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Abstract

This research outlines the development and simulation of a signal processing approach

to real time wavefront curvature sensing in adaptive optics. The signal processing approach

combines vectorized Charge Coupled Device (CCD) read out with a wavefront modal esti-

mation technique. The wavefront sensing algorithm analyzes vector projections of image

intensity data to provide an estimate of the wavefront phase as a combination of several low

order Zernike polynomial modes. This wavefront sensor design expands on an existing idea

for vector based tilt sensing by providing the ability to compensate for additional modes.

Under the proposed wavefront sensing approach, the physical wavefront sensor would be

replaced by a pair of imaging devices capable of generating vector projections of the image

data. Using image projections versus two-dimensional image data allows for faster CCD

read out and decreased read noise.

The primary research contribution is to create an e¤ective method for estimating

low order wavefront modes from image vector information. This dissertation provides

simulation results and Cramér-Rao performance bounds for two wavefront sensor designs.

The �rst sensor provides estimates of tilt and defocus: Zernike polynomials 2 through 4.

The second sensor estimates Zernike polynomials 2 through 10. Sensors are simulated in

guide star applications under the in�uence of von Kármán atmospheric phase aberrations

and CCD noise models. Secondary research contributions include identifying key algorithm

performance parameters, and parameter sensitivity as well as an investigation of strategies

for improving extensible phase screen generation.

A simulated performance comparison is conducted between the Z2�4 and the Z2�10

sensors, and a centroiding tilt sensor and a projection based maximum likelihood tilt sensor.

Simulation trials using a subaperture diameter of 0:07m stepped through values of r0 from

0:04 to 0:14m and average photon counts of 100 to 1000. The Z2�4 sensor provides superior

performance over both tilt sensors in all trials conducted. The Z2�10 sensor outperforms

both tilt sensors when the average photon count is greater than 200 photons, and perfor-

mance on par with both tilt sensors when the average photon count is between 100 and 200

photons.
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WAVEFRONT CURVATURE SENSING FROM IMAGE PROJECTIONS

1. Introduction

This work includes the derivation and simulated performance of a fast, e¢ cient al-

gorithm for real time wavefront curvature sensing. Real time wavefront sensing falls into

two categories: interferometric measurement of phase or phase slope, and estimation of the

phase from image intensity characteristics. The proposed wavefront sensing method falls

into the latter category. Phase estimators may be further distinguished by the number

and the order of the aberrations, or modes, they estimate. The category "tilt sensors,"

for instance, is often used in reference to linear mode estimators. Estimators that provide

phase information beyond the linear tilt modes may be referred to as "curvature sensors."

Linear modes are primarily comprised of low frequency phase characteristics. Linear mode

estimators are most accurate over small regions of the wavefront; and consequently, tilt es-

timators must use highly parallel systems with many small subapertures to provide a global

wavefront map. Curvature sensors estimate higher frequency modes and are generally ef-

fective over larger regions of the wavefront. This research will outline a fast, e¤ective tilt

sensing technique [1] and extend the technique to include higher order parameter estima-

tion. The following sections will de�ne common methods of wavefront sensing and identify

the motivation behind wavefront sensing devices.

1.1 The Random Atmosphere

The degree to which two point sources will be resolved by an imaging device in free

space will be limited by di¤raction e¤ects directly tied to the size of the aperture, D, and

the wavelength, � [2]. This is because the width of a point source in the image plane is

essentially the width of the central spot of a circular di¤raction pattern, commonly referred

to as a Rayleigh distance:

Rayleigh distance = 1:22
�f

D
; (1.1)

where � is the wavelength of the source and f is the geometric focal length. The size of

a Rayleigh distance is inversely proportional to the aperture diameter indicating that large

1-1



apertures will yield better resolving power. This e¤ect is shown in Figure 1.1 demonstrating

overlapping di¤raction patterns from a circular aperture.

Figure 1.1 Simulated Airy�s disks for two di¤erent aperture diameters. The aperture used
for the images on the right side is double the diameter of the aperture used to
form the images on the left side.

Optical imaging systems designed to resolve objects through the earth�s atmosphere

must contend with the degrading e¤ects of its continuously �uctuating index of refraction.

This condition is commonly referred to as atmospheric turbulence. Newton, though not

convinced of the wave theory of light, was aware of di¤raction e¤ects and the bene�ts of a

large aperture on resolution. He was also aware of the added limitations of imaging through

atmospheric turbulence [3].

�Long Telescopes may cause Objects to appear brighter and larger than the
short ones can do, but they cannot be so formed as to take away the confusion
of the Rays which arises from the Tremors of the Atmosphere [4].�

When speaking of the "confusion of the Rays," Newton was describing the e¤ects of

the atmosphere�s �uctuating index of refraction. Due to wind and temperature gradients,

the atmosphere churns and tumbles as it �ows over the Earth. The turbulence contains

continuously evolving temperature and pressure variations. Since temperature and pressure

relate directly to the index of refraction, the index of refraction varies continuously as well

[5]. Imagine that a column of atmosphere is divided into many discrete segments each with
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a di¤erent index of refraction. Snell�s law in ray optics predicts that the path of a single

ray will bend as it transitions through each of these segments. Hence, propagation through

atmospheric turbulence gives rise to random variations in the optical path. Unlike in free

Figure 1.2 Top: Ray propagating through a layered medium with multiple indexes of
refraction. Bottom: Ray propagating through a medium with a single index
of refraction.

space, a ray�s path through turbulence will not propagate in a straight line, but will wander

slightly as suggested by the top diagram in Figure 1.2. Combine this random wander in the

ray path with the di¤raction pattern for a point source and the result is a spot image that

wanders around in the image plane as the atmosphere evolves. The imaging system will

apply some integrated exposure to these random spot movements and, consequently, the

image becomes a broadened di¤raction pattern. The amount of broadening is related to the

turbulence in the optical path. For ground to space seeing conditions, these atmospheric

e¤ects become the dominant contributor to resolving power when the aperture size is larger

than a few centimeters. Technology continues to o¤er inventive ways to counter these

atmospheric e¤ects. Today�s most powerful terrestrial telescopes "sense" the conditions of

the atmosphere and react to improve seeing conditions. The sensing capability relies on

the concept of an optical wavefront which contains a measure of the atmospheric e¤ects.

This dissertation will review the concepts necessary for a basic understanding of these

atmospheric phenomenon. The background will provide the foundation for developing an

improved method for wavefront sensing.

1-3



1.2 The Wavefront

Since this work is concerned with wavefront sensing, it is necessary to develop the

concept of a wavefront or phasefront. For the purpose of this work, the wavefront is de�ned

as the di¤erence between some reference �eld, predicted by free space propagation, and the

actual �eld in the aperture of an imaging system. For a point source object, this reference

�eld has a simple geometric formulation. Consider optical energy emanating from a point

source. The wave propagation is equal in all directions. The sphere of radius R with center

Figure 1.3 Graphical depiction of a sperical wavefront emanating from a point source.

located at the point source represents a surface of constant amplitude and phase. Now,

imagine that the point source is far away and R becomes very large. If R is very large then

the small portion of the spherical wavefront interfacing with the imaging system is planar

to close approximation. In many circumstances, light from a distant source is accurately

modeled as a plane wave (planar wavefront) over the optical system aperture. In some

instances it is more practical to discuss the e¤ects of an optical system after attempting to

focus the planar wavefront. In these cases, it may be more appropriate to use a spherical

reference wavefront. For instance, consider the e¤ects of an imperfect optical system on a

planar wavefront. The di¤erence between the focused wavefront from a perfect spherical

wave reveals the imperfections in the system. This situation is demonstrated in Figure 1.3.

Whatever the form of the reference wavefront, wavefront sensors are designed to measure

the di¤erence between the incoming wavefront that reference. The turbulent atmosphere

will acts as an aberrating thick lens warping the wavefront as it propagates. Figure 1.5
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Figure 1.4 Diagram shows a reference planar wavefront passing through an imperfect
sperical lens. Aberrations in the lens system can be described by comparing
the outgoing aberrated wavefront to a reference spherical wavefront.

demonstrates the e¤ects of a large volume of atmosphere on a plane wave. A sensor

capable of measuring the amount of distortion created by the atmosphere would enable an

optical system to sense atmospheric e¤ects and, given a reactionary capability, somehow

compensate for these e¤ects.

1.3 Adaptive Optics

An adaptive optics system employs a wavefront sensor in a feedback path. The

wavefront sensor provides an error measure to some system of actively controlled optics.

The controllable optics are then capable of compensating for the wavefront error. Adaptive

optics systems may be used to improve performance of imaging systems or laser propagation

systems. Although the purpose of the two types of systems is dramatically di¤erent, the

feedback and control mechanisms used to increase performance are remarkably similar.

The technology for such systems has been evolving since conception in the 1950s [6]. These

systems are typically constructed using a telescope, an active or passive beacon, a wavefront

sensor, a deformable mirror and control electronics. Figure 1.6 shows a block diagram of an

adaptive optics system [3]. The beacon is used to provide the reference wavefront discussed

in the previous section. In celestial imaging, the beacon may be formed from a neighboring

bright star, called a natural guide star. When no such guide star exists, the object of
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Figure 1.5 Diagram demostrates how the atmosphere will tilt and dimple an incoming
planar wavefront.

interest itself may be used. Dim objects and extended objects present further issues, and

in such cases an arti�cial guide star formed by laser re�ection from the upper atmosphere

may be used. The wavefront sensor provides a measurement of the atmospheric distortion

at the input aperture in the form of a direct wavefront measurement or a wavefront slope

measurement. A brief discussion of various types of wavefront sensors follows in Section 1.4

and a discussion in greater detail is included in Chapter 4. The deformable mirror consists

of a mechanically actuated device capable of forming the conjugate phase measured by the

wavefront sensor. The conjugate phase may be divided into a tilt component and higher

order components, in which case the system may include a gimbaled mirror designated for

global tilt correction and a deformable mirror used to conjugate higher order e¤ects. The

control electronics are responsible for mapping the conjugate wavefront from the wavefront

sensor measurement to the actuator commands for a deformable mirror.

Two major challenges to be overcome when designing an adaptive optics system in-

clude: obtaining adequate levels of light for wavefront sensor performance, and maintaining

the bandwidth necessary for active atmospheric compensation. Light from the beacon must

be routed to all necessary wavefront sensing devices. Ensuring adequate signal to noise

ratio is present in all optical detectors is critical to performance. If the beacon light shares
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Figure 1.6 Block diagram of an Adaptive Optics system [3].

the same path with the object light then conserving light for the imaging system becomes a

trade-o¤ with providing light to the wavefront sensor. Real time correction for atmospheric

e¤ects requires that the control electronics and deformable mirror make corrections on the

order of several hundred Hz or greater. These bandwidths can be very demanding speci�-

cations for the wavefront sensor and the control electronics. Wavefront sensors are diverse

in size, power and maintenance requirements. Choosing a wavefront sensor often drives the

design of the remainder of an adaptive optics system. Providing a new option for wavefront

sensing is the focus of this research.

1.4 Wavefront Sensors

In order to describe the wavefront sensor in further detail, it is bene�cial to �rst trans-

form the �gurative concept of a wavefront into a tractable mathematical model. Consider

that the wavefront sensor must somehow estimate the complex electromagnetic �eld at the

optical system entrance pupil. The generalized pupil function, denoted P, provides a basic
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mathematical model for the optical �eld at the system pupil:

P(x; y;RP ) = AP (x; y)WP (x; y;RP ) exp(jP (x; y)); (1.2)

where AP (x; y) � pupil amplitude function, (1.3)

WP (x; y;RP ) � pupil windowing function, (1.4)

and P (x; y) � pupil phase function. (1.5)

AP represents the amplitude of the �eld, WP is a unit amplitude windowing function used

to mask out a circular aperture with radius RP , and P represents the phase of the �eld.

The atmosphere e¤ects both the amplitude and phase of the �eld as it propagates. Under

many conditions, however, the phase distortions create far more pronounced e¤ects in the

resulting image. Furthermore, although amplitude e¤ects may be present, the dynamics

of those e¤ects often occur on a spatial scale greater than the size of a wavefront sensor

subaperture, especially for "weak" turbulence. AP is relatively constant for such cases.

This is a pleasant characteristic of nature since amplitude e¤ects are far more di¢ cult to

compensate. For these reasons, the wavefront sensor is designed to detect the di¤erence

between the wavefront phase and some reference phase function, P . Field amplitude

is typically ignored. Because the wavefront phase is the quantity of interest, the terms

wavefront and phasefront are often used interchangeably in the literature. The phase

function P ; being an error measure, is also commonly referred to as the atmospheric

aberration function or simply the phase aberration function. Unless speci�ed otherwise,

the term wavefront in this document refers to the phase function P which is assumed to

represent the di¤erence in wavefront phase from some desired reference phase.

The wavefront sensor must estimate P to some level of precision. At optical fre-

quencies, only intensity can be measured directly, not the �eld amplitude and phase. The

wavefront sensor must then map from intensity measurements to �eld measurements. Some

sensors measure P through interferometry. To do so, a portion of the incoming light is

used to create a reference wavefront which is then interfered with the original wavefront.

Interference fringes in the intensity reveal relative phase di¤erences between the reference

and the aberrated wavefront. The self-referencing Point Di¤raction Interferometer (PDI)

is an example of this type of wavefront sensor. Figure 1.7 provides a block overview of the
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PDI [6]. Some wavefront sensors measure the slope of P by interfering the wavefront with

Figure 1.7 Diagram of the self-referencing Point Di¤raction Interferometer.

a spatially shifted version of itself. The most common example of this interferometer is the

Lateral Shearing Interferometer (LSI). Figure 1.8 provides a block overview of the LSI [3].

Figure 1.8 Diagram of the Lateral Shear Interferometer.

Measuring the wavefront phase without using interference techniques can seem a bit

daunting. The concept of modal estimation o¤ers a way to simplify the problem. Like

any other function, the wavefront phase has some frequency domain representation. Trans-

forming portions of the frequency content into the spatial domain produces a set of two-

dimensional functions. These functions could be referred to as basis functions or modes.
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Common Name Zernike Polynomial
Piston 1

x-tilt 2r cos �

y-tilt 2r sin �

defocus
p
3(2r2 � 1)

astigmatism-xy
p
6r2 sin 2�

astigmatism
p
6r2 cos 2�

Table 1.1 The �rst six Zernike polynomials

The wavefront phase function may then be approximated by a sum of the ordered basis

functions:

P (x; y) �
NX
i=1

aifi(x; y): (1.6)

In the case of the modal estimator, the functions fi(x; y) are a two-dimensional polynomial

basis set, and the coe¢ cients ai are weights applied to each polynomial. As N ! 1; the

approximation becomes exact. How does this simplify the problem of phase estimation?

The modal estimator approximates the phase function as a combination of only a small

number of polynomials. In the case of the tilt estimator, only 2 polynomials are used.

Choosing the class of polynomials to use can be crucial. One such set of polynomials is

the set of Seidel polynomials. Seidel polynomials are mentioned here because they appear

quite often in the literature. Seidel polynomials are used to describe lens speci�cations

for fabrication. A more convenient set of polynomials for measuring the aberrations in an

optical system are the Zernike polynomials. The �rst six Zernike polynomials are listed in

Table 1.1 (in polar coordinates). Notice that the �rst Zernike is simply a phase delay applied

to the entire aperture. When comparing phase from multiple subapertures, relative piston

measurements can be very helpful, but truly an engineering challenge due to the precision

required. The wavefront sensors discussed in this work will provide phase information from

a single subaperture and therefore piston is neglected in the measured aberration function.

De�ne P� to be the piston removed phase. The piston removed phase can be approximated

as a sum of scaled Zernike polynomials beginning with x-tilt:

P�(r; �) �
NX
i=2

aiZi

�
r

RP
; �

�
: (1.7)
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Due to the nature of the atmospheric induced phase aberration, the average Zernike coef-

�cients become successively smaller as the order of the Zernike increases [7]. In fact, the

average variance of the tilt coe¢ cients will be nearly 20 times greater than the defocus and

astigmatism coe¢ cients. Under the right conditions, wavefront sensors can compensate

for up to 86% of the piston removed wavefront phase error by correcting for x and y-tilt

only [3]. Figure 1.9 demonstrates how tilt coe¢ cients can be derived from shifted intensity

patterns. The o¤-center location of an Airy pattern can be translated into wavefront tilt

by the simple equations:

�x = tan�1
�
�x

f

�
� �x

f
; (1.8)

�y � �y

f
: (1.9)

Many of these tilt sensors can be combined together to form a wavefront sensor. Within

Figure 1.9 Demonstration of how wavefront tilt can be estimated from the o¤-center shift
of an Airy pattern.

the wavefront sensor, the primary aperture is divided into a grid of smaller subapertures

each contributing a local tilt measurement. The combination of multiple subaperture tilt

measurements compensates for the lack of relative piston information. Using a surface

�tting algorithm, the grid of tilt or slope samples is used to reconstruct the wavefront

phase. The resulting wavefront is an estimate of the actual wavefront from linear phase

measurements. This type of wavefront sensor is commonly referred to as a Hartmann type
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wavefront sensor. A diagram of how local wavefront tilt estimates can be used to reconstruct

the wavefront is shown in Figure 1.10. Modi�cations to the Hartmann wavefront sensor and

more sophisticated versions of interferometric wavefront sensors are discussed in Chapter 4.

Figure 1.10 The Hartmann type wavefront sensor uses an array of subapertures each
contributing a local tilt meaurement. The local tilt measurements are ex-
trapolated to reconstruct the wavefront. [3].

1.5 Research Contributions

The research contributions contained in this dissertation are motivated by the need

for higher order modal estimation in real time adaptive optics. The �rst contribution is

a wavefront curvature sensor that provides estimates of Zernike polynomials Z2 through

Z4. The Z2�4 sensor estimates x-tilt, y-tilt and defocus from image projections. The

image projection reduces read out time and CCD read noise. Combining the time savings

associated with image projection read out and an innovative algorithm design, the Z2�4

sensor operates in real time. The second contribution is a curvature sensor capable of

estimating Zernike polynomials Z2 through Z10. The Z2�10 sensor uses additional image

projections in order to estimate curvature terms Z5 through Z10. The third contribution
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involves performance bounding for both curvature sensors. The Cramér Rao lower bound

for estimator variance is used to bound the performance of each sensor and to provide insight

into design variable selection. The lower bound on performance also serves to validate sensor

simulation. Each sensor is simulated using von Kármán phase aberrations and CCD noise

modeling. The simulation provides a means to compare performance to existing wavefront

sensor designs. The simulation is also used to provide an analysis of sensor sensitivity to

errors in environment variable estimates. The last contribution is a unique implementation

within the atmospheric simulation. The von Kármán phase screens are generated using a

log-polar sampled phase screen generator. Phase screen generators are commonly used in

atmospheric turbulence simulation. The log-polar phase screen generation technique o¤ers

improved isotropy and increased accuracy over existing phase screen generation techniques.

1.6 Organization

This dissertation is divided into 10 chapters including this introduction. This chapter

is meant to provide some insight into adaptive optics, the need for wavefront sensing and

a few introductory concepts required to understand the major design challenges involved.

Chapter 2 discusses several background concepts necessary to understand the derivation

of the tilt and curvature estimators. The background concepts include an introduction

to parameter estimation, and atmospheric turbulence modeling. Fourier optics concepts

such as the optical transfer function are also discussed. Chapter 3 introduces a discrete

model for the optical system and the detected image. The noise model for the sensor

detector is detailed as a random process which leads to a probabilistic mapping from image

intensity to some set of wavefront modes. Chapter 3 concludes with a description of the

image projection operator notation and a derivation of the parameter estimator used in

each sensor. Chapter 4 serves as a literature review of related research. It contains

a description of the types of curvature sensing devices currently available. The literature

review concludes with an outline of the projection based tilt estimator. Chapter 5 describes

in detail the extension of the vector based tilt estimator required in order to estimate the

defocus parameter. Chapter 6 provides a method for bounding the performance of the

projection based estimator. Using the performance bound as a metric for determining

ideal design con�gurations is demonstrated. The performance bound is computed for both
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the Z2�4 and the Z2�10 sensors under a typical range of operating parameters. Chapter 7

outlines an existing method for generating random realizations of atmospheric phase. The

phase screen generator is an essential part of the wavefront sensor simulation. The polar

sampled phase screen generation technique is described in detail. Chapter 7 concludes

with a performance comparison between the polar phase screen generator and an existing

phase screen generation technique. Chapter 8 outlines the techniques for simulating the

projection based Z2�4 curvature sensor and provides a summary of the sensor simulation

results. The Z2�4 curvature sensor is compared to its lower bound and a simulation of

existing tilt sensor designs. A sensitivity analysis is also performed in order to demonstrate

the robustness of the sensor to erroneous environmental variable estimates. Chapter 9

provides an overview of the Z2�10 sensor design and concludes with simulated performance,

a comparison to existing tilt sensor designs, and a sensitivity analysis.
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2. Background

The projection based wavefront curvature sensors presented in this dissertation are essen-

tially parameter estimators. In order to facilitate a better understanding of the wavefront

sensor designs, I will begin by providing background material in this chapter. This material

is essential to highlight the set of fundamental principles, any assumptions that I have ap-

plied, and the mathematical motivation behind the design and simulation of the wavefront

curvature sensors. The background begins with a review of the Bayesian estimator and

performance bounds. A discussion of Kolmogorov�s turbulence model and its application to

atmospheric dynamics follows. From there, the atmospheric dynamics are parameterized.

This provides a set of atmospheric phase characteristics to be estimated along with their

statistics: the crucial link between the random nature of the atmosphere and some �nite set

of parameters. Finally, the sensor�s intensity measurements are linked to the �eld phase

characteristics (the parameter set) via a linear optics model. The concept of an optical

transfer function (OTF) will be the �nal ingredient that o¤ers a method for mapping from

the sensor�s observation space to a small set of atmospheric parameters.

2.1 Parameter Estimation

The following parameter estimation background follows the treatment from Van Trees

[8]. Consider an experiment where some observed quantity, R, is the outcome when the

environment is in�uenced by some parameter, A. Merely making an observation may not

reveal the exact parameter or set of parameters which led to the observed environment.

However, given an observation and some knowledge about the experiment, one may guess

at the parameters. Prior knowledge about the experiment typically consists of a proba-

bilistic mapping, prja(RjA), from the parameter space to the observation space. Parameter

estimation will replace "guessing" or, more formally, forming a probabilistic map from ob-

servation space, R, to a parameter estimate, Â. The map from the observation to the

estimate is called an estimation rule, â (R). The diagram in Figure 2.1 describes the esti-

mation model. Note several variable naming conventions: lower case letters denote random

variables, upper case letters indicate instances of random variables or nonrandom quanti-

ties, bold letters indicate vector quantities, and a carat indicates the estimate of a quantity.

Table 2.1, de�nes several likelihood expressions that will be used in this section.
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Expression Description

pa(A) probability density for A

pr;a(R; A) joint density for A and R

prja(RjA) conditional density for R given A

pajr(AjR) =
prja(RjA)pa(A)

pr(R)
Bayes�Rule, a useful identity

a posteriori density =
conditional likelihood � a priori density

marginal density
de�ning the terms in Bayes�Rule

Table 2.1 Useful de�nitions from estimation theory.

The estimation rule should result in a parameter estimate that minimizes risk, R.

Risk is de�ned to be the expected value of a prede�ned cost function, C:

R � EfC[a; â(R)]g; (2.1)

R =

1Z
�1

dA

1Z
�1

dRC[a; â(R)]pa;r(A;R); (2.2)

R =

1Z
�1

dRpr(R)

1Z
�1

dAC[a; â(R)]pajr(AjR): (2.3)

Since cost is subjective, the cost function selected may vary. The purpose of the cost

function is to assign some penalty to error in the estimate:

A� = A� Â; (2.4)

where A � realization of the random parameter, a,

and Â � estimate of A:

A few common cost functions are shown in Figure 2.2. From left to right the example plots
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Figure 2.1 The estimation model [8].

C( A ) =|A |C( A ) = A 2 C( A ) = x

C( A ) = 0

Figure 2.2 Example cost functions.

demonstrate quadratic, linear, and uniform cost functions.

