJ

+ ln(Δ2 − εJ)

]2
)

=
π

d
2

Γ(d
2
)
(Δ2)

d
2
−1g(Δ2).

Setting εJ = 0, since it is a location parameter, yields

Γ(d
2
)

π
d
2

ηJ√
2π

exp

(
γ2
∗
2

)
(Δ2)−

d
2 exp

(
−ηJγ∗ln(Δ2) − η2

J

2
ln(Δ2)2

)
= cg(Δ2). (3.23)

75



Using Equation (3.14) and only the terms that depend on Δ2, and letting z =

Δ2, x = ln(z), and dx = z−1dz results in

Cd =
Γ(d

2
)

π
d
2

[∫ +∞

−∞
e−(2+γ∗ηJ )x− η2

J
2

x2

dx

]−1

, (3.24)

which yields [23]

Cd =
Γ(d

2
)

π
d+1
2

α−1
SL, (3.25)

where αSL =
√
p exp

(
− q2

4p

)
, q = (2 + γ∗ηJ), and p =

η2
J

2
.

Thus the final form of a multivariate EC density generated by the Johnson

SL-distributed MDs is

xSL
∼ Γ(d

2
)

π
d+1
2

α−1
SL|Σ|−1/2(Δ2)−d/2 exp

(
−ηJγ∗ln(Δ2) − η2

J

2
ln(Δ2)2

)
. (3.26)

To verify the validity of this new multivariate form, synthetic two-dimensional

multivariate data is created with the MDs from this data fit using a Johnson SL

model. Using the method described in [54] 10,000 two-dimensional data points are

created that are governed by a mixture of multivariate t-distributions with degree

of freedom parameters ν1,1 = 2, ν1,2 = 2, ν1,2 = 40, and ν2,2 = 5 and weighting

coefficient w = 0.8. A mean data point is selected so that the joint density is centered

at x = 20, y = 20. The MDs are calculated, and a Johnson SL distribution is fit to

the data. The resulting fit is shown in Figure 3.23.

Using the EC function for the multivariate t-density in Equation (3.21) with

the parameters from the F -mixture fit to the MDs in Figure 3.23 and using the EC

function derived here for a multivariate density resulting from the univariate Johnson

SL fit to the MDs, two-dimensional empirical densities models are created as shown in

Figure 3.24. Notice the similarity between the derived EC model and the multivariate
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Figure 3.23: Here 10,000 two-dimensional data points are generated using a mixture
of multivariate t-distributions with degree of freedom parameters ν1,1 = 2, ν1,2 = 2,
ν1,2 = 40, and ν2,2 = 5 and weighting coefficient w = 0.8, where the joint density is
centered at x = 20, y = 20. The MDs (dark line) are fit by a Johnson SL distribution
(dashed line) and a mixture of two F -distributions (light line)).

t-density. Based on the parameters and data in this example, a surface plot of the

PDF for both probability density models is shown in Figure 3.25. Finally, the CDF

of the derived EC density is shown in Figure 3.26.

3.5.3 Multivariate Synthetic HSI Data Generation. The form of Equation

(3.26) is similar to many of the multivariate EC density functions given in the litera-

ture [8,21,54,64]. However, the research here does not provide a method for generating

d-dimensional random variates characterized by the function in Equation (3.26). An

expression for a multivariate EC density function is derived from the univariate John-

son SL density function following the rigor outlined by EC theory. The result is a
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Figure 3.24: (a) A two-dimensional empirical density created using the EC mul-
tivariate t-density mixture with parameters from the univariate F -mixture that fit
the MDs in Figure 3.23. (b) A two-dimensional empirical density created using the
multivariate EC model derived here from the univariate Johnson SL distribution. The
Johnson parameters are from the Johnson SL fit to the MDs in Figure 3.23. Notice
the similarity between the two models.
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Figure 3.25: (a) A two-dimensional probability density surface created using the
EC multivariate t-density mixture with parameters from the univariate F -mixture
that fits the MDs in Figure 3.23. (b) A two-dimensional probability density surface
created using the multivariate EC model derived here from the univariate Johnson
SL distribution. The Johnson parameters are from the Johnson SL fit to the MDs in
Figure 3.23. Notice the similarity between the two models.
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Figure 3.26: The CDF surface for the multivariate EC model derived here from the
univariate Johnson SL distribution that fits the MDs.

function similar to the expressions for multivariate Fisher-Bingham density functions,

Kent density functions, asymmetric Laplace density functions, and density functions

describing directional statistics [42,57,80,81].

3.6 Summary

A robust Johnson SL distribution model is identified and optimized for use with

HSI data. Unlike the current technique for fitting MD distributions with mixtures

of F -distributions, this method incorporates a correcting mechanism in the event of

possible secondary processes. The method performs comparably to current techniques

in modeling HSI MD distributions. However, the method is computationally more

efficient than current methods, providing an improvement to current stochastic HSI

data processing methods.
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However, unlike the current technique, the multivariate EC density function

derived from the univariate Johnson SL density function does not recognize a known

multivariate random variable generation algorithm to generate data that follow the

EC model. Therefore, the next chapter investigates another method for modeling

univariate MD data behavior, which is tractable to multivariate architectures that

generate the observed MD distribution. Also, the new method uses only data from

the tail of the MD distribution, as opposed to the entire data set.

81



IV. Tail-index Parameter Estimation Methods for GPD

Models of MD Distributions

The Johnson SL distribution has been identified and optimized for fitting MD distribu-

tions, thus addressing the goals of increasing computational efficiency and improving

the robustness of fit. This chapter examines another method for modeling the heavy-

tailed behavior of univariate distributions (with an emphasis on identifying the best

model for HSI MD behavior), which is computationally efficient, amenable to opti-

mization methods, and usable for synthetic data generation. A brief introduction to

Extreme Value Theory (EVT) is given, then a standard method and a new method

for identifying heavy-tailed behavior are presented. Finally, extreme value model pa-

rameter estimation techniques are evaluated, and the best method is identified for use

with HSI MD data.

4.1 Extreme Value Statistics

Recent research in characterizing variability in HSI data shows that univariate

HSI MD distributions (and therefore the distributions of multivariate pixel data) are

described by heavy tail behavior [52, 55, 56]. Hence, the variability in HSI data is

determined by the structure of the heavy tail of the MD distribution. More recently,

it has been shown that the “heaviness” of tail behavior may be modeled by extreme

value threshold methods [50, 52]. Specifically, an extreme value distribution model

can be fit to the distribution of HSI MD data by analyzing only a small sample of the

most extreme points in the tail of the distribution.

Of importance in HSI data exploitation is the capability to properly model the

statistics of the data in order to develop robust post-processing techniques. Given

the large size of HSI data, statistical models based on the entire data set are not

computationally efficient. Therefore, the recent research in EVT models emphasizes

determining robust statistical models given only a fraction of the data. EVT is a tool

which draws information about the statistical nature of a process by analyzing only

the extreme values of a data set. The basic probabilistic theory of extreme values has
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been developed for many years. However, the statistical modeling of extreme data

and relevant application in the field of HSI is comparably new.

4.2 Relevant Extreme Value Theory

The theory of extreme values provides a methodology whereby a fraction of

samples in the tails of a data density may be used to obtain an accurate statistical

model for the rest of the data. The ordered statistics (data points ordered from

least to greatest in sequence, or vice-versa) sampled at the tails of the sequence have,

asymptotically, the Generalized Extreme Value distribution (GEV) form [3,9, 11]

G(z) = exp

{
−
[
1 + k

(
z − μ

σ

)]−1/k
}
, (4.1)

where −∞ < μ < ∞ is the location parameter, σ > 0 is the scale parameter, and

−∞ < k < ∞ is the shape parameter, also known as the tail-index. For k < 0 the

data distribution is governed by a short tail (bounded upper tail) density and has the

form of the Weibull distribution. For k = 0 the limit behavior must be taken and

the resulting expression is a Gumbel distribution, characterized by a thin tail density.

For k > 0 the data distribution is governed by a heavy tail density and is classified

as a Fréchet-Pareto distribution, in which case the mean is infinite for k > 1 and the

variance is infinite for k > 1/2.

Also, of interest to this research is that heavy-tailed distributions belong to

the domain of attraction of the Fréchet-Pareto distribution [3, 20]. For example, the

F -distribution model of a data set is readily determined by the extreme value index

k (tail-index). Therefore, modelling a data set with a GEV leads to known families

of analytic forms of distributions in the domain of attraction of a GEV type. With

the F -distribution form, it is simple, then, to derive the relationship between the

distribution of MDs and the mutlivariate form of the distribution of the data set

resulting in the MDs (see previous Chapter).
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4.3 Discerning Heavy Tail Behavior

A well known method for describing tail behavior and a new method for quan-

tifying the region of tail weight described by data quantiles are presented.

4.3.1 Mean Excess Function. A majority of extreme value statistical re-

search is involved with heavy-tailed behavior of data sets. The heavy tail behavior

of HSI data may be observed graphically through the use of exceedance plots (as in

Chapters II and III). Traditionally, however, quantile plots have been employed in

visual and quantitative methods for classifying distribution behavior.

For extreme value statistics, a more recent method for identifying heavy tail

behavior is the sample mean excess function [3]. The mean excess function calculates

the expected excesses over a specified threshold. Analytic mean excess functions for

different distributions are plotted in Figure 4.1 using the parameters from Table 4.1.

This information is adopted from [72] where o(1) is a function of u whose limit is zero

as u −→ ∞ and u is a threshold value. The exact values of the parameters are given

in the Figure caption.

Table 4.1: Analytic mean excess func-
tions for standard distributions.

Distribution Mean excess function
Pareto κ+u

α−1
, α > 1

Log-normal σ2u
ln u−μ

(1 + o(1))

Weibull u1−τ

cτ
(1 + o(1))

Truncated Normal u−1 (1 + o(1))
Exponential λ−1

The mean excess over threshold value is an empirical estimate of the theoretical

average above a given threshold u. It measures the expected value of the excess data

given that exceedance has occurred and is

en(u) =

∑n
i=1(Xq(Xi>u) − u)∑n

i=1 q(Xi>u)

, (4.2)
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Figure 4.1: Mean excess functions for different distributions. The parameters, with
respect to Figure ?? are: α = 1.2; k = 1; τ1 = 1.2; τ2 = 0.5; c = 0.1;σ = 5;mu = −2.
Notice the constant positive slope for the Pareto distribution (for all positive values of
k, given uσ > 0). Notice the Lognormal and Weibull do not have a constant positive
slope over the entire range of u.

where q(Xi>u) equals 1 for each sample value above the threshold and is 0 otherwise.

Figure 4.2 shows an example of a sample mean excess function plot. If the plot shows

an upward trend, then heavy tail behavior is indicated. Specifically, if the plot follows

a linear positive slope for a region of u, then the data are distributed as a generalized

Pareto distribution (GPD) with positive shape parameter k, which is the same k used

in the GEV with the same behavior for positive, zero, and negative values. The other

models showing positive slope can be represented as special cases of GPDs.

4.3.2 Quantile Ratio Function. Another technique for qualifying tail be-

havior and degree of “heaviness” uses distances between quantile values from a dis-
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Figure 4.2: A plot of 100 sample mean excess points from 1000 random variables
(RVs) generated from a GPD with a positive shape parameter k = 1, μ = 0, and
σ = 1. Notice the positive linear slope in the region between u = 40 and u = 90.
The overall positive slope of this plot above the threshold values indicates heavy tail
behavior.

tribution of data to determine the weight (heavy, light, or bounded) of the tail of a

distribution. This method essentially compares the distances between two regions in

the tail of a distribution to the distances of quantiles in the body of the data. The

Empirical Quantile Ratio Function (EQRF) value used in discrimination is

d̃ = ln

(
t1t2
b2

)
, (4.3)

where t1 is the distance between two empirical quantiles found in the “body” of the

tail region, t2 is the distance between two empirical quantiles in the extreme portion

of the tail, and b is the distance between two empirical quantiles in the body of the
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distribution. For example, in this work quantiles q1 for p = 0.002, q2 for p = 0.85,

q3 for p = 0.97, and q4 for p = 0.998 are chosen such that b = q2 − q1, t1 = q3 − q2,

and t2 = q4 − q3. Figure 4.3 shows the lengths of b, t1, and t2 for GP densities with

different k values, and Figure 4.4 illustrates the behavior of d̃ given these quantiles

for −1 < k < 1.
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Figure 4.3: The lengths of b, t1, and t2 for GP densities with different k values.
Notice the length of b does not change as dramatically as t1 and t2 when k increases.
EQRF relies on this behavior for an initial guess at the value of k regardless of the
size of the data sample.

Selecting different sets of quantiles representative of the tail regions and body

of a distribution results in similar plots with an asymptotic empirical quantile ratio

line increasing in a direction that is invariant for smaller data sets, because ln(t1) and
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Figure 4.4: The quantile ratio function for −1 < k < 1 using 400, 4,000 and 40,000
RVs from a GPD with shape parameter k, μ = 0, and σ = 1. Notice the increasing
value of the plot as k increases. In particular, GPDs with positive k are recognized
as those values of d above 0.5 (dotted horizontal line) for data sets of 40,000 points,
above 1.0 (dashed horizontal line) for 4,000 points, and greater than 2.0 for smaller
data sets, using the particular quantiles selected here. The slope may be different for
other sets of quantiles used. Also, note that the slope of the asymptotic line defines
the direction of the slope for smaller data sizes.

ln(t2) increase much faster than ln(b2) as k increases in Equation (4.3). Therefore, the

change in d with respect to k has a positive slope when proper quantiles are selected

for t1, t2, and b for a GPD. However, smaller data sets show greater variability in d̃

about the asymptotic line direction.

4.3.3 Application of Heavy Tail Qualification Methods. In this section the

methods described in the previous section are applied to simulated data and to HSI

data. For the first part, a data set of 10,000 RVs from a GPD with k = 1.3, μ = 150,

and σ = 25 is generated. This set is then analyzed for signs of heavy tail behavior

in the mean excess function plot and empirical quantile ratio value. Figure 4.5 shows

the mean excess function plot for the simulated data set and justifies using a GPD
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to fit the data in a certain region. Using the quantiles mentioned in Section 2.2, the

empirical quantile ratio value is 9.746, which indicates a positive tail index value of

1.5.
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Figure 4.5: Mean excess function plot for 10,000 RVs from simulated GPD with
k = 1.3, μ = 150, and σ = 25. The plot shows a region where the mean excesses over
a threshold follow an upward and linear trend, which is good visual evidence that
the data are indeed heavy-tailed. The portion of the plot reasonably modeled by the
straight line indicates that portion of the data above u follows a GPD with positive
tail-index.

Next, a data set consisting of 17,000 MDs from a cluster of HSI data is also

analyzed as above. The mean excess function plot is shown in Figure 4.6. The

empirical quantile ratio value is 1.746, which suggests a positive k value of 0.27.

Figure 4.7 shows an exceedance plot of the MDs and a GEV with k = 0.27, and

indicates that the heavy tail parameter suggested by the empirical quantile ratio is

reasonable.

Thus, two methods have been presented for qualifying the behavior of tail data

in distributions. The mean excess function provides a visual method for identifying
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Figure 4.6: Mean excess function plot for 17,000 MDs from hyperspectral cluster
data. The mean excesses over a threshold up to 1,000 follow an upward and linear
trend. The visual evidence shows that the data are heavy-tailed out to this threshold.

heavy tail behavior. The empirical quantile ratio presents another method whereby

a score is given, suggesting a degree of heavy tailed-ness.

However, neither of these methods is appropriate for estimating parameters for

a GEV or GPD. They are somewhat contrived in that each method is constructed

based on knowledge of tail behavior for GEVs and GPDs for a region of k values and a

significant amount of data. However, they possess properties which develop a distinc-

tion between heavy-tailed data and the alternative (lighter or bounded tails). They

may indicate how to apply other methods which exploit the statistical information in

heavy tails for smaller samples of extreme values.

4.4 Exceedances Over High Thresholds

This section discusses methods for estimating the tail-index parameter k for

these heavy-tailed processes. More precisely, based on a limiting property for ex-

treme values, these methods are applied to samples above a threshold u. The sensi-
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Figure 4.7: Exceedance plot of MDs from HSI data (dotted line) and GEV with
k = 0.27, as approximated by the empirical quantile ratio of the data, μ = 150, and
σ = 25 (solid line).

tivity of each estimation method to threshold selection is examined for heavy-tailed

distributions.

Let X1, X2, . . . Xn be a sequence of independent and identically distributed

(i.i.d.) random variables (RVs), having a CDF F. Label the values of Xi that ex-

ceed some high threshold u as extreme events. Denote these values by Y1, . . . , Ym,

where m ≤ n. Their CDF is [12]

F (y) = P (x > u+ y|X > u) =
1 − F (u+ y)

1 − F (u)
, y > 0. (4.4)

The CDF of the original values can be approximated using exceedances [11].

From

Fx−u|X>u(x) =
F (x+ u) − 1 + θ

θ
, (4.5)
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where θ = 1 − F (u), the approximation for the original distribution is

F (x) = (1 − θ) + θFx−u|X>u(x− u), x > u. (4.6)

The GPD is used as a model for Fx−u|X>u(x − u) that approximates the original

random variable X [3].

If Xn,n = max{X1, . . . , Xn}, then for large n [11, 12]

P (Xn,n ≤ z) ≈ G(z), (4.7)

where G(z) is the GEV distribution. For large values of u the CDF of (X − u) given

X > u yields

H(y) = 1 −
[
1 − k

(y − μ)

σ

]− 1
k

, y > 0, (4.8)

which is the expression for the GP distribution function. The GPD arises as the limit

distribution for the excesses over a threshold as the threshold increases toward the

upper bound of the original distribution [62]. Also, if the threshold u is increased by

an arbitrary amount, the GPD form remains unchanged, which defines the threshold

stability property of the GPD. The probability density function (pdf) for the GPD is

f(y) =
1

σ

[
1 + k

(y − μ)

σ

]− 1
k−1

, k �= 0 (4.9)

=
1

σ
exp[−(y − μ)/σ], k = 0. (4.10)

Figure 4.8 shows some examples of the GP pdf for different values of k.