Assume a uniform cost function where the cost of error is unity outside some region,

�, and the cost of error is zero within the region �. Given uniform cost, the risk becomes:

Runf =

1Z
�1

dRpr(R)

2664
âunf (R)��

2Z
�1

dApajr(AjR) +
1Z

âunf (R)+
�
2

dApajr(AjR)

3775 ; (2.5)

Runf =

1Z
�1

dRpr(R)

26641�
âunf (R)+

�
2Z

âunf (R)��
2

dApajr(AjR)

3775 : (2.6)

Minimizing risk, in this case, means choosing the estimation rule, âunf (R) = Â, such that

the inner integral in (2.6) is maximized. Now consider the limiting case where the region �

in the cost function approaches some arbitrarily small nonzero value. In the limit, the inner

integral is maximized when âunf (R) equals the parameter that maximizes the a posteriori
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density, pajr(AjR):
min

A

�
lim

�! 0
Runf

�����
A=âunf

: (2.7)

The notation, minA f (A)
���
A=â

, is used as a compact form for the expression,

â = A : f(A) =
min

A
f (A) ; (2.8)

which means that â is set equal to the value of the input variable A such that the function

f is minimized over A. Substituting (2.6) into (2.7) and simplifying:

1Z
�1

dRpr(R)

2641� max
A

âunf (R)
+Z

âunf (R)�

dApajr(AjR)

375
�������
A=âunf

; (2.9)

1Z
�1

dRpr(R)

2641� max
A

�
pajr(AjR)

	 âunf (R)
+Z

âunf (R)�

dA

375
�������
A=âunf

; (2.10)

max

A

�
pajr(AjR)

	���
A=âunf�âmap

: (2.11)

This estimation rule, denoted âmap(R), is commonly known as the maximum a posteriori

(MAP) estimator. If the a posteriori density is continuous and has �rst partial derivatives

then the MAP estimator can be found by solving for the function maximum in the usual

manner. Furthermore, since the a posteriori density is necessarily monotonic, its maximum

and the maximum of its natural logarithm will both occur at the same value of A. This is

advantageous because applying Bayes�Rule (see Table 2.1) and taking the natural logarithm

allows for convenient simpli�cation of the MAP estimator expression. Begin by solving for

the critical point (the maximum value in this case) of a function in the typical manner.

Take the �rst derivative and set the result equal to zero:

max

A

�
pajr(AjR)

	���
A=âmap

; (2.12)

@

@A
pajr(AjR)

����
A=âmap

= 0: (2.13)

Since the variable A at which the a posteriori density is maximized is also the point at

which the logarithm of the a posteriori density is maximized, substitute in the logarithm of
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the a posteriori density:
@

@A
lnfpajr(AjR)g

����
A=âmap

= 0: (2.14)

Now apply Bayes�Rule and evaluate the logarithm:

@

@A
ln

�
prja(RjA)pa(A)

pr(R)

�����
A=âmap

= 0; (2.15)

@

@A
ln prja(RjA) +

@

@A
ln pa(A)�

@

@A
ln pr(R)

����
A=âmap

= 0: (2.16)

Note that the derivative of the marginal density with respect to the parameter is zero.

Removing the dependence on the marginal density gives:

@

@A
ln prja(RjA) +

@

@A
ln pa(A)

����
A=âmap

= 0:

Once again, taking the �rst derivative, setting the result equal to zero and solving for the

variable A is equivalent to maximizing the sum of logarithms of the conditional and the a

priori densities. Rewriting the di¤erential expression above as a maximization yields:

max

A

�
ln prja(RjA) + ln pa(A)

	���
A=âmap

: (2.17)

From this result, it is easy to see that there are two probabilistic mappings that are required

to form the MAP estimator. The �rst term is the conditional probability of the observation

given some set of parameters, prja(RjA), and the second term is the a priori probability

distribution of the parameter space, pa(A). Unfortunately, many cases arise where the

parameter a priori probability is unknown. In these cases, it is common to de�ne some

range for the parameter and then assume a uniform probability distribution within the

range. If the a priori density is constant then its partial with respect to the parameter A

is zero and the expression for â becomes simpler still:

@

@A
ln prja(RjA)

����
A=âml

= 0; (2.18)

max

A

�
ln prja(RjA)

	���
A=âml

: (2.19)
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The estimator in this case is often referred to as the Maximum Likelihood (ML) estimator,

denoted âml.

Now suppose that it is necessary to measure the level of performance of the estimator.

A common method for evaluating estimator performance, called the Monte Carlo method,

involves simulating or conducting many experiments and evaluating the variance of the

estimator over a large sample of observations. This method o¤ers an estimate of the

estimator variance. However, the estimated variance is simply a number. It may also

be useful to know how the sample variance compares to a theoretical lower bound. The

Cramér-Rao lower bound (CRLB) provides a benchmark for the lowest achievable estimator

mean squared error. Van Trees provides derivations of the CRLB for both the single and

multiple parameter cases [8]. The CRLB on mean squared error for any unbiased estimator

is presented here in two forms:

E
n
(â(R)� a)2

o
� 1

E
n�

@
@A ln pr;a(R; A)

�2o ; (2.20)

� � 1

E
n

@2

@A2
ln pr;a(R; A)

o ; (2.21)

where the expectation is taken over both a and r. The term unbiased indicates that the

mean or expected value of the estimator equals the true parameter: Efâ(R)g = A. If

the parameter is nonrandom or if the parameter is given an assumed uniform pdf, then the

CRLB simpli�es:

E
n
(â(R)�A)2

o
� 1

E
n�

@
@A ln prja(RjA)

�2o ; (2.22)

� � 1

E
n

@2

@A2
ln prja(RjA)

o : (2.23)

When the variance of an estimator is equal to the CRLB, then the estimator is e¢ cient.

If an estimator is biased, then the CRLB above does not apply. The Cramér-Rao

inequality for biased estimators is sometimes referred to as the lower bound on mean squared
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error:

Efâ(R)g = A+B(A); (2.24)

E
n
(â(R)� a)2

o
�

�
1 + d

dAB(A)
�2

E
n�

@
@A ln pr;a(R;A)

�2o : (2.25)

A CRLB exists for multiple parameter cases. Assume K parameters, the CRLB has the

following form (once again for unbiased estimates):

E
n
(âi(R)� ai)2

o
� Jii, (2.26)

where Jii is the iith element in the K �K square matrix, J�1T . JT is de�ned as follows:

JT = JD + JP ; (2.27)

JDij � �E
�

@2

@Ai@Aj
ln prja(RjA)

�
; (2.28)

JPij � �E
�

@2

@Ai@Aj
ln pa(A)

�
: (2.29)

Thus the MAP and ML estimators o¤er methods for minimizing the risk associated

with approximating parameters from experimental observations. The caveat is that some-

thing must be known about the environment. In either case, a probabilistic map of the

parameter space, given some observation prja(RjA), must be known. The MAP estimator

requires an a priori probability for the estimated parameter(s) as well. This begins with

generating an accurate, yet tractable, model for the experiment. In the case of the wave-

front sensor problem presented here, it is necessary to develop models for the atmospheric

turbulence and detector noise. I will begin with the turbulence model.

2.2 Turbulence Modeling

From the description of atmospheric turbulence provided in the introduction, the

random nature of the index of refraction leads to optical system performance far worse than

the limits imposed by di¤raction e¤ects. This section provides a review of the most common

model for atmospheric �uctuations in index of refraction and the assumptions inherent in

the model. Once the model for index of refraction is established, it is transformed into
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a more useful phase model. The importance of a phase model as opposed to an index of

refraction model should be evident from the brief discussion in Section 1.2 concerning the

optical wavefront. Recall that the wavefront model presents the aberration function as a

relative phase di¤erence between the wavefront in the system aperture and some reference

wavefront. A wavefront sensor must detect and compensate for this atmospheric phase

distortion. In order to design such a device, a keen understanding of the nature of the

phase distortion is required along with a tractable model for use in simulation and testing

of the sensor design. The most popular place to begin deriving such an atmospheric model

is from the research contributions of A. N. Kolmogorov.

In the 1920s and 30s, Andrei Nikolaevich Kolmogorov made signi�cant contributions

to mathematics in the area of probability theory and function spaces. These accomplish-

ments led to an applied mathematical treatment concerning the turbulent motion of �uids

[9]. Kolmogorov hypothesized a 2=3 power law for the mean square di¤erence in velocity

between two points (often referred to as a structure function) in an isotropic, homogeneous

medium. The terms isotropic and homogeneous refer to the spatial statistics of the �uid.

Homogeneous means that the statistical moments are only a function of the displacement

vector between the two points of interest and not the location of either point. The term

isotropic further restricts the spatial statistics to depend only on the magnitude of the dis-

placement vector without regard for the displacement direction. Kolmogorov�s velocity

structure function was of the form [5]:

Dv (R1;R) = E
n
[v(R1 +R)� v(R1)]2

o
; (2.30)

Dv (R) = C2vR
2=3: (2.31)

Where C2v is the velocity structure function constant. This structure function applies to a

region in the �uid called the inertial range. The inertial range is con�ned to a separation

of points less than the outer scale and greater than the inner scale. The outer scale is the

separation distance beyond which the turbulent motion is no longer considered isotropic.

For the purpose of this research, the atmosphere is the �uid of interest. Near the Earth�s

surface, the atmospheric outer scale is generally considered equal to the height above the

ground. The outer scale at higher altitudes is often estimated in the 10�s of meters. The
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inner scale is the separation distance where the turbulence gives way to molecular friction.

Reasonable values for atmospheric inner scale are on the order of a few millimeters to 15

cm.

Kolmogorov�s power law provides a statistical model for relative particle velocity. It

is necessary to extend this statistic to the atmospheric index of refraction, n. The �rst

part of this extension lies in �nding an expression for index of refraction that relates it to

particle velocity, for which Kolmogorov�s statistic applies. The second critical step involves

a contribution by Corrsin concerning the concept of a conservative passive additive [10].

The index of refraction of air depends on density which is largely a function of temperature,

pressure and humidity. The approximate expression for index of refraction at optical

wavelengths, excluding humidity e¤ects, is given by Andrews [11]:

n = 1 + 7:76� 10�7(1 + 7:52� 10�3��2)P
T
; (2.32)

n � 1 + 7:9� 10�7P
T
: (2.33)

The approximated n includes an assumed wavelength in the optical band: � = 0:5�10�6m.

Now examine the di¤erential:

�n = 7:9� 10�7P
T

�
�P

P
� �T

T

�
; (2.34)

�n � �7:9� 10�7 P
T 2
�T: (2.35)

This last approximation results from the fact that, at optical frequencies, temperature e¤ects

dominate the �uctuations in n and therefore pressure e¤ects can be ignored [5]. Corrsin

explains that quantities can be categorized as conservative if they are not dependent on a

position in space. He further notes that a passive quantity bears the same atmospheric

statistics regardless of position. Given that conservative passive additives do not e¤ect the

turbulence statistics, they obey the same 2=3 power established for velocity �uctuations.

Temperature is not a conservative quantity in general, because it is dependent on altitude.

Consider potential temperature, however, or temperature about a speci�c altitude. Poten-

tial temperature is a conservative quantity. De�ne potential temperature, �T , as follows
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[10]:

�T = T � 9:8
�C
km

; (2.36)

��T = �T; (2.37)

�n � �7:9� 10�7 P
T 2
��T : (2.38)

Now it is obvious that index of refraction �uctuations bear a direct relationship to potential

temperature �uctuations making potential temperature a passive quantity. Since �T is

a conservative passive additive, its structure function obeys the same 2=3 power law as

velocity:

D�T (R) = C2�TR
2
3 : (2.39)

It follows then that n follows a 2=3 power law as well, thus the desired statistic is given:

Dn (R) = C2nR
2
3 : (2.40)

It is necessary to transform this spatial statistic into a spectral representation. An

expression for the power spectral density is necessary in order to describe the process spec-

trally. Transforming the structure function into a power spectrum is made possible via the

Fourier-Stieltjes integral [11]:

x(t) =

1Z
�1

ej!td�(!); (2.41)

�(!) =
1

2�

1Z
�1

e�j!tx(t)dt; (2.42)

x(t) � spatial or temporal correlation; (2.43)

d�(!) � in�nitesimal spectral band: (2.44)

Solving the integral will require working with the correlation, Bn, rather than the structure

function, Dn. Recall the following relationship between the structure function and the

correlation for a homogeneous random process [11]:

Bn(0)�Bn(R) =
1

2
Dn(R): (2.45)
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It will be helpful to extend the property of statistical homogeneity into the temporal domain

by assuming that the atmospheric statistics do not vary with time. When the temporal

moments of a random process do not vary with time, the process is considered stationary.

In order to assume stationarity, a temporal quality, it is necessary to assume ergodicity.

Assuming that the atmospheric statistics are ergodic is to assume that taking many random

samples of the atmosphere in di¤erent locations will yield the same statistics as sampling

the same location over many time instances. In other words, the temporal statistics are the

same as the spatial statistics, in a mean square sense. Finally, this derivation will require

a transform pair between the spatial correlation function and the spectral density. To this

purpose, Bn(R) must be band limited in order to ensure that the inverse transform exists.

Substituting Bn into the Fourier-Stieltjes integral transform and simplifying will require

some mathematical rigor. Both Andrews [11] and Strohbehn [5] provide a more detailed

version of the derivation. The following summarizes the treatment from Strohbehn.

Begin by de�ning a zero mean index of refraction random variable, n1:

n(R) = E fn(R)g+ n1(R); (2.46)

E fn1(R)g = 0: (2.47)

Apply the Fourier-Stieltjes integral to the zero mean random variable, n1:

n1(R) =

1Z
�1

dN(K)ejK�R; (2.48)

where K = (Kx;Ky;Kz) is the three-dimensional spatial wave number and dN(K) is some

small spectral harmonic of the zero mean index of refraction. I am only interested in

the zero mean random process n1, not n. However, for notational simplicity, I would like

to retain the variable n and dispense with the subscripted variable n1. For this reason,

the reader may assume that all subsequent references to "the index of refraction" and the

variable n are indeed referring to the zero mean random process. Writing the correlation
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for the index of refraction:

E fn(R1)n�(R2)g = Bn(R1;R2); (2.49)

Bn(R1;R2) = E

8>><>>:
Z
dN(K1)e

jK1�R1��Z
dN(K2)e

jK2�R2

��
9>>=>>; ; (2.50)

= E

�ZZ
dN(K1)dN

�(K2)e
j(K1�R1�K2�R2)

�
; (2.51)

=

ZZ
E fdN(K1)dN

�(K2)g ej(K1�R1�K2�R2): (2.52)

Making the substitutions R2 = R1 +R:

Bn(R1;R1+R) =

ZZ
E fdN(K1)dN

�(K2)g ej(K1�R1�K2�(R1+R)): (2.53)

According to the assumptions of stationarity and ergodicity of the process: Bn(R1+R;R1) =

Bn(R). The only form for the right hand side for which the correlation will be independent

of R1 is to force the index spectrum to be delta correlated on K:

E fdN(K1)dN
�(K2)g = �(K1 �K2)�n(K2)d

3K1d
3K2: (2.54)

Substituting (2.54) into (2.52) and evaluating the K2 integral:

Bn(R) =

Z
d3K1e

jK1�R
Z
�(K1 �K2)�n(K2)d

3K2e
�jK2�R; (2.55)

Bn(R) =

Z
d3K1e

jK1�R�n(K1): (2.56)

Thus, the following three-dimensional Fourier pair:

Bn(R) =

1Z
�1

ejK�R�n(K)d
3K; (2.57)

�n(K) =
1

8�3

1Z
�1

e�jK�RBn(R)d
3R: (2.58)
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Recalling that the process is also isotropic, it is possible to further simplify the expression

by converting to spherical coordinates:

Bn(R) =
4�

R

1Z
0

d� sin(�R)�n(�)�; (2.59)

�n(�) =
1

2�2�

1Z
0

dRR sin(�R)Bn(R); (2.60)

where K = (�; �; �); (2.61)

and d3K = �2 sin �d�d�d�. (2.62)

Combining the isotropic form for Bn(R) in (2.59) and (2.45), the structure function can be

expressed in terms of the spectral density:

Dn(R) = 8�

1Z
0

d��2�n(�)

�
1� sin(�R)

�R

�
: (2.63)

Taking the inverse Fourier transform of (2.63) Strohbehn provides the very important result

[12]:

�n(�) =
1

4�2�2

1Z
0

sin(�R)

�R

d

dR

�
R2

d

dR
Dn(R)

�
dR; (2.64)

�n(�) =
5

18�2
C2n�

�3
L0Z
l0

sin(�R)R�1=3dR; (2.65)

�n(�) = 0:033C2n�
�11=3; (2.66)

when
1

L0
� �� 1

l0
: (2.67)

These results provide tractable models for index of refraction in both the spatial, (2.40),

and spatial frequency, (2.66), domains. At this point, it would also be bene�cial to trans-

form the results for index of refraction into a phase structure function and phase spectrum

respectively. The transformation from index of refraction to phase models follows in the

next section. Table 2.2 highlights the assumptions that were required to arrive at (2.40)

and (2.66).
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Assumption Explanation

1: homogeneity
Atmospheric di¤erence statistics depend only on the
displacement vector and not its location in space.

2: isotropy
Di¤erence statistics are dependent only on the

magnitude of the displacement vector.

3:
n solely dependent
on temperature

Neglect e¤ects of humidity and pressure on n:

4:
temperature
is conservative

Large distance temperature e¤ects are lumped
into an atmospheric pro�le constant C2n.

5: ergodicity
Turbulence evolution time scale is long when
compared to wind �ow across the aperture.
Spatial and temporal statistics are the same.

6:
band limited
turbulence

Distant particle velocities become uncorrelated.

Table 2.2 Assumptions required to derive the index of refraction spectrum from Kol-
mogorov velocity structure function.
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The phase spectrum will serve two purposes. The �rst useful property of the phase

spectrum is that it is necessary for deriving the expected power in each Zernike mode. A

detailed discussion of Zernike mode variance is included in Section 2.3. The power in

each Zernike mode is also a statistical variance which is essential for approximating pa(A)

and the e¤ective operation of the parameter based wavefront sensor. The second property

is that the phase spectrum provides a fast, e¢ cient method for simulating atmospheric

turbulence. Assumption number 6 in Table 2.2 suggests making one more modi�cation to

the Kolmogorov spectrum before using it to create a phase spectrum. The Kolmogorov

spectrum should include parameters for the inner and outer scale. Doing so e¤ectively band

limits the spectrum by removing the singularity in (2.66) at � = 0 and adding exponential

roll-o¤ at high frequencies. Making these changes will force the spectrum to be absolutely

integrable while still matching the Kolmogorov model within the inertial range. The

following refractive index power spectrum is referred to as the von Kármán spectrum:

�n(�) = 0:033C2n

exp
�
��2
�2m

�
�
�2 + �20

�11=6 ; (2.68)

where 0 � � � 1; (2.69)

�m = 5:92=l0; (2.70)

and �0 = 1=L0: (2.71)

Transforming the index of refraction spectrum into a phase spectrum begins by ap-

plying thin screen theory [13]. In the context of thin screen theory, turbulence e¤ects are

condensed into a thin screen such that only the phase (not the amplitude) of the propagat-

ing �eld is modulated by the screen. For instance, the �eld at the entrance and exit of a

thin screen may be represented as P1 and P2 respectively:

P1(x; y) = exp(jP (x; y)); (2.72)

P2(x; y) = exp(j [P (x; y) + P�(x; y)]): (2.73)

Note that the phase screen has unit amplitude and a phase function denoted P�(x; y).

Within this theory, a column of atmosphere could be simulated by multiple thin phase

screens each separated by free space as shown in Figure 2.3. The �eld propagating between
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Figure 2.3 Atmospheric turbulence divided into discrete layers and modeled as a series
of thin phase screens.

these thin screens experiences �uctuation in both phase and amplitude. Within the model

described by Figure 2.3, the thin screen phase spectrum may be constructed from a piecewise

integral of the index of refraction spectrum multiplied by the wave number [14]:

�P�(�x; �y) = 2�k
2

z0+�zZ
z0

�n(�x; �y; �z = 0; �)d�: (2.74)

Substituting the von Kármán spectrum for �n provides the thin phase screen phase spec-

trum:

�P�(�r) = 2�k2 (0:033) (�2r + �
2
0)
�11=6 exp

�
��2r
�2m

� z0+�zZ
z0

C2n(�)d�; (2.75)

where �r =
q
�2x + �

2
y: (2.76)

It is convenient to simplify the expression for �P� by introducing a constant called the

coherence diameter, r0. r0 is also commonly referred to as the Fried parameter [15]. The
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Fried parameter accounts for the integrated C2n and the wavelength of interest:

r0 = 0:185

0BBB@ �2

z0+�zR
z0

C2n(�)d�

1CCCA
3
5

: (2.77)

Where the coe¢ cient 0:185 is an approximation:

 
5�
�
2
3

�
4�

5
2�
�
1
6

�!
3
5 �24

5
�

�
6

5

�� 1
2

� 0:185:

The Fried parameter o¤ers insight as well as a compact notation. As a general rule, r0

describes the strength of optical turbulence: as r0 increases, the strength of the turbulence

decreases. It represents the spatial dimension for an optical system aperture beyond which

the resolving power advantages typically associated with increasing aperture diameter give

way to turbulence e¤ects. In other words, increasing the size of the aperture beyond

r0, while increasing the amount of light entering the system, does not improve resolution.

Substituting r0 into (2.75), provides the following expression for the thin screen phase

spectrum:

�P�(�r) = 0:4898r
�5=3
0 (�2r + �

2
0)
�11=6 exp

�
��2r
�2m

�
: (2.78)

Substituting the thin screen phase spectrum into the Fourier-Stieltjes integral yields the

corresponding thin phase structure function. Begin with a convenient form of the transform

integral in (2.63) provided by Tatarskii [16]. This form of the integral assumes plane wave

propagation and local isotropy. Also, it is convenient to remove the subscript r on � for

notational simplicity. Remember that �; in this case, is only varying in an in�nitesimally
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thin slice of the atmosphere perpendicular to the path of propagation:

DP�(Rx; Ry; 0) = 2

1ZZ
�1

[1� cos(�xRx + �yRy)]�P�(�x; �y; 0)d�xd�y; (2.79)

DP�(R) = 4�

1Z
0

d�� [1� J0(�R)] 0:4898r�5=30 �

(�2 + �20)
�11=6 exp

�
��2
�2m

�
; (2.80)

= 0:4898r
�5=3
0 4�

2664
1R
0

d� �
(�2+�20)

11=6 exp
�
��2
�2m

�
�

1R
0

d� �
(�2+�20)

11=6J0(�R) exp
�
��2
�2m

�
3775 : (2.81)

Note that the symbol J0 represents the Bessel function of the �rst kind. Examining (2.81),

the �rst integral can be computed in closed form using a table from Andrews [11]:

1Z
0

d��2�
exp

n
��2
�2m

o
(�2 + �20)

11=6
=

1

2
�
2�� 8

3
0 �(�+

1

2
)U(�+

1

2
;�� 1

3
;
�20
�2m
); (2.82)

�=
1

2
�
2�� 8

3
0 �(�+

1

2
)�"

�(43 � �)
�(116 )

+
�(�� 4

3)

�(�+ 1
2)

�
�20
�2m

� 4
3
��#

: (2.83)

Where the function symbol, U(a; c; z) represents a con�uent hypergeometric function of the

second kind. Substituting � = 1
2 yields the following result:

1Z
0

d��2�
exp

n
��2
�2m

o
(�2 + �20)

11=6
�=
1

2
�
� 5
3

0

"
�(56)

�(116 )
+ �(�5

6
)

�
�20
�2m

� 5
6

#
: (2.84)

Approximating the e¤ects of the third hypergeometric term, �
2
0

�2m
=

l20
35:05L20

, to be nearly zero

yields the following result:

1Z
0

d��
exp

n
��2
�2m

o
(�2 + �20)

11=6
=
1

2
�
� 5
3

0 U(1;
1

6
;' 0) �=

1

2
�
� 5
3

0

�(56)

�(116 )
�=
3

5
�
� 5
3

0 : (2.85)

The second integral in (2.81) presents a slight problem since it has no analytical solution. In

order to simplify the integrand to a form that will provide an analytical result, the inner scale
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term must be removed. The are a few items to consider when determining whether such an

assumption is viable. The primary purpose of this derivation is for computer phase screen

simulation. For the purposes of computer modeling, the inner scale e¤ects will be negligible

as long as the smallest spatial sampling in the phase screen is on the order of l0 or larger.