As mentioned above, heavy tail data may be modeled by a GP density. Therefore

using a Peaks Over Threshold (POT) method, one can estimate a shape parameter

k that describes the the behavior of the entire distribution by simply examining a
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smaller data set above a certain threshold. In the next sections, some appropriate

estimation methods are analyzed for using POTs with GPDs to fit MD data.
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Figure 4.8: Examples of the GP density for different k values (μ = 0 and σ = 1).

4.5 Estimation of Tail-index Parameter

The tail-index value k is the most important parameter for fitting a GPD to

the distribution of HSI MDs. It defines the shape of the GPD and, hence, creates the

greatest error in fit for small deviations in its value. The scale and location parameter

are easily obtained once the shape of the function is determined. This section develops

a general Bayesian method for estimating the k parameter. Methods derived from

simplifications and approximations to the Bayesian estimator are then analyzed for

use with HSI MD data sets.

4.5.1 Bayesian Estimation. Let data D = {Yi, i = 1, 2, . . . , n} be i.i.d.

samples from the density p(y|θ), where θ denotes the vector of parameters that define

the form of the density. By Bayes’ theorem

p(θ|D) =

∫
θ

py(y|θ)pθ(θ|D)dθ, (4.11)
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where pθ(θ|D) is proportional to pD(D|θ)P (θ), and pD(D|θ) is proportional to
∏n

i=1 py(yi|θ).
Therefore the posterior density is

p(θ|D) =

∫
θ

py(y|θ)
n∏

i=1

py(yi|θ)Pθ(θ)dθ, (4.12)

which is a weighted average of possible densities.

In the Bayesian method, additional data tend to drive the solution from empha-

sis on the generalized prior (discussed in the next section) to emphasis on the data.

That is, a small sample size results in a solution greatly influenced by the prior, while

a larger data set overcomes this influence. Figure 4.9 depicts a schematic posterior pdf

obtained from this method with maximum a posteriori (MAP) and minimum mean

squared error (MMSE) estimators identified.
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Figure 4.9: A schematic posterior pdf showing the locations of the maximum, mean,
and median. The maximum is the MAP estimate, the mean is the MMSE estimate,
and for a uniform prior, the maximum corresponds to the Maximum Likelihood (ML)
estimate.
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4.5.2 Selection of the Prior. A conjugate prior is a prior probability density

which has the property that the posterior pdf has the same form. The GP density

admits no conjugate prior density [3, 11], and Bayesian estimation typically selects

a non-informative prior in this case. The objective is to select a prior for which

information regarding parameter location is provided by the likelihood, while the

parameter location envelope is provided by the prior [7].

Non-informative priors are typically from uniform, Jeffreys’, or Gibbs sampling

distributions, or from Markov Chain Monte Carlo (MCMC) techniques [12,13]. These

priors are designed to form a minimal information framework for the prior, while keep-

ing the prior within a realistic range specified by the data. Here a prior distribution

form is selected based on knowledge of HSI data cluster MD distributions.

The tail-index k for a GP density fit to maxima exceeding a certain threshold

tends to range from −1 < k < M , where M is some large positive value [52]. More

realistically, the tail-index for GP models of MD distribution excesses from HSI data

clusters range from 0 < k < M̂ . In most applications involving GP models for a range

of data sets M̂ is rarely larger than 10 (actually, beyond M̂ > 3 the probability of

encountering higher k values in real-world data decreases greatly). The range of k

values for such data has a greater density in regions closer to zero and falls sharply

beyond this region (i.e., the majority of MD distribution excesses rarely exhibit GP

models with excessively large k values).

The gamma density is used here as the prior. It satisfies the above criteria and

covers a wide range of shapes exhibited by the prior. Also, the maximum entropy

criterion suggests the use of a gamma distributed prior: if the minimum of the prior

is greater than zero and the pth quantile equals some finite value, then the criterion

specifically prescribes use of a gamma distributed prior [47]. The gamma pdf is

f(x) =
β

Γ(α)
(βx)α−1e−βx x ≥ 0, (4.13)
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where β and α are positive scale and shape parameters, respectively. For α = 1 the

gamma density is equivalent to the exponential density, and for α = h
2
, where h is

an integer and β = 2, it is a chi-square density with h degrees of freedom. Different

choices for β and α result in uniform, beta, and Pearson Type VI densities, among

others [36]. Figures 4.10 and 4.11 show gamma density functions for various α values

with β = 1 and β = 2.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
x(x

)

x

 

 

β = 1

  α = 1

  α = 2

  α = 3

Figure 4.10: Gamma density functions for different α and with β = 1.

4.5.3 Application of Bayesian Estimation Method. In the following a set

of 1,000 points is generated from the GP pdf with μ = 0, σ = 1, k = 1.0, and,

initially, u = 900 POT samples are used to develop a posterior density for the desired

k parameter. A large number of POTs are used for this analysis to obtain a well-

developed posterior distribution and to avoid having the prior overwhelm the influence

of the data. In this case θ in Equations (4.11) and (4.12) is the k parameter. In some

literature θ is a vector with parameters k and σ comprising the vector elements [13],
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Figure 4.11: Gamma density functions for different α and with β = 2.

[66]. However, here the only concern is estimating k, because in general it determines

the behavior of the extremes. Also, in many multi-parameter estimation techniques

the remaining parameters are easily obtained once k is estimated.

A prior gamma pdf is specified with parameters α = 1.5 and β = 1, and 2000

candidate values are drawn from this prior distribution in the range 0 < k < 10 and

then used in Equation (4.12) to generate Figure 4.12, which shows the shape of the

prior density on k and the posterior density as a result of the Bayesian process. Notice

the maximum is very close to the actual value of k = 1.0 and that the shape is highly

peaked towards the correct value, falling off dramatically away from the true value.

This effect is due to the influence of the prior and the size of the sample. Knowing

that the majority of k values for heavy-tailed distributions are generally less than

k = 3 and more likely for 0 < k < 1.0, the shape of the prior is selected to take

advantage of this knowledge. Also, having a large data sample insures that the data
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likelihood will avoid being biased by the prior. For example, in Figure 4.13 only 100

POTs are used. Notice how the posterior becomes wider and peaks away from the

actual value of k = 1.0 so that the prior biases the estimator even though the prior is

selected such that it represents the behavior of k values for heavy-tailed distributions.

However, in Figure 4.14 these same 100 data points are used with a prior that peaks

away from the actual value of k = 1.0 and displays an incorrect pattern for heavy-

tailed distributions. Obviously, the estimate becomes even more biased towards an

incorrect value.
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Figure 4.12: Prior and posterior density function shape for Bayesian estimation of
k given 900 POTs selected from a GP distributed data set with k = 1.0, μ = 0, and
σ = 1. Notice the maximum of the posterior is close to the actual value of k.
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Figure 4.13: Prior and posterior density function shape for Bayesian estimation of
k given 100 POTs selected from a GP distributed data set with k = 1.0, μ = 0, and
σ = 1. Notice the maximum of the posterior deviates from the actual value of k. In
this case there are too few data samples to overcome the influence of the prior.

Aside from the detrimental effects of selecting an inappropriate shape for the

prior and too few data samples, the advantage of this type of estimation is that metrics

are inherent in the posterior probabilities. Using the values of the posterior as weights

on possible GP densities to fit the data set under analysis, a surface of GP models

appropriate to fitting the data can be created as in the lower left quadrant in Figure

4.15. Taking a vertical cut of this surface at any point on the x-axis generates a pdf

of k given the data. The peak indicates the most probable value. Similar simulations

show that with fewer data points the prior overwhelms the data and a broad peak
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Figure 4.14: Prior and posterior density function shape for Bayesian estimation of
k given 100 POTs selected from a GP distributed data set with k = 1.0, μ = 0, and
σ = 1. Here, the prior has change to a density not representative of the behavior of k
for heavy-tailed distributions. Notice the performance of the estimator degrades even
more so.

results. The lower right quadrant of Figure 4.15 is a two dimensional representation

of this surface.

Also of interest is the feasibility of using the Bayesian estimation method for

certain regions of k. As mentioned, it is particularly simple to select the Gamma prior

for a high density in the region k < 2.0. However, selecting a prior for heavy-tailed

distributions with larger values of k may be difficult because the data likelihood of

the largest extreme values overwhelms the likelihood scores of the rest of the sample.

Selecting a proper prior indicative of this type of behavior is difficult. Therefore, the

100



0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

P
D

F

GP density: k = 1.0, σ = 1.0, μ = 0

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

x

P
D

F

GP density: k = 1.0, σ = 1.0, μ = 0

x

P
x
(x

 |
 k

) 
(k

 =
 t

a
il

−
in

d
e

x
)

 

 

White Line = True PDF

1 1.5 2 2.5 3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4.15: Upper left: GP density of RVs selected for this Bayesian estimation
analysis. Upper right: Same GP density emphasized to show the region 1 < x < 3.
Lower Left: The surface resulting from GP densities at each tail-index value (k)
weighted by the corresponding posterior probability value Pk(k|x) in the region 1 <
x < 3. The peak of the surface occurs at k = 1.05, which corresponds to the MAP
estimate, from 900 samples taken from a GPD with actual k = 1.0. Lower Right: A
two dimensional representation of the surface.
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Figure 4.16: Upper left: Posterior k density for GP with actual k = 0.3. Upper
right: Posterior k density for GP with actual k = 0.1. Lower Left: Posterior k density
for GP with actual k = 0.05. Lower Right: Posterior k density for GP with actual
k = 2.3. Notice how the posterior density is localized and highly peaked at the actual
k value for the region k < 2.0. In the lower right plot, actual k = 2.3 and the posterior
becomes less peaked and deviates from the true value. As k increases in the region
k > 2.0 the posterior becomes flatter and deviates from the true value. In all cases
μ = 0 and σ = 1.

optimal region for using the Bayesian estimation process for heavy-tailed distributions

is k < 2.0. This conclusion is illustrated in Figure 4.16.

4.6 Bayesian Estimation Method for GPD Parameter Density

Since application of the traditional Bayesian estimation approach is limited to a

certain range of k, it is not identified as the proper estimation routine for use in esti-
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mating k to fit GPD models to MD distributions. Point estimators (generalizations of

the traditional Bayesian estimation method) are investigated as the alternate. How-

ever, the utility of traditional Bayesian estimation is the generation of a parameter

density.

Using Bayesian parameter estimation with Parzen windows, a new technique for

determining the density of the parameter k is developed as a result of this research.

The Bayesian estimator outputs discrete values of posterior density information for k

given a prior. Then, Parzen windows density estimation with a gamma density kernel

is applied to generate a smooth posterior density profile.

A demonstration of this method, 10,000 random variables (RVs) are generated

from a GPD with parameters selected to mimic HSI MD distribution behavior [59].

The parameter values are: tail index k = 0.2, scale parameter σ = 26, and position

parameter μ = 125. A plot of the empirical probability of exceedance is shown in

Figure 4.17.

Estimation of the parameter μ given a uniform prior does not give robust results

under the Bayesian framework, because as μ increases the probability density values

of larger tail data points increase for a GP density. The likelihood is a product of

probability density values for the data given a parameter set. Therefore, the Bayesian

estimator consistently selects higher μ values, as these values generate larger likelihood

values.

In much the same manner the Bayesian estimator selects the maximum σ value,

because a larger σ value corresponds to larger pdf values and hence larger likelihood

scores. Thus a non-uniform prior must be specified for the σ parameter to obtain

robust Bayesian estimates. Since ML estimation for GPD models requires a uniform

prior, only the k parameter is considered here, as it is the only parameter for which

likelihood score is not adversely affected by increasing parameter magnitude. Also,

note that once k is estimated the posterior density follows the shape of the posterior
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Figure 4.17: Empirical probability of exceedance plot for 10,000 values generated
from a generalized Pareto distribution with parameters k = 0.2, σ = 26, and μ = 125.
These parameters are similar to those estimated from GPD models fit to vegetative
HSI MD distributions [59].
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density for k, since σ and μ only change the magnitude and location of the posterior

density and do not affect shape.
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Figure 4.18: Probability of exceedance plot for GP random variables generated
with parameters k = 0.2, σ = 26, and μ = 0 (thick line), and nine models of GPDs
spanning the range 0.01 < k < 0.4 in nine increments are shown (thin lines).

Initially, nine increments of k in the interval 0.01 < k < 0.4 are used as a

uniform prior for estimating the tail-index of GP random variables generated with

the actual values of k = 0.2, σ = 26, and μ = 0. The probability of exceedance is

shown in Figure 4.18 along with the candidate GPD models for the nine different

values of k. Referring to the separate curves for k in the Figure, a σ value shifts the

curve up or down (depending on magnitude) a small increment, and μ shifts the curve

up or down in smaller increments.

The results of the Bayesian estimation are given in Figure 4.19, which shows a

vertical slice through Figure 4.18 at the last value. Thus it is a profile of the posterior

density for probability of exceedance at the largest MD. Notice the shape of the
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posterior density for probability of exceedance of GPD models available for fitting the

generated data, which is directly related to the logarithmic scale of the x-axis. Taking

a vertical cut of the exceedances at smaller MD values, where a logarithmic scale is no

longer necessary to represent the exceedance value range, results in a posterior shape

of the probability of exceedance that follows the shape of the posterior density of k

values.
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Figure 4.19: A vertical cut at MD = 733 shows a rudimentary profile of the posterior
density for the nine models of GPDs that fit the data in Figure 4.18. The “Relative
weight” on the y-axis is the value obtained from the likelihood calculation for each
model given the data.

The posterior density for k may be obtained by Parzen window density estima-

tion [19]. For this example, since for heavy-tailed behavior k > 0 is required with

an unbounded upper limit, a gamma density is used for the Parzen window kernel.

The gamma density satisfies the above criteria and covers a wide range of shapes.

Figure 4.20 shows the Parzen window estimate of the posterior density for k with a
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Figure 4.20: Nine posterior weights for the k values used in the Bayesian estimation.
The shape of the density for k based on these weights is estimated using Parzen
windows with a gamma pdf as the kernel. Here the marginally unimodal estimate is
shown. Notice the higher peak at the left. This peak is indicative of the shape of the
window. In this case the peak is created from the superposition of the gamma function
window on the left-most data point and the window on the next point Adjusting the
variance on the windows creates different shapes for the density.

marginally unimodal shape. The variance on the gamma density kernels is adjusted

such that the shape of the density is bimodal, then the variance is increased until the

density becomes marginally unimodal. In Fig. 4.21 variance is increased until the

least-squares best fit estimate is obtained. Notice that this density has a maximum

close to k = 0.2, the actual tail-index value.

The results demonstrated here are important because they provide a capabil-

ity for extracting metrics on the estimated tail-index value. For ML estimation,

confidence intervals and further metrics may be derived from asymptotic properties.
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Figure 4.21: The best fit (in the least squared error sense) Parzen window estimate
of the shape of the density of k given the nine points estimated using the Bayesian
estimation method. Compare to the marginally unimodal case in Figure 4.20. Notice
that the maximum of the estimated density is close to the true value of k = 0.2.

However, for real-world and real-time data, sample sizes rarely approach the asymp-

totic limit, and a method that is effective with the data available is necessary. The

method described here demonstrates the development of a density that estimates the

tail-index parameter of a data set (similar to HSI MD data) using only nine inputs.

Using this estimated posterior density obtained from an initial limited input

set allows for fast and efficient processing of HSI data using the GPD model for

MD distributions, for which metrics are obtained without asymptotic assumptions.

Furthermore, as the method assumes nothing beyond the data, more realistic and

meaningful conclusions (with respect to the information contained in the data) may
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be formed. This capability is important for properly characterizing the statistics of a

suite of images in which the data changes from one image to another.

4.7 Other Estimators (Special Cases of the Bayesian Estimator)

Having developed a method for determining the posterior pdf generation capa-

bility, the best method for estimating the k parameter value (based on computational

efficiency and not limited to a specific range of tail-index values) is selected upon eval-

uating a number of point estimators. The following estimators are developed from

approximations and/or simplifications of Bayesian estimation. For example, where

Bayesian estimation produces a pdf for the estimate, the following methods are only

point estimates. They often correspond to a single point on the posterior pdf, and

further information is required to develop their variance and higher order moments.

4.7.1 Maximum Likelihood Estimation of GPD Parameters. The maximum

likelihood estimator is a special case of the Bayesian estimator in which the prior is

assumed to be constant (uniform or flat) as a function of parameter values, and the

maximum of the posterior density is the single point estimate. Given a threshold

u = Xn−u,n at one of the sample points with exceedances above the threshold denoted

Yj,u = Xn−u+j,n −Xn−u,n for j = 1, 2, . . . , u [3], the log-likelihood function for the NU

excess RVs are (based on the GPD model)

�(k, σ|Y ) = −Nu ln σ −
(

1

k
+ 1

) Nu∑
i=1

ln

(
1 +

kYi

σ

)
, k > − σ

Yi

, i = 1, . . . , Nu.

(4.14)

For k = 0 the log-likelihood function is

�(0, σ|Y ) = −Nu lnσ − 1

σ

Nu∑
i=1

Yi. (4.15)

With η = k�σ, Equation (4.14) becomes [25]
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�(k, η|Y ) = −Nu ln k +Nu ln η −
(

1

k + 1

) Nu∑
i=1

ln (1 + τYi) . (4.16)

The single parameter log-likelihood is then

�(η|Y ) = −Nu −
Nu∑
i=1

ln (1 − ηYi) −Nu ln

[
− 1

Nu

Nu∑
i=1

1

η
ln (1 − ηYi)

]
, (4.17)

with k = − 1
Nu

∑Nu

i=1 ln (1 − ηYi) [25], which leads to coupled equations for the ML

estimator:

1

ηML

−
(

1

kML

+ 1

)
1

Nu

Nu∑
i=1

Yi

1 + kMLYi

= 0, (4.18)

kML =
1

Nu

Nu∑
i=1

ln (1 + ηMLYi) . (4.19)

The ML estimates are obtained numerically using non-linear optimization techniques.

4.7.2 Method of Moments estimation of the GPD parameters. Method

of moments (MOM) estimator [32] is a direct generalization of the Hill estimator

[17], which is a form of the maximum likelihood estimator [3]. The parameters are

estimated as kMOM = 1
2

(
1 − Ȳ 2

s2

)
and σMOM = Ȳ

2

(
1 + Ȳ 2

s2

)
, where Ȳ is the mean of

the excesses and s2 is the variance. This method depends on the relationship of the

parameters k and σ to the population moments. However, the MOM estimates are

not reliable for k < −0.2 [31]. Also, the rth moment for a GP density exists only for

k < 1
2
. Therefore, for values above k = 1

2
, the MOM estimator can not be obtained.

MOM is related to the ML estimator through the Hill estimator. The Hill esti-

mator is a tail-index estimator which takes the log-spacings of extreme order statistics

and uses this information to estimate k. It is
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ku,n,Hill =
1

u

u∑
j=1

lnXn−j+1,n − lnXn−u,n, (4.20)

where u is the threshold number and n is the nth order statistic greater than u. This

expression may be derived from the ML estimator formulation. With σ = 1 and Yj the

jth order statistic above some threshold value Yu, the log-likelihood of the GP density

conditioned on a number of samples Nu above a threshold u is (compare Equation

(4.14)) [3]

�(k|Y ) = −Nu ln k −
(

1

k
+ 1

) Nu∑
i=j

lnYj. (4.21)

Taking the derivative and setting equal to zero leads to

k̂ =
1

Nu

Nu∑
i=j

lnYj, (4.22)

which is the Hill estimator for Nu = u. Hence, the Hill estimator is a generalization

of the ML estimator. The MOM estimator is the weighted Hill estimator [17]

kMOM = ku,n,Hill + 1 − 1

2

(
1 − k2

u,n,Hill

ku,n,Hill2

)−1

, (4.23)

where

ku,n,Hill2 =
1

u

u∑
j=1

(lnXn−j+1,n − lnXn−u,n)2 . (4.24)

The MOM estimator is generally located in a region near the maximum shown in

Figure 4.9.

4.7.3 Probability Weighted Moments Estimation of the GPD Parameters.

Based on the same principles as MOM and, therefore, also a form of the ML estimator,
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the Probability Weighted Moments (PWM) estimator finds k and σ from a given

data set [31]. This method is a “main competitor” to the ML estimation method

[16]. PWMs are generalizations of the moments of a distribution that give increasing

weight to the data in the tail. The PWM estimates are kPWM = a0

a0−2a1
− 2 and

σPWM = 2a0a1

a0−2a1
, where ar = 1

n

∑Nu

i=1 (1 − pi:Nu)r Yi, pi:Nu = (i+ ζ)/(Nu + δ) and ζ and

δ are constants of optimization. The main limitation of this method is that PWMs for

GPDs exist only for k < 1 [32]. Since PWMs are weighted moments-based estimators,

their performance region is similar to that of MOMs.

4.7.4 ML, MOM, and PWM Estimator Performance on Simulated Data.

Simulated data are generated and the methods described in the previous section are

used to estimate the tail-index parameter k. Specifically of interest is the behavior

of the estimator as the threshold (or “cutoff” value) u varies. The simulations are

performed on a range of 0.1 − 3.2 for the k values. Also, for k = 0 the GP density

reduces to the exponential distribution, where the “estimation of σ is trivial” and,

hence, k estimation is trivial [10]. Therefore, k values approaching zero are not

considered here.

The first data set is generated using the GP density. Here 10,000 random

data points are generated (with a specified k value, μ = 0, and σ = 1), and each

estimation method is applied to varying sizes of excess RVs (u is varied from 10 to

2000 in increments of 20). The value of k is then varied, and the estimation methods

are repeated at the thresholds discussed above. The results are in Appendix B.

The next data set is generated using the |tν | distribution. Again, 10,000 random

data points are generated (with a specified k value (ν = 1/k), μ = 0, and σ = 1) and

each estimation method is applied to varying sizes of excess RVs (u is varied from

10 to 2000 in increments of 40). The value of k is then varied, and the estimation

methods are repeated at the thresholds discussed above. The results are in Appendix

C.
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4.7.5 Initial Analysis. Based on the results in the appendices, the ML

estimator is more accurate for threshold values incorporating a large excess sample

size. For the values of u resulting in small excess sample sizes, the estimates of k tend

to vary over a wide range. The estimator, however, converges to the correct value as

the sample size increases. Also, the ML estimator behaves erratically for the smaller

sample sizes at larger k values. For smaller k values ML tends to estimate values close

to the true k value, but it tends to converge to the explicitly imposed upper bound

(k = 5 in this case) and to a wider range of estimates away from the true k value

for larger tail-index cases. As stated in [16] “ML estimates of the parameters of the

generalized Pareto distribution are sensitive to the most extreme observations.” The

case for these most extreme observations increases as the tail-index increases (although

they are fewer in number). These values tend to cause the erratic estimator behavior

mentioned above.

The PWM and MOM estimators are not valid above their self-imposed k limits.

However, the PWM estimator performs well in the region 0.5 < k < 1. Also, the

PWM estimator performs comparably to the ML estimator (a desirable property of

the PWM, which has made it an attractive alternative to ML in the regions below its

k limit). The same is true for MOM estimator in the region 0.5 > k > 0. The main

advantage of the MOM and PWM estimator is their “smooth” behavior.

4.7.6 Further Simulations and the Elemental Percentile Method. The weak-

nesses of the methods described in Section 4.7, based on their performance shown in

the appendices, have motivated the development of other methods. The Elemental

Percentile Method (EPM) [3] attempts to converge to a more robust estimate of the

tail-index by combining two steps that provide information about the behavior of the

data. The first step obtains many estimates from percentile and spacing information

using different pairs of data points, and the second step combines these estimates to

obtain a more efficient estimate.
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Specifically, if xi:n and xj:n are two distinct order statistics, in the first step

percentile values are equated to their corresponding CDF by pi:n = (i − a)/(n + b),

where i is the ith position, n is the total number of data points, and a is usually 1 while

b is 0 [10]. These values are used to obtain spacing information ln(1 − xi:n/δ) = kCi,

and ln(1 − xj:n/δ) = kCj,, where Ci = ln(1 − pi:n). These two expressions can be

solved using the bisection method on an interval determined by an initial estimate of

δ [10], where the current estimate for k is k̂i,j = ln(1 − xi:n/δ̂i,j)/Ci. After a value

for k is calculated using all distinct pairs, in the second step the final estimate of k

is determined as the median of the distribution of individual estimates of k from the

distinct pairs.

One immediate limitation of this method is computational inefficiency due to

the large numbers of distinct data pairs for large samples of order statistics. For this

reason, in the following simulations (unlike in previous simulations) the threshold u

is set to allow a maximum of 500 exceedances. This condition also allows comparison

of the estimation methods for smaller threshold values of u (since, barring intrinsic

limitations, the estimators tend to perform well with larger data sets). Figure 4.22

shows a plot of each estimator for k = 0.5, μ = 0, and σ = 1.

Four tables, each showing the performance of a different estimation method, are

given in Appendix D for three sets of simulations. The first simulation generates a

GP density with known k values and estimates k using the methods described here

for different threshold values up to u = 500. The second and third sets of simulations

are performed for |tν |-distributed data and F -distributed data. The data in the tables

represents the difference between the estimated k parameter and the actual value for

k (bias).

4.7.7 Observations. The results in Appendix D show that the EPM estimate

has a high rate of variability for smaller data sets, and although it is applicable for any

value of k (no constraints on k as for MOM and PWM estimates), ML outperforms

EPM estimation in the range investigated here. As mentioned previously, using EPM
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Figure 4.22: Example of different k estimation methods, where the actual value of
k is 0.5. Notice the high variability in the PWM estimate, while the ML and PWM
estimates are comparable. For this case, the MOM and PWM estimates exhibit the
least amount of variability at different thresholds.

estimation with larger data sets poses computational problems. Sampling the distinct

data pairs at different rates (not using every distinct data pair but varying intervals

of pairs) might mitigate these problems, but here using different rates of distinct

data pairs offers no improvement in estimation, and in most cases it yields degraded

performance.

The results also show that the ML estimator outperforms the other techniques

in most cases. The attractiveness of this estimator, although it yields less accurate

estimates at the lower sample sizes compared to the initial simulations, is evident. Not

demonstrated here is that the well-studied asymptotic properties of ML estimation

provide a convenient method of confidence interval estimation. The Bayesian method
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is the only method whereby full additional information (including confidence intervals)

may be obtained.

As is apparent in the simulations, each estimator performs differently given

smaller data thresholds. In the next section threshold selection is investigated, and

sensitivity to threshold selection for each estimation technique is parameterized. Fi-

nally, guidelines on how to choose the threshold based on initial measurements that

indicate in which region the tail-index may occur are developed.

4.8 Threshold Sensitivity

In this section the threshold sensitivity of the Bayesian, ML, and Hill estimators

are analyzed. These estimators are selected based on their ability to perform over a

wide range of k values (unlike MOM and PWM estimates).

4.8.1 Sensitivity of the Bayesian Estimator. The Bayesian estimator, as

described in Section 4.5 provides a posterior pdf for k. Given a uniform prior, the

maximum of the posterior pdf is the location of the ML estimate. Here, the Bayesian

estimator uses a gamma prior. Sensitivity to threshold selection is monitored as a

function of threshold and sensitivity to prior shape. The maximum of the posterior is

the MAP estimator in this case. Figure 4.23 shows the performance of the Bayesian

estimator as a function of threshold on a sample data set drawn from a GP density

with k = 1.0, μ = 0, and σ = 1.

A top-down view of the surfaces given in Figure 4.23, with only the maximum

of the surface plotted, provides a two-dimensional plot of the MAP estimate of k as a

function of u as shown in Figure 4.24. Notice the increased variance in the estimate

at smaller threshold values. Since the second derivative of a function measures the

rate of change of that function, this variance can be modeled by observing the second

derivative of the estimator with respect to u. Figure 4.25 shows a profile of this

phenomenon. Clearly, the second derivative is greater where the estimator shows

large variance in estimation over a region of u.
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Therefore, for the remainder of this analysis the second derivative of the estima-

tor with respect to u is measured and analyzed, along with the Root Mean Squared

Error (RMSE) between the estimate and the true value. The data set in the analysis

consists of 1,000 data points with a threshold u between 10 and 900. In Appendix E,

Tables E.1, E.2, and E.3 give results for the Bayesian estimator using three different

α values for the gamma prior, and using F -distributed data with different k values.

Tables E.4, E.5, and E.6 give the results for the Bayesian estimator using three dif-

ferent α values for the gamma prior and using GP-distributed data with different k

values. Tables E.7, E.8, and E.9 give the results for the Bayesian estimator using

for three different α values for the gamma prior, and using |tν |-distributed data with

different k values.

4.8.2 ML Estimator Threshold Sensitivity. From the initial analysis of GPD

tail index estimator, it is evident that the ML estimator provides robust solutions for

large samples from the tail of a density. Specifically, in the region −1/2 < k < 1/2

the ML estimator is invariant, consistent, and asymptotically normal [16]. However,

because the maximization of the likelihood function requires numerical optimization,

and due to extremely flat portions of the function in some cases, the estimator has

limitations below certain thresholds. Also, the presence of local maxima may result

in less than optimal performance and may lead to bias error.

Thus, the sensitivity of the ML estimator is examined, since in many cases only

small sample sizes are available. For many small sample sizes better estimators may

be obtained, as the attractive features of ML estimation are only valid for asymptotic

ranges. Therefore, knowing acceptable limits for the ML estimator with small sample

sizes is important.

Implementation of the ML estimator follows the approach outlined by Dargahi-

Noubary and Beirlant, et al. [3, 15]. This approach requires sampling the peaks over

thresholds without discarding any “outliers.” In some methods, the top few samples
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Figure 4.23: The posterior pdf surface, where the z-axis indicates the posterior
value with respect to the threshold u and the values of k in the prior. The maximum
of each posterior is highlighted. Notice the convergence of the peak to the true value
of k = 1.0 as u increases. The top and bottom plots are different views.

are discarded as outliers and the remaining samples are used. However, here all of

the samples are retained.
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Figure 4.24: The maximum of the posterior pdf surface as a function of threshold
u. Here the gamma prior is used with α = 1 and β = 1, and thus this plot is of the
MAP estimate of k as a function of u.

In the same manner as for the Bayesian estimator, the threshold sensitivity of

the ML estimator is analyzed by observing the behavior of the second derivative of

the estimate function with respect to u. Figure 4.26 shows the performance of the ML

estimator for four different values of k. Table E.10 of Appendix E gives the results of

sensitivity analysis for different regions of u.

Note that as k → 0, the GP model reduces to the exponential model. Therefore,

it is important to determine at what point the ML estimate should be used with

the exponential model rather than the GP model. Table E.11 shows the Average

RMSE of the ML estimator for k values approaching zero compared to nominal values

of 0.1 < k < 1.0. From this sensitivity analysis a k cut-off value is obtained for

transitioning the model from GP to exponential.
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Figure 4.25: The second derivative of the estimator in Figure 4.24 as a function of
threshold u. Sensitivity to threshold is evident where the second derivative is large
over a region of u. For this case, choosing u > 200 yields decreased fluctuation in
estimator performance.

4.8.3 Hill Estimator Threshold Sensitivity. The Hill Estimator results as a

natural extension of studying the slope of the extreme values of an exponential plot

based on the log-transformed data [3]. The least squares fit to this line results in

the Hill estimator. In Section 4.7.2, the Hill estimator is also shown to result from

a generalization of the likelihood function, and is, therefore, a version of maximum

likelihood estimation. The Hill estimator, specified in Equation (5.3), is simple to

implement, fast, and works over the entire range of k values. The last reason identifies

it as a desirable estimator, along with ML and Bayesian estimators, for application

in HSI data analysis. The disadvantages of the Hill estimator are its large variance

and bias. Figure 4.27 demonstrates these two shortcomings.
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Figure 4.26: Performance of the ML estimator for k = 3.0 (upper left), k = 2.0
(upper right), k = 1.0 (lower left), k = 0.1 (lower right)

Notice from this figure that the bias in the Hill estimator increases as the thresh-

old value increases but that the variance decreases. Also, in the smaller threshold

regions the bias decreases and the variance increases, which is a classic bias-variance

trade-off exhibited by many estimators. Obviously, due to large variance, the sensi-

tivity to small threshold values is high. Therefore, there is a need to identify different

forms of the Hill estimator which may mitigate the bias-variance trade-off.

4.8.4 Adaptive Threshold Selection. Modifications to the Hill estimator

in an effort to mitigate the bias-variance trade-off effect and to determine optimal

k values have been attempted [4, 5, 14, 26]. Most of these modified Hill estimators

adaptively determine the optimal threshold by performing an initial diagnostic on a
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Figure 4.27: Hill estimator for k given 100,000 data points and threshold cutoffs
from 1 to 20,000. The true value of k is 0.4.

sub-sample or modified sample of the data and then develop a process that selects

an optimal value for k from the derived Asymptotic Mean Squared Error (AMSE)

performance of the developed estimator, which often results in a weighting function

on portions of the data.

The success of these adaptive methods, however, is for comparatively larger

samples than considered here. For example, in [4] the adaptive methods tend to work

well for samples consisting of 500 or more data points, but the authors warn that

...even the “optimal” Hill estimator may suffer from a substantial bias,
especially for distributions with [nuisance] parameters close to 0. There-
fore, it is worth considering alternative estimators for the EVI that are less
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biased, such as the bias-corrected Hill estimators or unbiased estimators
like the maximum likelihood or least squares estimators...

The “nuisance” parameter is a constant (difficult to estimate from a data set), which

aids in providing adaptive information .

Thus, threshold sensitivity analysis for the range 10 < u < 500 used here is

not useful. The second derivative gives large values in the threshold regions, and for

threshold values where adaptive methods are effective, the ML estimator is known to

work well for a large range of k values. Therefore, as a conclusion from this section,

the adaptive Hill estimator versions are not considered.

4.9 Threshold Sensitivity Results

Tables E.1 through E.9 in Appendix E show the performance of the Bayesian

estimator for three different distributions, each with varying tail index values, and

varying prior density parameters. In general the results show that as k increases the

estimator RMSE and sensitivity (mean second derivative for a region of u) increase.

However, as u increases, the RMSE and sensitivity decrease, as is expected. A rea-

sonable cutoff point occurs at u > 300. After this cutoff the RMSE falls to acceptable

values and the sensitivity becomes negligible (i.e., mean second derivative approaches

zero, or equals zero in many cases).

Also, the effect of varying the α parameter in the prior is noticeable from the

table results. From Figure 4.10, which displays a gamma probability density with

β = 1.0 (exactly the value for the tabulated results) and varying α, the gamma prior

density holds more weight in the body than in the tail at α values approaching 1.0.

This phenomenon in the prior density is indicated in the tabulated results. For k = 0.1

the RMSE and sensitivity are less than for k = 0.5 and k = 1.0. As α increases, the

RMSE and sensitivity increase for k = 0.1, suggesting that the Bayesian estimator is

effective for k → 0 tail index values with an α value approaching 1.0 when u is small,

which is a result of the greater influence of the prior on the estimator for sparse data.
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As k increases, the longer tails of a distribution, which result in larger extremes,

cause poor performance for the estimator using smaller u values. The data set is not

large enough to overcome the influence of the prior, and very little weight is placed

on the large extreme values when α is such that the gamma prior density has greater

body mass. Attempting to select a prior density that has the proper body and tail

mass to correctly weight the influence of the larger extremes, as well as the nominal

extremes, is difficult. Therefore , the use of Bayesian estimation in determining the

tail index should only be used when k is suspected to be less than 1.0, where α may be

adjusted such that the body and peak of the posterior density occur near the expected

k value. As mentioned in Section 4.3.2, an initial guess at k can be made with the

empirical quantile ratio function.

Tables E.10 and E.11 show the performance of the ML estimator with respect

to different thresholds for the data. Using the k = 0.1, k = 0.5, and k = 1.0 tail

index values mentioned in the Bayesian estimator results discussion, the ML estimator

demonstrates smaller RMSE values but comparable sensitivity values. Therefore, the

range for k is expanded and only the GP distribution is used in analysis. Table E.10

shows how the ML estimator performed over the expanded range for k.

Again, the region of u > 300 shows decreased RMSE for the ML estimator

and reasonably smaller mean second derivative values. Notice the smaller RMSE

values out to k = 3.0 compared to the RMSE values of the Bayesian estimator at

k = 1.0. The ML estimator is not as greatly influenced by the larger extreme values.