In this case, the roll-o¤ in the structure function due to �m may go unnoticed. A plot

comparison of the analytical structure function derived below and a numerical evaluation

of the structure function in (2.81) is presented in Figure 2.4. Removing the exponential

term, the remaining integral can be solved using a table from Gradshteyn [17]:

1Z
0

d�
J�(b�)�

�+1

(�2 + a2)�+1
=

a���b�

2��(�+ 1)
K���(ab): (2.86)

Substituting � = 5
6 , � = 0, b = R, and a = �0 yields the following result:

1Z
0

d�
�

(�2r + �
2
0)
11=6

J0(�R) =
�
� 5
6

0 R
5
6

2
5
6�(116 )

K� 5
6
(�0R) =

�
R
2�0

� 5
6

�(116 )
K 5

6
(�0R): (2.87)

Note that Kx represents a modi�ed Bessel function of the second kind. Combining the

results in (2.85) and (2.87) produces the familiar closed form expression for DP�(R):

DP�(R) = 0:4898r
�5=3
0 4�

2643
5
�
� 5
3

0 �

�
R
2�0

� 5
6

�(116 )
K 5

6
(�0R)

375 : (2.88)

These results provide both spatial (2.88) and spatial frequency (2.78) statistical mod-

els for the atmospheric turbulence phase. These two very important expressions were

carefully derived from �rst principles. The phase spectrum and phase structure function

will prove vital when creating a computer-based atmospheric simulation with which to test

the wavefront sensor.

2.3 De�ning the Parameter Space

Given a statistical model for the wavefront phase, the next step is to relate the model

to the Zernike polynomial expansion introduced earlier. In doing so, it is possible to
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Figure 2.4 Top: the numeric integral structure function [solid line] in (2.81) and the an-
alytical form [dashed line] in (2.88), [r0 = 0:088m, l0 = 0:01m, L0 = 10m].
Bottom: percent di¤erence between the numeric integral and analytic struc-
ture functions.

combine the ideas from the parameter estimation section with the modal statistics from the

atmospheric model. Recall that deriving a probabilistic mapping from the image intensity

to the set of estimated lower order Zernike modes, is the essence of the parameter estimator.

Chapter 1 introduced the fact that the phase aberration function can be approximated by

a linear combination of Zernike polynomials:

P�(r) �WP (r;RP )
NX
i=2

aiZi (r;RP ) : (2.89)
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where RP � radius of the aperture,

r = (r; �) ;

0 � r <1;

0 � � < 2�;

and Zi (r;RP ) � Zi

�
r

RP
; �

�
:

The function WP , is a pupil windowing function:

WP (r;RP ) =

�
1; r � RP
0; r > RP

: (2.90)

Note that the two-dimensional coordinates (r; �) have been condensed into a single vector

representation, r, whenever convenient. The pupil or aperture radius, RP , may be included

in Zernike functions and windowing functions to give the notation more generality. Given

some measurement of the �eld phase, the only unknowns are the ai�s. Assuming that it is

possible to develop a method for transforming intensity, which can be measured directly, into

�eld phase, then the estimator must guess at the values for the ai�s. Within the atmospheric

statistics there must be an average value and a variance for each of the estimated coe¢ cients.

Given an average value and a range of say �x standard deviations the estimator could de�ne

a most likely starting range for each coe¢ cient much like the assumption required for the

ML estimator. Further, the MAP estimator could be fashioned from an average value and

an accurate variance for each parameter. The set of expected values and variances of each

parameter will be referred to as the parameter space. This section will discuss a few basics

concerning the Zernike basis set and the theory which links the Zernike basis to a particular

atmospheric phase spectrum.

The Zernike background begins with a demonstration of how to construct each of the

Zernike modes, calculate Zernike coe¢ cients from a given phasefront measurement, and

how to calculate the mean and variance of each Zernike mode. This treatment follows

Roggemann [3] with the exception of some minor notation changes. The coe¢ cients, ai,
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can be found by projecting each Zernike onto the wavefront phase:

ai =

Z
d�WZ(�)Zi(�; 1)P (�RP ; �) ; (2.91)

� =

�
r

RP
; �

�
; (2.92)

WZ(�) =

� 1
� ; j�j � 1
0; j�j > 1 : (2.93)

Note the use of the scaled coordinates, �, is required because the Zernike polynomials are

only valid on the unit circle. The weighted windowing function, WZ(�; 1), provides the

limits of integration and the appropriate scaling such that the Zernikes are orthonormal on

the unit circle. Recall that Zernike polynomials are de�ned as an orthonormal basis strictly

over the unit circle: Z
d�WZ(�)Zi(�; 1) = 0; (2.94)

for i � 2; and

Z
d�WZ(�)Zi(�; 1)Zi0(�; 1) = �ii0 ; (2.95)

�ii0 =

�
0; i 6= i0

1; i = i0
; (2.96)

and hence, the need for the scaled windowing function and radial coordinate scaling. Re-

call that the wavefront sensor will estimate modes beginning with Z2. For this reason,

the phase function of interest is the piston removed, or zero mean, phase aberration, P�.

Consequently, each coe¢ cient, i � 2, has zero mean:

Efaig = E

�Z
d�WZ(�)Zi (�)P� (�RP ; �)

�
; (2.97)

=

Z
d�WZ(�)Zi (�)EfP� (�RP ; �)g; (2.98)

= 0: (2.99)
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The radius argument inWZ and Zi is removed to compact the notation for the case: RP = 1.

The coe¢ cient variance is another important statistical moment:

Efaiai0g = E

8><>:
Z
d�WZ(�)Zi (�)P� (�RP ; �)�Z
d�0WZ(�

0)Zi0 (�
0)P�

�
�0RP ; �

0�
9>=>; ; (2.100)

=

Z
d�WZ(�)

Z
d�0WZ(�

0)Zi (�)Zi0
�
�0
�
EfP� (�RP ; �)P�

�
�0RP ; �

0�g;
(2.101)

=

�
Varfaig; i = i0

Covfaiai0g; i 6= i0
: (2.102)

The amount of power or phase error associated with any coe¢ cient is related to the coe¢ -

cient variance. Given a plane wave reference, the aperture mean square error will be shown

to be (see Section 6.1):

D
P 2�e

E
=

Z
d�WZ (�)E

�
P 2� (�RP ; �)

	
=

1X
i=2

E
�
a2i
	
: (2.103)

The mean square phase aberration is commonly used as a measure of the atmospheric dis-

tortion present in an optics system. The mean square measure of distortion equates to the

sum of the variances in each Zernike coe¢ cient. This relationship makes the modal expan-

sion extremely useful in identifying the amount of phase error expected of the atmospheric

model and how that error is distributed among the modes.

Section 1.4 in the Introduction, identi�ed the �rst 6 Zernike polynomials. The set of

rules below provide a means to derive any Zernike polynomial [7]:

Zi even(r; �) =
p
2(n+ 1)Rmn (r) cos(m�)

Zi odd(r; �) =
p
2(n+ 1)Rmn (r) sin(m�)

9=;m 6= 0; (2.104)

Zi(r; �) =
p
n+ 1R0n, m = 0; (2.105)

Rmn (r) =

(n�m)=2X
s=0

(�1)s(n� s)!
s!
�
n+m
2 � s

�
!
�
n�m
2 � s

�
!
rn�2s: (2.106)

There is more than one ordering scheme for Zernike polynomials. To minimize confusion, I

will quickly outline two common ordering schemes. Ordering Zernike polynomials requires

at least two indices due to the two degrees of freedom r (radial) and � (azimuthal). Most
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function [n, m] = index2nm(i)
x = 1;
xsum = 1;
while xsum < i

x = x + 1;
xsum = xsum + x;

end
n = x - 1;
m = (i - xsum + x);
if n/2 == round(n/2)

if m/2 6= round(m/2)
m = m - 1;

end
else

if m/2 == round(m/2)
m = m - 1;

end
end
return

Table 2.3 Example algorithm designed to generate n and m from i using Noll�s Zernike
ordering scheme.

ordering schemes use a single index, i, to sort the polynomials and two other indices, (n;m),

to identify radial order and azimuthal order. Two common ordering methods are provided

by Malacara [18] and Noll [7]. Each ordering scheme has its respective bene�ts. For

instance, Malacara�s ordering o¤ers a simple relationship between the primary index i and

the dual indices n and m:

n = next integer greater than
�3 +

p
1 + 8i

2
; (2.107)

m = i� n(n+ 1) + 2

2
: (2.108)

This paper will adopt Noll�s ordering scheme. Noll�s ordering places an odd or even depen-

dency between the overall index i and the symmetry of each polynomial. This is extremely

bene�cial to the derivation to follow in that it allows for a very compact solution to the

coe¢ cient variance. Unfortunately, Noll�s scheme does not share the bene�t of having a

simple relationship between the primary and dual indices. Instead an algorithm similar to

the one shown in Table 2.3 is required to generate n and m from i:
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Piston: (1; 0; 0) Tilt-x: (2; 1; 1) Tilt-y: (3; 1; 1)

Defocus: (4; 2; 0) Astigmatism-xy: (5; 2; 2) Astigmatism: (6; 2; 2)

Coma: (7; 3; 1) Coma: (8; 3; 1) Trefoil: (9; 3; 3)

Trefoil: (10; 3; 3) Spherical: (11; 4; 0)

Table 2.4 The �rst 11 Zernike polynomials and their corresponding i, n, and m Noll
ordering.

Given the expressions for the Zernike polynomials above and Noll�s ordering scheme,

it is possible to unambiguously describe each polynomial and single out its e¤ects on the

wavefront. Table 2.4 contains example phase plots and demonstrates the indexing for the

�rst eleven Zernikes. Each Zernike image in Table 2.4 is labeled according to the convention,

Zernike name: (i; n;m).

This section began with the purpose of deriving a relationship between the statistical

turbulence model and the modal decomposition coe¢ cients. Demonstrating how the at-

mospheric statistics derived in the previous section relate to the Zernike coe¢ cients requires

a frequency domain representation of the Zernike modes. Let Qi(�;  ) be the frequency
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domain representation of Zi(r; �). Born provides the following transform pair [19]:

WP (r; 1)Zi(r) =

Z
d2KQi(�;  ) expf�jK � rg; (2.109)

where K = (Kx;Ky) ; (2.110)

� =
q
K2
x +K

2
y ; (2.111)

and  = atan2 (Ky;Kx) ; (2.112)

where the atan2 function is a call to the Matlab
R
function arctan which allows arguments

in the range [0; 2�). The frequency domain Zernike functions, Qi, are given by:

Qeven i(�;  ) =

Qodd i(�;  ) =

9=;pn+ 12Jn+1(�)�

8<: (�1)(n�m)=2jm
p
2 cosm 

(�1)(n�m)=2jm
p
2 sinm 

, for m 6= 0

Qi(�;  ) =
p
n+ 1

2Jn+1(�)

�
(�1)n=2, for m = 0: (2.113)

Note that Jv represents the Bessel function of the �rst kind with order v. With this

property in hand, return to the expression for Zernike coe¢ cient variance (2.101):

E fa�i ai0g =
Z
d�WZ(�)

Z
d�0WZ(�

0)Zi (�)Zi0
�
�0
�
EfP� (�RP ; �)P�

�
�0RP ; �

0�g: (2.114)
Making use of (2.113) and (2.78) it is possible to rewrite this expression in the frequency

domain:

E fa�i ai0g =

Z
d 

Z
d 0

Z
1

RP

�

RP
d�

Z
1

RP

�0

RP
d�0Q�i (�;  )�P�(

�

RP
;  ;

�0

RP
;  0)Qi0(�

0;  0):

(2.115)

Enforcing the condition that �P� is delta correlated, the expression for E fa�i ai0g can be

reduced to two integrals:

E fa�i ai0g =

Z
d 

Z
d 0

Z
1

RP

�

RP
d�

Z
1

RP

�0

RP
d�0 �

Q�i (�;  )�P�(
�

RP
;  ;

�0

RP
;  0)Qi0(�

0;  0)�(�� �0)�( �  0); (2.116)

E fa�i ai0g =

Z
d 

Z
1

RP

�

RP
d�Q�i (�;  )�P�(

�

RP
;  )Qi0(�;  ): (2.117)
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Now recall that �P� is symmetrical in  . Removing the dependence of �P� on  and

reordering the integrals yields:

E fa�i ai0g =
Z

1

RP

�

RP
d��P�(

�

RP
)

Z
d Q�i (�;  )Qi0(�;  ): (2.118)

Substituting �
RP

for �r in (2.78), �P� is given by:

�P�

�
�

RP

�
= 0:4898r

�5=3
0

�
�2

R2P
+ �20

��11=6
exp

�
��2
R2P�

2
m

�
: (2.119)

This expression needs a few points of discussion. The ratio, RPr0 , should be factored sep-

arately within the equation as it will allow introducing the ratio DP
r0
. Recalling the brief

introduction to r0 should clarify the importance of the ratio. Also, for mathematical

tractability, a separate expression for �P� neglecting the e¤ects of inner and outer scale

can be derived. The cost of this assumption is that the results derived from this form of

the expression are only valid in the inertial range. High frequency modes with periods

smaller than the inner scale will su¤er variance overage errors due to improper inner scale

roll o¤. Likewise, low frequency modes with periods longer than the outer scale will have

high variance estimates. With these cautions in mind, I o¤er the following two forms of

�P� : the �rst with both inner and outer scale,

�vKP�

�
�

RP
;
�0

RP
;  ;  0

�
= 0:4898

�
RP
r0

�5=3
R
�5=3
P

�
�2

R2P
+ �20

��11=6
exp

�
��2
R2P�

2
m

�
;

(2.120)

= 0:4898

�
RP
r0

�5=3
R2P
�
�2 +R2P�

2
0

��11=6
exp

�
��2
R2P�

2
m

�
;

(2.121)

and the second (Kolmogorov turbulence) with inner and outer scale terms removed,

�KP�

�
�

RP
;
�0

RP
 ; 0

�
= 0:4898

�
RP
r0

�5=3
R2P�

�11=3: (2.122)

The spectrum containing both inner scale and outer scale compensation will be reserved for

numerical results to compare with the analytical solution. Proceeding to form an analytical

result to the correlation integral, substitute the simpli�ed phase spectrum into (2.118) and
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make use of the frequency domain Zernike expression in (2.113):

E fa�i ai0g =

Z
1

R2P
�d�0:4898

�
RP
r0

�5=3
R2P�

�11=3
Z
d Q�i (�;  )Qi0(�;  ); (2.123)

= 0:4898

�
RP
r0

�5=3 Z
��8=3d�

Z
Q�i (�;  )Qi0(�;  )d : (2.124)

Substituting (2.113) for Q yields:

E fa�i ai0g = 2� � 0:4898
�
RP
r0

�5=3p
(n+ 1)(n0 + 1)(�1)(n+n0�2m)=2�mm0 �Z

��8=3
2Jn+1(�)

�

2Jn0+1(�)

�
d�; (2.125)

= 0:4898 � 24=3�
�
2RP
r0

�5=3p
(n+ 1)(n0 + 1)(�1)(n+n0�2m)=2�mm0 �Z

d���14=3Jn+1(�)Jn0+1(�), i� i0 even (2.126)

= 0, i� i0 odd. (2.127)

It is important to highlight a few simpli�cations required for the form in (2.126). The

extra factor of 2 in
�
2RP
r0

�5=3
was added for convenience. The expression now relates

Zernike coe¢ cient covariance to the ratio of the pupil diameter, DP , to r0. The ratio
DP
r0

is dominates the Zernike variance expression within the inertial range. For this reason, the

ratio will be used as an indicator of turbulence strength throughout the remainder of this

document. Also, several simpli�cations reducing the integral over  are made possible by

the symmetry in the Zernike modes combined with Noll�s ordering scheme. First, if i� i0

is odd then the integral over  :

2�Z
0

cos(m ) sin(m0 )d ; (2.128)

will integrate to zero, given m;m0 2 Z. By similar reasoning, only those covariances where

m = m0 are nonzero, because:

if m; z 2 Z, (2.129)

then

2�Z
0

cos(m ) cos((m+ z) )d = 0: (2.130)
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Hence, the �mm0 term. The factor of 2� leading the expression in (2.125) is due to nonzero

cases for the integral over  . Each nonzero case for the integral over  results in a factor

of 2�:

2�Z
0

2 cos2(m )d = 2�; (2.131)

2�Z
0

2 sin2(m )d = 2�; (2.132)

2�Z
0

d = 2�: (2.133)

The term, (�1)(n+n0�2m)=2, results from the following cases:

�
(�1)(n�m)=2jm

��
(�1)(n0�m)=2jm =

(�1)(n�m)=2(�1)(n0�m)=2, for m even, (2.134)

and
�
(�1)(n�m)=2jm

��
(�1)(n0�m)=2jm =

�j(j)(�1)(n�m)=2(�1)(n0�m)=2, for m odd. (2.135)

The remaining integral can be solved via table [17]. The form is as follows:

1Z
0

J�(�t)J�(�t)t
��dt =

���1�(�)�
�
�+���+1

2

�
2��

�
��+�+�+1

2

�
�
�
�+�+�+1

2

�
�
�
���+�+1

2

� (2.136)

Letting � = n + 1, � = n0 + 1, � = 14
3 , and � = 1, the �nal simpli�ed solution to the

covariance is:

E fa�i ai0g
�
DP

r0

��5=3
= 0:4898 � 24=3�

p
(n+ 1)(n0 + 1)(�1)(n+n0�2m)=2�mm0 �

�(143 )�
�
n+n0� 5

3
2

�
214=3�

�
n0�n+ 17

3
2

�
�
�
n+n0+ 23

3
2

�
�
�
n�n0+ 17

3
2

� : (2.137)

This result is convenient for generating entries in the covariance matrix for the Zernike

coe¢ cients. Table 2.5 provides the scaled covariance results, E fa�i ai0g
�
DP
r0

��5=3
, for the
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2 3 4 5 6 7 8 9 10 11
2 0.449 0 0 0 0 0 -0 .0141 0 0 0

3 0 0.449 0 0 0 -0 .0141 0 0 0 0

4 0 0 0.0232 0 0 0 0 0 0 0

5 0 0 0 0.0232 0 0 0 0 0 0

6 0 0 0 0 0.0232 0 0 0 0 0

7 0 -0 .0141 0 0 0 0.00619 0 0 0 0

8 -0 .0141 0 0 0 0 0 0.00619 0 0 0

9 0 0 0 0 0 0 0 0.00619 0 0

10 0 0 0 0 0 0 0 0 0.00619 0

11 0 0 0 0 0 0 0 0 0 0.00245

Table 2.5 Normalized Zernike coe¢ cient covariance: L0 =1, l0 = 0.

�rst 11 Zernike coe¢ cients neglecting piston. This table re�ects the results from Noll for

the case of in�nite outer scale and inner scale equal to 0. There is no analytical result to

the expression for E fa�i ai0g that includes the e¤ects of von Kármán inner and outer scale,

but it is easy enough to approximate the integration numerically. Forming the covariance

integral with the von Kármán turbulence spectrum yields:

E fa�i ai0g = 0:4898 � 24=3�
�
2RP
r0

�5=3p
(n+ 1)(n0 + 1)(�1)(n+n0�2m)=2�mm0 �Z

d�
Jn+1(�)Jn0+1(�)

�(�2 +R2P�
2
0)
11=6

exp

�
��2
R2P�

2
m

�
, i� i0 even (2.138)

= 0, i� i0 odd. (2.139)

Tables 2.6 and 2.7 demonstrate the results on lower order Zernike variance due to �nite

outer scale and inner scale greater than zero. Table 2.6 shows the e¤ects of varying outer

scale on the �rst 11 Zernike modes when inner scale is 0. Table 2.7 shows the e¤ects of

varying of inner scale when outer scale is in�nite. These results show that the analytical

covariance result serves as a guideline only and the numerical covariance should be used as

the ideal reference in situations where the outer scale and inner scale are known or where

they may be estimated.

This section provided a modal decomposition for the wavefront using the Zernike

polynomial basis set. Expressions (2.137) and (2.138) demonstrate that, given the Fried

parameter, the aperture diameter, and the inertial range, one can construct a model for

the variance of the Zernike modes. The variance of each Zernike mode is directly related
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L0 [m]
100 101 102 103 104 105 106 107

Z2;3 0.171 0.317 0.388 0.421 0.436 0.443 0.446 0.448
Z4�6 0.0220 0.0232 0.0232 0.0232 0.0232 0.0232 0.0232 0.0232
Z7�10 0.00610 0.00619 0.00619 0.00619 0.00619 0.00619 0.00619 0.00619
Z11 0.00244 0.00245 0.00245 0.00245 0.00245 0.00245 0.00245 0.00245

l0 = 0, r0 = 0:088m, DP = 0:088m

Table 2.6 Zernike variance versus L0.

l0 [m]
r0=50 r0=10 r0=5 r0=3 r0=2

Z2;3 0.449 0.448 0.447 0.444 0.438
Z4�6 0.0232 0.0230 0.0224 0.0211 0.0190
Z7�10 0.00619 0.00607 0.00573 0.00504 0.00399
Z11 0.00245 0.00237 0.00215 0.00173 0.00117

L0 =1, r0 = 0:088m, DP = 0:088m

Table 2.7 Zernike variance versus l0.

to the power spectral density of the random atmospheric phase distortion. Clearly this

statistical model aids in the construction of the wavefront sensor described earlier. The

parameter space for each coe¢ cient theoretically maps to the entire real line because each

one is modeled as a zero mean Gaussian random variable. Given the variance however, the

sensor algorithm may choose to truncate the parameter space to a smaller portion of the real

line containing the bulk of the probability mass. This sets the range of possible estimates

for a maximum likelihood estimation process. Further, the Gaussian prior density may be

used to form a maximum a posteriori estimator. With the parameter variance calculations

in hand, all that remains is to o¤er some method for discerning the incoming wavefront

from intensity measurements. This leads to the �nal background topic: a brief review of

the linear systems optics model and the concept of an optical transfer function.

2.4 The Optical Transfer Function (OTF)

Simulating optical wave propagation and the wavefront sensor environment using the

mathematical convenience of linear systems theory will require applying a few assumptions

to electromagnetic wave theory. It would be quite bene�cial, for instance, to be able to

apply the superposition and convolution properties that apply in the realm of linear systems

theory to the generic optical system. Maxwell�s equations describe the physical properties
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of electromagnetic waves. The set of assumptions for wave propagation using linear systems

begins with those assumptions necessary to derive a scalar wave equation. The scalar wave

equation is then combined with di¤raction theory to create an integral formulation of the

optical �eld at some aperture location. Simplifying the integral formulation leads to a

duality between the �eld at one aperture location and its Fourier domain representation at

some originating aperture. Thus, under reasonable assumptions, an optical system image

plane can be considered a convolution of the geometric image and the di¤raction pattern

created by the aperture. The series of important results to follow are by no means a

thorough treatment of Fourier optics, but should provide enough highlights to reinforce the

concepts that will be necessary to simulate optical propagation through the atmosphere and

the interaction with the wavefront sensor. The following derivations are summary of the

results presented in the popular works of Goodman [20] and Born [19].

Beginning with Maxwell�s equations, assume that the medium is linear, isotropic,

homogeneous, nondispersive and nonmagnetic. Linearity in the medium may be explained

by describing the medium as a system with complex �elds as inputs and outputs. The

property of linearity applies to the system, f , if the following superposition holds for all

functions u1 and u2 and all complex constants a and b:

f fau1 (P ) + bu2 (P )g = af fu1 (P )g+ bf fu2 (P )g : (2.140)

Under this assumption, the resulting �eld propagating from the sum of two scaled source

�elds is equivalent to summing the scaled results of the two source �elds propagated in-

dependently through the medium. Isotropic indicates that the propagation is independent

of direction of polarization of the �eld. Homogeneity indicates that the permittivity, �,

is constant. The term nondispersive means that the permittivity, �, is not a function of

wavelength. Lastly, the medium is assumed to be nonmagnetic meaning that the medium

has vacuum permeability, � = �0. Under these assumptions, the solution to Maxwell�s

equations reduces to the scalar wave equation:

r2u(P; t)� n2

c2
@2u(P; t)

@t2
= 0; (2.141)
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where n =
q

�
�0
is the index of refraction, c = 1p

�0�0
is the vacuum speed of light, P indicates

spatial location, u is any component of the vector �elds: E , orH, and t is time. Representing

the �eld u as the real part of a complex phasor U gives:

U(P ) = A(P ) expf�j�(P )g; (2.142)

u(P; t) = RefU(P )g; (2.143)

= A(P ) cosf2��t+ �(P )g: (2.144)

Forcing the �eld to satisfy the scalar wave equation produces the familiar time independent

Helmholtz equation as follows:

r2u(P; t)� n2

c2
A(P )

@2

@t2
[cosf2��t+ �(P )g] = 0; (2.145)

r2u(P; t) + (2�)2 �2n
2

c2
A(P ) cosf2��t+ �(P )g = 0; (2.146)

(r2 + k2)u = 0: (2.147)

The integral theorem of Helmholtz and Kircho¤ can be developed (see Goodman chapter

3) from the divergence theorem of Gauss [21]:

ZZZ
V

�
Ur2G�Gr2U

�
dv =

ZZ
S

((n̂ � rU)G� U (n̂ � rG)) ds; (2.148)

and the Helmholtz equation, (2.147), which provides a relationship between the �eld at a

point and the closed surface around the point [20]:

U(P0) =
1

4�

ZZ
S

((n̂ � rU)G� U (n̂ � rG)) ds: (2.149)

Where the surface S is some surface surrounding the point P0, and the expression n̂ � r(�)

is equivalent to the derivative taken normal to S. This crucial relation is the key to wave

optical simulation. It provides an integral formulation for the �eld at some boundary or

aperture at a distance from a known source. The choice of Green�s function, G, is critical.

Rayleigh and Sommerfeld are attributed with the formulation in Figure 2.5 which suggests
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the Half Space Green�s function of the form:

G(P1) =
exp(jkr01)

r01
� exp(jk~r01)

~r01
: (2.150)

This choice of G represents the linear combination of �elds from two sources at P and ~P

Figure 2.5 Rayleigh-Sommerfeld formulation of di¤raction by a plane screen [20].

oscillating 180 out of phase. Notice the change in integration limits in Figure 2.5. According

to the diagram, the integral must now be evaluated over S1, S2 and ~S2. Sommerfeld

simpli�ed the limits of integration by assuming that the �eld U vanishes at least as fast as a

diverging spherical wave. This assumption, known as the Sommerfeld radiation condition,

reduces the integral over all of the dashed surface: S =
[n

S1; S2; ~S2

o
, to an integral over

the plane of the aperture, S1:

lim
R!1

�
R
@U

@n
� jkU

�
= 0; (2.151)

U(P0) =
1

4�

ZZ
S1

((n̂ � rU)G� U (n̂ � rG)) ds: (2.152)
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Substituting G from (2.150) into the integral theorem of Helmholtz and Kircho¤, (2.149),

and assuming that the Sommerfeld radiation condition holds, yields the following integral

over the plane of the screen:

U(P0) =
1

j�

ZZ
S1

U(P1)
exp(jkr01)

r01
cos(n̂; r01)ds; (2.153)

called the Rayleigh-Sommerfeld di¤raction formula. Note that the vector n̂ is the direction

normal to the aperture and the cosine expression with two vector arguments is shorthand for

the cosine of the angle between the two argument vectors. Using the Rayleigh-Sommerfeld

di¤raction formula for optical propagation, the simple thin lens imaging system may be

conveniently modeled as two propagations: one from the object to the aperture plane and

one from the aperture plane to the image plane. This model will become the basis for

discussions to come, and as such, warrants a de�ned coordinate system. Figure 2.6 portrays

Figure 2.6 Three plane Cartesian coordinate system.

the basic three plane imaging system model and respective Cartesian coordinate system

labeling. Assuming a spherical wavefront and converting to Cartesian coordinates the

propagation integral in (2.153) may be rewritten as:

U(�; �) =
si
j�

ZZ
�

U(x; y)
exp(jkr01)

r201
dxdy; (2.154)

where r01 =
q
s2i + (x� �)2 + (y � �)2, (2.155)
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and the cosine of the normal angle has been replaced by the small angle approximation:

cos(n̂; r01) =
si
r01

: (2.156)

The linear systems approach will require an approximation for the square root in the r01

terms. The radial distance in the exponential phase term, exp(jkr01), and in the denomi-

nator, 1
r201
, may each be replaced by a truncated binomial series expansion. The binomial

expansion for r01 is shown here:

r01 = si

s
1 +

(x� �)2
s2i

+
(y � �)2
s2i

; (2.157)

p
1 + b = 1 +

1

2
b� 1

8
b2 + :::; (2.158)

r01 = si

0@ 1 + 1
2

�
(x��)2
s2i

+ (y��)2
s2i

�
�

1
8

�
(x��)2
s2i

+ (y��)2
s2i

�2
+ :::

1A : (2.159)

Retaining the �rst term yields the approximation:

r01 � si: (2.160)

Substituting this approximation for r01 into the denominator term gives:

1

r201
� 1

s2i
: (2.161)

Retaining the �rst two terms yields the approximation:

r01 � si +
1

2si

�
(x� �)2 + (y � �)2

�
: (2.162)

Substituting this approximation for r01 into the phase term gives:

exp(jkr01) � exp

�
jk
�
si +

1

2si

�
(x� �)2 + (y � �)2

���
; (2.163)

= exp (jksi) exp
�
jk
2si
(x� �)2

�
exp

�
jk
2si
(y � �)2

�
: (2.164)
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Making both substitutions in (2.154) and simplifying produces the following two familiar

forms of the Fresnel di¤raction integral:

U(�; �) =
exp(jksi)
j�si

exp

�
j
k

2si
(�2 + �2)

�
�

1ZZ
�1

U(x; y) exp

�
j
k

2si
(x2 + y2)

�
exp

�
�j 2�
�si
(�x+ �y)

�
dxdy; (2.165)

=
exp(jksi)
j�si

1ZZ
�1

U(x; y) exp

�
j
k

2si

h
(� � x)2 + (� � y)2

i�
dxdy: (2.166)

Under certain conditions, the quadratic phase term in the Fresnel integral can be removed.

If a converging spherical lens is in place, for instance, then the quadratic phase is exactly

canceled by the focusing properties of the lens. Also, in cases where the aperture does not

contain a converging lens but the propagation is applied over a su¢ ciently long distance, the

e¤ects of the quadratic phase over some small aperture becomes negligible. The propagation

distance at which the quadratic phase term in the Fresnel integral becomes negligible is often

referred to as the far-�eld condition:

si >
2D2

P

�
: (2.167)

Assuming that far-�eld conditions hold, the integral in (2.166) simpli�es to the Fraunhofer

di¤raction integral:

U(�; �) =
exp(jksi) exp

n
j k2si (�

2 + �2)
o

j�si

1ZZ
�1

U(x; y) exp

�
�j 2�
�si
(�x+ �y)

�
dxdy: (2.168)

Under these circumstances, the solution for the image �eld, U(�; �), becomes a scaled Fourier

transform. Using this theory, a single spherical lens optical system can be modeled as a

linear �lter, where the impulse response for the system is the Fraunhofer di¤raction integral

of the system pupil. In order to recognize this property and the additional assumptions

required, consider �rst, the assumption mentioned previously, that the medium is linear and
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therefore the following superposition holds for monochromatic light:

Ui(�; �) =

1ZZ
�1

h(� � �; � � �)Uo(�; �)d�d�, (2.169)

where Ui � �eld in the image plane, (2.170)

Uo � �eld in the object plane, (2.171)

and h � optical system impulse response. (2.172)

A side note is required before proceeding with the derivation. The wavefront sensor is

designed to operate using polychromatic incoherent light. However, the case is made by

Goodman that the solution for the monochromatic �eld can be transformed into a similar

approach for polychromatic incoherent light by modeling such a system as the average of

contributions from many incoherent monochromatic sources [20]. Therefore the case will

be made following this derivation that an incoherent system is linear, not in the �eld, but

rather in intensity and, as such, a similar convolution integral may be introduced for the

case of incoherent light. Returning now to the monochromatic case, propagation through a

single lens system can be represented as a convolution of the object �eld with some impulse

response, h. In order to derive the impulse response, consider the response of the system

in Figure 2.7 to a point source. The paraxial representation of a spherical wave at the

Figure 2.7 Model of a simple thin lens imaging system illuminated by a point source.
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aperture plane location (x; y) emanating from the object plane at point (�; �) is given by:

Ul(x; y) =
1

j�so
exp

�
j
k

2so

h
(x� �)2 + (y � �)2

i�
: (2.173)

The lens applies a quadratic phase and an aperture window function, WP :

WP (x; y;RP ) exp

�
�j k
2f

�
x2 + y2

��
: (2.174)

Combining (2.173) and (2.174) in the second form of the Fresnel integral in (2.166), the

impulse response is given by (neglect constant phase terms):

h(�; �;�; �) =

1ZZ
�1

WP (x; y;RP )

�si�so
exp

�
j
k

2so

h
(x� �)2 + (y � �)2

i�
�

exp

�
�j k
2f

�
x2 + y2

��
exp

�
j
k

2si

h
(� � x)2 + (� � y)2

i�
dxdy:

(2.175)

Expanding and analyzing similar terms within the three phase components yields:

exp

�
j
k

2so

h
(x� �)2 + (y � �)2

i�
= exp

�
j
k

2so

�
x2 + y2

��
exp

�
�jk

�
x�

so
+
y�

so

��
�

exp

�
j
k

2so

�
�2 + �2

��
; (2.176)

exp

�
�j k
2f

�
x2 + y2

��
= exp

�
�j k
2so

�
x2 + y2

��
exp

�
�j k
2si

�
x2 + y2

��
;

(2.177)

exp

�
j
k

2si

h
(� � x)2 + (� � y)2

i�
= exp

�
j
k

2si

�
�2 + �2

��
exp

�
�jk

�
x�

si
+
y�

si

��
�

exp

�
j
k

2si

�
x2 + y2

��
: (2.178)

If the image plane is placed such that: 1
f =

1
so
+ 1

si
, then the quadratic phase in x and y

is cancelled by the quadratic phase contribution of the lens. Furthermore, assuming that

the quadratic phase in � and � is nearly zero over the region of the image plane e¤ected

by the point source, allows that quadratic to be removed as well. After making these

2-39



simpli�cations, the remaining integral is given:

h(�; �;�; �) =
exp

n
j k2si

�
�2 + �2

�o
�2siso

�
1ZZ
�1

WP (x; y;RP ) exp

�
�jk

��
�

si
+
�

so

�
x+

�
�

si
+
�

so

�
y

��
dxdy:

(2.179)

Now de�ne the transverse magni�cation to be: M = � si
so
, and make the coordinate changes:

~� =M�, ~� =M�, ~x = x
�si
, ~y = y

�si
, and ~h = 1

jM jh:

h
�
�; �; ~�; ~�

�
=

exp
n
j k2si

�
�2 + �2

�o
�2siso

�
1ZZ
�1

�si�sid~xd~yWP (�si~x; �si~y;RP )�

exp

8<:�j2��
24 � �

si
+
�
� so
si

�
~�
so

�
�si~x+�

�
si
+
�
� so
si

�
~�
so

�
�si~y

359=; ; (2.180)

~h
�
�; �; ~�; ~�

�
= exp

�
j
k

2si

�
�2 + �2

�� 1ZZ
�1

WP (�si~x; �si~y;RP )�

exp
n
�j2�

h
(� � ~�) ~x+

�
� � ~�

�
~y
io

d~xd~y: (2.181)

Making the appropriate variable change from � and � to ~� and ~� in (2.169) h becomes ~h

and the �eld in the image plane of a converging spherical lens system can be represented

as:

Ui(�; �) =

1ZZ
�1

~h(� � ~�; � � ~�)Ug(~�; ~�)d~�d~�; (2.182)

where ~h(�; �) = exp

�
j
k

2si

�
�2 + �2

�� 1ZZ
�1

WP (�si~x; �si~y;RP ) exp f�j2� (�~x+ �~y)g d~xd~y;

(2.183)

M � transverse magni�cation; (2.184)

and Ug(~�; ~�) =
1

jM jUo(
~�

M
;
~�

M
). (2.185)
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Thus, for the monochromatic case, the image �eld is a convolution of the image �eld pre-

dicted by geometric optics, Ug(~�; ~�), and the amplitude impulse response, ~h(�; �). Where

the amplitude impulse response of the optical system, given in (2.183) above, is the Fraun-

hofer di¤raction integral applied to the pupil window, WP (x; y).

If the input source is polychromatic incoherent light, modeled as the average of many

contributions from incoherent monochromatic sources then it follows that the incoherent

imaging system is linear in intensity [20]. Under this condition, the �eld quantities are

replaced by �eld intensities and the amplitude impulse response becomes an intensity im-

pulse response,
���~h(�; �)���2, which is the magnitude squared Fraunhofer di¤raction pattern.

Therefore, for incoherent light, the spatial convolution integral is given by [20]:

Ii(�; �) = �

1ZZ
�1

���~h(� � ~�; � � ~�)���2 Ig(~�; ~�)d~�d~�; (2.186)

� � real scaling constant. (2.187)

The dual of this expression in the spatial frequency domain is:

Gi(fX ; fY ) = H(fX ; fY )Gg(fX ; fY ): (2.188)

Where Gg and Gi are the normalized frequency domain transforms of the geometric and

di¤raction image intensities, and H is the transform of the impulse response, commonly
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referred to as the Optical Transfer Function (OTF):

Gg(fX ; fY ) =

1ZZ
�1

Ig (�; �) exp f�j2�(fX� + fY �)g d�d�

1ZZ
�1

Ig (�; �) d�d�

; (2.189)

Gi(fX ; fY ) =

1ZZ
�1

Ii (�; �) exp f�j2�(fX� + fY �)g d�d�

1ZZ
�1

Ii (�; �) d�d�

; (2.190)

H(fX ; fY ) =

1ZZ
�1

jh (�; �)j2 exp f�j2�(fX� + fY �)g dudv

1ZZ
�1

jh (�; �)j2 d�d�

: (2.191)

As a consequence of the linear systems assumptions, the OTF provides a relationship be-

tween the pupil phase and the image intensity. For incoherent imaging, the OTF is the

normalized autocorrelation of the pupil function:

H(fX ; fY ) =

1ZZ
�1

P(x+ �sifX
2 ; y + �sifY

2 )P(x� �sifX
2 ; y � �sifY

2 )dxdy

1ZZ
�1

P(x; y)P�(x; y)dxdy

: (2.192)

Combining (2.192) and the modal wavefront representation in (2.89), gives a direct method

for calculating the e¤ects of any combination of Zernike modes on the OTF. Consider the

example of a di¤raction limited imaging system with a plane wave input. Use the circular

windowing function in (2.90) and the Zernike expansion for phase to represent the pupil
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expression. In this special case, the OTF becomes:

P(x; y;RP ) = WP (x; y;RP ) exp

(
j
NX
i=2

aiZi(
x

RP
;
y

RP
)

)
; (2.193)

H(fX ; fY ) =

1ZZ
�1

P(x+ �sifX
2

; y +
�sifY
2

)P(x� �sifX
2

; y � �sifY
2

)dxdy:

(2.194)

In this example, the normalized transform of the geometric image, Gi(fX ; fY ), is unity.

This implies that the OTF and the image are direct Fourier transforms:

H(fX ; fY ) = Gi(fX ; fY ): (2.195)

Figure 2.8 provides a visual comparison of OTFs for this example. The OTF with no

Diffraction Limited

2 0 2

2

0

2

0.4 0.2 0 0.2 0.4

0.4

0.2

0

0.2

0.4

0.4 0.2 0 0.2 0.4

0.4

0.2

0

0.2

0.4

Tiltx

2 0 2

2

0

2

0.4 0.2 0 0.2 0.4

0.4

0.2

0

0.2

0.4

0.4 0.2 0 0.2 0.4

0.4

0.2

0

0.2

0.4

Tilty

2 0 2

2

0

2

0.4 0.2 0 0.2 0.4

0.4

0.2

0

0.2

0.4

0.4 0.2 0 0.2 0.4

0.4

0.2

0

0.2

0.4

Defocus

2 0 2

2

0

2

0.4 0.2 0 0.2 0.4

0.4

0.2

0

0.2

0.4

0.4 0.2 0 0.2 0.4

0.4

0.2

0

0.2

0.4

Astigmatismxy

2 0 2

2

0

2

0.4 0.2 0 0.2 0.4

0.4

0.2

0

0.2

0.4

0.4 0.2 0 0.2 0.4

0.4

0.2

0

0.2

0.4

Astigmatism

2 0 2

2

0

2

0.4 0.2 0 0.2 0.4

0.4

0.2

0

0.2

0.4

0.4 0.2 0 0.2 0.4

0.4

0.2

0

0.2

0.4

Figure 2.8 Top: Simulated point spread functions for a di¤raction limited optical system
and systems under independent in�uence from Zernikes 2-6. Middle: the real
part of the Optical Transfer Functions (OTFs). Bottom: the imaginary part
of the OTF.

aberrations is compared to the OTF under the in�uence of the �rst 6 Zernikes independently.

The unique e¤ects created by each Zernike mode provide a means for distinguishing the

presence of one mode over another. Here the OTF, the Fourier transform of the image,
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contains the information needed to estimate the amount of each Zernike parameter present

in the optical system. Granted, this is a very simpli�ed case, but it demonstrates the

relationship between pupil phase, which cannot be measured, and image intensity, which

can be measured directly. Consequently, this theory reveals the possibility of estimating

pupil phase from image intensity measurements.

2.5 Summary

The chapter began with a discussion on parameter estimation which concluded that

parameter estimation problems require a probabilistic mapping from the parameter space

to the observation space, prja(RjA). Additionally, parameter statistical properties such as

mean and variance are helpful, while a probability distribution for the parameters, pa(A),

is highly desired. In the case of the wavefront curvature estimator, the observation space,

R, is the image intensity. The wavefront phase was parameterized using the well known set

of Zernike polynomial coe¢ cients.

I carefully reviewed the origin of Kolmogorov�s turbulence model and how it is related

to atmospheric phase �uctuations in the optical wavelength range. The Kolmogorov model

was then modi�ed outside of the inertial range to produce the well known von Kármán

turbulence model. The von Kármán statistic was used to derive both phase power spectral

density and structure functions. From the turbulence model, I was able to deduce that

the Zernike coe¢ cients can be modeled by zero mean Gaussian distributions. Additionally,

from Noll�s e¤orts, the variance in each Zernike coe¢ cient is related to atmospheric seeing

conditions and the diameter of the optical system. Under these assumptions, the mean and

variance of each coe¢ cient fully describes its distribution, pa(A):

Finally, a linear model for optical wave propagation was discussed. Goodman�s

background on the derivation of the linear model revealed the assumptions necessary to

view the optical system and free space propagation as a linear system. The linear model led

to the optical transfer function and its relationship to the pupil phase. The OTF provides

a means for linking the observed image intensity to the optical �eld in the aperture, the

�nal ingredient needed to begin constructing a wavefront sensor.
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3. The Discrete Model

The optical �eld and the optical system�s in�uence on that �eld are naturally continuous

electromagnetic wave phenomenon. For this reason, the derivations and discussions have

been based on continuous variables and functions. However, there are two key reasons

for converting the set of continuous mathematical constructs into a discrete parallel. First,

simulation using a PC requires that all the continuous models be converted to some discrete

approximation. Second, and perhaps most importantly, the digital imaging system is a

naturally discrete system. Understanding the discrete nature of this type of system and

its interface to the environment allows for better mathematical representation than simply

sampling or approximating some analog equivalent.

This chapter begins by establishing discrete versions of the continuous reference frames

and propagation integrals provided in Chapter 2. After establishing a discrete version of the

linear systems techniques from Chapter 2, the discussion focuses on modeling the Charged

Coupled Device array in the image plane. Modeling each detected pixel as a stochastic

process will provide the �nal ingredient for the estimator: a probabilistic map from the

detected image intensity to speci�c modes in the wavefront phase. Once the probabilistic

map is in place, the concept of an image projection is introduced. A mathematical construct

called the image projection operator is used to describe the process of extracting image

projections from a set of CCD arrays. The image projection is then combined with the

concepts of a discrete linear system and the detected image probability map to form the

wavefront curvature estimator. The estimator derived here provides the mathematical

foundation for the wavefront curvature sensor. All that will remain will be to establish a

fast and e¢ cient algorithm for evaluating the estimator expressions.

3.1 The Discrete Reference Frame

In order to discuss the discrete image space, it is best to begin by de�ning a complete

set of discrete variables and de�nitions around the simple imaging system described in

Section 2.4. Many of the variables and reference frames introduced here will be referred

to throughout the remainder of the dissertation. Figure 3.1 provides an overview of the

object, aperture and image plane axes labeling convention. Each plane is divided into

grids of sample points or pixels. The pixel grids are built around the requirements that
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Figure 3.1 Axes labeling convention.

grids are equispaced Cartesian meshes, apertures are circular and an even number of sample

points spans each side of the square grid covering the aperture. Actual dimensions of a grid

pixel are super�cial to functions that manipulate arrays of discrete data. In such cases, the

associated index variables, [n;m] or [u; v] for instance, will be used versus discrete increments

of (x; y) and (�; �) to provide a more general description. When discrete increments of

continuous variables are required, the distinction from continuous variables will be made by

replacing parentheses with brackets. For instance, the function f(x) is assumed to exist for

all x while the same function denoted f [x] is meant to indicate the values of f over some

sampled set of x values. Begin with the notation for the continuous aperture �eld P with

arbitrary amplitude, AP , and phase, P :

P (x; y;�a; RP ) = AP (x; y)WP (x; y;RP ) exp fjP (x; y;�a)g : (3.1)

Bold index and coordinate variables may be used to compact notation where possible. For

instance, the bold variable x is the compact representation for the coordinate pair (x; y):

P (x;�a; RP ) = AP (x)WP (x;RP ) exp fjP (x;�a)g : (3.2)

Recall that the pupil phase can be represented by a series of weighted Zernike polynomials:

P (x;�a) =

1X
i=1

aiZi (x; RP ) ; (3.3)

where �a � the in�nite set of Zernike coe¢ cients: (3.4)
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Assuming that the pupil is circular, the window function, WP (x; y;RP ), has amplitude 1

over the circle with radius RP and zero outside the circle. The discrete coordinates [n;m]

can be derived from the continuous coordinates via the relationship: (x; y) = (n�x;m�y).

Thus, in the discrete coordinate frame, the aperture �eld with atmospheric phase aberrations

is given by:

P [n;m;�a; RP ] = AP [n;m]WP [n;m;RP ] exp fjP [n;m;�a]g : (3.5)

Once again, more compactly:

P [n;�a; RP ] = AP [n]WP [n;RP ] exp fjP [n;�a]g : (3.6)

In simulation, the plane grids must be comprised of equispaced Cartesian samples. The

circular aperture weighting function is modeled as accurately as possible. The diagram

in Figure 3.2 demonstrates a 16 � 16 aperture weighting function WP . Notice that pixels

along the edge of the aperture mask are weighted proportional to the amount of the aperture

included within the area of the pixel.