However, the influence is still present, and mitigation of this influence is addressed in

the following section.

4.10 Summary and Findings

Bayesian estimation and ML estimation (which is a subset of the Bayesian

process) show comparable performance and threshold sensitivity for 0.1 < k < 1.0.

However, a priori information drives the performance of the Bayesian estimation
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method. Thus, for smaller data sets, with k increasing from zero, the ML estimator

is preferred, especially at large k values.

Optimally, the least error for the ML estimator is observed in the region around

k = 0.5 to k = 1.0, and this result is consistent with the literature. As k increases

above 1.0, the greater extreme values begin to influence the estimation process. Many

algorithms in the literature opt to exclude a certain number of the highest extreme

values, thereby limiting the effect of potential “outliers.”

For HSI, there is no good rule for excluding possible “outliers”. Therefore, the

ML estimator may suffer if the data demonstrate very large maximal extremes. One

way to mitigate this effect is to initially compare log-spacings of the data for many

natural scenes and scenes containing contaminations in natural scenes (which would

appear as excessive deviations in log-spacings from the majority of the extremes in

the tail of a distribution for the data set). This approach is similar to the initial

empirical quantile ratio method introduced in Section 4.3.2 for obtaining an initial

guess of k. A threshold in data log-spacing may be derived under different background

conditions for an HSI data set, thus mitigating of the effect of potential outliers on

the ML estimate of k. Also, the ML estimator may be modified such that the data

are weighted proportional to their log-spacing information to compensate for overly

large extreme values.

In summary, it is shown that a threshold not less than roughly one third of

the data set leads to reasonable estimation of the tail index parameter using peaks

over this threshold from a data distribution of 1,000 points. It is also shown that

the ML estimator performs optimally at the thresholds for tail index values in the

region 0.1 < k < 1.0. In certain cases, with k → 0 and an expertly selected prior, the

Bayesian estimator performs optimally, and is desirable in that it provides all of the

metrics (e.g., second and higher moments) associated with estimation given the data

set. However, for small data sets the prior influence overwhelms the data information

and causes inaccurate estimation, especially for large k values. The ML estimator

125



may be aided with a priori information about potential “outliers” in order to either

exclude data points that adversely affect the estimator, or the ML estimator may be

weighted such that these adverse effects are minimized.

Also, typical HSI data can range from a few thousand data points to over

30,000 data points per background cluster. In this case the results obtained here

would be degraded, as larger data sets increase the probability of larger extreme

values, which adversely affect estimator performance. Therefore, conservatively, the

threshold should be increased to slightly greater than one third of the data set in

order to compensate for the greater probability of adverse influence.

Practically, however, computational efficiency may suffer when one-third or

more of very large data sets is used. From the tables in Appendix E, note that

subsets on the order of 0.1 times data size to 0.2 times data size still result in es-

timates of reasonable (acceptable) deviation. Thus for larger data sets, values that

tend towards 0.2 times data size should be used.

Finally, the estimator identified by this analysis for applicability to HSI MD data

model estimation is the ML estimator. It is computationally efficient, not limited to

specific values of k, and provides mechanisms whereby optimization, with respect

to “outlier effects” may be implemented. The next chapter describes the optimized

version of this estimator and its variant for use in robustly estimating GPD tail-index

parameters that model HSI MD distributions.
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V. Improved Tail-index Parameter Estimators for GP

Models of HSI MD Data

In the previous chapter, the ML estimator for the tail-index parameter k is identified

as the best method for HSI MD distribution modeling using GPDs. One limitation

of the ML method is its sensitivity to largest extreme points (possible outliers) in the

data. In this chapter the ML estimation method is optimized against the effects of

these data points to provide a minimum error GPD fit to HSI MD distributions.

Though initially rejected in the previous chapter as a candidate due to large bias

and variance effects, the Hill tail-index estimator is also investigated and modified to

account for influence by largest extremes. The Hill estimator is a generalization of the

ML estimator and, hence, shares some of the same properties. It is also composed of

log-spacing data information, which is exploited to optimize the estimator. Initially,

the Hill estimator is modified for increased robustness. The mechanics involved in

mitigating possible outlier effects is explained through the Hill estimator modification

process. Then, with the data space defined by the effects individual components have

on the Hill estimator, the ML estimator is optimized with respect to these effects.

Both the optimized ML and modified Hill estimators are applied to HSI MD data

sets and are shown to improve performance.

5.1 Introduction

The ML estimator and the Hill estimator are single-point estimators resulting

from an approximation to the Bayesian estimation process. The ML estimate is the

maximum of the posterior probability density function estimated from the data like-

lihood multiplied by values from a uniform a priori distribution. The Hill estimator,

however, is specific to estimating the tail-index parameter of the GPD

The probability density function for the GPD was given in Equation (4.9).

The Hill estimator may be obtained from the ML estimator which is derived from

the likelihood function associated with the GP density. With σ = 1 for the scale

parameter, with −∞ < k < ∞ for the shape parameter (tail-index), and with Xj
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the jth order statistic above some threshold value Xu, the log-likelihood of the GP

density conditioned on a number of samples Nu above a threshold u is [3]

�(k|X) = −Nu ln k −
(

1

k
+ 1

) Nu∑
i=j

lnXj. (5.1)

Setting the derivative to zero yields

k̂ =
1

Nu

Nu∑
i=j

lnXj. (5.2)

The Hill estimator is a tail-index estimator which takes the log-spacings of extreme

order statistics and uses this information to estimate k. It is [3]

kHill
u,n =

1

u

u∑
j=1

lnXn−j+1,n − lnXn−u,n, (5.3)

where u is a cutoff threshold, n is the sample size, and j is the jth order statistic greater

than u. Setting Xj = Xn−j+1,n/Xn−u,n and Nu = u results in the same expression as

Equation (5.2). Hence, the Hill estimator is a generalization of the ML estimator.

5.2 Hill Estimator Improvement

The Hill estimator suffers from large variance for small sample sizes and tends

to have a bias as sample size increases, particularly for data that includes points

which deviate from the GPD model. Many adaptive forms of the Hill estimator

have been developed to overcome problems associated with this bias-variance tradeoff

[4, 26]. These adaptive methods involve sub-sampling an initial sample of the data

set to obtain a statistic which determines whether to increase or decrease the cutoff

associated with the original sample to obtain a minimum mean-squared error estimate

of the tail-index (thereby minimizing bias-variance effects). However, many iterations
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of sub-sampling may impede the computational efficiency of this method for larger

data sets.

Also, for HSI MD data sets a variation in the pattern of the tail samples occurs

not only beyond (or prior to) a single specified cutoff, where samples beyond (or

prior to) the cutoff tend to provide a minimum mean-squared error framework for an

estimator model. But sub-samples of MD points in separate regions of the tail beyond

a single specified cutoff (here, a single cutoff threshold is specified based on an analysis

of estimator sensitivity to threshold selection (see previous Chapter)), contribute to

degrading mean-squared error values. Thus, the optimization process described here

uses a single unadjusted cutoff threshold selection, to obtain an initial Hill estimate

for k.

Then, based on the least-squares line fit to the samples and using the Hill

estimate as the slope for the line, certain points in the sample are censored (based

on their deviation from the majority of the sample set) in a second pass of the Hill

estimation process. The censored data points are not only the most extreme points,

but also data that lie within the body of the sample which may contribute to variance

in the estimate. This process results in an improved minimum mean-squared error fit

to the data, and it is explained in more detail in the following.

The Hill estimator results from the slope of the least-squares line fit to the largest

values of an exponential quantile plot based on log-transformed data [3]. Figure 5.1

shows the upper region of 10,000 data points, randomly selected from an exponential

distribution with mean = 1,000, with the least-squares fit line. It is known that this

region follows a GPD, i.e., the slope of the linear portion of the larger data values is

equal to the tail-index parameter of the GPD function [3].

Analytically (and from Figure 5.1) as n → ∞, lnXn−j+1,n ∼ k ln ((n+ 1)/j).

This relationship yields
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Figure 5.1: An exponential quantile plot based on the log-transformed data (see
text). The line fit to the linear portion of the plot is the equation from which the Hill
estimator arises. Examining the fit of this line, an optimized Hill estimator may be
derived. For example, the bias in MSE is caused by regions of the plot that deviate
from the linear region (i.e., the GPD model).

y = lnXn−u,n + k

(
− ln

j

n+ 1
− ln

n+ 1

u+ 1

)
(5.4)

= lnXn−u,n + k

(
ln
u+ 1

j

)
. (5.5)

Hence, forcing the data points toward greater linearity above a set cutoff u results in

a more robust estimate of k. For example, a quantile plot of log-transformed data

from two F -distributed data sets is shown in Figure 5.2. Figure 5.3 shows the data

points optimized to generate the least-squares line fit for minimizing MSE. The MSE

for the original data set is 0.12, while the optimized data set MSE is 0.08.
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Figure 5.2: A quantile plot based on the log-transformed data from a mixture of two
F -distributions with parameters: ν1 = 155 and ν2 = 30 for the first F -distribution,
ν1 = 155 and ν2 = 500 for the second F -distribution, and mixing ratios of 20%
and 80%. Initially, 10,000 data points are created; then the 1,000 largest values are
selected for analysis. Notice the deviation from the least-squares line.

The optimization process described above is applied to HSI MD data, and an

exceedance plot is generated to display the improvement in estimation of k. Figure 5.4

shows the quantile plot of log-transformed HSI MD data from a subset of data from

a cluster of vegetation from Figure 3.7. Figure 5.5 shows the same plot optimized for

a better line fit to the data in that the data points that deviate from the majority

of the sample population are removed. Figure 5.6 demonstrates the improvement in

fitting a GPD to the MD data with the k estimated by this two-step process.
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Figure 5.3: A quantile plot based on the log-transformed data from a mixture of two
F -distributions with parameters: ν1 = 155 and ν2 = 30 for the first F -distribution,
ν1 = 155 and ν2 = 500 for the second F -distribution, and mixing ratios of 20% and
80% and optimized to censor data points that deviate above a given distance from
the majority of points. Notice the better fit to the data.

5.3 ML Estimator Improvement

The ML estimator is not limited by bias effects at large sample sizes, as observed

for the Hill estimator. The performance of the ML estimator is governed by sample

size inadequacy; smaller sample size results in greater bias and variance, larger sample

sizes decrease the bias and variance. However, for very large data sets, as is common

in HSI, when using a cutoff threshold u such that the sample contains a significant

proportion of largest extreme values, the most extreme points cause the estimator to

perform sub-optimally.
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Figure 5.4: A quantile plot based on log-transformed HSI data from from a subset
of data from a cluster of vegetation from Figure 3.7. The cutoff u is set such that
points in the largest 10th percentile are retained.

For example, GP distributed data with k approaching 0 have shorter tails. Data

sets containing, 1,000, 10,000, or 100,000 data points governed by such GPDs contain

few grossly extreme values. However, as k increases above 0.5, the greater amount of

data in the tail increases the probability for larger data sets (the 10,000 and 100,000, as

opposed to the 1,000) yielding many overly extreme data points. The large numbers of

most extreme data points for larger data sets create poor ML estimator performance,

and in some cases the extreme points are regarded as potential outliers [16].

HSI MD data sets tend to range in size from roughly 10,000 to 30,000. As

mentioned, when k is relatively small the effects of the most extreme points on the

ML estimator are negligible. For larger k the greater probability of these effects must
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Figure 5.5: A quantile plot based on the log-transformed HSI data from Figure 3.7
optimized to censor the effect of deviations from the majority of the sample. Notice
the better fit to the data.

be taken into account and mitigated. An approach for accomplishing this result is

described next.

Given a data set suspected of heavy-tailed behavior (as is the case with HSI MD

data), an initial estimate of the location of k for the GP model of the tail is needed.

Using a general idea of the value of k, a secondary step compensates for the effect of

the largest extremes if k is relatively large (if k is comparatively small the secondary

step may be omitted).

An initial value for k may be obtained by using EQRF, developed in Chapter

IV. This method essentially compares the distances between two regions in the tail of

a distribution to the distances of quantiles in the body of the data. Once the region

of k is known from the EQRF, a decision is made on whether two proceed with a
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Figure 5.6: An exceedance plot of the HSI MD data from Figure 3.7 (solid line), the
initial GPD fit to the data with the Hill estimate for k (dotted line), and the second-
pass improved Hill estimated k GPD fit (dashed line). The MSE for the initial fit is
4.69E-04 and the MSE for the optimized fit is 4.58E-04.

second step to optimize the ML estimate of the k parameter. If the k value suggested

by EQRF is relatively small, it is unlikely that the largest extremes will corrupt the

performance of the estimator. However, for large enough k values the second step is

taken for an optimal estimate of k.

This second step requires an understanding of how EQRF suggests and ML

estimates the parameter k. EQRF tends to provide a suggested k value lower than

actual because the slope of the EQRF line is based on n→ ∞ data points. However,

the quantiles used in determining the discriminating metric are extracted from finite

data sets, and therefore for progressively smaller data sets the suggested k value is

lower than actual.
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The ML estimator tends to estimate k values slightly higher than the actual

value due to the effect of the largest outliers in data sets of sizes comparable to HSI

cluster MDs. This overestimation is especially the case when the actual k value is

relatively large and the data set is large. The largest extremes for data sets with large

k values, tend to extend the tail of the exceedance plot of the MDs, causing the fitted

model to have a heavier tail than appropriate for the majority of the data.

Given a substantially large k value suggested by EQRF, the second step requires

finding a value between the EQRF-suggested k and the ML-estimated k. Since a lower

limit (EQRF k) and an upper limit (ML k) are known, candidate k values between

the two limits are examined to find the one that yields minimum MSE. This process

is similar to the iterative steps taken in the adaptive Hill estimation processes.

HSI clusters of vegetation tend to yield very small EQRF suggested k values.

Likewise, the corresponding ML estimated k values tended to be close to the EQRF

values. However, a scale for selecting the midpoint to minimize EQRF is still feasible.

A scale for any range of EQRF and ML k value differences may be developed once

the general range of tail-index values is determined.

Although the ML estimates are close to the EQRF suggested values for the

vegetation cluster, they are still affected by the largest extreme values, resulting in an

estimate of k larger than the actual value as indicated in Figure 5.7. Here a typical

HSI MD data set from a vegetation cluster is modeled by a GPD with the EQRF

suggested k value, a GPD with the ML estimated k value, and a GPD with the

optimal midpoint value. Notice that the optimal midpoint value provides the best fit.

5.4 Improved Estimators Applied to HSI Data

In this section two HSI data sets are analyzed with the improved Hill and ML

estimators. The HSI data are from an AVIRIS Ft AP Hill, VA [24] scene, and the

data sets are from two clusters shown in Figures 5.8 and 5.9.
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Figure 5.7: An exceedance plot of HSI MD data from Figure 3.7 (solid line), the
GPD fit to the data with an ML estimated k value (dash-dot line), a GPD with
an EQRF suggested k value (dottted line), and a GPD with a k value between the
EQRF and ML values that provides the minimum mean-squared error fit to the data.
In comparison, the ML GPD fit MSE is 0.0016, the EQRF GPD fit MSE is 0.0019,
and the optimal k GPD fit MSE is 0.0015.

Both cluster data sets are reduced to MD distributions and the distributions

are initially analyzed for heavy-tail behavior. The EQRF score for cluster 1 suggests

the region k = 0.11 and k = 0.09 for cluster 2. Therefore, the MD distributions are

identified as exhibiting heavy-tail behavior.

In applying the improved Hill estimator first to a subset of data above a thresh-

old u = 1000, the first step is an initial-pass Hill estimate of the k value, which results

in a value for the slope of a least squares fit line through the subset data. For example,

Figure 5.10 shows the least squares line fit through this data subset. Next, certain
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Figure 5.8: A cluster of Loblolly pine trees containing 14,257 pixels.

data points that deviate from the line fit are censored for a second-pass Hill estimate.

The data are censored based on their euclidean distance from the fit line.

Using a one-norm measure for the bias and a two-norm measure for variance

of the difference between the data and the fitting model, and based on results from

simulations for 32 vegetative HSI data clusters using 155 bands (6-30, 34-76, 78-

95, 97-101, 118-149, 179-210) out of an available 224 bands, the censoring criteria

are: a) points with a distance greater than μbias +
√
σvariance are excluded for MD

distributions with
√
σMD < 0.1D, b) 2 · μbias +

√
σvariance for MD distributions with
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Figure 5.9: A cluster of deciduous forest containing 11,557 pixels.

0.1D <
√
σMD < 0.2D, and, rarely, c) 3 · μbias +

√
σvariance for MD distributions

with
√
σMD > 0.2D, where μbias is the mean one-norm distance of each point in

the data subset to the fit line, σMD is the corresponding standard deviation in the

distances, σvariance is the standard deviation in the two-norm distances, and D is the

dimensionality of the data (in this case D = 155). Figure 5.11 shows the data points

remaining and a least squares line fit with a slope value from the second-pass Hill

estimate of k.
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Figure 5.10: A quantile plot based on log-transformed HSI MD data from the
cluster in Figure 5.8. The cutoff u is set such that the largest 1,000 data points are
analyzed. Notice that the largest extreme values tend to deviate greatly from the fit
line.

Cluster 2 is analyzed in the same fashion. The estimator produces an optimal k

value (for u = 1, 000) in the minimal mean squared error sense. The GPD fit to these

data are shown in Figures 5.12 and 5.13. For cluster 1 kHill = 0.12 with a MSE for

the initial fit of 2.1E-03. The MSE for the improved fit with kopt = 0.09 is 0.7E-03.

For cluster 2 kHill = 0.1 with a MSE for the initial fit is 3.5E-02. The MSE for the

improved fit with kopt = 0.08 is 3.3E-02. The process for the improved Hill method is

outlined in Figure 5.14.

The improved two-pass ML tail-index estimator is applied to the same clusters.

The analysis for cluster 1 is summarized in Figure 5.16 with the exceedance plots of

the GPDs fit to the MD data with k from the ML and improved ML approach. The
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Figure 5.11: A quantile plot based on log-transformed HSI MD data from the
cluster in Figure 5.8 optimized by censoring the effect of deviations from the majority
of the data

analysis for cluster 2 is summarized in Figure 5.17. The process for the improved ML

estimator is shown in Figure 5.15.