8 6 4 2 0 2 4 6

8

6

4

2

0

2

4

6

Figure 3.2 Example aperture mask for a 16� 16 pixel aperture grid.
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The Background chapter closed with a derivation of the linear systems model for

propagation. The linear systems model depicted the intensity impulse response of a simple

thin lens as the magnitude squared of the Fraunhofer di¤raction integral applied to the

aperture window function:

���~h(�; �)���2 =

���������
exp

n
j k2si

�
�2 + �2

�o 1ZZ
�1

WP (�si~x; �si~y;RP )�

exp f�j2� (�~x+ �~y)g d~xd~y

���������
2

; (3.7)

=

������
1ZZ
�1

WP (�si~x; �si~y;RP ) exp f�j2� (�~x+ �~y)g d~xd~y

������
2

: (3.8)

The magnitude of the leading complex exponential is unity. The remaining integral is a

scaled Fourier transform which I will denote by Fs f�g. Using this integral transform, the

intensity impulse response for the complex pupil expression can be formed:

���~h (�; �;�a; RP )���2 = jFs fP (x;�a; RP )gj2 : (3.9)

The intensity in the image plane is then the convolution of the image intensity predicted

by geometric optics and the intensity impulse response:

Ii(�; �;�a; RP ) = �

1ZZ
�1

���~h(� � ~�; � � ~�;�a; RP )���2 Ig(~�; ~�)d~�d~�: (3.10)

If Ig is a point source then the intensity impulse response is the image intensity:

I(�; �;�a; RP ) =

1ZZ
�1

���~h(� � ~�; � � ~�;�a; RP )���2 �(~�; ~�)d~�d~�; (3.11)

I(�; �;�a; RP ) =
���~h (�; �;�a; RP )���2 ; (3.12)

where image intensity scaling has been neglected. Here I have introduced the new variable

I which is the intensity impulse response for a pupil with atmospheric phase contributions.

I is often referred to as a point spread function or PSF, however, since the wavefront sensor
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will be simulated using a point source, the variable I will henceforth serve as the expected

image variable.

Using the discrete reference frames and variables, it is straightforward to convert the

continuous propagation integral to its discrete counterpart. The Fourier integrals and their

respective discrete forms are presented here. Recall the two-dimensional Fourier transform

pair:

FfDg = D(fX ; fY ) =
1ZZ
�1

D(x; y) expf�j2�(fXx+ fY y)gdxdy; (3.13)

F�1fDg = D(x; y) =
1

(2�)2

1ZZ
�1

D(fX ; fY ) expfj2�(fXx+ fY y)gdfXdfY : (3.14)

The discrete counterparts of these operations are given here as the discrete Fourier series,

DFSf�g; and the discrete Fourier transform, DFT f�g:

DFSfDg = D[fX ; fY ] =
1X

n=�1

1X
m=�1

D[n�x;m�y]�

exp f�j2�(n�xfX +m�yfY )g�x�y; (3.15)

DFT fDg = D[u; v] =
N=2�1X
n=�N=2

N=2�1X
m=�N=2

D[n;m] exp

�
�j2�
N
(nu+mv)

�
; (3.16)

DFT �1fDg = D[n;m] =
1

N2

N�1X
u=0

N�1X
v=0

D[u; v] exp
�
j
2�

N
(nu+mv)

�
: (3.17)

Sampling the (~x; ~y) coordinate frame in (3.7) produces the discrete Fourier series form for

~h:

~h [�; �] =

1X
n=�1

1X
n=�1

WP (�sin�~x; �sim�~y;RP ) exp f�j2� (�n�~x+ �m�~y)g�~x�~y

(3.18)

The discrete Fourier series representation, evaluated over an appropriate set of [�; �] loca-

tions, can be posed as a discrete Fourier transform. There is only the minor di¤erence

of axis scaling between the scaled Fourier transform, Fs f�g, and the Fourier transform.

This di¤erence will be accounted for in a careful relationship between aperture sampling

and image sampling conventions. The relationship between sample spacing in the aperture
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plane and sampling in the image plane is governed by the Nyquist sampling theorem. The

choice of �x, and �y will be based on the dynamics of the �eld in the aperture. Applying

Nyquist to �x, �y and the size of the aperture the maximum sample spacing in the image

plane is given by:

�� =
�si
2N�x

;�� =
�si
2N�y

; (3.19)

N�x = DP � aperture diameter, (3.20)

Recall the relationship: �~x = �x
�si
, �~y = �y

�si
, from the Background chapter. Making the

appropriate substitutions for sampling dimensions in the aperture and image planes yields:

~h [u��; v��] =

N
2
�1X

�N
2

N
2
�1X

�N
2

WP

�
�sin

�x

�si
; �sim

�y

�si
;RP

�
�

exp

�
�j2�

�
u��n

�x

�si
+ v��m

�y

�si

��
�x

�si

�y

�si
; (3.21)

~h [u��; v��] =

N
2
�1X

�N
2

N
2
�1X

�N
2

WP

�
�sin

�x

�si
; �sim

�y

�si
;RP

�
�

exp

�
�j2�

�
u

�si
2N�x

n
�x

�si
+ v

�si
2N�x

m
�y

�si

��
�x

�si

�y

�si
; (3.22)

~h [u��; v��] =
�x�y

(�si)
2

N
2
�1X

�N
2

N
2
�1X

�N
2

WP [n�x;m�y;RP ] exp

�
�j 2�
2N

(un+ vm)

�
;

(3.23)

~h [u��; v��] =
�x�y

(�si)
2 DFT fWP [n�x;m�y;RP ]g: (3.24)

Thus, the discrete transformation of the aperture �eld into the image plane intensity is

given by:

I [u��; v��;�a] =

�����x�y(�si)
2 DFT fP [n�x;m�y;�a]g

����2 ; (3.25)

where the dependence of the pupil function on RP remains, but the variable has been

dropped to compact the notation. The bold image plane variable I will be substituted

for the continuous function I to indicate that, while I is de�ned over the space of all real
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numbers, the discrete variable I is de�ned on a �nite set of pixel locations S:

I [u; v;�a] = I [u��; v��;�a] : (3.26)

S is the set of all pixel locations available in a CCD image. The bold I may also appear

with or without index variables. When I is presented with index variables the expression

is meant to indicate a single location in the image set. When I is presented without index

variables, the expression refers to the entire image set:

I [�a] = fI[u; v;�a] : u; v 2 Sg : (3.27)

Finally, the discrete version of the OTF is given by the normalized discrete Fourier transform

of I where all atmospheric parameters are zero:

H =
DFT fIgP
u
I[u]

:

To reference a speci�c location in the OTF frequency domain, I will reuse the aperture

plane index variable n.

The discrete reference frames and linear systems operations presented here can be

used to simulate wave optics phenomenon. This simulation is intended to provide some

demonstration of wavefront sensor performance. The �delity of the simulation will su¤er if

the noise characteristics in the CCD are not included. Physically, noise occurs during the

photon conversion process. Thus, to model CCD noise, some stochastic process must be

included in the model to distinguish the detected image from the ideal image I.

3.2 The Detected Image

The interface between the environment and the wavefront sensor occurs in the charge

coupled device (CCD). If the CCD is sensitive enough and the exposure time is short,

then the detector may be modeled as a photon counting device. In this case, intensity

detected in the image plane is a count of discrete events as each incoming photon interacts

with the CCD. Therefore, the detected image is spatially discrete, as it is formed from an

array of image sample points, and discrete in the level of intensity measured at each sample
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point. The largest noise contribution is due to random photon arrival, often referred to

as shot noise. Under the in�uence of shot noise only, the CCD image can be considered a

grid of photon bins where the detected image is a count of Poisson distributed events. Let

d[u; v] be a random variable representing the photon count with added shot noise in a single

CCD pixel. Let D[u; v] be a realization of the random variable d[u; v]. Note the use of

the common convention that lower case variables indicate random variables and upper case

variables indicate realizations of those random variables. The value of any single detected

pixel is given by:

d[u; v] = Poisson fI[u; v;�a]g : (3.28)

Thus, each pixel in the detected image, d[u; v]; is a Poisson random variable with its pa-

rameter being the associated value from the image predicted by the discrete linear system

model with input parameter set �a. Using this probability model for each pixel in d, the

conditional density for a detected pixel given an aperture �eld constructed from the set of

Zernike coe¢ cients �A is:

pd[u;v]j�a(D[u; v]j�A) =
I[u; v; �A]D[u;v] exp

�
�I[u; v; �A]

	
D[u; v]!

; (3.29)

where D[u; v] � photo detection events in image pixel [u; v]; (3.30)

and I[u; v; �A] � Poisson rate function is the noiseless image. (3.31)

There may be multiple image planes associated with a subaperture. Suppose that the

optical path is split such that there are ND imaging planes. Each image and its respective

set of pixel locations will be indexed with the subscript i:

Di = fDi[u] : u 2 Sig ; (3.32)

where Si � ith sample space of pixels, (3.33)

and u = [u; v]. (3.34)

The combined set of detected images and expected images are denoted D[ and I[ respec-

tively:

D[ =
ND[
i=1

Di: (3.35)
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The estimator will require a joint density for all pixels in all image planes. It is possible

to extend the pdf in (3.29) above to a joint pdf including pixels from all image arrays by

assuming that each pixel is independently and identically distributed (i.i.d.) Poisson. For

independent random variables, the joint density is the product of the marginal densities.

Take the product of every pixel in all images and the conditional density becomes:

pd[j�a(D[j�A) =
NDY
i=1

Y
u2Si

Ii[u; �A]
Di[u] exp(�Ii[u; �A])
Di[u]!

. (3.36)

The maximum likelihood estimator âml is formed by assuming the pdf for the parameter

set is uniform and maximizing the log-likelihood expression over the range of the parameter

set �A as in (2.19):

max
�A

�
ln
�
pdj�a(Dj�A)

		���
�A=âml

; (3.37)

max
�A

8<:
NDX
i=1

X
u2Si

Di[u] ln
�
Ii[u; �A]

	
� Ii[u; �A] + ln fDi[u]!g

9=;
������
�A=âml

; (3.38)

max
�A

8<:
NDX
i=1

X
u2Si

Di[u] ln
�
Ii[u; �A]

	
� Ii[u; �A]

9=;
������
�A=âml

; (3.39)

where the detected image D represents the observation vector, R in (2.19). Also, the

parameter A in (2.19) has been replaced with the entire set of Zernike coe¢ cients, �a. If

the pdf for the parameter set is not uniform then the log-likelihood includes the additional

term, ln
�
p�a(�A)

	
. Recall that the phase at each point within a single phase screen is the

sum of phase contributions along some optical path. Furthermore, each Zernike coe¢ cient

is computed by a projection sum using the resulting phase screen points. Given that the

Zernike coe¢ cients are formed from the sum of many zero mean random variables, it is rea-

sonable to assume that the Central Limit Theorem applies and thus each Zernike coe¢ cient

is zero mean Gaussian with a variance that depends on the atmospheric turbulence model.

Therefore, let the joint pdf for the parameter set be a multivariate Gaussian:

p�a(�A) =
1

(2�)
n
2 (det (��a))

1
2

exp

(
�
�A��1�a �A

t

2

)
; (3.40)
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where the matrix, ��a, is the covariance matrix for the jointly Gaussian parameter set �a.

An example of the matrix, ��a, for parameters a2 through a11 was generated in Table 2.5,

Section 2.3. Substituting ln
�
p�a(�A)

	
and ln

�
pdj�a(Dj�A)

	
into (2.17), the maximum a

posteriori estimator âmap is given by:

max
�A

�
ln
�
pdj�a(Dj�A)

	
+ ln

�
p�a(�A)

		���
�A=âmap

; (3.41)

max
�A

8>>>><>>>>:

24NDX
i=1

X
u2Si

Di[u] ln
�
Ii[u; �A]

	
� Ii[u; �A]

35+
ln

�
1

(2�)
n
2 (det(��a))

1
2

�
� �A��1�a

�A
t

2

9>>>>=>>>>;

����������
�A=âmap

; (3.42)

max
�A

8<:
24NDX
i=1

X
u2Si

Di[u] ln
�
Ii[u; �A]

	
� Ii[u; �A]

35� �A��1�a �A
t

2

9=;
������
�A=âmap

: (3.43)

Using the linear system model and the CCD noise model, ML and MAP estimators

have been derived. These estimators make use of the �nal ingredient required for a parame-

ter estimating wavefront sensor, the conditional probability mapping, prj�a(Rj�A) introduced

in Section 2.1. While these estimators will yield good performance, they may not be ca-

pable of being implemented in a real time wavefront sensor due to CCD read out time and

mathematical complexity. The following sections discuss modi�cations to the estimators

that o¤er trade-o¤s between complexity and performance.

3.3 The Image Projection

The wavefront sensor design must map from the detected image intensity to the aper-

ture phase. This implies that the �rst step in the wavefront correction process will be to

detect and store the intensity in the image plane. Though the two-dimensional image con-

tains a wealth of data, the processing time required to read out and evaluate that number

of data points can exceed the maximum bandwidth for a real time adaptive optics system.

The time spent reading out the charge from each pixel location in the CCD can become

the largest portion of the time required for processing the image signal. Additionally, read

out noise is proportional to the number of pixels read from the CCD. The read out noise

model will be introduced in the next section. Compressing the number of data points

without losing vital information for wavefront sensing can become a time saving step if
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not a necessity when trying to achieve real time adaptive optics system bandwidths. One

technique for reducing the number of data points is to project the image plane into a vector

format prior to reading the CCD. The projection operation can be performed quickly on

the chip using simple shifting and summing of data. The simplest image projections are

the one-dimensional projections along either the u or v axis:

Dv[u] =

N�1X
m=0

D[u;m]; (3.44)

Du[v] =
N�1X
n=0

D[n; v]; (3.45)

which are the sums of the two-dimensional image in each direction.

Image Projections and the OTF. The true bene�t of creating the pair of "vector-

ized" images can be realized by �rst recalling the discrete Fourier transform (3.16). The

two-dimensional DFT is a separable summation. It is possible to perform the DFT for the

zeroth order frequency in each direction independently. These operations reveal a special

bene�t of the vectorized image:

D[n; 0] =

N�1X
u=0

"
N�1X
v=0

D[u; v]

#
exp

�
j
2�

N
(nu+m (0))

�
; (3.46)

=

N�1X
u=0

"
N�1X
v=0

D[u; v]

#
exp

�
j
2�

N
nu

�
; (3.47)

=

N�1X
u=0

Dv[u] exp

�
j
2�

N
nu

�
; (3.48)

D[0;m] =
N�1X
v=0

Du[v] exp

�
j
2�

N
mv

�
: (3.49)

This shows that performing a one-dimensional Fourier transform on the vectorized image

produces the zeroth order frequency vector from the two-dimensional transform. To realize

the importance of this, recall the OTF examples in Figure 2.8. The OTF, in this case,

was a simple Fourier transform of the image. Vectorizing the image on the CCD, then

performing a one-dimensional Fourier transform on the result produces a slice of the OTF

much like the cross-section plots provided in Figure 3.3. Given the uniqueness in the OTF
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Figure 3.3 Simulated OTFs for a di¤raction limited optical system (column 1) and sys-
tems under independent in�uence from Zernikes 2-6 (columns 2-6 respec-
tively). Rows 1 and 3: real and imaginary parts of the OTFs respectively.
Rows 2 and 4: projections corresponding to dashed section lines in rows 1 and
3.

cross-section under the in�uence of some limited set of Zernike modes, it may be possible

to distinguish, and therefore estimate, the e¤ects from each of the Zernikes. Thus, the

vectorized image promises a much faster read out time from the CCD along with some

amount of information useful for estimating pupil phase.

A General Image Projection Operator. A more general description of the projection

operation is required before including it in the estimator models. The notation for key

quantities and reference frames within the discretized optical system model will be used to

de�ne the general form of the image projection operation. The image projection operator

accepts an array or set of arrays for input and returns a vector. Additionally, at least

two images are formed in separate CCD arrays. Given multiple arrays, each CCD may be
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rotated such that its v̂i unit vector forms a unique angle, �i, with the original image plane

v̂ direction. The CCD image arrays are given by:

Di;�i [ui; vi] � pixel from CCD image array i, (3.50)

�i � 180

�
cos�1 (v̂ � v̂i) [degrees]: (3.51)

The image projection operator v(�) accepts the set of image arrays: fDi;�i : i 2 1; 2; :::; NDg

for input. First, each input array is windowed by discarding all pixels except the NW �NW

pixel region centered around the optical axis. Since the windowed pixels are the only pixels

of interest from the larger set Si, continuing to use the old index values [ui; vi] becomes

unnecessary. It is more convenient to renumber the windowed array using a 1 to NW row,

column numbering system. The resulting set of windowed pixels are summed along the vi

direction according to a set of starting and ending row number pairs contained in the set

s:

s = f(1; s2) ; :::; (sNs�1; sNs) ; NW g : (3.52)

The last entry in the set s does not provide a summation pair, rather, it identi�es the

window length in pixels, NW . For notational simplicity, if the NW entry in s is omitted, it

is assumed that the �nal ordered pair, (sNs�1; sNs), ends on the window length index, NW

(i.e. sNs = NW ). The following are examples of s for a 6�6 window: s = f(1; 6)g identi�es

the projection operation which sums along the entire windowed region; s = f(1; 3) ; 6g

indicates that the projection only includes the �rst 3 rows, but the window size is 6 � 6,

and s = f(1; 3) ; (4; 6)g describes the projection operation which sums the upper half and

lower half (rows 1 to 3 and 4 to 6) of the window into two separate vector projections. The

set s will be included as a preceding subscript on v(�) whenever the projection operation

requires clari�cation. The resulting vector output is a concatenation of Nv projection sums

where Nv is the number of ordered pairs in s. The variable l 2 f1; 2; :::; NvNW g indexes the

location in the resulting vector. Given this convention, the general form of the projection

operator output with individual vector location index is either denoted:

svl
�
D1;�1 ;D2;�2 ; :::;DND;�ND

�
; (3.53)
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or by the more compact notation:

svl (D[) ; (3.54)

where D[ =
ND[
i=1

Di;�i : (3.55)

As an example, consider the operation which employs whole plane projections from two

CCDs at 0� and 90� rotations using a 6 � 6 window. The lth location in the projection

operation output is denoted:

f(1;6)gvl (D1;0;D2;90) : (3.56)

Given the general form for the projection operator it is possible to develop a pair of

projection based estimator expressions. The joint density for an image projection is given

by:

p
sv (d[)j�a( sv (D[) j�A) =

NvNWY
l=1

svl
�
I[
�
�A
��

svl (D[) exp
�
svl
�
�I[

�
�A
���

svl

 
ND[
i=1

f(Di;�i [u])! : u 2Sig
! : (3.57)

The notation (Di;�i [u])! indicates that the factorial is applied at each pixel location u 2Si.

Substituting (3.57) into (2.19), the form for the maximum likelihood estimator is given by:

max
�A

8>>>><>>>>:

NvNWX
l=1

svl (D[) ln
�
svl
�
I[
�
�A
��	

� svl
�
I[
�
�A
��
+

ln

(
svl

 
ND[
i=1

fDi;�i [u]! : u 2Sig
!)

9>>>>=>>>>;

����������
�A=âml

;

(3.58)

max
�A

(
NvNWX
l=1

svl (D[) ln
�
svl
�
I[
�
�A
��	

� svl
�
I[
�
�A
��)�����

�A=âml

: (3.59)

Similarly, the form for the maximum a posteriori estimator is given:

max
�A

("
NvNWX
l=1

svl (D[) ln
�
svl
�
I[
�
�A
��	

� svl
�
I[
�
�A
��#

�
�A��1�a �A

t

2

)�����
�A=âmap

: (3.60)
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3.4 Other Detected Image Models

While the Poisson pdf model for an image pixel is su¢ cient, it does not account for

all forms of CCD noise. In addition to shot or Poisson noise, read noise is always present.

While shot noise is due to the random arrival of photons and is the basis of the Poisson

model, read noise is generated by the bu¤ers and ampli�ers used to digitize the photon

count voltage. Poisson noise is signal dependent because the Poisson rate parameter is the

noiseless image value. Read noise is independent of the signal. Instead, read noise depends

on the number of pixels read from the CCD.

Accounting for Read Noise in the Image pdf. Let nro[u] represent the read noise in

a CCD pixel. Let the read noise, nro[u], be a zero mean Gaussian process with variance

�2ro. Considering the e¤ects of read noise and shot noise to be independent, the pixel with

combined shot noise and read noise e¤ects, dro[u], is modeled as the sum of independent

Poisson and Gaussian random variables. The pdf of the sum z = x+ y is a convolution of

pdfs of x and y when x and y are independent [22]:

pd[u]j�a(D [u] j�A) = exp
�
�I
�
u; �A

�	 I �u; �A�D[u]
D [u]!

; (3.61)

pnro[u](Nro [u]) =
1p
2��ro

exp

�
�N

2
ro [u]

2�2ro

�
; (3.62)

dro [u] = d [u] + nro [u] ; (3.63)

pdro[u]j�a(Dro [u] j�A) =
1p
2��ro

1X
D[u]=0

exp

(
�(Dro [u]�D [u])2

2�2ro

)
�

exp
�
�I
�
u; �A

�	 I �u; �A�D[u]
D [u]!

: (3.64)

This expression must be modi�ed slightly to account for the discrete nature of the CCD

electronics. The A/D conversion process will apply a rounding function to the continuous

set of values allowed by the Gaussian pdf. This will have the e¤ect of forcing dro [u] to take

on only nonnegative integer values. The A/D conversion can be included in the statistical
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model as an integration around each integer value for the Poisson random variable:

pdro[u]j�a(Dro [u] j�A) =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

1p
2��ro

1X
D[u]=0

exp
�
�I
�
u; �A

�	 I[u;�A]D[u]
D[u]! �

0:5Z
�1

exp
n
� (��D[u])2

2�2ro

o
d�, for Dro [u] = 0;

1p
2��ro

1X
D[u]=0

exp
�
�I
�
u; �A

�	 I[u;�A]D[u]
D[u]! �

Dro[u]+0:5Z
Dro[u]�0:5

exp
n
� (��D[u])2

2�2ro

o
d�, for Dro [u] 2 f1; 2; 3; :::g :

(3.65)

Unfortunately, this distribution does not simplify and, although it can be evaluated numer-

ically, it is far too computationally expensive for use in the sensor model. However, the

numerical evaluation of dro [u] begins to look like a biased Poisson statistic. This charac-

teristic allows for a far simpler mathematical expression that can be used in the real time

sensor model.

Approximating the Read Noise pdf. The combination of Poisson shot noise and

Gaussian read noise can be approximated by a biased Poisson statistic [23]:

d [u] = Poisson
�
I [u;�a] + �2ro

	
� �2ro; (3.66)

d [u] + �2ro = Poisson
�
I [u;�a] + �2ro

	
: (3.67)

Using this approximate distribution, it is possible to develop a new expression for the MAP

estimator. Begin with the property: the sum of independent Poisson random variables is

distributed Poisson with a mean equal to the sum of the individual means. Using (3.67),

the joint density for all pixels in the image projection conditioned on the set of Zernike
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coe¢ cients becomes:

p
svl (d[)+�2roj�a

�
svl (D[) + �

2
roj�A

�
= exp

�
�
�
svl
�
I[
�
�A
��
+ �2ro

�	
��

svl
�
I[
�
�A
��
+ �2ro

�vi(D[)+�2ro

svl

 
ND[
i=1

fDi;�i [u]! : u 2Sig
!
+ �2ro

: (3.68)

The joint density for locations in the image projection vector is simply the product of the

marginals:

p
sv (d[)+�2roj�a

�
sv (D[) + �

2
roj�A

�
=

NvNWY
l=1

exp
�
�
�
svl
�
I[
�
�A
��
+ �2ro

�	
�

�
svl
�
I[
�
�A
��
+ �2ro

�
svl (D[)+�2ro

svl

 
ND[
i=1

fDi;�i [u]! : u 2Sig
!
+ �2ro

: (3.69)

The bold read out variance �2ro indicates the product: 1�
2
ro, where 1 represents a vector of

ones of length NvNW . Taking the natural log of the conditional density gives:

ln
�
p
sv (d[)+�2roj�a

�
sv (D[) + �

2
roj�A

�	
=

NvNWX
l=1

�
svl (D[) + �

2
ro

�
�

ln
�
svl
�
I[
�
�A
��
+ �2ro

	
�

svl
�
I[
�
�A
��
� �2ro �

ln

(
svl

 
ND[
i=1

fDi;�i [u]! : u 2Sig
!
+ �2ro

)
:

(3.70)

Recall the log of the jointly Gaussian prior density:

ln
�
p�a(�A)

	
= ln

(
1

(2�)
n
2 (det (��a))

1
2

)
�
�A��1�a �A

t

2
: (3.71)
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Combining these results yields the MAP estimator:

max
�A

8>>><>>>:
26664
XNvNW

l=1

�
svl (D[) + �2ro

�
�

ln
�
svl
�
I[
�
�A
��
+ �2ro

	
�

svl
�
I[
�
�A
��

37775� �A��1�a �A
t

2

9>>>=>>>;
���������
�A=âmap

; (3.72)

where, once again, all terms with no dependence on �A are discarded from the estimator

expression.

3.5 Summary

The chapter began by developing discrete reference frames and a discrete linear sys-

tems model from their continuous counterparts introduced in the background chapter. Then

a model for CCD noise was provided. This led to the idea that the detected image is not

simply the output of the linear system, but rather that the system output combined with

some random noise. From there, the joint density for a group of pixels in several image

planes conditioned on the set of atmospheric phase coe¢ cients was formed. The conditional

density was used to create the �rst attempts at ML and MAP estimators.

The CCD image contains too many pixels for read out in real time. To limit the

number of pixels read out of the CCD, the image projection was used. The image projection

has the bene�ts of shorter read out time and decreased read noise. The ML and MAP

estimators were adapted to include the generic image projection operator. An approximated

read noise pdf was provided. Combining the read noise pdf with the image projection

concept gave the �nal form for the ML and MAP estimators. The chapters to follow will

detail an algorithm for a curvature sensor implementation using these estimators along with

sensor performance bounding and simulated performance of the curvature sensor.
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4. A Survey of Wavefront Sensing Techniques

This chapter provides a brief overview of several wavefront sensing methods. The discussion

begins with interferometric techniques, followed by a review of a method known as phase

retrieval or phase diversity. I introduce the role of parameter estimation in wavefront sens-

ing with a description of the Hartmann sensor. Finally, I have included a more detailed

discussion of two parameter estimation methods which use image projections. The wave-

front sensor designs presented in this dissertation are modi�ed versions of Cain�s projection

based estimator [1].

4.1 Wavefront Sensing through Interferometry

Interferometric techniques for measuring wavefront phase involve interpreting the in-

tensity patterns arising from the interaction of two or more coherent �elds. Two �elds

arriving at a point in space and time are perfectly coherent if they are very narrow band

(composed primarily of a single wavelength) and their phase variation is identical. Broad-

ening the spectrum and varying the relative phase reduces the level of coherence. When

coherent �elds are combined, periodic fringe patterns are visible in the resulting intensity.

The classic examples involve the Michelson interferometer and Young�s double slit experi-

ment shown side by side in Figure 4.1. These two examples put to practical use the e¤ects

of temporal and spatial coherence respectively. The level of both temporal coherence and

spatial coherence in a source can determine the degree of calibration and precision neces-

sary to successfully conduct an interference experiment. Temporal coherence is inversely

proportional to the bandwidth of the source. In interferometry, temporal coherence is

quanti�ed by the length of time delay one can impose on a portion of a beam and still

create measurable interference fringes when that delayed portion is recombined with the

original beam. The amount of spatial coherence is measured by spatially shifting a portion

of a �eld and recombining it with the original �eld. The spatial coherence is quanti�ed

by the spatial separation beyond which the two portions cease to create measurable inter-

ference patterns. Each style of interferometric wavefront sensor gathers information about

the wavefront phase by sampling the intensity and applying software algorithms to detect

known characteristics from the interference patterns.
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Figure 4.1 At left: geometric interpretation of Young�s double slit experiment. At right:
diagram of a Michelson interferometer.

The basic formula for interference fringe patterns can be derived for both the temporal

and spatial cases. Beginning with the temporal case, the second order e¤ects of light

incident on the detector can be described as a function of the path di¤erence, h [24].

Consider the interaction of the �eld, u(t) with a delayed version of itself:

ID(h) =

*����K1u(t) +K2u

�
t+

2h

c

�����2
+
; (4.1)

where K1;K2 � variable attenuation in each path, (4.2)

u � optical �eld, (4.3)

and c � speed of light. (4.4)

The intensity, ID, is formed from the average modulus of the �eld. The brackets h�i

indicate the expectation or ensemble average operation. Expanding the product inside the

expectation results in:

ID(h) = (K2
1 +K

2
2 )I0 + 2K1K2Re

�
�

�
2h

c

��
; (4.5)

where I0 �
D
ju(t)j2

E
=

*����u�t+ 2hc
�����2
+
= � (0) ; (4.6)

and � (�) = hu(t+ �)u� (t)i : (4.7)
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The self-coherence function, � (�) ; can be written in general form [24]:

� (�) = � (�) exp
n
�j
h
2�
c

�
� � �(�)

io
; (4.8)

where � (�) = j� (�)j ; (4.9)

and �(�) � general phase function. (4.10)

The phase function, �(�), and self-coherence function can be calculated for a speci�c source

from its power spectral density. Substituting the general form for � (�) yields the following

form for ID(h):

ID(h) = (K
2
1 +K

2
2 )I0 + 2K1K2�

�
2h

c

�
cos

�
4�h

�
� �

�
2h

c

��
(4.11)

Assuming that the path length di¤erence is nearly zero, �
�
2h
c

�
� I0, and �

�
2h
c

�
� 0. Mak-

ing these substitutions reduces the interference pattern to a modulated sinusoidal pattern

with the argument being a simple phase delay caused by the path length di¤erence h which

will be denoted, ��(h):

ID(h) = (K
2
1 +K

2
2 )I0 + 2K1K2I0 cos f��(h)g : (4.12)

Similarly, the interference due to spatial separation can be found to be [24]:

IQ(r1; r2) = K2
1�11 (0) +K

2
2�22 (0) + (4.13)

2K1K2�12

�
r2 � r1
c

�
cos

�
2�

�
r2 � r1
�

�
� �12

�
r2 � r1
c

��
; (4.14)

where �11 (0) � intensity at point Q due to �eld propagating from pinhole P1;(4.15)

and �12 � cross-correlation of light from P1 and P2: (4.16)

If the separation of the pinholes is very small, then �12( r2�r1c ) �
p
�11 (0) �22 (0), and

�12
�
r2�r1
c

�
� 0. Making the substitution for �12 and replacing �11 (0) and �22 (0) with

intensity variables I1 and I2 produces the following form:

IQ(r1; r2) = K2
1I1 +K

2
2I2 + 2K1K2

p
I1I2 cos f��(r2; r1)g : (4.17)
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Comparing this result to the equation for temporal interference in (4.12), the only di¤erences

lie in the relative intensities and whether the phase shift was brought about by relative path

delay or a spatial shift. Assuming that K1 = K2 = 1 and I1 = I2 = I0 both expressions

reduce to the simpli�ed interference equation:

I = 2I0 (1 + cos f��g) : (4.18)

Interferometric wavefront sensors introduce a known shift or delay in a reference wave-

front in one path and interfere it with the unaltered beam to generate interference patterns.

From the unique characteristics of the interference pattern and the relationship in (4.18)

above, the wavefront sensor will attempt to measure �, ��, or some set of parameters ap-

proximating �. The degree of spatial and temporal coherence in a source will determine

the amount of calibration and precision necessary to ensure that (4.18) applies and create

measurable interference patterns.

Lateral Shear Interferometry. The Lateral Shearing Interferometer (LSI) is designed

to provide a measure of the average wavefront slope. The LSI interferes a delayed and shifted

portion of a collimated beam with the original beam. The degree of shift between the two

beams is called the shear distance. The shear distance is small such that a signi�cant portion

of the two beams overlap. An interference pattern is visible within the region of overlap.

Analysis of the resulting fringe pattern provides the di¤erential phase, ��=�s, where �s

represents the shear distance. A simple version of the LSI can be created from a parallel

plate as shown in Figure 4.2 [25]. The plate will produce two re�ections separated and

delayed. More sophisticated shearing interferometers use di¤raction gratings as indicated

in Figure 4.3 [26]. If a di¤raction grating is used, care must be taken to avoid overlapping

multiple orders of di¤raction. The spacing of grating lines are typically designed such

that the +1 and -1 order beams are tangent. LSIs are only capable of providing slope

information in the shear direction. LSIs employed in wavefront sensing create shear in two

directions to provide two-dimensional slope measurement. This requires a beamsplitter

or cross-grating in the case of the di¤raction grating style sensor. Splitting the beam by

polarization is also a viable technique [27]. The diagrams in Figure 4.4, provide results

from a Matlab simulation of lateral shear. LSIs are used extensively in optical system
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Figure 4.2 Diagram of a parallel plate lateral shear interferometer [26].

Figure 4.3 Diagram of a di¤raction grating lateral shearing interferometer [26].
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testing and have been successfully implemented in adaptive optics systems [28]. Shearing

interferometers can be used to measure the OTF of an optical system [29]. The OTF is

measured by continuously varying the level of shear and path delay. Fast methods exist

for recording both the OTF and the Modulation Transfer Function (MTF), the magnitude

of the OTF [30], [31].

Software wavefront reconstruction algorithms are used to recover the original phase-

front from the interference patterns. The measured slope information is inherently modulo

2� which makes the process of integration nontrivial. This problem is evident in the basic

equation for interference:

I = 2I0 (1 + cos f��g) ; (4.19)

�� = cos�1
�
I

2I0
� 1
�
; (4.20)

�� 2 [��; �): (4.21)

The modulo 2� phase slope is referred to as wrapped phase information. Recovery methods

must unwrap the phase and integrate to recreate the original wavefront. Sampling is critical

in the phase unwrapping problem because phase changes greater than � radians between ad-

jacent samples can seldom be resolved. Two general categories of wavefront reconstruction

include least squares curve �tting methods and path following phase unwrapping algorithms

[32], [33].

Point Di¤raction Interferometry. Rather than measuring the average wavefront

slope, it is possible to measure the wavefront directly by comparing it with an unaberrated

reference wavefront. Interferometers that use a reference wavefront generated from the

input wavefront are commonly called self-referencing interferometers (SRIs). Of particular

importance among SRIs, is the Point Di¤raction Interferometer (PDI). The PDI creates a

reference wavefront from pinhole di¤raction [25]. Smartt proposed a simple construction

where the PDI focuses the input wavefront onto a pinhole etched out of a semi-transparent

material [34]. The pinhole is su¢ ciently small (on the order of a few �m) such that it

spatially �lters out all of the incoming wavefront aberrations and passes only a smooth

spherical reference wave. The remainder of the input wavefront is attenuated, but not

spatially �ltered, by the semi-transparent material. The wavefront must be attenuated
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Figure 4.4 Simulated examples of lateral shear interference patterns. Vertical (top) and
horizontal (bottom) shear directions for beams with defocus (left), astigmatism
(center), and coma (right).
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such that it has amplitude on the order of the reference wave in order to create visible

interference fringes in the image plane. Visibility of fringes is directly related to the

modulation of the sinusoidal pattern [2]:

Visibility � Imax � Imin
Imax + Imin

: (4.22)

Figure 4.5 Diagram of a common path PDI [26].

As with the LSI, there are many variations on the PDI. In particular, PDIs may

have multiple beam paths or a common beam path. Figure 4.5 provides an example

diagram for a common path PDI [26]. Multiple beam paths provide for both spatial

and temporal dithering of the reference wavefront for improved measurement precision.

Common path PDIs, on the other hand, require less calibration and o¤er increased tolerance

to vibrations and harsh operating environments [35]. PDIs may incorporate polarizers or

birefringent materials to create orthogonal polarization between the reference beam and

the input beam. Orthogonal polarization between the input beam and the reference beam

provides for optimal fringe visibility [35]. Figure 4.6 provides simulated PDI interference

patterns for the cases of independent defocus, astigmatism and coma.

PDIs, and more generally, self-referencing interferometers, have proven successful in

adaptive optics applications [26]. While slightly more complicated than shearing interfer-

ometers and other wavefront sensor designs, PDIs o¤er several bene�ts. Since PDIs measure

the wavefront phase directly, there is less error introduced in the wavefront reconstruction
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Figure 4.6 Example PDI interference patterns. Left: wavefront with defocus aberration.
Center: wavefront with astigmatism. Right: wavefront with coma.

process. PDIs are also less sensitive to �eld amplitude noise, sometimes called scintillation,

than the LSI and the Hartmann sensor to be discussed in Section 4.3 [36]. Common path

PDIs are more e¤ective for sources with low temporal coherence than shearing interferom-

eters because the reference wavefront and the aberrated wavefront are not spatially shifted

[37].

For all their bene�ts, PDIs create technical challenges as well. Since the reference

wavefront is spatially �ltered, the input beam must have enough power to provide su¢ cient

signal to noise ratio (SNR) in the interference pattern. In the case of narrow-band, coherent

inputs, Rhoadarmer et. al. describe a �ber laser ampli�cation method which dramatically

improves SNR [36]. The presence of large tilt terms in the input wavefront can shift the

focus of the input beam away from the spatial �lter. For this reason, inputs with large

tilt variance force the adaptive optics system to correct for tilt prior to the PDI wavefront

sensor, or to somehow incorporate a moving pinhole in the device [38]. Each of these

challenges requires an engineering solution which brings with it some set of trade-o¤s in

complexity and e¢ ciency.

4.2 Phase Retrieval from Intensity Measurements

The problem of wavefront sensing in Adaptive Optics is a single instance of a broader

class of problems in electro-optics often referred to as phase retrieval. The need for phase

retrieval arises in many other applications such as electron microscopy, x-ray imaging and

single-sideband communications [39], [40]. The general phase retrieval problem can be

summarized using a Fourier domain model. Consider the complex function and its Fourier
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transform:

F (�) = jF (�)j exp fj (�)g ; (4.23)

f(x) = jf(x)j exp fj�(x)g ; (4.24)

F (�) =

1Z
�1

f(x) expf�j2�� � xgdx: (4.25)

The phase retrieval problem in optics is synonymous with the problem statement: given

jF (�)j and jf(x)j, �nd  (�) and �(x). As shown in (2.188), the linear systems di¤raction

model relates the object and image domains through simple Fourier analysis of the optical

system. Thus, through the linear optical system model it is possible to translate the general

phase retrieval problem into an optical wavefront sensing problem. In its most general form,

the problem of phase retrieval has in�nitely many solutions making the problem ill-posed.

However, if the problem is constrained by making certain assumptions about f(x), then

the in�nite set of solutions can become a limited set of solutions, possibly even a unique

solution [41]. Gerchberg and Saxton devised an algorithm to solve the phase retrieval

problem in electron microscopy [42]. Their approach employs an iterative technique which

makes constraining adjustments in both the object and image domains. The simplest

set of constraints forces the object and image domain amplitudes to match the measured

values at each iteration. The phase is often seeded with a random process to begin the

�rst iteration. The algorithm continues until some minimum error criteria is reached. The

block diagram in Figure 4.7 describes the Gerchberg-Saxton (GS) phase retrieval algorithm.

This technique is guaranteed to converge in the mean squared sense. However, there is no

such guarantee that the resulting phase solution is unique. The non-uniqueness might be

tolerable if it were limited to an added constant phase, however, the ambiguity also includes

a possible sign change. Although limiting the set of solutions from in�nitely many to a sign

error is a signi�cant step, the non-uniqueness problem limits the utility of the algorithm in

wavefront sensing.

To overcome the issue of non-uniqueness, Misell modi�ed the GS algorithm to incor-

porate information from two imaging paths [40]. By creating two optical paths with a

known phase di¤erence, or phase diversity, between them, the sign in the phase aberration

could be resolved. One simple method for creating such a diversity is to purposefully o¤set
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Figure 4.7 Flow diagram of the general Gerchberg-Saxton algorithm.

each image plane thereby introducing a known amount of defocus. A diagram for Misell�s

algorithm using focus diversity is shown in Figure 4.8.

Fienup proposed a modi�cation to the GS algorithm for image reconstruction [43].

The modi�ed algorithm uses phase diversity much like the Misell approach, however, it is

designed for use in post processing of images where only the image modulus is known. In this

case, no knowledge is assumed about the pupil amplitude (the object is unknown) making

the algorithm estimate both the object and the corrections necessary to improve image

quality. The technique was designed for reconstruction of imagery from interferometric

data. The key to Fienup�s algorithm is that there are two characteristics known about

the object: the object is both real and non-negative. These qualities introduce additional

constraints into the algorithm. Fienup also proposed a method to increase the rate of

convergence through negative feedback. Fienup�s input-output version of the GS algorithm

is diagrammed in Figure 4.9. The set  represents all points where the estimated object
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Figure 4.8 Block diagram of Misell�s modi�ed GS algorithm [40].

violates the real and non-negative constraints. Only the set of object points which violate

the constraints are modi�ed after each iteration. The Fourier domain constraints typically

consist of the measured image amplitude.

Shortly after the �rst published version of the Gerchberg-Saxton algorithm, Gonsalves

proposed a parameter searching algorithm for phase retrieval [45]. The method was later

improved to include elements of phase diversity and combined wavefront phase and object

estimation making it an enticing algorithm for use in a wavefront sensing applications [46].

The approximate pupil phase is parameterized by some suitable set of polynomials such

as the �rst 21 Zernike polynomials. Estimates of the pupil phase are generated in each

iteration of the algorithm. Gonsalves�algorithm boasts the capabilities of both Misell�s and

Fienup�s modi�ed GS algorithms. The method is based on a mean squared error estimator

for the object and a gradient search routine to minimize error between the observed images

and the current iterations estimated images. The phase diversity is de�ned just as in

Misell�s algorithm: any arbitrary, but known, phase di¤erence between two image planes.

As in Fienup�s image reconstructor, the object does not need to be known making the

algorithm ideal for extended source objects. Expressed here in the Fourier domain, the
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Figure 4.9 Flow diagram of Fienup�s input-output modi�cation of the GS algorithm for
image reconstruction [44].

object estimator, Ô(�), is an optimum mean squared error estimator for O(�) based the

prior knowledge provided in the observed images, G1(�) and G2(�), and the pupil phase

estimates P̂1(�) and P̂2(�):

Ô(�) =
P̂ �1 (�)G1(�) + P̂

�
2 (�)G2(�)

P̂ �1 (�)P̂1(�) + P̂
�
2 (�)P̂2(�)

(4.26)

The mean squared error metric most often used in versions of Gonsalves� algorithm has

Figure 4.10 Block diagram of Gonsalves�parameter searching phase retrieval algorithm.
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come to be known as the Gonsalves metric [47]:

E =

Z ���G1(�)� Ô(�)P̂1(�)���+ ���G2(�)� Ô(�)P̂2(�)��� d� (4.27)

Simulated results of Gonsalves�algorithm as well as versions of the GS algorithm are

quite remarkable. This is perhaps the reason that these algorithms have been the subject

of much research over the past 30 years. Working from nothing more than a pair of dis-

torted images and knowledge of the optical system, these iterative techniques are capable of

achieving near di¤raction limited performance. Unfortunately, phase retrieval techniques

require signi�cant computational power. Each version of the phase diversity algorithm is

guaranteed to converge, however, the number of iterations and computational time required

for convergence can be too great to be accomplished at the frequency of atmospheric dy-

namics. Until su¢ cient computational power becomes available, these algorithms continue

to provide only an e¤ective means of post processing recorded image data.

4.3 The Hartmann Wavefront Sensor

The use of interferometric techniques in the manufacture of optics becomes increas-

ingly di¢ cult as the size of the optics increase. For this reason, a special test was developed

for manufacture of large telescope optics called the Hartmann test. The test consists of

placing a mask of many small subapertures over the optic under test and measuring the focal

length of each subaperture. A diagram of the Hartmann test is shown in Figure 4.11. The

advantage of the Hartmann test over interferometric processes is that the Hartmann test

can be conducted with relatively broadband sources meaning that it circumvents much of

the spatial and temporal coherence constraints emphasized in the section on interferometric

wavefront sensing. The Hartmann wavefront sensor is an adaptation of the Hartmann test.

In the Hartmann wavefront sensor, the mask of subapertures is replaced by a small array of

lenslets. The lenslet contribution is attributed to Dr. Roland Shack and, for that reason,

the wavefront sensor is often referred to as the Shack-Hartmann wavefront sensor. Figure

4.12 provides a basic diagram of the Hartmann wavefront sensor.

The Hartmann wavefront sensor provides a measure of the wavefront slope much like

the shearing interferometer. Each lenslet focuses onto its respective region of a CCD. The
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Figure 4.11 Schematic of a Hartmann test setup and example image plane output.

centroid of each subaperture image shifts proportional to the coe¢ cients of Zernike tilt. By

locating the centroid of each subaperture image, the sensor provides an estimate of local

wavefront slope. If each lenslet image is approximated by a Gaussian shape, then it can be

shown that the centroid calculation is a maximum likelihood estimator for tilt. Recall the

Poisson conditional density for a detected image D given some noiseless image I:

pdj�a(Dj�A) =
Y
u2S

I[u; �A]D[u] exp(�I[u; �A])
D[u]!

: (4.28)

If I depends only on contributions from Zernikes 2 and 3 then the conditional density

becomes:

pdja2;a3(DjA2; A3) =
Y
u2S

I[u;A2; A3]
D[u] exp(�I[u;A2; A3])
D[u]!

: (4.29)

In the paraxial region of the image plane, there exists a linear relationship between the

Zernike tilt coe¢ cients A2 and A3 and independent pixel shifts in the � and � directions

respectively. An incoming ray making an angle with the optical axis will intercept the

image plane o¤set from the optical axis proportional to the image distance. Using this
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Figure 4.12 Diagram of a Hartmann sensor.

geometric analysis, Zernike tilt relates to the o¤set distance in the image plane by similar

triangles as shown in Figure 4.13. Using this geometric construct, the expression for A2 in

Figure 4.13 Ray optics diagram demonstrates the relationship between a single pixel shift
in the image plane and the Zernike tilt parameter.

terms of an arbitrary pixel shift �u is derived below. Begin with the expression for x-tilt:

A2Z2 (x; �) = A22

�
x

RP

�
cos (�) :
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Substitute in the point along the x axis at the edge of the aperture, (x = RP ; � = 0):

A2Z2 (RP ; 0) = A22: (4.30)

Now form an expression equating the ratios of the sides of the similar triangles from Figure

4.13, and solve for A2:

A2Z2 (RP ; 0)

RP
=

d�

si
; (4.31)

A2 =
RPd�

2si
: (4.32)

The distance d� has units meters. The index variable �u which has units in pixels is more

useful in the derivation to follow. Recall that the width of a pixel in the image plane given

given by �� in (3.19). To relate the coe¢ cient A2 to pixel shifts, substite: d� = �u��,

into the expression for A2 in (4.32) and solve for the pixel shift:

A2 =
RP�u��

2si
; (4.33)

�u =
2A2si
RP��

: (4.34)

Similarly, the expression for �v is given:

�v =
2A3si
RP��

: (4.35)

To compact the notation, denote the pixel shifts as functions of the Zernike parameter and

combine them into a vector format: �u (A2; A3) = (�u (A2) ;�v (A3)). Now return to

(4.29) and substitute the shift function, �u (A2; A3), for the expected image arguments A2

and A3:

pdja2;a3(DjA2; A3) =
Y
u2S

I[u;�u (A2; A3)]
D[u] exp(�I[u;�u (A2; A3)])
D[u]!

: (4.36)

Note that this substitution does not change the expression except to reveal to the reader

the direct relationship between the tilt parameters and the xy shift of the expected image in

the image plane. Now make the approximation that the expected image, I, has a Gaussian
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spatial distribution. This approximation is based on the fact that the central lobe of the

Fraunhofer di¤raction pattern for a di¤raction limited optical system resembles the bell

shaped curve of a Gaussian distribution. Approximate the noiseless image as:

I[u��u (A2; A3)] =
K

2��2
exp

(
�ju��u (A2; A3)j

2

2�2

)
; (4.37)

where K = E

(X
u2S

D[u]

)
; (4.38)

and �2 =
variance parameter based on

the system f=#:
(4.39)

The ML estimator log likelihood expression using the input conditional pdf in (4.36) is given

by:

Lml (A2; A3) =
X
u2S

D[u] ln fI[u;�u (A2; A3)]g � I[u;�u (A2; A3)]: (4.40)

Substituting the Gaussian form of I into the log likelihood expression:

Lml (A2; A3) =
X
u2S

D[u] ln

�
K

2��2

�
�D[u] ju��u (A2; A3)j

2

2�2
�

K

2��2
exp

(
�ju��u (A2; A3)j

2

2�2

)
: (4.41)

Solving for the ML estimator requires maximizing the log likelihood expression over the

range of the shift function, �u, by di¤erentiating with respect to each parameter and
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setting the result equal to zero.