5.5 Results from the Improved Estimators Applied to HSI Data

Results show that the two-pass improved Hill and ML estimators provide a

better fit to the entire MD distribution in the minimum mean squared error sense.

The results are obtained by analyzing only the extreme data points (u = 1, 000). Of

interest is the sensitivity of estimators to the threshold u. One of the main drawbacks

of many tail-index estimators is that they are highly sensitive to varying threshold

values. The performance of the two-pass optimized Hill estimator is shown in Figure

5.18 for cluster 1 and Figure 5.19 for cluster 2 compared to the classic Hill estimator.
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Figure 5.12: An exceedance plot of the HSI MD data (solid lines) from the cluster
in Figure 5.8, the initial GPD fit to the data with the Hill estimate (u = 1, 000) for
k (thin dotted line), and the second-pass improved Hill estimated k GPD fit (thick
dotted line). The MSE for the initial fit is 2.1E-03 and the MSE for the optimized fit
is 0.7E-03.

The performance of the optimized ML estimator is shown in Figure 5.20 for cluster 1

and in Figure 5.21 for cluster 2.

The difference between the maximum k value and the minimum for the classic

Hill estimator is 0.13 for cluster 1 and 0.04 for cluster 2. For the optimized estimator,

these values are 0.11 and 0.035, respectively. Comparatively, the improved estimator

is slightly less sensitive to threshold variance.

Notice also the large fluctuation in the estimator from very small thresholds

to gradually increasing thresholds. This result is due to the fact that at smaller

thresholds the ends of the tail are modeled, which is where (for HSI data) anomalous

data appear. These data points exhibit the largest MD values, as they are most
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Figure 5.13: An exceedance plot of the HSI MD data (solid lines) from the cluster
in Figure 5.9, the initial GPD fit to the data with the Hill estimate (u = 1, 000) for
k (thin dotted line), and the second-pass improved Hill estimated k GPD fit (thick
dotted line). The MSE for the initial fit is 3.5E-02 and the MSE for the optimized fit
is 3.3E-02.

unlike the rest of the cluster pixels. In this region data exploitation routines begin to

discriminate between consistency in a cluster and outliers/anomalies. Therefore, for

the purposes of fitting a model which correctly describes the behavior of the majority

of the cluster data, abrupt fluctuations may be ignored and a rule may be developed

to select thresholds above this region.

The threshold plots for the ML estimator and optimized ML estimator are

shown in Figure 5.20 and Figure 5.21. The plots confirm the statement that the

ML estimator improves in performance as the number of data points in the subset

increases. Also, disparity between the ML and improved ML estimators decreases as

the subset size increases and eventually the two estimators perform alike. This result
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Figure 5.14: A flowchart for the process for Hill estimator optimization. The ex-
ternal inputs result from threshold analysis (selecting u) and cluster MD distribution
analysis (determining bias-increasing data points).

is also illustrated in the plots of MSE for ML and improved ML shown in Figure 5.22

for cluster 1 and Figure 5.23 for cluster 2.

5.6 Summary

The improved ML estimator (optimized in the sense of minimizing MSE) consis-

tently outperforms the traditional ML estimator as shown for the two examples here.

In repeated application to different HSI clusters similar performance is observed. Also,

as mentioned above, the ML and improved ML estimates converge in performance as

the size of the data subset increases.

The two-pass improved Hill estimator provides a fit with a smaller MSE than

the Hill estimator on the two HSI vegetation clusters. The two methods are com-

parable in threshold sensitivity, with the improved estimator showing slightly better
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Figure 5.15: A flowchart for ML estimator optimization. Here the EQRF value
provides feedback for a lower bound and ML provides an upper bound. Finding the
value which minimizes the squared error provides robust output.

performance. From Figure 5.18 and Figure 5.19, there also appears to be a lower k

value and an upper k value that describe the GPD which fits the data.

For cluster 1, using only the most extreme data points (ends of the tail/ small

u), initially indicates the upper k value. At about u = 1, 000, the lower k value

is indicated. The subset is roughly one-tenth of the total data set size, and thus

the majority of the tail of the distribution is taken into account. As u increases to

incorporate more of the body of the distribution, the upper k value is approached

again.

This result indicates that cluster 1 may be modeled by more than one GPD.

Cluster 1 is the larger of the two analyzed in this work, with 21,384 pixels. Therefore,

it is reasonable that there is more than one process involved in the material content.

As in [54] and [55], a mixture of GPDs, one for the body of the data and one for

the tail, should be implemented. Cluster 2 is the smaller of the two with 11,557

pixels. From Figure 5.19 it can be seen that the initial tail extremity k value is large.
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Figure 5.16: An exceedance plot of the HSI MD data (solid lines) from the cluster
in Figure 5.8, the initial GPD fit to the data with the ML estimate (u = 1, 000) for
k (thin dotted line), and the second-pass optimized ML estimated k GPD fit (thick
dotted line). The MSE for the initial fit is 2.1E-03 and the MSE for the optimized fit
is 7.2E-06.

However, as u increases k for the entire distribution appears to converge to a single

value. Here, a single GPD model of the data is sufficient. Further work on mixtures

of GPDs that model HSI data clusters is needed using the framework developed here.
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Figure 5.17: An exceedance plot of the HSI MD data (solid lines) from the cluster
in Figure 5.9, the initial GPD fit to the data with the ML estimate (u = 1, 000) for
k (thin dotted line), and the second-pass optimized ML estimated k GPD fit (thick
dotted line). The MSE for the initial fit is 3.0E-03 and the MSE for the optimized fit
is 7.5E-04.
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Figure 5.18: Classic Hill estimator and two-pass optimized Hill estimator perfor-
mance with respect to changing the threshold u for the cluster in Figure 5.8.
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Figure 5.19: Classic Hill estimator and two-pass optimized Hill estimator perfor-
mance with respect to changing the threshold u for the cluster in Figure 5.9.
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Figure 5.20: ML estimator and improved ML estimator performance with respect
to changing the threshold u for the cluster in Figure 5.8.

150



0 1000 2000 3000 4000 5000 6000
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Threshold

T
ai

l−
in

d
ex

 

 

ML Estimate
Optimized ML Estimate

Figure 5.21: ML estimator and improved ML estimator performance with respect
to changing the threshold u for the cluster in Figure 5.9.
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Figure 5.22: MSE of the ML estimator and improved ML estimator with respect
to changing the threshold u for the cluster in Figure 5.8.
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Figure 5.23: MSE of the ML estimator and improved ML estimator with respect
to changing the threshold u for the cluster in Figure 5.9.
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VI. Comparing Approaches and Assessing Utility

In this chapter, the MD data fitting method developed using an optimized Johnson SL

distribution is compared against the two optimized GPD fitting methods. The com-

parison is performed on a well-studied HSI data cube with specific regions of interest

(ROIs) identified as unique background types. The different methods developed here

are compared for optimality with respect to minimizing the MSE in fitting MD data,

robustness to possible “outliers,” and computational efficiency.

6.1 Comparison of Methods on Benchmark HSI ROIs

The HSI cube selected for performing a comparison of methods is from a Ft AP

Hill image taken by the AVIRIS sensor, run 03, scene 09, on 08 November 1999. This

scene is well characterized from ground information, i.e., image pixels are correlated to

information in the ground spatial coverage. From the data collected on the ground, the

image pixels are segmented into ROIs that exhibit similar background characteristics.

For example, an ROI of an area with a particular type of vegetation is created, which

mimics the process of clustering similar pixels into a specific class (as mentioned in

Section 2.4). The scene is shown in Figure 6.1.

This scene is used in Chapter III. However the clusters in Chapter III are results

of SEM clustering and not based on ground features. Therefore, a more involved

description of the scene is not attempted in that Chapter. Also, two clusters from

this scene are used in developing the optimal tail-index estimation methods for a

GPD model in Chapter V. Again, explanation of the utility of ground information

ROIs is not necessary in that Chapter. In this analysis, a description of the content

of the ROIs is necessary to explain the variability in the scene and the performance

of different methods for fitting the MD data.

In the next Section each ROI is analyzed by collecting the MD data and then

fitting the distribution of the MDs using a mixture of F -distributions, the Johnson SL

distribution, and a GPD with two optimized estimators for the tail-index parameter.

Each separate ROI is briefly described and an analysis performed using the four
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Figure 6.1: The benchmark ROIs (clusters) from the Ft AP Hill AVIRIS data
collect highlighted by the masks over each area of interest. In the next Section each
ROI is described and then analyzed by the methods developed here for fitting MD
data.

methods. A probability of exceedance plot for each method on the ROI is then shown

as an initial result. In the Section following the performance of each fit is tabulated,

further results are given, and comments made about each analysis.
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6.2 Application of Different Routines

The first ROI is the South Panels Field Cropped (SPFC) region, shown in Figure

6.2, which contains 4,466 pixels. The variability in this region is depicted in the plot

of mean pixel spectrum, standard deviations and upper/lower spectral extremes in

Figure 6.3. This Figure is generated using the ROI statistics tool found in the ENVI

software, which is a hyperspectral image analysis software suite [76].

Figure 6.2: The ROI of a field of grass at the southern end of the image. The
ROI also contains pixels mixed with dirt, grass, and small rectangular panels. This
mixture of different pixels in the ROI creates the variability noticed in Figure 6.3

The MD data are fit using the mixture of F -distributions, the Johnson SL

distribution, and a GPD with two optimized estimators for the tail-index parameter.

The result is displayed in Figure 6.4. Tabulated results are given in the next Section.

The next ROI is the Mixed Forest Cropped (MFC) region, shown in Figure

6.5, which contains 9,157 pixels. The variability in this region is depicted in the plot

of mean pixel spectrum, standard deviations and upper/lower spectral extremes in

Figure 6.6.
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Figure 6.3: The spectral variability for the ROI in Figure 6.2. The y-axis values are
units of spectral reflectance. The middle spectrum is the mean, the adjacent spectra
above and below represent one standard deviation, and the top and bottom spectra
are the minimum and maximum in magnitude.

The remaining six ROIs are shown along with their spectral statistics and ex-

ceedance plots resulting from the application of the methods described in Appendix

F . Each ROI is briefly described in the Figures. The ROIs are each abbreviated as:

• Mixed Coniferous Forest Cropped (MCFC)

• Deciduous Forest Cropped (DFC)

• Coniferous Forest Cropped (CFC)

• All Loblolly Pine Plantations Cropped (ALPPC)

• Coniferous Forest Cropped Reduced (CFCR)

• All Loblolly Pine Plantations Cropped Reduced (ALPPCR)

The tabulated performance of each fitting method is given in the next Section.

6.3 Tables of Results and Comments

The results from the analysis described in the previous Section and the output

shown in Appendix F are detailed in the following tables, where a separate table for

each ROI is given that lists the performance metrics for each method. Computational
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Figure 6.4: Probability of exceedance plot showing the performance of each method
used to fit the MD distribution from the SPFC ROI. Notice how the F -mixture follows
all the most extreme data points. The MSE and weighted MSE are given in tabulated
form in the next section.

time is based on each routine programmed and executed in MatlabR© version 7.1 on a

conventional Pentium 4 processor. A synopsis of the findings from the tables is given

at the end of this section. These findings lead to discussions and conclusions on the

optimal method for HSI processing of MD data in the next section.

In comparison to Chapter III and Chapter V, the MSE and weighted MSE

values are different in this Chapter due to the way the metrics are computed. In the

analysis in this chapter the MSE and weighted MSE are computed in the region 10−2

to the smallest value on the y-axis on the probability of exceedance plot for the data

(which results in fitting the tail of the data set), and are not computed over the entire

data set (as in Chapter III and Chapter V). Because the interest is in fitting the

tails of the data. Therefore, the MSE and weighted MSE values are different in this

chapter.
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Figure 6.5: The ROI of an assortment of tree types. The variability in this cluster of
pixels is shown in Figure 6.6. The MD data from this cluster are fit with a mixture of
F -distributions, a Johnson SL distribution, and a GPD with two optimized estimators
for the tail-index parameter. Result are displayed in Figure 6.7.

Figure 6.6: The spectral variability for the ROI in Figure 6.5. The y-axis values are
units of spectral reflectance. The middle spectrum is the mean, the adjacent spectra
above and below are one standard deviation, and the top and bottom spectra are the
minimum and maximum in magnitude.
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Figure 6.7: Probability of exceedance plot showing the performance of each method
used to fit the MD distribution from the MFC ROI. Notice how the F -mixture follows
all the most extreme data points. The MSE and weighted MSE are given in tabulated
form in the next Section.

Also, in order to obtain the best possible fit for the GPD fitting methods, the

cutoff u = 1000 used in Chapter V is not used in this comparative analysis. Instead,

u = 0.2·size(MD) is used for tail-index estimators for GPD models. This choice

increases the performance of the tail-index estimator, in accord with the estimator

threshold sensitivity analysis in Chapter IV. As a result, some of the exceedance plots

of the GPD fit change with respect to the exceedance plots in Chapter V.

From the tables, it is very clear that the GPD fitting methods with the improved

tail-index estimators are the most computationally efficient. The Johnson method is

the fastest by far, but yields less than optimal results (MSE and weighted MSE). The

F -Mixture method yields results comparable to the GPD fitting but requires much

more computational time.
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Table 6.1: Summary of performance for
SPFC MD Data (ROI = 4,466 pixels).

Method Computation Time MSE Weighted MSE
(seconds) (×10−6) (×10−4)

F -distribution Mixture 183.05 1.78 7.63
Johnson SL Distribution 0.06 2.28 9.83

GPD with optimized-Hill k 43.94 0.07 0.33
GPD with optimized-ML k 12.65 0.09 0.44

Table 6.2: Summary of performance for
MFC MD Data (ROI = 9,157 pixels).

Method Computation Time MSE Weighted MSE
(seconds) (×10−6) (×10−4)

F -distribution Mixture 185.24 0.27 25.10
Johnson SL Distribution 0.06 4.51 34.31

GPD with optimized-Hill k 84.11 0.06 7.03
GPD with optimized-ML k 22.50 0.14 16.04

Table 6.3: Summary of performance for
MCFC MD Data (ROI = 23,411 pixels).

Method Computation Time MSE Weighted MSE
(seconds) (×10−7) (×10−2)

F -distribution Mixture 189.87 0.65 1.83
Johnson SL Distribution 0.06 0.61 2.08

GPD with optimized-Hill k 134.64 0.25 1.30
GPD with optimized-ML k 62.94 1.69 5.30

Table 6.4: Summary of performance for
DFC MD Data (ROI = 11,557 pixels).

Method Computation Time MSE Weighted MSE
(seconds) (×10−6) (×10−4)

F -distribution Mixture 187.28 0.24 1.11
Johnson SL Distribution 0.06 1.57 7.28

GPD with optimized-Hill k 113.14 0.01 0.07
GPD with optimized-ML k 28.62 0.03 0.18

For the MSE and weighted MSE, in a majority of cases, the GPD fit with

optimized tail-index estimators outperforms the other two methods by an order of
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Table 6.5: Summary of performance for
CFC MD Data (ROI = 9,212 pixels).

Method Computation Time MSE Weighted MSE
(seconds) (×10−6) (×10−4)

F -distribution Mixture 185.81 0.07 0.25
Johnson SL Distribution 0.06 3.19 9.96

GPD with optimized-Hill k 79.97 0.05 0.17
GPD with optimized-ML k 22.13 0.06 0.19

Table 6.6: Summary of performance for
ALPPC MD Data (ROI = 14,257 pixels).

Method Computation Time MSE Weighted MSE
(seconds) (×10−6) (×10−4)

F -distribution Mixture 187.76 3.27 23.03
Johnson SL Distribution 0.07 0.49 20.99

GPD with optimized-Hill k 129.22 0.36 19.10
GPD with optimized-ML k 38.16 0.21 14.60

Table 6.7: Summary of performance for
CFCR MD Data (ROI = 8,533 pixels).

Method Computation Time MSE Weighted MSE
(seconds) (×10−6) (×10−4)

F -distribution Mixture 183.15 0.42 11.80
Johnson SL Distribution 0.05 0.08 2.43

GPD with optimized-Hill k 118.92 0.02 0.85
GPD with optimized-ML k 23.96 0.03 1.01

Table 6.8: Summary of performance for
ALPPCR MD Data (ROI = 12,976 pixels).

Method Computation Time MSE Weighted MSE
(seconds) (×10−6) (×10−4)

F -distribution Mixture 188.43 0.07 0.18
Johnson SL Distribution 0.06 2.25 4.60

GPD with optimized-Hill k 121.01 0.01 0.22
GPD with optimized-ML k 32.72 0.11 1.13

162



magnitude or greater. In the cases where the MSE metric shows close scores, the

weighted MSE provides a good discriminator, offering a scale which takes into ac-

count the greater importance of fit in further regions of the tail. For example, in the

DFC ROI summary in Table 6.4, the GPD with both optimized tail-index estimators

achieves low MSE values for each. However, the weighted MSE shows that, in this

case, the optimized ML estimation method results in a goodness-of-fit metric almost

three times better. Since the interest here is in fitting the entire tail of the distribu-

tion (not the body of the distribution or only the most extreme portions of the tail of

the distribution), the weighted MSE is valuable because it provides extra information

regarding deviations from the trend of the tail.

For the “trend” of the tail, the F -mixture and optimized GPD fitting methods

provide good models. The Johnson SL method does not follow the trend of the tail

(it tends to model the majority of the available data points and then abruptly falls

off at the furthest region of the tail), which leads to a poor MSE score and an even

worse weighted MSE. However, as opposed to the Johnson SL behavior, the F -mixture

follows the trend of the tail too closely, causing it to overcompensate for the furthest

extremes of the tail at the expense of other regions in the tail.

This overcompensation by the F -mixture is detrimental to robust performance.

As noticed in Figure 6.7, the F -mixture takes extreme swings to fit the furthest points

in the tail, which results in a poor fit to the rest of the tail. In comparison, the GPD

methods with optimized tail-index estimators follow the trend of the tail but do not

shift upward to match the most extreme data points. Given a ROI where background

pixels are mixed with anomalous target pixels, the F -mixture attempts to fit the

anomalous pixels, while the optimized GPD follows the trend of the background data

and clearly indicates anomalous pixels as those lying above and to the right. This

type of behavior is also seen in the ALPPC ROI exceedance plots and the table data.
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6.4 Summary of Results

This analysis identifies the most desirable method for fitting a distribution of

MD data from an HSI cube. The different methods are compared for optimality with

respect to minimizing the MSE in fitting MD data, robustness to possible “outliers,”

and computational efficiency. It is clear from the figures, tables, and discussion that

GPD methods with optimized tail-index estimators are preferred over the Johnson SL

distribution and F-mixture fitting techniques.

These improved GPD fitting methods are developed for the generic case of fit-

ting a distribution which exhibits possible outliers (possible targets in a target plus

background scenario) in the data set. They may be further developed for robustness

and optimality in different scenarios. For example, if a mixture of two GPDs fit to

a MD distribution is desired, one tail-index estimation technique for a GPD may be

modified to include possible outliers (one developed to fit all of the points in the

extremities of the tail) and another modified to exclude a greater number of possi-

ble outliers (one tailored to fit the body). The mechanics for such modifications are

identified and described in the previous Chapter. For this generic case (a single dis-

tribution model fits the data) these improved tail-index estimators for GPDs perform

best given the specified criteria and results.

In conclusion, this chapter presents the final phase of research and discusses the

last of five research objectives. The capstone is the identification and validation of an

optimal method for modeling MD data distributions from an HSI cube. A review of

all research objectives is given in the next chapter along with a final summary, review

of the contributions, and recommendations for future work.
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VII. Summary and Conclusions

This research has developed methods that improve models of MD distributions from

HSI data. Accurate models of MD behavior are important for achieving reliable

metrics in post-processing routines and setting accurate thresholds for robust detector

performance. A summary of the work conducted here is presented below through a

review of objectives, a highlight of contributions, and a discussion of recommendations

for future research.

7.1 Summary of Results

Objective 1 : Determine an optimal Johnson distribution model for HSI MD

data. The Johnson SL distribution was determined to model MD distributions well.

Because it estimates its parameters directly from quantile shifts in the data, it is

susceptible to perturbations, where perturbations are recognized as possible “outliers”

and/or anomalous data that cause a shift in the rate of change in the slope of the

exceedance plot of the data. This model was optimized against the perturbations by

mitigating the effect of these “bumps” in the exceedance plot, thus making the model

more robust to data corruption.

Objective 2 : Determine a multivariate elliptically contoured distribution model

from the univariate Johnson distribution. A multivariate EC model was derived from

the univariate Johnson distribution. This model was developed using EC theory,

and the derivation was compared to that of the multivariate t-distributed EC model

from the univariate F -distribution of MD. Also, the final form of the EC density

function was found to be similar to other well-known multivariate forms which result

in heavy-tailed MD distributions.

Objective 3 : Determine a viable parameter estimation method for obtaining

tail-index parameters for GPD models. Different parameter estimation methods were

analyzed for fitting a GPD to MD data. These methods were tested with respect

to suitability for HSI MD data models and to sensitivity of the estimators to data

quantity. The most robust estimation method was determined to be the ML estimator,
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along with an approximation to the ML estimator, the Hill estimator. The most

effective data subset threshold was found to be 20 % of the HSI cluster size.

Also, a posterior density estimation method was developed using Bayesian tech-

niques with a gamma distributed prior for k. This method incorporates Parzen win-

dow density synthesis to facilitate estimation from only a few points. The result is

a method from which posterior metrics can be derived in a computationally efficient

manner from a few guesses at k values for a GPD model of a data set.

Objective 4 : Develop an optimal method for obtaining robust tail-index estimates

for GPD models. The ML estimation and Hill estimation methods were optimized

for minimal MSE with respect to possible outliers and perturbations in data. An

automated, robust, and computationally efficient algorithm was developed for the

GPD parameter estimation method that is suitable for HSI data processing. The

algorithm provides options to the optimization process so that it can be modified to

change the performance of the estimator. As a result of simulations performed on

similar data, these options were set to values that yield optimal results given HSI MD

data distributions from vegetative clusters. With similar experimentation, different

cluster types can easily be accommodated.

Objective 5 : Assess the utility of Johnson and GPD models for stochastic HSI

data processing. The Johnson model was compared against the GPD model, and

the estimation methods and their robustness under different data configurations are

assessed. A comparison was performed on a well-studied HSI data cube with specific

ROIs identified as unique background types. The different methods developed in this

research were compared for optimality with respect to minimizing the MSE in fitting

MD data, robustness to possible “outliers,” and computational efficiency. The results

of this comparison are shown in Figure 7.1.

Based on these results, the optimized tail-index estimation routines for GPD

fitting to MD data were found to be best for efficiently achieving greater accuracy in

stochastic HSI data processing.
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Figure 7.1: Matrix of results from the comparative analysis. The diagonally hatched
boxes represent undesirable performance, the dotted box represents less than optimal
performance, and the white boxes represent optimal performance. Notice that no
column has all white entries. However, the optimized GPD model results are most
favorable compared to the other columns.

7.2 Contributions

This research advances HSI data processing and exploitation. The following are

unique contributions of this research:

• Determined a means of mitigating possible “outlier” effects to Johnson SL dis-

tribution models of MD data. The application of Johnson SL distributions to

a data set is not new, however, using the second derivative of the exceedance

plots of the SL model to mitigate the effects of possible “outliers” on the model

fit is unique to the field.

• Determined a form for the multivariate data density function that generates

MD data distributed according to a Johnson SL distribution. The EC model
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developed to describe the multivariate density function that generates the MD

distributions with given Johnson SL distribution parameters is unique and is

not in the literature associated with Johnson distributions and/or multivariate

EC distributions.

• Identified a tail-index parameter estimation technique that is optimal for HSI

MD data processing. Although modeling MD data with GPDs has been consid-

ered in the literature, research to determine the best type of tail-index estimator

has not been accomplished prior to this work. In particular, threshold sensi-

tivity analysis with second derivatives and posterior density estimation using

Bayesian and Parzen window techniques is unique.

• Developed a two-pass algorithm that optimizes the ML and Hill estimators of

tail-index values for GPD models. The Hill and ML estimators are optimized

against the effects of possible “outliers” in order to improve the MSE of the

GPD fit to MD distributions. This optimized technique is a new and unique

algorithm for robust HSI MD processing, and it is implemented to demonstrate

improved performance.

• Developed a tail-index parameter posterior density estimator which uses limited

available data. A Bayesian estimation process is applied which uses a uniform

prior density to estimate the posterior density of the tail-index parameter from a

GPD model that fits heavy-tailed data. The posterior density is then estimated

using gamma Parzen window kernels. The procedure is important because it

provides a capability for extracting metrics on the estimated tail-index value.

For ML estimation, confidence intervals and further metrics may be derived

from asymptotic properties. However, for real-world and real-time data, sample

sizes rarely approach the asymptotic limit, and a method that is effective with

the data available is necessary. The method described here demonstrates the

development of a density that estimates the tail-index parameter of a data set

(similar to HSI MD data) using only nine inputs.
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7.3 Recommendations for Future Research

The multivariate EC model that generates the Johnson SL distributed MDs was

given. Further research into simulating HSI-type multivariate data, which results in

MDs distributed according to the Johnson SL distribution with the same parameters,

could be pursued. This further work may be especially promising given the similarity

between the form of the derived multivariate EC function and known multivariate

density functions.

In analyzing the initial performance of the optimized Hill and ML estimators

in Chapter V, it was noticed that there are two GPD forms that model MD distri-

butions from HSI data. The optimized methods developed here, and methods that

employ linear mixing of two F -distributions used to model MDs, could be investi-

gated to develop more insight into using two GPDs to model the MD data. All of the

parameters of the GPDs may be obtained efficiently, and the only other variable is

the weighting coefficient, for which a simple search for weights between zero and one

could be implemented.

Finally, because the GEVs introduced here model univariate data, an investiga-

tion into data from single HSI bands can be performed. Information on the extent of

heavy (or light) tails from data in individual bands could lead to information on band

selection and band rejection algorithms for HSI data processing. Also, multivariate

GEV models may be developed by observing this phenomenon and the correlation

between band parameters.
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Appendix A. SEM Mechanics

This appendix briefly describes the mechanics of the Stochastic Expectation Max-

imization (SEM) algorithm used in obtaining clusters of similar material types in

an HSI image. SEM is a variant of the EM algorithm where, instead of using the

statistics of all available pixels in an image during the probability assignment process,

statistical information from each respective cluster is used in assigning a probability

of a pixel belonging to that cluster [18,54].

Much of the mechanics of SEM are similar to EM, other than that SEM uses

individual cluster statistics and EM uses all available data. However, a Gaussian

model is assumed for the composition of each cluster and, therefore, the expectation

step of the algorithm needs further explanation. Specifically, the mechanics describing

how a pixel is determined to belong to a specific cluster, given the cluster statistics,

is explained below.

Expectation Step Mechanics. The posterior probability (probability of pixel xn

given cluster k (also known as the “abundance value”)) is calculated by iterating on

P (xn | Ψk) =
p(Ψk | xn)P (xn)

p(xn)
, (A.1)

where xn is the nth pixel and Ψk represent the parameters associated with cluster k.

A lowercase p represents likelihood and an uppercase P represents a probability. This

expression is Bayes’ rule, which may be expressed in words as

posterior =
likelihood× prior

evidence
.

Here, likelihood describes the likelihood of cluster k given pixel xn, prior is taken out

of the cluster information from the previous iteration (i.e., number of pixels in cluster

k divided by number of pixels in image), and evidence is the overall likelihood of the
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data set. In using the finite mixture model with Gaussians describing the distribution

of pixels within their respective clusters, the posterior probability is

P (xn | Ψk) =
π̂kfd(xn | μ̂k, Γ̂k)

L(xn | Ψk)
,

where π̂k is the current estimate of the prior, fd(xn | μ̂k, Γ̂k) is the likelihood (current

multivariate Gaussian model of the cluster given the current estimates of the param-

eters), and L(xn | Ψk) is the evidence (overall data set likelihood). Expanding this

expression yields

P (xn | Ψk) =
π̂k

∣∣∣Γ̂k

∣∣∣− 1
2
exp

[
−1

2
(x− μ̂k)

T Γ̂−1
k (x− μ̂k)

]
∑M

k=1

∣∣∣Γ̂k

∣∣∣− 1
2
exp

[
−1

2
(x− μ̂k)

T Γ̂−1
k (x− μ̂k)

] . (A.2)

Taking the logarithm of both sides,

ln[P (xn | Ψk)] = [Ck − 1

2
MDk] − ln(D).

Here Ck stands for the value in the expression ln

(
π̂k

∣∣∣Γ̂k

∣∣∣− 1
2

)
, D is the expression

in the denominator of Equation (A.2), and MDk represents the MD from the test

pixel to the mean of the kth cluster. If there are only three clusters (M = 3), the

denominator term is

ln(D) = ln [π̂1

∣∣∣Γ̂1

∣∣∣− 1
2
exp

[
−1

2
(x− μ̂1)

T Γ̂−1
1 (x− μ̂1)

]
] + . . .

. . .+ ln [π̂2

∣∣∣Γ̂2

∣∣∣− 1
2
exp

[
−1

2
(x− μ̂2)

T Γ̂−1
2 (x− μ̂2)

]
] + . . .

. . .+ ln [π̂3

∣∣∣Γ̂3

∣∣∣− 1
2
exp

[
−1

2
(x− μ̂3)

T Γ̂−1
3 (x− μ̂3)

]
],
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which results in

ln(D) = [C1 − 1

2
MD1] + [C2 − 1

2
MD2] + [C3 − 1

2
MD3].

Also, if it is desired to find the posterior probability of the nth pixel given cluster 1,

then

ln[P (xn | Ψk)] =
1

2
MD2 +

1

2
MD3 − C2 − C3,

which yields

Posterior = exp (−Ck̄ +
1

2
(MD2 +MD3)) (A.3)

=
exp (1

2
(MD2 +MD3))

exp (Ck̄)
, (A.4)

where k̄ includes the clusters information

(
π̂k

∣∣∣Γ̂k

∣∣∣− 1
2

)
not associated with the kth

cluster. The denominator in Equation (A.3) involves the covariance matrices of clus-

ters 2 and 3 such that

exp (Ck̄) = exp (C2 + C3)

= exp (π̂2

∣∣∣Γ̂2

∣∣∣− 1
2

+ π̂3

∣∣∣Γ̂3

∣∣∣− 1
2
).

The behavior of this expression over a range of
∣∣∣Γ̂k

∣∣∣− 1
2

values is given in Figure A.1.
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Figure A.1: Behavior of the denominator as a result of covariance matrix determi-
nant size.

Initially, when clusters are poorly defined, the |Γk|−
1
2 values are larger. There-

fore, the denominator for the posterior probability is smaller:

Posterior =
exp (MD2 +MD3)

smaller value
.

Two cases are, first, if xn belongs to cluster 1, then MD2 and MD3 tend to be larger,

and the posterior probability expression is

Posterior ≈ larger value

smaller value
,
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yielding a higher value for the posterior probability, as expected. Second, if xn does

not belong to cluster 1, then MD2 or MD3 are smaller, and the posterior probability

expression is

Posterior ≈ smaller value

smaller value
,

yielding a lower value for the posterior probability, again as expected.

As the routine converges, clusters become more well-defined and |Γk|−
1
2 values

become smaller. The denominator for the posterior probability is then larger, i.e.,

Posterior =
exp (MD2 +MD3)

larger value
,

resulting in faster convergence.
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Appendix B. Simulations for ML, MOM and PWM Estimators

This appendix shows the results of ML, MOM and PWM estimators on simulated

GPD RVs with tail-index equal to γ.
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Appendix C. Simulations for ML, MOM and PWM Estimators

This appendix shows the results of ML, MOM and PWM estimators on simulated |tν |
RVs:
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Appendix D. Simulations Results for EPM, ML, MOM and PWM

Estimators

Tables of simulation results with GPD, t-distributed and F -distributed RVs.
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Table D.1: Summary of Bias on Estimate of k using EPM Estimator on GPD data

cutoff k = 0.1 k = 0.5 k = 1.0 k = 1.5 k = 2.0 k = 2.5
10 0.404 0.098 9.100 0.811 0.510 1.160
30 0.078 1.620 0.890 0.080 0.790 1.115
50 0.378 0.212 0.390 1.820 0.040 2.260
70 0.500 0.019 0.780 1.170 0.740 0.760
90 0.488 0.433 0.436 0.290 0.710 0.370
110 0.054 0.602 0.567 0.530 0.617 0.170
130 0.491 0.414 0.526 0.140 0.150 0.770
150 0.823 0.630 0.644 0.370 0.190 1.100
170 0.703 0.706 0.609 1.280 0.790 1.330
190 0.800 1.030 0.470 1.580 0.480 1.890
210 0.886 0.858 0.409 1.230 0.410 2.380
230 0.330 0.444 0.010 1.080 0.210 1.070
250 0.087 0.534 0.068 1.250 0.450 1.010
270 0.414 0.768 0.220 0.770 0.290 0.020
290 0.940 0.486 0.600 0.360 0.470 0.190
310 1.130 0.416 0.420 0.360 0.570 0.980
330 1.120 0.511 1.280 0.360 0.780 0.020
350 0.302 0.558 0.350 0.140 0.490 0.240
370 1.280 0.348 0.150 0.620 0.790 0.010
390 1.600 0.516 0.090 0.570 0.400 0.120
410 1.770 0.666 0.190 0.260 0.550 0.270
430 1.800 0.360 0.211 0.260 0.840 0.330
450 2.130 0.321 0.225 0.410 0.610 0.460
470 2.200 0.434 0.348 0.110 0.440 0.740
490 2.730 0.457 0.324 0.250 0.570 0.510
500 0.100 0.100 1.000 1.000 1.500 2.000
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Table D.2: Summary of Bias on Estimate of k using MLE Estimator on GPD data

cutoff k = 0.1 k = 0.5 k = 1.0 k = 1.5 k = 2.0 k = 2.5
10 1.200 0.820 0.330 0.130 0.530 0.430
30 0.213 0.151 0.690 0.280 0.060 0.060
50 0.299 0.022 0.670 0.450 0.160 0.410
70 0.249 0.172 0.560 0.370 0.120 0.340
90 0.213 0.026 0.750 0.180 0.150 0.290
110 0.129 0.055 0.760 0.180 0.410 0.270
130 0.146 0.036 0.680 0.040 0.230 0.350
150 0.172 0.057 0.700 0.120 0.130 0.380
170 0.173 0.061 0.630 0.220 0.030 0.370
190 0.159 0.086 0.540 0.240 0.060 0.380
210 0.148 0.075 0.480 0.210 0.050 0.380
230 0.124 0.030 0.370 0.180 0.070 0.190
250 0.087 0.037 0.340 0.170 0.030 0.160
270 0.107 0.060 0.290 0.110 0.040 0.050
290 0.116 0.025 0.250 0.030 0.010 0.060
310 0.121 0.010 0.230 0.010 0.000 0.150
330 0.123 0.016 0.170 0.010 0.030 0.010
350 0.119 0.017 0.190 0.040 0.000 0.010
370 0.108 0.013 0.190 0.000 0.030 0.030
390 0.109 0.006 0.190 0.020 0.010 0.060
410 0.109 0.004 0.180 0.060 0.010 0.090
430 0.108 0.025 0.220 0.070 0.050 0.110
450 0.112 0.037 0.220 0.050 0.020 0.130
470 0.108 0.020 0.230 0.100 0.010 0.160
490 0.114 0.019 0.230 0.080 0.010 0.150
500 0.114 0.018 0.220 0.078 0.010 0.140