Lml (A2; A3) =
X

[u;v]2S
D[u; v] ln

�
K

2��2

�
�D[u; v] (u��u (A2))

2 + (v��v (A3))2

2�2
�

K

2��2
exp

(
�(u��u (A2))

2

2�2

)
exp

(
�(v��v (A3))

2

2�2

)
; (4.42)

d

dA2
Lml (A2; A3) =

X
[u;v]2S

D[u; v]
u��u (A2)

�2
2si

RP��
�

u��u (A2)
�2

2si
RP��

K

2��2
�

exp

(
�(u��u (A2))

2

2�2

)
exp

(
�(v��v (A3))

2

2�2

)
; (4.43)

d

dA3
Lml (A2; A3) =

X
[u;v]2S

D[u; v]
v��v (A3)

�2
2si

RP��
�

v��v (A3)
�2

2si
RP��

K

2��2
�

exp

(
�(u��u (A2))

2

2�2

)
exp

(
�(v��v (A3))

2

2�2

)
: (4.44)

Assuming that the shift function is distributed Gaussian, the second term in each derivative

represents a constant multiplying the central moment of the shift function:

X
[u;v]2S

(u��u (A2)) exp
(
�(u��u (A2))

2

2�2

)
= 0: (4.45)
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Under the atmospheric model, the central moment for all modes is zero. This makes

solving for the parameter estimates straightforward:

X
[u;v]2S

D[u; v]
u��u (A2)

�2
d�u (A2)

dA2
= 0; (4.46)

X
[u;v]2S

D[u; v] (u��u (A2)) = 0; (4.47)

therefore �ûml =

X
[u;v]2S

D[u; v]u

X
[u;v]2S

D[u; v]
; (4.48)

X
[u;v]2S

D[u; v]
v��v (A3)

�2
d�v (A3)

dA3
= 0; (4.49)

X
[u;v]2S

D[u; v] (v��v (A3)) = 0; (4.50)

therefore �v̂ml =

X
[u;v]2S

D[u; v]v

X
[u;v]2S

D[u; v]
: (4.51)

Thus, the maximum likelihood estimator for each shift parameter is a centroid calculation.

The estimators for �u and �v di¤er from the estimators for the Zernike coe¢ cients by a

constant multiplier:

â2ml =
RP��

2si
�ûml; (4.52)

â3ml =
RP��

2si
�v̂ml: (4.53)

Each lenslet in the Hartmann sensor provides the same information as a single pixel in the

shearing interferometer [3]. The Hartmann sensor is preferred over shearing interferometers

in low light and low signal to noise ratio viewing [48]. Although its performance is often

better than that of shearing interferometers, the centroid calculation in each subaperture

of the Hartmann sensor is still prone to error in low SNR environments. Additionally, the

Gaussian distribution in the image may not be an accurate assumption when the object is

an extended source.

4-20



4.4 Wavefront Sensing Using Image Projections

The Hartmann wavefront sensor can be modi�ed to operate on image projections. The

short wavelength adaptive techniques (SWAT) wavefront sensor system at MIT Lincoln Labs

uses this technique to accelerate the tilt estimation process [49]. The basic con�guration

of the projection based sensor requires two cameras providing orthogonal image projections

as described in Figure 4.14. This con�guration divides the amount of light into two paths

Figure 4.14 Figure demonstrates a conceptual example of two orthogonal projections pro-
vided by cameras in a projection correlating tilt sensor.

and reduces the amount of signal available in each camera output. Therefore, what the

projection based wavefront sensor loses in signal to noise ratio, it must make up for in

speed, e¢ ciency and reduction in read noise. In the SWAT wavefront sensor, projections

are formed on the CCD outputting only N locations for an N � N image space. The

background section on image vector projections underlined the importance of vector output

from the standpoint of CCD read out time and CCD read noise. Thus, the �rst design
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improvement over a simple two-dimensional centroid sensor is to simply compute part of

the centroid operation directly on the CCD prior to read out.

The centroiding sensor may be improved further. To improve the quality of sub-

aperture tilt estimates in low signal to noise environments and provide a more accurate

tilt estimator for extended objects, the centroiding calculation should be replaced by an

image correlating technique [50]. The cross-correlating tilt estimator provides for greater

noise rejection and is better suited for extended source objects [51]. The cross-correlation

calculation requires more compuational power than a simple centroid calculation. However,

the image projection reduces the calculation time required for correlation style image reg-

istration making the calculation feasible. The following derivation outlines the e¤orts of

Cain et. al. [51].

Recall the general projection operator from Section 3.3. Using this notation, the two

projections suggested by Cain may be expressed:

sv (D1;0) (4.54)

and sv (D2;90) ; (4.55)

where s = f(1; NW )g : (4.56)

The window size, NW , has been left arbitrary. Consider, once again, the tilt only conditional

pdf given in (4.29). Substituting the image projection into (4.29) and separating the

conditional pdf into two independent tilt expressions gives:

p
sv (d1;0)ja2( sv (D1;0) jA2) =

NWY
l=1

svl (I1;0 [A2]) s
vl (D1;0[u]) exp ( svl (�I1;0 [A2]))

svl (fD1;0[u]! : u 2 S1g)
;

(4.57)

p
sv (d2;90)ja3( sv (D2;90) jA3) =

NWY
l=1

svl (I2;90 [A3]) s
vl (D2;90) exp ( svl (�I2;90 [A3]))

svl (fD2;90[u]! : u 2 S2g)
:

(4.58)
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�ûml = 0
while La2 (�ûml) < fLa2 (�ûml � 2) ; La2 (�ûml � 1) ; La2 (�ûml + 1) ; La2 (�ûml + 2)g
if La2 (�ûml + 1) + La2 (�ûml + 2) > La2(�ûml � 1) + La2(�ûml � 2)
�ûml = �ûml + 1

else
�ûml = �ûml � 1

end
end

Table 4.1 Pseudo code for the 1-D linear search algorithm.

From (4.57) and (4.58), the log likelihood functions are given:

La2(A2) =

NWX
l=1

svl (D1;0) ln f svl (I1;0 [A2])g � svl (I1;0 [A2]) ; (4.59)

La3(A3) =

NWX
l=1

svl (D2;90) ln f svl (I2;90 [A3])g � svl (I2;90 [A2]) : (4.60)

Note that the reference image projections, I1;0, and I2;90 no longer have a speci�ed form

such as the Gaussian approximation given in the centroid estimation case. The reference

image projections may be formed from a known object or from an ensemble average of

images in the case where the object is unknown. The reference images can be posed as

functions of the arbitrary pixel shift variables from the previous section:

La2(�u) =

NWX
l=1

svl (D1;0) ln f svl (I1;0 [�u])g � svl (I1;0 [�u]) ; (4.61)

La3(�v) =

NWX
l=1

svl (D2;90) ln f svl (I2;90 [�v])g � svl (I2;90 [�v]) : (4.62)

Expressions (4.59) and (4.60) are essentially correlation functions. Maximizing these

correlation expressions over a carefully selected region of the shift parameters, �u and �v,

is the job of the correlating tilt wavefront sensor. Cain suggests a linear search method for

maximizing the correlation [1]. Examining the case for �u, update the current estimate

�ûml via the algorithm in Table 4.1. The diagram in Figure 4.15 describes the search

algorithm. The granularity of this approach is limited by the pixel size in the detector,

��. The shift parameters can be estimated to an accuracy �ner than a pixel dimension by
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Figure 4.15 Diagram for the 1D log likelihood maximization algorithm.

interpolating the reference image vector, v(I1;0) [1]. A linearly interpolated vector v(I1;0)

is formed as follows:

v (I1;0[u��u]) = (1��u+�oor (�u))v (I1;0[u��oor(�u)]) +

�oor (�u)v (I1;0[u� (�oor (�u) + 1)]) ; (4.63)

where �u is the arbitrary shift parameter, not restricted to integer increments.

4.5 Summary

This chapter reviewed many existing techniques for detecting wavefront phase from

intensity measurements. The discussion began with interferometric techniques. The Lat-

eral Shearing interferometer provides a measurement of the wavefront phase slope and the

Self-Referencing Interferometer provides a measurement of the wavefront phase. Interfer-

ometric techniques have been proven to be e¤ective in adaptive optics systems. Phase

retrieval methods were also discussed. These methods are predominantly employed in of-

�ine analysis due to the computational complexity involved. The Hartmann sensor is an

adaptation of the Hartmann test used for measuring the imperfections in large optics. The

Hartmann wavefront sensor is very common due to its speed and e¤ectiveness for measuring

localized wavefront tilt. A short derivation demonstrated that the Hartmann wavefront

sensor centroid measurement is a closed form solution to the maximum likelihood image
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shift estimator. The closed form expression for the ML shift estimator comes at the ex-

pense of assuming a Gaussian distributed image intensity. The SWAT sensor modi�es the

Hartmann wavefront sensor to use image projections. The image projection signi�cantly

reduces read out noise and CCD read time. Cain�s projection correlating wavefront sensor

makes use of image projections as well. The projection correlating tilt sensor uses a linear

search method for maximizing the likelihood expression rather a closed form expression.

Cain�s simulation of the projection correlating tilt estimator shows that its performance is

better than that of the centroiding tilt estimator under low light conditions. The correlating

technique which provides superior tilt estimation performance can be adapted to estimate

higher order Zernike terms, speci�cally the seven Zernikes: Z4 through Z10. The remain-

der of this dissertation describes two parameter estimating wavefront sensors designed to

estimate and correct for both the tilt polynomials: Z2 and Z3, and higher order Zernikes

up to Z10.
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5. The Z2�4 Wavefront Sensor

This chapter details the �rst of two wavefront curvature sensors. Recall that a curvature

sensor is a wavefront sensor designed to detect some limited set of higher order aberrations

along with x-tilt and y-tilt. The Z2�4 wavefront sensor measures Zernike coe¢ cients a2

through a4 from point source image vectors. The Z2�4 wavefront sensor design builds

on the projection correlating maximum likelihood (ML) tilt estimator [1]. This curvature

sensor di¤ers from the tilt sensor in several ways. The �rst, and perhaps the most crucial,

di¤erence is the assumption that the sensor will be con�gured to image a known beacon

object. Second, the curvature sensor estimates defocus error within each subaperture. Also,

the curvature sensor hardware requires a defocus diversity between the pair of CCD arrays.

The estimation algorithm, which I will refer to as the Z2�4 estimator, is based on a maximum

a posteriori (MAP) estimator versus a maximum likelihood (ML) estimator. Additionally,

the expected image lookup has been expanded to account for parameters beyond tilt and the

expected images take advantage of the known object assumption. Finally, the likelihood

maximization approach has been updated to increase speed and e¢ ciency. While not as

e¤ective at registering arbitrary images due to the beacon object assumption, the curvature

sensor presented here outperforms the ML and centroid techniques when simulated using a

point source input. Below, this chapter provides the details of the Z2�4 curvature sensor

which include: a description of the hardware considerations, a derivation of the projection

based Z2�4 estimator algorithm, techniques for fast and e¢ cient likelihood maximization,

and a summary of key sensor design variables.

5.1 Sensor Hardware

The focus of this research is on the design of the sensor estimation algorithm rather

than sensor hardware design. In keeping with this theme, the purpose of describing the

hardware con�guration will be limited to identifying key design variables and how they

a¤ect the estimation algorithm. The sensor hardware can be broken down into three main

components: an array of subapertures, a beamsplitter, and a pair of photon counting CCDs.

This con�guration is not unique and, in fact, includes the same combination of components

discussed in the review of Hartmann sensors and phase diversity techniques. This section
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will review these three components and highlight any assumptions or requirements speci�c

to the Z2�4 estimator algorithm.

The key design variables associated with the subaperture array are the diameter and

focal length of the subapertures. The wavefront sensor will be constructed from an array

of subapertures. Assume that the diameters of all individual subapertures as well as their

focal lengths are identical. Furthermore, assume that the pixel size in the CCDs is chosen

according to the Nyquist criteria which is adjusted for f=#. Under this assumption, the

focal length becomes transparent to the estimator algorithm design. Therefore, assume that

the design of the subaperture array only impacts the estimation algorithm via the ratio of

the �xed subaperture diameter to the changing operating environment variables: r0, L0, l0.

Since each of the atmospheric variables are estimated parameters provided to the sensor

algorithm, it will be important to evaluate the performance of the estimator algorithm over

a range of these values and to evaluate the sensitivity of that performance to errors in each

estimate.

The beamsplitting device allows the sensor to focus the subaperture array onto two

image planes. Lee et. al. demonstrated that the ideal con�guration for the beamsplitting

device is to provide equal power in both imaging paths in a phase retrieval system [52].

The same performance characteristic holds for the projection based algorithm. Therefore,

as a conservative �gure, I will assume that the beamsplitter used is a 50/50 beamsplitter

with 95% e¢ ciency. The e¢ ciency factor is crucial when comparing the Z2�4 curvature

sensor to other sensors that do not require beamsplitting.

The key design assumptions associated with the CCD arrays are the Nyquist sampled

pixel size discussed previously, the ability to produce image projections, and their placement

relative to the geometric focus. The �rst two considerations are straightforward, which

leaves the variable of CCD placement open for trade study. Ambiguity in the e¤ects

of higher order Zernikes on intensity measurements can be reduced by applying a known

phase diversity between the two image planes. In the case of the Z2�4 sensor, the phase

diversity is necessary because the defocus parameter exhibits identical e¤ects in intensity

whether the coe¢ cient is positive or negative. Misell suggested that the simplest method

for adding a known phase diversity is to introduce a defocus error by purposefully o¤setting

the image plane [40]. Lee et. al. showed that the defocus diversity should be applied equally
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and with opposite sign in each imaging path when using two-dimensional image data for

phase retrieval [52]. I have con�rmed that the same defocus diversity con�guration is

ideal for estimating phase from image projections. For this reason, the sensor defocus

diversity labeled, ��a4 , will be expressed as an absolute value in units of radians, where it

is understood that the defocus will be applied positive in one CCD plane and negative in

the other. The ideal choice of diversity will depend largely on both the ratio DP
r0
and the

average photon count per subaperture per exposure, K.

5.2 Image Projections

The Z2�4 sensor image projection is a shifted and summed set of pixels from the

original image as indicated in Figure 5.1. As shown in Figure 5.1, each CCD has an

associated angle of rotation. Applying a rotation to a CCD allows for taking projections

in di¤erent directions. For convenience of projection notation, the summation is always

performed across the vi direction. Specifying the projection direction is accomplished by

associating with each CCD a rotational reference, �i, relative to the AO reference image

axes. For a description of the variables de�ning the aperture and image plane, recall the

notation for a discrete image formed within the linearized optical model:

I [u��; v��;�a] =

�����x�y(�si)
2 DFT fP [n�x;m�y;�a]g

����2 ; (5.1)

I [u; v;�a] = I [u��; v��;�a] ; (5.2)

I [�a] = fI[u; v;�a] : u; v 2 Sg : (5.3)

As an example, consider estimating tilt using two orthogonal projections along the reference

AO x and y axes as in Cain�s ML estimator. This is described in the context of the image

projection operator by establishing two CCDs one o¤set by an angle of 0� and another

o¤set by 90�. The Z2�4 sensor uses this same con�guration. As such, the CCD images are

denoted: D1;0 and D2;90. The pair of projections used in the Z2�4 estimator will be referred

to as whole plane projections. Whole plane projections are single vectors produced by

summing along the entire windowed region v axis. The size of the window should be chosen

to provide some minimal residual error and acceptable computation time. For the purpose

of this description, the window size will remain variable. Although image projections are
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Figure 5.1 Diagram of the Z2�4 sensor�s whole-plane image projection operation for even
and odd length windows.

read out of the CCDs only once during each exposure, the projection operations used in the

estimators: â2, â3 and â4 are distinguished in the notation as if they were separate vectors

for mathematical convenience. The three Z2�4 sensor projection operations are:

f(1;NW )gv (D1;0) ; (5.4)

f(1;NW )gv (D2;90) ; (5.5)

f(1;NW )gv (D1;0;D2;90) : (5.6)

5-4



5.3 Likelihood Expressions

The sensor hardware provides two image projections from each subaperture. Figure

5.2 diagrams the read out and �ow of two image projections through the estimator algorithm.

Each likelihood expression requires four inputs: a detected image projection, a reference

Figure 5.2 Diagram shows the �ow of image projections through the Z2�4 estimation
algorithm.

image projection, a set of atmospheric parameter estimates and an estimate of the current

photon level, K. Solid lines indicate the �ow of real time detected image projections.

Dashed lines indicate information used for reference projections which are computed and

stored into lookup tables during sensor calibration. The atmospheric parameter estimates

and K do not need to be updated at every image frame, but should be updated as often as

necessary to ensure some threshold of accuracy. The heavily outlined blocks in Figure 5.2

indicate locations where a likelihood expression is evaluated. Recall the general form for
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the MAP estimator:

max
�A
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�
�
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�
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�
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�A
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�
I[
�
�A
��

37775� �A��1�a �A
t

2

9>>>=>>>;
���������
�A=âmap

: (5.7)

The likelihood expression, denoted Lmap(�A), is the expression to be maximized. Extracting

the likelihood expression from the MAP estimator equation and tailoring the projection

operator speci�cally for the Z2�4 estimator yields:

Lmap(�A) =

NvNWX
l=1

�
f(1;NW )gvl (D1;0;D2;90) + �

2
ro

�
�

ln
�
f(1;NW )gvl

�
I1;0

�
�A
�
; I2;90

�
�A
��
+ �2ro

	
�

f(1;NW )gvl
�
I1;0

�
�A
�
; I2;90

�
�A
��
�
�A��1�a �A

t

2
; (5.8)

�A � the in�nite set of atmospheric parameters, (5.9)

��a � the parameter covariance matrix, (5.10)

�2ro � CCD read noise variance. (5.11)

The likelihood expression in (5.8) has in�nite dimensions due to the in�nite set of input

parameters �a. Since the estimator is only concerned with providing estimates for a2, a3,

and a4, these three dimensions are evaluated independently of all others. Furthermore,

to reduce the complexity of the maximization process, the parameters of interest will be

estimated independent of each other. Two characteristics of the problem allow maximizing

over each parameter independently: the decrease in turbulence power between tilt and

defocus, and the separability of Zernike e¤ects in the chosen type of image projections. The

random CCD images d will always be a function of the in�nite set �a, however, if a set

of expected image vectors can be precomputed with known amounts of a single parameter

then the likelihood can be maximized one dimension at a time. Taking advantage of the

20:1 ratio of tilt power to defocus, the tilt parameters will be estimated �rst. Tilt reference

projections are formed by simulating the beacon image using an OTF containing only the

reference tilt aberrations and a long exposure OTF containing contributions from Zernikes

Z4 and higher. The Zernike contributions in the long exposure OTF are based on the
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estimated atmospheric variables r0, L0 and l0. Recall that the di¤raction limited OTF

may be formed from the simulated PSF:

H =
DFT fIgP
u
I[u]

: (5.12)

Note that the object is assumed to be a point source and therefore the expected image I

is a di¤raction limited PSF. Any aberrations in I will be indicated by including them as

arguments of I. For instance, an image, which is otherwise di¤raction limited, that contains

a contribution of x-tilt is denoted:

I[A2]: (5.13)

The corresponding OTF is denoted:

H [A2] =
DFT fI[A2]gP
u
I[u;A2]

: (5.14)

Similarly, a long exposure OTF can be formed from the discrete Fourier transform of a long

exposure PSF. Consider the PSF formed from an ensemble average of images:

LI � E�a fi [�a]g ; (5.15)

LH =
DFT fLIgP
u

LI[u]
; (5.16)

where the expected image i occurs here in lower case to emphasize that it is a random quan-

tity. Notice that the point spread function is given a preceding subscript L to distinguish

it from a di¤raction limited point spread function. Goodman provides an expression for

the long exposure OTF in terms of the di¤raction limited OTF and an OTF formed from

the phase structure function, DP� [24]:

LH [n] = HP� [n]H [n] ; (5.17)

HP� [n] = exp

�
�1
2
DP� [n]

�
: (5.18)

The phase structure function is evaluated on a spatial grid. The OTF is evaluated on a

spatial frequency grid. A factor of �si is required to convert between the spatial frequency
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dimension of HP� and the spatial dimension of DP� . The Nyquist relationship between

the aperture and image plane sampling grids accounts for the di¤erence in spatial versus

spatial frequency dimensions in DP� and HP� and, as such, accounts for the use of the same

indexing variable n in both the left and right hand sides of the expression above. DP� is

therefore constructed from the ensemble averaged autocorrelation of the discretized pupil

phase over all possible pixel shifts of the discrete pupil function. If the pupil phase does not

contain contributions from speci�c atmospheric parameters then the resulting OTF will be

referred to as the long dwell OTF with Zi removed. For example, de�ne the long exposure

OTF for tilt removed turbulence as:

L23H [n] = exp
�
�1
2
DP� [n;A2 = 0; A3 = 0]

�
: (5.19)

The preceding subscript L is now followed by the numbers 2 and 3 to indicate that the

OTF is a long exposure OTF with Zernikes 2 and 3 removed. It follows then that the tilt

removed point spread function may be expressed as:

L23I = DFT fL23H � Hg ; (5.20)

where the binary operator � indicates the Hadamard product often referred to as an entrywise

or pointwise product:

(A �B)ij = AijBij : (5.21)

Furthermore, expected images with arbitrary tilt and long exposure variance contributions

from all high order Zernike polynomials are formed by:

L23I [A2; A3] = DFT fL23H � H [A2; A3]g : (5.22)

L23I is representative of the type of expected image used in the MAP estimator. Inserting

the appropriate long term expected image projections into the likelihood expression (5.8),
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the tilt speci�c likelihood expressions are given by:

Lmap2(A2) =

NWX
l=1

�
f(1;NW )gvl (D1;0) + �

2
ro

�
�

ln
�
f(1;NW )gvl (L23I1;0 [A2]) + �

2
ro

	
�

f(1;NW )gvl (L23I1;0 [A2])�
A22
2�22

; (5.23)

Lmap3(A3) =

NWX
l=1

�
f(1;NW )gvl (D2;90) + �

2
ro

�
�

ln
�
f(1;NW )gvl (L23I2;90 [A3]) + �

2
ro

	
�

f(1;NW )gvl (L23I2;90 [A3])�
A23
2�23

: (5.24)

Similar to the method for creating tilt reference projections, Z4 reference images are formed

from a combination of a known defocus OTF with a long exposure OTF containing appro-

priate contributions from Z5 and higher:

L234I [u] = E�a fi [u;�ajA2 = 0; A3 = 0; A4 = 0]g ; (5.25)

L234H [n] = exp

�
�1
2
DP� [n;A2 = 0; A3 = 0; A4 = 0]

�
; (5.26)

L234I [A4] = DFT fL234H � H [A4]g : (5.27)

The set of Z4 expected image projections must be preregistered over an array of known tilt

values. The estimator will select the preregistered Z4 projection with the closest matching

pair of tilt values:

�
~A2; ~A3

�
=

 
round

 
Â2
�A2

!
�A2; round

 
Â3
�A3

!
�A3

!
; (5.28)

where
�
Â2; Â3

�
are formed during tilt estimation by choosing the parameter which max-

imizes Lmap2 and Lmap3 respectively. Note that the function round(�) is a call to the

Matlab
R
rounding function which outputs the nearest integer to the argument. Preregis-
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tered Z4 expected images are given by:

L234I
h
~A2; ~A3; A4

i
= DFT

n
L234H � H

h
A4; ~A2; ~A3

io
: (5.29)

The Z4 speci�c likelihood expression is given:

Lmap4(A4) =

2NWX
l=1

�
f(1;NW )gvl (D1;0;D2;90) + �

2
ro

�
�

ln
n
f(1;NW )gvl

�
L234I1;0

h
~A2; ~A3; A4

i
;L234 I2;90

h
~A2; ~A3; A4

i�
+ �2ro

o
�

f(1;NW )gvl
�
L234I1;0

h
~A2; ~A3; A4

i
;L234 I2;90

h
~A2; ~A3; A4

i�
� A24
2�24

:

(5.30)

5.4 Maximizing the Likelihood Expression

When all the inputs required for each likelihood expression are available, the estimator

requires a fast way of evaluating and maximizing the function. Evaluating the likelihood

is made more e¢ cient by precomputing and storing banks of expected image projections.