202



Table D.3: Summary of Bias on Estimate of k using MOM Estimator on GPD data

cutoff k = 0.1 k = 0.5 k = 1.0 k = 1.5 k = 2.0 k = 2.5
10 0.459 0.191 0.548 1.072 1.620 2.235
30 0.138 0.209 0.517 1.031 1.543 2.067
50 0.251 0.169 0.511 1.020 1.526 2.039
70 0.216 0.139 0.508 1.015 1.519 2.028
90 0.184 0.145 0.506 1.012 1.515 2.022
110 0.115 0.143 0.505 1.010 1.512 2.018
130 0.131 0.138 0.504 1.009 1.510 2.015
150 0.158 0.137 0.504 1.008 1.509 2.013
170 0.161 0.135 0.503 1.007 1.508 2.011
190 0.148 0.136 0.503 1.006 1.507 2.010
210 0.138 0.133 0.503 1.006 1.506 2.009
230 0.117 0.126 0.502 1.005 1.506 2.008
250 0.089 0.125 0.502 1.005 1.505 2.008
270 0.104 0.126 0.502 1.004 1.505 2.007
290 0.111 0.122 0.502 1.004 1.505 2.007
310 0.116 0.119 0.502 1.004 1.504 2.006
330 0.118 0.118 0.502 1.004 1.504 2.006
350 0.115 0.117 0.502 1.003 1.504 2.005
370 0.105 0.114 0.501 1.003 1.504 2.005
390 0.107 0.114 0.501 1.003 1.503 2.005
410 0.107 0.112 0.501 1.003 1.503 2.005
430 0.106 0.109 0.501 1.003 1.503 2.004
450 0.109 0.107 0.501 1.003 1.503 2.004
470 0.106 0.107 0.501 1.003 1.503 2.004
490 0.112 0.107 0.501 1.003 1.503 2.004
500 0.100 0.500 0.501 1.003 1.503 2.004
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Table D.4: Summary of Bias on Estimate of k using PWM Estimator on GPD data

cutoff k = 0.1 k = 0.5 k = 1.0 k = 1.5 k = 2.0 k = 2.5
10 0.331 0.192 0.530 0.733 1.187 1.911
30 0.157 0.067 0.409 0.811 1.161 1.646
50 0.106 0.066 0.308 0.797 1.127 1.597
70 0.110 0.027 0.259 0.784 1.107 1.577
90 0.094 0.020 0.227 0.766 1.094 1.565
110 0.122 0.026 0.204 0.749 1.085 1.558
130 0.129 0.028 0.187 0.735 1.077 1.553
150 0.129 0.027 0.173 0.721 1.072 1.549
170 0.118 0.025 0.162 0.712 1.067 1.546
190 0.115 0.026 0.154 0.705 1.064 1.543
210 0.115 0.026 0.147 0.699 1.061 1.541
230 0.120 0.023 0.142 0.693 1.058 1.540
250 0.128 0.018 0.137 0.687 1.056 1.538
270 0.138 0.017 0.134 0.682 1.054 1.537
290 0.140 0.014 0.131 0.678 1.052 1.536
310 0.142 0.011 0.129 0.673 1.051 1.535
330 0.141 0.007 0.127 0.669 1.049 1.535
350 0.140 0.004 0.125 0.665 1.048 1.534
370 0.140 0.001 0.124 0.661 1.047 1.533
390 0.142 0.002 0.122 0.657 1.046 1.533
410 0.141 0.005 0.121 0.654 1.045 1.532
430 0.141 0.008 0.120 0.651 1.044 1.532
450 0.142 0.011 0.119 0.648 1.044 1.531
470 0.142 0.014 0.117 0.645 1.043 1.531
490 0.141 0.017 0.116 0.642 1.042 1.531
500 0.140 0.016 0.115 0.642 1.042 1.531
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Table D.5: Summary of Bias on Estimate of k using EPM Estimator on t-
distributed data

cutoff k = 0.1 k = 0.5 k = 1.0 k = 1.5 k = 2.0 k = 2.5
10 0.161 0.358 0.325 1.806 2.228 2.212
30 0.004 0.413 0.883 0.220 1.740 0.420
50 0.150 2.570 0.810 1.820 1.120 0.950
70 0.282 0.770 1.340 1.078 0.730 1.290
90 0.018 0.134 0.660 0.420 0.130 1.676
110 0.024 1.014 0.008 0.490 0.450 1.390
130 0.028 0.151 0.308 1.035 0.380 1.000
150 0.051 0.368 0.388 0.710 0.700 0.420
170 0.322 0.092 0.230 0.000 0.530 0.270
190 0.357 0.144 0.270 0.940 0.300 0.270
210 0.362 0.292 0.013 0.490 0.570 0.850
230 0.446 0.129 0.070 0.410 0.440 0.450
250 0.273 0.081 0.000 0.370 0.220 1.010
270 0.450 0.005 0.139 0.690 0.030 0.550
290 0.375 0.129 0.026 0.240 0.190 1.390
310 0.613 0.213 0.020 0.240 0.030 1.390
330 0.726 0.003 0.100 0.160 0.170 1.700
350 0.612 0.153 0.024 0.450 0.280 1.120
370 0.746 0.213 0.040 0.510 0.300 0.610
390 0.724 0.125 0.000 0.600 0.600 0.140
410 0.825 0.075 0.060 0.010 0.800 0.100
430 0.851 0.055 0.060 0.040 0.650 0.030
450 1.005 0.016 0.227 0.260 0.800 0.250
470 0.910 0.003 0.097 0.160 1.010 0.290
490 1.000 0.074 1.785 0.170 0.490 0.210
500 0.717 0.060 0.071 0.040 0.740 0.730
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Table D.6: Summary of Bias on Estimate of k using MLE Estimator on t-distributed
data

cutoff k = 0.1 k = 0.5 k = 1.0 k = 1.5 k = 2.0 k = 2.5
10 1.180 0.776 0.390 0.100 0.350 0.010
30 0.400 0.505 0.600 0.230 0.220 0.750
50 0.220 0.468 0.070 0.320 0.540 0.490
70 0.188 0.402 0.040 0.240 0.430 0.050
90 0.084 0.278 0.031 0.190 0.410 0.050
110 0.035 0.254 0.030 0.200 0.330 0.210
130 0.052 0.178 0.090 0.260 0.300 0.340
150 0.078 0.264 0.100 0.180 0.220 0.440
170 0.075 0.206 0.010 0.080 0.230 0.520
190 0.113 0.199 0.004 0.180 0.240 0.550
210 0.142 0.196 0.020 0.090 0.190 0.400
230 0.137 0.170 0.010 0.070 0.190 0.570
250 0.124 0.125 0.020 0.060 0.210 0.610
270 0.114 0.129 0.050 0.090 0.220 0.570
290 0.100 0.136 0.020 0.030 0.230 0.600
310 0.115 0.136 0.020 0.020 0.200 0.580
330 0.111 0.104 0.010 0.010 0.170 0.580
350 0.114 0.120 0.020 0.040 0.140 0.520
370 0.132 0.123 0.010 0.050 0.130 0.450
390 0.142 0.108 0.020 0.050 0.080 0.360
410 0.144 0.095 0.010 0.030 0.050 0.340
430 0.151 0.086 0.030 0.030 0.060 0.310
450 0.150 0.076 0.060 0.010 0.040 0.310
470 0.143 0.069 0.030 0.010 0.010 0.260
490 0.142 0.054 0.060 0.000 0.070 0.250
500 0.127 0.070 0.030 0.030 0.040 0.180
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Table D.7: Summary of Bias on Estimate of k using MOM Estimator on t-
distributed data

cutoff k = 0.1 k = 0.5 k = 1.0 k = 1.5 k = 2.0 k = 2.5
10 0.827 0.624 0.783 0.656 1.714 2.056
30 0.272 0.488 0.596 0.564 1.578 2.020
50 0.160 0.465 0.565 0.542 1.548 2.012
70 0.153 0.420 0.552 0.530 1.535 2.009
90 0.084 0.360 0.542 0.524 1.528 2.007
110 0.055 0.342 0.536 0.520 1.523 2.006
130 0.062 0.311 0.531 0.517 1.519 2.005
150 0.080 0.328 0.528 0.515 1.517 2.004
170 0.077 0.305 0.525 0.513 1.515 2.004
190 0.109 0.297 0.523 0.512 1.513 2.003
210 0.140 0.291 0.522 0.511 1.512 2.003
230 0.134 0.280 0.520 0.510 1.511 2.003
250 0.121 0.265 0.519 0.509 1.510 2.003
270 0.111 0.262 0.518 0.508 1.509 2.002
290 0.098 0.259 0.517 0.508 1.509 2.002
310 0.113 0.256 0.516 0.507 1.508 2.002
330 0.109 0.246 0.515 0.507 1.508 2.002
350 0.112 0.246 0.514 0.507 1.507 2.002
370 0.131 0.244 0.514 0.506 1.507 2.002
390 0.143 0.238 0.513 0.506 1.507 2.002
410 0.145 0.233 0.513 0.506 1.506 2.002
430 0.153 0.229 0.512 0.505 1.506 2.001
450 0.152 0.225 0.512 0.505 1.506 2.001
470 0.144 0.221 0.511 0.505 1.505 2.001
490 0.142 0.217 0.511 0.505 1.505 2.001
500 0.126 0.217 0.511 0.505 1.505 2.001
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Table D.8: Summary of Bias on Estimate of k using PWM Estimator on t-
distributed data

cutoff k = 0.1 k = 0.5 k = 1.0 k = 1.5 k = 2.0 k = 2.5
10 0.379 0.336 0.484 0.722 1.320 1.868
30 0.099 0.203 0.267 0.730 1.227 1.704
50 0.114 0.214 0.225 0.715 1.178 1.670
70 0.144 0.202 0.224 0.696 1.159 1.643
90 0.165 0.191 0.220 0.677 1.144 1.623
110 0.192 0.160 0.215 0.661 1.132 1.609
130 0.199 0.132 0.210 0.649 1.123 1.599
150 0.184 0.119 0.205 0.639 1.116 1.591
170 0.179 0.118 0.201 0.631 1.109 1.585
190 0.167 0.111 0.199 0.625 1.104 1.580
210 0.154 0.104 0.197 0.619 1.099 1.576
230 0.139 0.099 0.195 0.615 1.095 1.572
250 0.132 0.091 0.193 0.611 1.091 1.569
270 0.128 0.084 0.191 0.607 1.088 1.566
290 0.130 0.079 0.189 0.604 1.085 1.564
310 0.131 0.074 0.187 0.601 1.083 1.562
330 0.131 0.069 0.186 0.599 1.080 1.560
350 0.129 0.066 0.184 0.596 1.078 1.559
370 0.128 0.063 0.183 0.594 1.076 1.557
390 0.123 0.060 0.182 0.592 1.074 1.556
410 0.119 0.056 0.180 0.590 1.073 1.554
430 0.115 0.053 0.179 0.589 1.071 1.553
450 0.111 0.049 0.178 0.587 1.070 1.552
470 0.109 0.045 0.177 0.586 1.068 1.551
490 0.107 0.042 0.176 0.585 1.067 1.550
500 0.107 0.039 0.175 0.583 1.066 1.549
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Table D.9: Summary of Bias on Estimate of k using EPM Estimator on F -
distributed data

cutoff k = 0.1 k = 0.5 k = 1.0 k = 1.5 k = 2.0 k = 2.5
10 0.162 3.076 2.329 1.420 0.817 1.678
30 0.162 0.338 1.647 0.749 0.785 3.748
50 0.391 0.398 0.400 0.964 0.780 0.232
70 0.060 0.024 0.544 0.548 0.806 1.195
90 0.162 0.137 1.038 1.258 0.298 0.842
110 0.094 0.448 0.466 0.589 0.637 0.605
130 0.284 0.226 0.561 0.840 0.351 0.728
150 0.140 0.059 0.994 0.635 0.459 0.761
170 0.185 0.164 0.297 0.837 1.110 0.328
190 0.373 0.018 0.069 0.036 0.755 0.073
210 0.216 0.175 0.343 0.256 0.576 0.154
230 0.149 0.379 0.346 0.317 0.973 0.316
250 0.320 0.871 0.008 0.184 1.094 0.111
270 0.508 0.754 0.162 0.207 0.570 0.235
290 0.667 0.472 0.155 0.261 0.834 0.078
310 0.823 0.275 0.064 0.424 0.753 0.331
330 0.477 0.235 0.043 0.523 0.266 0.034
350 0.451 0.707 0.103 0.030 0.144 0.671
370 0.440 1.377 0.109 0.144 0.016 0.464
390 0.873 0.813 0.130 0.391 0.600 0.452
410 1.325 0.575 0.058 0.556 0.460 0.100
430 1.217 0.390 0.108 0.235 0.296 0.173
450 1.347 0.773 0.268 0.260 0.144 0.175
470 1.510 0.714 0.528 0.163 0.357 0.082
490 1.922 0.599 0.348 0.147 0.321 0.114
500 1.841 0.512 0.302 0.137 0.149 0.094
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Table D.10: Summary of Bias on Estimate of k using MLE Estimator on F -
distributed data

cutoff k = 0.1 k = 0.5 k = 1.0 k = 1.5 k = 2.0 k = 2.5
10 0.079 0.632 0.091 0.361 0.059 0.105
30 0.087 0.119 0.078 0.267 0.602 0.203
50 0.088 0.183 0.013 0.441 0.383 0.483
70 0.147 0.034 0.041 0.364 0.558 0.608
90 0.129 0.009 0.166 0.367 0.370 0.289
110 0.154 0.088 0.190 0.241 0.477 0.388
130 0.110 0.076 0.205 0.212 0.294 0.366
150 0.140 0.039 0.235 0.136 0.373 0.535
170 0.132 0.009 0.173 0.110 0.420 0.432
190 0.097 0.025 0.148 0.047 0.376 0.368
210 0.127 0.043 0.156 0.037 0.332 0.381
230 0.136 0.075 0.150 0.050 0.329 0.391
250 0.104 0.117 0.111 0.122 0.310 0.306
270 0.074 0.116 0.075 0.136 0.232 0.351
290 0.060 0.106 0.064 0.151 0.234 0.283
310 0.068 0.092 0.065 0.054 0.200 0.248
330 0.076 0.082 0.072 0.050 0.119 0.287
350 0.076 0.115 0.053 0.133 0.088 0.213
370 0.075 0.146 0.047 0.114 0.059 0.236
390 0.057 0.124 0.041 0.081 0.102 0.240
410 0.022 0.108 0.058 0.067 0.076 0.288
430 0.018 0.091 0.061 0.105 0.048 0.275
450 0.026 0.115 0.080 0.110 0.020 0.328
470 0.024 0.112 0.105 0.126 0.033 0.283
490 0.016 0.105 0.090 0.131 0.021 0.273
500 0.015 0.102 0.094 0.131 0.026 0.356
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Table D.11: Summary of Bias on Estimate of k using MOM Estimator on F -
distributed data

cutoff k = 0.1 k = 0.5 k = 1.0 k = 1.5 k = 2.0 k = 2.5
10 0.009 0.536 0.574 1.053 1.600 2.067
30 0.059 0.307 0.531 1.020 1.536 2.023
50 0.064 0.216 0.521 1.013 1.522 2.014
70 0.096 0.216 0.516 1.010 1.516 2.010
90 0.096 0.193 0.514 1.008 1.512 2.008
110 0.109 0.197 0.512 1.006 1.510 2.006
130 0.095 0.189 0.511 1.005 1.509 2.005
150 0.109 0.178 0.510 1.005 1.508 2.005
170 0.108 0.168 0.509 1.004 1.507 2.004
190 0.094 0.166 0.508 1.004 1.506 2.004
210 0.107 0.164 0.507 1.003 1.505 2.003
230 0.112 0.166 0.507 1.003 1.505 2.003
250 0.100 0.171 0.507 1.003 1.505 2.003
270 0.086 0.169 0.506 1.003 1.504 2.003
290 0.078 0.166 0.506 1.002 1.504 2.002
310 0.082 0.163 0.506 1.002 1.504 2.002
330 0.085 0.160 0.505 1.002 1.503 2.002
350 0.085 0.164 0.505 1.002 1.503 2.002
370 0.084 0.168 0.505 1.002 1.503 2.002
390 0.074 0.164 0.505 1.002 1.503 2.002
410 0.052 0.161 0.504 1.002 1.503 2.002
430 0.048 0.157 0.504 1.002 1.503 2.002
450 0.053 0.160 0.504 1.002 1.503 2.002
470 0.051 0.159 0.504 1.002 1.502 2.002
490 0.044 0.157 0.504 1.001 1.502 2.001
500 0.046 0.157 0.504 1.001 1.502 2.002
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Table D.12: Summary of Bias on Estimate of k using PWM Estimator on F -
distributed data

cutoff k = 0.1 k = 0.5 k = 1.0 k = 1.5 k = 2.0 k = 2.5
10 0.455 0.025 0.591 0.880 1.060 1.641
30 0.337 0.122 0.414 1.011 1.083 1.594
50 0.237 0.024 0.403 0.945 1.087 1.573
70 0.253 0.018 0.368 0.899 1.083 1.561
90 0.257 0.006 0.359 0.866 1.080 1.554
110 0.264 0.005 0.362 0.842 1.076 1.549
130 0.262 0.015 0.361 0.820 1.073 1.545
150 0.261 0.016 0.361 0.801 1.070 1.542
170 0.263 0.010 0.357 0.784 1.068 1.540
190 0.255 0.005 0.352 0.770 1.066 1.538
210 0.256 0.002 0.347 0.756 1.064 1.537
230 0.259 0.005 0.343 0.745 1.062 1.536
250 0.257 0.009 0.338 0.735 1.061 1.535
270 0.253 0.015 0.333 0.725 1.059 1.534
290 0.246 0.018 0.328 0.717 1.058 1.533
310 0.240 0.019 0.323 0.709 1.057 1.532
330 0.238 0.019 0.319 0.703 1.056 1.532
350 0.236 0.020 0.315 0.697 1.055 1.531
370 0.235 0.024 0.311 0.691 1.054 1.531
390 0.232 0.027 0.307 0.686 1.053 1.530
410 0.227 0.027 0.303 0.681 1.052 1.530
430 0.219 0.027 0.300 0.677 1.051 1.530
450 0.215 0.026 0.298 0.673 1.050 1.529
470 0.211 0.027 0.295 0.669 1.049 1.529
490 0.207 0.027 0.293 0.665 1.049 1.529
500 0.201 0.026 0.29 0.661 1.049 1.529
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Appendix E. Results from Threshold Sensitivity Analysis

Results from the threshold sensitivity analysis:
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α = 1.3, β = 1.0, for k = 0.1
u RMSE of MAP Mean 2nd derivative

10 - 100 0.21 0.06
100 - 200 0.21 0.00
200 - 300 0.17 0.00
300 - 400 0.15 0.00
400 - 500 0.13 0.00
500 - 900 0.10 0.00

α = 1.3, β = 1.0, for k = 0.5
u RMSE of MAP Mean 2nd derivative

10 - 100 0.54 0.06
100 - 200 0.31 0.01
200 - 300 0.24 0.00
300 - 400 0.17 0.00
400 - 500 0.12 0.00
500 - 900 0.06 0.00

α = 1.3, β = 1.0, for k = 1.0
u RMSE of MAP Mean 2nd derivative

10 - 100 1.33 0.09
100 - 200 0.74 0.02
200 - 300 0.50 0.01
300 - 400 0.35 0.01
400 - 500 0.25 0.00
500 - 900 0.11 0.00

Table E.1: MAP performance on F -distributed data with varying k. Gamma dis-
tributed prior used by Bayesian estimator (α and β parameter values shown))
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α = 1.5, β = 1.0, for k = 0.1
u RMSE of MAP Mean 2nd derivative

10 - 100 0.39 0.02
100 - 200 0.25 0.01
200 - 300 0.21 0.00
300 - 400 0.19 0.00
400 - 500 0.17 0.00
500 - 900 0.14 0.00

α = 1.5, β = 1.0, for k = 0.5
u RMSE of MAP Mean 2nd derivative

10 - 100 0.71 0.06
100 - 200 0.42 0.01
200 - 300 0.30 0.01
300 - 400 0.23 0.00
400 - 500 0.18 0.00
500 - 900 0.11 0.00

α = 1.5, β = 1.0, for k = 1.0
u RMSE of MAP Mean 2nd derivative

10 - 100 1.57 0.19
100 - 200 0.86 0.02
200 - 300 0.57 0.01
300 - 400 0.40 0.01
400 - 500 0.29 0.01
500 - 900 0.13 0.00

Table E.2: MAP performance on F -distributed data with varying k. Gamma dis-
tributed prior used by Bayesian estimator (α and β parameter values shown))

215



α = 1.9, β = 1.0, for k = 0.1
u RMSE of MAP Mean 2nd derivative

10 - 100 0.16 0.03
100 - 200 0.18 0.00
200 - 300 0.19 0.00
300 - 400 0.18 0.00
400 - 500 0.16 0.00
500 - 900 0.13 0.00

α = 1.9, β = 1.0, for k = 0.5
u RMSE of MAP Mean 2nd derivative

10 - 100 0.63 0.15
100 - 200 0.37 0.01
200 - 300 0.26 0.01
300 - 400 0.21 0.01
400 - 500 0.15 0.00
500 - 900 0.08 0.00

α = 1.9, β = 1.0, for k = 1.0
u RMSE of MAP Mean 2nd derivative

10 - 100 1.42 0.17
100 - 200 0.74 0.03
200 - 300 0.48 0.02
300 - 400 0.32 0.01
400 - 500 0.23 0.01
500 - 900 0.10 0.00

Table E.3: MAP performance on F -distributed data with varying k. Gamma dis-
tributed prior used by Bayesian estimator (α and β parameter values shown))
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α = 1.3, β = 1.0, for k = 0.1
u RMSE of MAP Mean 2nd derivative

10 - 100 0.19 0.01
100 - 200 0.18 0.01
200 - 300 0.16 0.00
300 - 400 0.14 0.00
400 - 500 0.12 0.00
500 - 900 0.09 0.00

α = 1.3, β = 1.0, for k = 0.5
u RMSE of MAP Mean 2nd derivative

10 - 100 0.44 0.05
100 - 200 0.27 0.01
200 - 300 0.20 0.00
300 - 400 0.14 0.00
400 - 500 0.10 0.00
500 - 900 0.06 0.00

α = 1.3, β = 1.0, for k = 1.0
u RMSE of MAP Mean 2nd derivative

10 - 100 1.29 0.07
100 - 200 0.70 0.02
200 - 300 0.44 0.01
300 - 400 0.25 0.01
400 - 500 0.23 0.00
500 - 900 0.10 0.00

Table E.4: MAP performance on GP-distributed data with varying k. Gamma
distributed prior used by Bayesian estimator (α and β parameter values shown))

217



α = 1.5, β = 1.0, for k = 0.1
u RMSE of MAP Mean 2nd derivative

10 - 100 0.38 0.04
100 - 200 0.25 0.01
200 - 300 0.19 0.00
300 - 400 0.16 0.00
400 - 500 0.15 0.00
500 - 900 0.12 0.00

α = 1.5, β = 1.0, for k = 0.5
u RMSE of MAP Mean 2nd derivative

10 - 100 0.65 0.08
100 - 200 0.41 0.02
200 - 300 0.28 0.01
300 - 400 0.19 0.00
400 - 500 0.18 0.00
500 - 900 0.10 0.00

α = 1.5, β = 1.0, for k = 1.0
u RMSE of MAP Mean 2nd derivative

10 - 100 1.38 0.15
100 - 200 0.80 0.03
200 - 300 0.50 0.02
300 - 400 0.38 0.01
400 - 500 0.31 0.00
500 - 900 0.15 0.00

Table E.5: MAP performance on GP-distributed data with varying k. Gamma
distributed prior used by Bayesian estimator (α and β parameter values shown))
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α = 1.9, β = 1.0, for k = 0.1
u RMSE of MAP Mean 2nd derivative

10 - 100 0.39 0.05
100 - 200 0.25 0.01
200 - 300 0.19 0.00
300 - 400 0.19 0.00
400 - 500 0.17 0.00
500 - 900 0.13 0.00

α = 1.9, β = 1.0, for k = 0.5
u RMSE of MAP Mean 2nd derivative

10 - 100 0.66 0.06
100 - 200 0.45 0.01
200 - 300 0.31 0.01
300 - 400 0.22 0.00
400 - 500 0.16 0.00
500 - 900 0.08 0.00

α = 1.9, β = 1.0, for k = 1.0
u RMSE of MAP Mean 2nd derivative

10 - 100 1.45 0.13
100 - 200 0.90 0.04
200 - 300 0.58 0.02
300 - 400 0.39 0.01
400 - 500 0.25 0.00
500 - 900 0.12 0.00

Table E.6: MAP performance on GP-distributed data with varying k. Gamma
distributed prior used by Bayesian estimator (α and β parameter values shown))
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α = 1.3, β = 1.0, for k = 0.1
u RMSE of MAP Mean 2nd derivative

10 - 100 0.21 0.02
100 - 200 0.20 0.01
200 - 300 0.17 0.00
300 - 400 0.14 0.00
400 - 500 0.13 0.00
500 - 900 0.10 0.00

α = 1.3, β = 1.0, for k = 0.5
u RMSE of MAP Mean 2nd derivative

10 - 100 0.55 0.02
100 - 200 0.40 0.01
200 - 300 0.25 0.01
300 - 400 0.17 0.00
400 - 500 0.12 0.00
500 - 900 0.07 0.00

α = 1.3, β = 1.0, for k =1.0
u RMSE of MAP Mean 2nd derivative

10 - 100 1.30 0.08
100 - 200 0.71 0.03
200 - 300 0.51 0.01
300 - 400 0.33 0.01
400 - 500 0.26 0.00
500 - 900 0.11 0.00

Table E.7: MAP performance on |tν |-distributed data with varying k. Gamma
distributed prior used by Bayesian estimator (α and β parameter values shown))
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α = 1.5, β = 1.0, for k = 0.1
u RMSE of MAP Mean 2nd derivative

10 - 100 0.41 0.02
100 - 200 0.28 0.01
200 - 300 0.21 0.01
300 - 400 0.17 0.00
400 - 500 0.16 0.00
500 - 900 0.14 0.00

α = 1.5, β = 1.0, for k = 0.5
u RMSE of MAP Mean 2nd derivative

10 - 100 0.73 0.05
100 - 200 0.42 0.01
200 - 300 0.36 0.01
300 - 400 0.21 0.00
400 - 500 0.17 0.00
500 - 900 0.10 0.00

α = 1.5, β = 1.0, for k = 1.0
u RMSE of MAP Mean 2nd derivative

10 - 100 1.52 0.17
100 - 200 0.91 0.05
200 - 300 0.70 0.01
300 - 400 0.38 0.01
400 - 500 0.31 0.00
500 - 900 0.15 0.00

Table E.8: MAP performance on |tν |-distributed data with varying k. Gamma
distributed prior used by Bayesian estimator (α and β parameter values shown))
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α = 1.9, β = 1.0, for k = 0.1
u RMSE of MAP Mean 2nd derivative

10 - 100 0.42 0.09
100 - 200 0.22 0.04
200 - 300 0.20 0.01
300 - 400 0.17 0.00
400 - 500 0.15 0.00
500 - 900 0.12 0.00

α = 1.9, β = 1.0, for k = 0.5
u RMSE of MAP Mean 2nd derivative

10 - 100 0.77 0.09
100 - 200 0.52 0.02
200 - 300 0.38 0.01
300 - 400 0.24 0.00
400 - 500 0.16 0.00
500 - 900 0.08 0.00

α = 1.9, β = 1.0, for k = 1.0
u RMSE of MAP Mean 2nd derivative

10 - 100 1.70 0.19
100 - 200 0.78 0.11
200 - 300 0.50 0.03
300 - 400 0.35 0.02
400 - 500 0.23 0.00
500 - 900 0.11 0.00

Table E.9: MAP performance on |tν |-distributed data with varying k. Gamma
distributed prior used by Bayesian estimator (α and β parameter values shown))
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GPD with k = 0.1
u RMSE of ML Mean 2nd derivative

10 - 100 0.20 0.10
100 - 200 0.08 0.02
200 - 300 0.10 0.01
300 - 400 0.10 0.01
400 - 500 0.04 0.01
500 - 900 0.02 0.01

GPD with k = 1.0
u RMSE of ML Mean 2nd derivative

10 - 100 0.20 0.11
100 - 200 0.18 0.05
200 - 300 0.16 0.03
300 - 400 0.08 0.02
400 - 500 0.07 0.01
500 - 900 0.02 0.01

GPD with k = 2.0
u RMSE of ML Mean 2nd derivative

10 - 100 0.28 0.30
100 - 200 0.24 0.07
200 - 300 0.19 0.04
300 - 400 0.15 0.03
400 - 500 0.04 0.01
500 - 900 0.03 0.01

GPD with k = 3.0
u RMSE of ML Mean 2nd derivative

10 - 100 0.57 0.35
100 - 200 0.47 0.11
200 - 300 0.35 0.08
300 - 400 0.14 0.04
400 - 500 0.09 0.02
500 - 900 0.05 0.02

Table E.10: ML performance on GP-distributed data with varying k.
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Average RMSE for 0.1 < k < 1.0
u ARMSE

10-100 0.19
100-200 0.12
200-300 0.11
300-400 0.09
400-500 0.06
500-900 0.03

Average RMSE for 0.05 < k < 0.1
u ARMSE

10-100 0.19
100-200 0.13
200-300 0.1
300-400 0.08
400-500 0.08
500-900 0.04

Average RMSE for 0.001 < k < 0.05
u ARMSE

10-100 0.24
100-200 0.18
200-300 0.12
300-400 0.07
400-500 0.07
500-900 0.03

Average RMSE for 0.00001 < k < 0.001
u ARMSE

10-100 0.3
100-200 0.22
200-300 0.13
300-400 0.09
400-500 0.05
500-900 0.02

Table E.11: Average RMSE of ML estimator for k values equally spaced within
each of the limits: 1. 0.1 < k < 1.0, 2. 0.05 < k < 0.1, 3. 0.001 < k < 0.05, 4.
0.00001 < k < 0.001. Average values are taken from 10 GP distributed data sets with
the k values equally spaced within each of the four regions.
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Appendix F. Results from Comparative Analysis on ROIs

Results from the ROI analysis using the methods developed in the research:

Figure F.1: The ROI of an assortment of various coniferous tree types. This ROI
contains 23,411 pixels. It also contains many non-vegetative pixels, such as the pixels
from the road at the top part of the ROI. The variability in this cluster of pixels is
shown in Figure F.2. The MD data from this cluster are fit with a mixture of F -
distributions, Johnson SL distribution, and GPD with two optimized estimators for
the tail-index parameter. The result is displayed in Figure F.3.
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Figure F.2: The spectral variability for the ROI in Figure F.1. The y-axis values
are units of spectral reflectance. The middle spectrum is the mean, the next two
above and below it are the standard deviations, and the top and bottom spectra are
the minimum and maximum in magnitude. Notice the increased variability in this
ROI. This is due to the larger number of pixels encompassing more materials than
just coniferous trees in the ROI.
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Figure F.3: Probability of exceedance plot showing the performance of each method
used to fit the MD distribution from the MCFC ROI. Notice the larger MD values
due to greater variability in the ROI.
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Figure F.4: The ROI of an assortment of various deciduous tree types. This ROI
contains 11,557 pixels. The variability in this cluster of pixels is shown in Figure F.5.
The MD data from this cluster are fit with a mixture of F -distributions, Johnson SL

distribution, and GPD with two optimized estimators for the tail-index parameter.
The result is displayed in Figure F.6.

Figure F.5: The spectral variability for the ROI in Figure F.4. The y-axis values
are units of spectral reflectance. The middle spectrum is the mean, the next two
above and below it are the standard deviations, and the top and bottom spectra are
the minimum and maximum in magnitude.
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Figure F.6: Probability of exceedance plot showing the performance of each method
used to fit the MD distribution from the DFC ROI. Notice how the F -mixture is
affected by the last two data points (points most unlike the majority of the data).
The optimized GPD methods and SL will ignore those points.
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Figure F.7: The ROI of an assortment of various coniferous tree types. This ROI
contains 9,212 pixels. The variability in this cluster of pixels is shown in Figure F.8.
The MD data from this cluster are fit with a mixture of F -distributions, Johnson SL

distribution, and GPD with two optimized estimators for the tail-index parameter.
The result is displayed in Figure F.9.
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Figure F.8: The spectral variability for the ROI in Figure F.7. The y-axis values are
units of spectral reflectance. The middle spectrum is the mean, the next two above
and below it are the standard deviations, and the top and bottom spectra are the
minimum and maximum in magnitude. Notice the decrease in variability compared
to DFC and MCFC. For this ROI, the variability is purposely decreased by selecting
a more homogenous coniferous forest area.
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Figure F.9: Probability of exceedance plot showing the performance of each method
used to fit the MD distribution from the CFC ROI. The MD values are smaller due
to less variability in the ROI. Here, each fit is comparable. This should be the case,
as this ROI contains a very homogeneous pixel set. However, checking the weighted
MSE in Table 6.5, notice the disparity in fitting the end of the tail.
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Figure F.10: The ROI of an assortment of Loblolly pine tree types. This ROI
contains 14,257 pixels. The variability in this cluster of pixels is shown in Figure F.11.
The MD data from this cluster are fit with a mixture of F -distributions, Johnson SL

distribution, and GPD with two optimized estimators for the tail-index parameter.
The result is displayed in Figure F.12.

Figure F.11: The spectral variability for the ROI in Figure F.10. The y-axis values
are units of spectral reflectance. The middle spectrum is the mean, the next two
above and below it are the standard deviations, and the top and bottom spectra are
the minimum and maximum in magnitude.
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Figure F.12: Probability of exceedance plot showing the performance of each
method used to fit the MD distribution from the ALPPC ROI. Again, the F -mixture
tends to follow the largest extremes of the tail. In this case notice the ”bump” in the
region MD = 400 - 550. The optimized Hill, ML and SL are developed to compensate
for such a perturbation. This results in their optimal fit (the F -mixture overcompen-
sates to fit the ”bump” and final tail extremity, at the expense of worse performance
in other regions of the tail).
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Figure F.13: The ROI of a reduced portion of CFC. This ROI contains 8,533 pixels.
The ROI is reduced in size by eliminating pixels that decrease the homogeneity of the
ROI material majority. The variability in this cluster of pixels is shown in Figure F.14.
The MD data from this cluster are fit with a mixture of F -distributions, Johnson SL

distribution, and GPD with two optimized estimators for the tail-index parameter.
The result is displayed in Figure F.15.

Figure F.14: The spectral variability for the ROI in Figure F.13. Notice the de-
creased variability due to the elimination of anomalous pixels.
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Figure F.15: Probability of exceedance plot showing the performance of each
method used to fit the MD distribution from the CFCR ROI. The MD values are
smaller compared to MD values from an ROI with greater variability. The ”bump”
starting at MD = 250 does not affect the SL, optimized-Hill, and optimize-ML in this
subset or in the same region found in Figure F.9.
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Figure F.16: The ROI of a reduced portion of ALPPC. This ROI contains 12,976
pixels. The ROI is reduced in size by eliminating pixels that decrease the homogeneity
of the ROI material majority. The variability in this cluster of pixels is shown in
Figure F.17. The MD data from this cluster are fit with a mixture of F -distributions,
Johnson SL distribution, and GPD with two optimized estimators for the tail-index
parameter. The result is displayed in Figure F.18.

Figure F.17: The spectral variability for the ROI in Figure F.16. Notice the de-
creased variability compared to ALPPC due to the elimination of anomalous pixels.
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Figure F.18: Probability of exceedance plot showing the performance of each
method used to fit the MD distribution from the ALPPCR ROI. The MD values
are smaller compared to ALPPC MD values due to the decreased variability. This is
due to the elimination of more anomalous pixels, leading to a reduction in the tail
length (compare to Figure F.12) and improved MSE and weighted MSE (see Table
6.8 compared to Tabel 6.6.
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This dissertation develops new estimation methods that fit Johnson distributions and generalized Pareto distributions to
hyperspectral Mahalanobis distances. The Johnson distribution fit is optimized using a new method which monitors the
second derivative behavior of exceedance probability to mitigate potential outlier effects. This univariate distribution is
then used to derive an elliptically contoured multivariate density model for the pixel data. The generalized Pareto
distribution models are optimized by a new two-pass method that estimates the tail-index parameter. This method
minimizes the mean squared fitting error by correcting parameter values using data distance information from an initial
pass. A unique method for estimating the posterior density of the tail-index parameter for generalized Pareto models is
also developed. Both the Johnson and Pareto distribution models are shown to reduce fitting error and to increase
computational efficiency compared to previous models.
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