However, locating the likelihood maximum can be computationally expensive and, as such,

should be accomplished using as few evaluations of the likelihood as possible. The max-

imization approach and the maximum number of "guesses" used in any gradient search

algorithm will be constrained by the operating bandwidth of the wavefront sensing system

and its ability to address stored arrays of reference vectors. There are many ways to con-

�gure this portion of the estimation algorithm. Here I will o¤er one possible method of

maximization and the rationale behind it.

I will begin by describing the estimator lookup tables. The algorithm starts by

generating both tilt estimates independently using a bank of v (L23I) projections spanning

�4�2;3 and separated in A2;3 by 0:25�2;3. The pair of tilt estimates are then passed to the

defocus estimator which uses a bank of v(L4I) projections spanning �4�4 and separated by

0:8�4. Recall that each defocus projection must be preregistered over an expected range

of tilt values. The performance of the defocus estimator is not signi�cantly a¤ected by

tilt estimates accurate within �0:2�2;3, therefore the tilt preregistration grid is bounded

by �5�2;3 with a step size of 0:25�2;3. These lookup table bounds and step sizes can be
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summarized as follows:

�A2;3 = 0:5�2;3; (5.31)

jA2;3jmax = �4�2;3; (5.32)

�A4 = 0:8�4; (5.33)

jA4jmax = �4�4; (5.34)

� ~A2;3 = 0:25�2;3; (5.35)��� ~A2;3���
max

= �5�2;3; (5.36)

It is important to note that given these lookup table step sizes and bounds, the maximum

number of likelihood evaluations per parameter estimate is 10 for Â2 and Â3 and 8 for Â4.

These numbers are based on a search beginning with the three evaluation points about zero

and proceeding with a �xed step gradient search.

The parameter estimates are formed using a quadratic curve �t through the three

highest points among the available steps. Investigating the nature of the A2 and A3

likelihood expressions, reveals that they are very well behaved for the point source case. In

fact, given small enough lookup step sizes, the likelihood expression will be nearly quadratic

through the three highest points. As an example, consider that the 17 evaluations of the

likelihood yield the 3 peak points circled in red in Figure 5.3. In general, the quadratic �t

maximum through 3 or more points is given by:

Xc = y; (5.37)

c =
�
XtX

��1
Xty; (5.38)

xmax = � c1
2c2

: (5.39)

However, the maximum, assuming exactly 3 points and a �xed step size, �x, simpli�es to:

xmax =
(y1 � y2)�x
y1 + y3 � 2y2

+ x1 +
�x

2
: (5.40)

This quadratic curve �t is used to estimate Zernike 4. Figure 5.4 demonstrates the

quadratic curve �t through an example Z4 likelihood. The quadratic �t requires only 3
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Figure 5.3 Figure provides an example of the evaluation points and the quadratic curve
�t used to form each tilt estimate.

points over the parameter range. Judiciously choosing 3 realizations, for instance: Ax 2

f�3�x; 0�x; 3�xg, will produce a faster yet less accurate estimator. Increasing the distance

between sample points increases the error in the quadratic �t and increases susceptibility to

errors in the r0 estimate. These types of trade-o¤ considerations force the choice of lookup

table design parameters to be speci�c to each application.

5.5 Sensor Design Variables

The previous paragraphs outlined the general curvature sensor design and suggested

some choices for design variables. Next I will discuss the key design variables and how

each variable e¤ects sensor performance. Table 5.1 lists the key variables that e¤ect the

curvature sensor�s performance.

Choice of subaperture diameter will be application speci�c. In section 2.3, de�ning

the parameter space, I derived a very important fact concerning the Zernike modes present
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Figure 5.4 Figure provides an example of the evaluation points and the quadratic curve
�t used to form each defocus estimate.

in atmospheric turbulence: the expected power in each Zernike mode is based on the ratio of

the size of the aperture, DP , to the characteristic turbulence parameter, r0. The inner and

outer scale parameters: l0 and L0 also a¤ect performance, but to a lesser degree. Choice of

DP should therefore be based on the range of atmospheric conditions in which the sensor

will operate nominally. The largest ratio DP
r0
in which the sensor operates will produce the

worst case performance. On the other hand, ratios of DPr0 < 1 place the curvature sensor

in an operating environment where the signi�cance of Z4 contributions in the wavefront

are minimal. This condition reduces the sensor�s performance beyond that of a tilt only

sensor.

As the defocus diversity increases, the sensor�s ability to estimate defocus increases.

Unfortunately, the opposite is true of the sensor�s ability to estimate tilt. If the operating

variables are well known, an ideal diversity factor can be selected to provide the proper

trade-o¤ between accurate tilt estimates and defocus estimates.
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Variable Description

DP Aperture diameter

��a4 Defocus diversity

�i CCD rotation angles

sv(�) Image projection operation

�Ai; jAijmax
� ~A2;3; j ~A2;3jmax

Step size and range of lookup tables

Table 5.1 Curvature sensor design parameters.

The CCD angle �i determines the relative angle between the AO reference frame v axis

and the image projection direction. It will be demonstrated using a performance bounding

measure and via simulated performance that a separation angle, �1 � �2 = 90 degrees, is

optimal for the Z2�4 sensor. Using the same measures, it will also be demonstrated that the

performance of the Z2�4 sensor is invariant to a change in �1 provided that the separation

angle is 90 degrees. For this reason, the Z2�4 sensor is set up with �1 = 0� and �2 = 90�.

The projection operation sv(�) in the Z2�4 estimator accounts for the size of win-

dowing function and the number of vector projections. Consequently, sv(�) determines

the number of pixels read out of each CCD array. As more pixels are read out of the

array, there is an increase in information available to the estimator. However, there is also

a proportional increase in the amount of read out noise and computational requirements.

A design trade-o¤ must be made between information, read out noise, and computational

complexity. The increased computational complexity comes from an increase in the number

of vector points included in the likelihood equations.

Ideally, the expected projection lookup tables would provide an entry for every possible

estimate. This is computationally prohibitive. Instead the estimator uses tables with
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some �nite step size and range. Decreasing the granularity, �Ai, and increasing the

range, jAijmax , of the vector lookup tables improves the sensor�s performance at the cost of

decreased speed and increased memory requirements. The quadratic �t may include more

points or be dispensed with entirely for some other approach. Creativity in the design of

the maximization routine must balance the speed, accuracy and robustness of the sensor.

5.6 Summary

This chapter outlined the design of a MAP estimator based curvature sensor to in-

clude its general hardware requirements and the �ow of the software algorithm. The sensor

is designed to estimate 3 parameters: x-tilt, y-tilt, and defocus from point source image

projections. Key hardware considerations include the use of a beamsplitter to share the

incoming optical signal equally between two programmable CCD arrays and applying a

defocus diversity in each optical path. The software algorithm forms a MAP likelihood

incorporating estimates of the atmospheric conditions: r0, L0, and l0, average photon count,

and precomputed image projections. With a maximum of 28 likelihood evaluations, the

curvature sensor is capable of estimating Zernikes 2 � 4. The next chapter provides per-

formance bounding for the curvature sensor and demonstrates how the performance bound

can be used to select ideal design variable settings. Chapter 8 provides simulated perfor-

mance results. In simulated cases, the curvature sensor is capable of providing improved

performance over that of a centroiding tilt sensor and a projection based ML tilt sensor.
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6. Wavefront Sensor Performance Bound

The mean squared di¤erence between the compensated wavefront and the desired wavefront

is a common performance measure for a wavefront sensor. This chapter provides an analysis

of the wavefront residual mean squared error based on the maximum a posteriori estimator

described in Chapter 5. This type of performance measure is best suited for simulation

because it requires a direct measure of the �eld input to the optical system which is available

only in simulation. Given a known input, it is straightforward to calculate the error in the

wavefront sensor response and provide statistics on that error, particularly the bias and the

variance. For deeper insight into performance limits, estimation theory provides methods

for bounding the error variance. The following sections establish an expression for the

residual wavefront mean squared error (MSE) and the Cramér Rao lower bound (CRLB)

for estimator variance. These measures will be used to compare the performance of the

MAP estimator to existing estimators under various operating conditions. The CRLB will

also be useful for determining the ideal design choices for the MAP estimator for a given

operating environment.

6.1 Wavefront Mean Squared Error (MSE)

The wavefront MSE must include both error due to the estimator�s imperfect response

and the error from additional parameters which are not estimated. Recall that a volume

of turbulent atmospheric e¤ects can be integrated along the direction of the optical path

to form a thin phase screen. The resulting phase screen can be modeled by an in�nite

series of Zernike polynomials with coe¢ cients, �a. The in�nite set of Zernike coe¢ cients

can be divided into a �nite set of parameters to be estimated, denoted by S, and an in�nite

number of higher order coe¢ cients:

�a � the in�nite set of Zernike coe¢ cients, (6.1)

a � fai : i 2 Sg; the estimated set of Zernike coe¢ cients, (6.2)

a
¯
� fai : i =2 Sg; Zernike coe¢ cients unknown to the estimator, (6.3)

�a = a [ a
¯
: (6.4)
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While the wavefront sensor attempts to estimate a small set of parameters, a, it will be

shown that the remaining parameters a
¯
and the noise characteristics of the CCD increase

the estimator mean squared error. In the paragraphs to follow, an expression is derived for

the residual wavefront error based on the selected set of parameters, a.

Begin the derivation by assuming that the ideal wavefront is a unit amplitude, constant

phase, plane wave. Additionally, assume that the optical system is only a¤ected by the

piston removed wavefront phase, P�, so the coe¢ cient a1 is ignored. Recalling the aperture

convention and the relationship between aperture phase and the coe¢ cients a, the general

form for the �eld in the aperture expressed in continuous polar coordinates is given:

P (r;�a; RP ) =WP (r;RP ) exp fjP� (r;�a;RP )g ; (6.5)

where RP � aperture radius, (6.6)

r = (r; �); (6.7)

0 � r <1; (6.8)

0 � � < 2�; (6.9)

and WP (r;RP ) �
�
1; r � RP
0; r > RP

: (6.10)

Extracting the the piston removed phase expression and expanding it as a series of Zernike

polynomials yields:

P�(r;�a; RP ) = WP (r;RP )
1X
i=2

aiZi (r;RP ) ; (6.11)

where Zi (r;RP ) � Zi

�
r

RP
; �

�
: (6.12)

Section 2.3 demonstrated that the coe¢ cients, ai, can be found by projecting each Zernike

onto the wavefront phase as follows:

ai �
Z
d�WZ(�)Zi(�)P� (r;�a; RP ) ; (6.13)
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where � represents the scaled polar coordinates:

� =

�
r

RP
; �

�
;

and WZ(�) �
(
1
� ;

r
RP

� 1
0; r

RP
> 1

:

Using this convention, the mean squared error in the compensated wavefront is given by:

D
P 2�e

E
= E�a

8<:
Z
d�WZ(�)

"
P� (r;�a; RP )�

X
i2S

âiZi(�)

#29=; ; (6.14)

where the hatted coe¢ cient variable, âi, denotes an estimate of the respective random

coe¢ cient ai. Expanding P� into a sum of parameters and separating the set of estimated

parameters from the higher order parameters gives:

D
P 2�e

E
= E�a

8<:
Z
d�WZ(�)

"X
i2S

aiZi(�)�
X
i2S

âiZi(�) +
X
i=2S

aiZi(�)

#29=; ; (6.15)

= E�a

8<:
Z
d�WZ(�)

"X
i2S

(ai � âi)Zi(�) +
X
i=2S

aiZi(�)

#29=; : (6.16)

Taking advantage of the fact that the Zernike basis functions are orthonormal, it is possible

to expand the square and collect the nonzero terms:

D
P 2�e

E
= E�a

(X
i2S
(ai � âi)2

Z
d�WZ(�)Z

2
i (�) +

X
i=2S

a2i

Z
d�WZ(�)Z

2
i (�)

)
: (6.17)

The integral factor
R
d�WZ(�)Z

2
i (�) = 1 for all i:

D
P 2�e

E
= E�a

(X
i2S
(ai � âi)2 +

X
i=2S

a2i

)
: (6.18)

MSE is in units of rad2, with the caveat that this measure is intimately tied to the pupil

area. Exchange the order of summation and expectation:

D
P 2�e

E
=
X
i2S

Eai
�
(ai � âi)2

	
+
X
i=2S

Eai
�
a2i
	
: (6.19)
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This result shows that the overall wavefront MSE is composed of two summation terms.

The �rst sum represents the estimator MSE. Assuming that the estimator is unbiased, this

term represents the estimator variance. The second term represents the total variance of

all remaining parameters in the atmospheric model which will be denoted
D
P 2�uncorr

E
:

D
P 2�uncorr

E
=
X
i=2S

E
�
a2i
	
: (6.20)

Recall the expression for the covariance of Zernike coe¢ cients derived from the von Kármán

atmospheric model in (2.138). If i = i0 and m = m0 the expression simpli�es to the variance

of the a�is:

E
�
a2i
	
= 0:4898 � 24=3�

�
2RP
r0

�5=3
(n(i) + 1)(�1)n(i)�m(i) �Z

d�
J2n(i)+1(�)

�(�2 +R2P�
2
0)
11=6

exp

�
��2
R2P�

2
m

�
. (6.21)

Using this expression, it is possible to approximate the lower bound on MSE for the case of

perfect compensation of parameters in the set S by numerically evaluating the integral:

D
P 2�uncorr

E
=

X
i=2S

0:4898 � 24=3�
�
2RP
r0

�5=3
(n(i) + 1)(�1)n(i)�m(i) �

Z
d�

J2n(i)+1(�)

�(�2 +R2P�
2
0)
11=6

exp

�
��2
R2P�

2
m

�
. (6.22)

As a reminder, the functions n(i) and m(i) were provided in Table 2.3. This expression

relates residual MSE to the atmospheric parameters and the aperture size. Figure 6.1

contains a plot of the residual MSE as it relates to the ratio DP
r0
for several sets of esti-

mated parameters S. In this case, DP was �xed at 0:07m while r0 varied over the range:

f0:02m:::0:2mg. The plot demonstrates that for a given sensor design, residual MSE will

vary as atmospheric conditions change. The plot also reveals that the advantage of es-

timating additional parameters decreases for higher Zernike modes. Unfortunately, the

wavefront sensor will not provide a perfect set of estimates. The vector based curvature

sensor must contend with compressed image information and CCD noise. Additionally, the

defocus diversity required for higher order modal compensation increases error variance in

the tilt estimates. All of these factors will cause an increase in the residual wavefront error
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by the sum of the error variances in the estimated parameter set:

D
P 2�e

E
=
X
i2S

E
�
(ai � âi)2

	
+
D
P 2�uncorr

E
: (6.23)

De�ning how sensor design variables a¤ect the variance term, and consequently how they

a¤ect
D
P 2�e

E
, o¤ers a tool for adjusting the sensor to provide minimum residual error under

a given set of atmospheric conditions. The Cramér Rao lower bound is one method for

characterizing each error variance term. The next section will derive the CRLB and relate

the CRLB to key sensor design variables.

6.2 The Cramér Rao Lower Bound

The following section attempts to bound the performance of the vector based wavefront

sensor based on the limits set by the Cramér Rao lower bound. The estimator must

be unbiased in order to apply the CRLB. For this reason, assume that the estimator is

unbiased or that the bias is not a function of the parameter or system variables and can

be removed. Van Trees provides the expression for the CRLB for unbiased estimators of
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random parameters [8]:

E
n
(ai � âi (R))2

o
� J iiT : (6.24)

Where J iiT is the iith element of J�1T . JT is the K � K square matrix formed from

JD, commonly referred to as Fisher�s information matrix, and JP , the matrix of a priori

information:

JT � JD + JP : (6.25)

The ijth element of JD is de�ned [8]:

JDij � �E
(
@2 ln prja(RjA)

@Ai@Aj

)
: (6.26)

The ijth element of the a priori information matrix is de�ned [8]:

JPij � �E
�
@2 ln pa(A)

@Ai@Aj

�
: (6.27)

Combining these results, it is easy to recognize that the form of JT contains the same internal

expression from the previously de�ned MAP estimator (2.17). The MAP estimator was

given as:
max

A

�
ln prja(RjA) + ln pa(A)

	���
A=âmap

; (6.28)

while the form for JT is:

JT = �E
(
@2
�
ln prja(RjA) + ln pa(A)

�
@Ai@Aj

)
: (6.29)

Aside from the vector versus single parameter notation, the function to be maximized for

âmap is the same expression to be di¤erentiated in JT . This expression is sometimes referred

to as the log likelihood expression. The CRLB is in essence a measure of the average

curvature or second derivative of the log likelihood expression. Due to its signi�cance and

continued recurrence throughout the remainder of this dissertation, I will de�ne the MAP

and ML log likelihood expressions:

Lmap(A) = ln prja(RjA) + ln pa(A); (6.30)

Lml(A) = ln prja(RjA): (6.31)
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In the CCD detector projection model, the observed process r is replaced by one or more

compressed arrays of pixels svl (d[). Thus the probability density, pr(R), in van Trees�

notation will be replaced by, p
svl (d�)( svl (D[)), the pdf for a detected image projection.

The �nal form for the projection based MAP estimator was derived from the assumption

that the distribution of d[ is a combination of signal dependent Poisson shot noise and

Gaussian read noise. The combination of Poisson shot noise and Gaussian read noise was

approximated by a biased Poisson process, d =Poisson
�
I+ �2ro

	
� �2ro [23]. The prior

density pa(A) is jointly Gaussian. Recall the MAP estimator expression:

max
�A

8>>><>>>:
26664
XNvNW

l=1

�
svl (D[) + �2ro

�
�

ln
�
svl
�
I[
�
�A
��
+ �2ro

	
�

svl
�
I[
�
�A
��

37775� �A��1�a �A
t

2

9>>>=>>>;
���������
�A=âmap

(6.32)

From the MAP estimator, both the MAP and ML log likelihood expressions can be extracted

for use in the CRLB calculations to follow:

Lmap(�A) =

24 XNvNW

l=1

�
svl (D[) + �2ro

�
�

ln
�
svl
�
I[
�
�A
��
+ �2ro

	
� svl

�
I[
�
�A
��
35� �A��1�a �A

t

2
; (6.33)

Lml(�A) =

NvNWX
l=1

�
svl (D[) + �

2
ro

�
ln
�
svl
�
I[
�
�A
��
+ �2ro

	
� svl

�
I[
�
�A
��
: (6.34)

The in�nite parameter vector, �A, must be reduced to some limited parameter set, A. When

evaluating the lower bound, the intent is to model the operating environment as accurately

as possible. This requires including as many Zernike modes as possible. Unfortunately,

as the number of parameters increases, call that number N , the complexity of the CRLB

calculation increases as N2. As such, the set of parameters must be truncated at a point

where error and computation time are both acceptable. Under this approximation, the

in�nite parameter vector �A becomes A. The remainder of the expressions in this section

will substitute A for �A in all instances of Lmap and Lml above. Substituting (6.33) into

the expression for JT in (6.29) yields:

JT = �E

8<: @2

@Ai@Aj

0@24 XNvNW

l=1

�
svl (D[) + �2ro

�
�

ln
�
svl (I[ [A]) + �2ro

	
� svl (I[ [A])

35� A��1a A
t

2

1A9=; ; (6.35)
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Evaluating the second partial derivative of the prior gives:

JT = �E

8<: @2

@Ai@Aj

0@ XNvNW

l=1

�
svl (D[) + �2ro

�
�

ln
�
svl (I[ [A]) + �2ro

	
� svl (I[ [A])

1A9=;+��1a ; (6.36)

= JD +�
�1
a : (6.37)

In (6.36), the Fisher information matrix, JD, contains an expected value operator and

partial derivatives. A simpler expression for JD without partials or expectation integrals is

desired. Begin by evaluating the two partial derivatives of the conditional density portion

of the log likelihood function, Lml(A) in (6.34). Evaluating the �rst partial derivative

yields:

@

@Ai
Lml(A) =

NvNWX
l=1

svl (D[) + �2ro
svl (I[ [A]) + �2ro

@

@Ai
f svl (I[ [A])g �

@

@Ai
f svl (I[ [A])g ; (6.38)

=

NvNWX
l=1

@

@Ai
f svl (I[ [A])g

�
svl (D[) + �2ro

svl (I[ [A]) + �2ro
� 1
�
: (6.39)

Continuing to evaluate the second partial derivative gives:

@2Lml(A)

@Ai@Aj
=

NvNWX
l=1

�
svl (D[) + �2ro

svl (I[ [A]) + �2ro
� 1
�
@2 f svl (I[ [A])g

@Ai@Aj
� (6.40)

svl (D[) + �2ro
[ svl (I[ [A]) + �2ro]

2

@

@Aj
f svl (I[ [A])g

@

@Ai
f svl (I[ [A])g : (6.41)

The log likelihood contains a generic projection operator, svl (�). The projection operator

is presented in generic form to indicate that this derivation holds for all possible projection

operations. The linear nature of the projection operator allows it to commute with the

di¤erentiation operator:

@2Lml(A)

@Ai@Aj
=

NvNWX
l=1

�
svl (D[) + �2ro

svl (I [u;A]) + �2ro
� 1
�
svl

�
@2I[ [A]

@Ai@Aj

�
�

svl (D[) + �2ro
[ svl (I[ [A]) + �2ro]

2 svl

�
@

@Ai
I[ [A]

�
svl

�
@

@Aj
I[ [A]

�
: (6.42)
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Substituting these results into the expression for JDij in (6.26):

JDij = �Ed;a

8<:
XNvNW

l=1

h
svl (D[)+�2ro
svl (I[[A])+�2ro

� 1
i
svl
�
@2I[[A]
@Ai@Aj

�
�

svl (D[)+�2ro
[ svl (I[[A])+�2ro]

2 svl
�

@
@Ai
I[ [A]

�
svl
�

@
@Aj

I[ [A]
�
9=; :

The detected images, D[, are the only random quantities with Poisson noise within the

derivative expression. Simplify the expression by evaluating the Poisson part of the expec-

tation:

JDij = Ea

8<:
XNvNW

l=1

h
1� Edf svl (D[)jAg+�2ro

svl (I[[A])+�2ro

i
svl
�
@2I[[A]
@Ai@Aj

�
+

Edf svl (D[)jAg+�2ro
[ svl (I[[A])+�2ro]

2 svl
�

@
@Ai
I[ [A]

�
svl
�

@
@Aj

I[ [A]
�
9=; ; (6.43)

= Ea

8<:
XNvNW

l=1

h
1� svl (EdfD[jAg)+�2ro

svl (I[[A])+�2ro

i
svl
�
@2I[[A]
@Ai@Aj

�
+

svl (EdfD[jAg)+�2ro
[ svl (I[[A])+�2ro]

2 svl
�

@
@Ai
I[ [A]

�
svl
�

@
@Aj

I[ [A]
�
9=; ; (6.44)

where Edf�g represents the expectation taken over the CCD noise and Eaf�g represents

the expectation over the set of random parameters a. To move the expectation operation

inside svl (�), I have once again taken advantage of the linearity of the projection operator.

Evaluating the Edf�g operation, the expectation on D removes the CCD noise resulting in

the expected image I:

JDij = Ea

8<:
XNvNW

l=1

h
1� svl (I[[A])+�2ro

svl (I[[A])+�2ro

i
svl
�
@2I[[A]
@Ai@Aj

�
+

svl (I[[A])+�2ro
[ svl (I[[A])+�2ro]

2 svl
�

@
@Ai
I[ [A]

�
svl
�

@
@Aj

I[ [A]
�
9=; ; (6.45)

= Ea

8<:
NvNWX
l=1

svl
�

@
@Ai
I[ [A]

�
svl
�

@
@Aj

I[ [A]
�

svl (I[ [A]) + �2ro

9=; : (6.46)

Evaluating the CRLB will require a closed form expression for the derivative of the

expected image, I [A]. The derivation here follows the results provided by Fienup et. al.

[53]. Assume the case of a point source object. Compact the pupil notation by removing

the explicit dependency on AP and RP : assume that the amplitude function for the �eld

in the aperture plane is a constant value of one and RP = 1. The resulting expression for

the pupil is:

P [n;A] =WP [n] exp fjP� [n;A]g : (6.47)
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Using the linear model of the optical system, the expected image for the case of a point

source object is given by:

I [u;A] = K
I [u;A] I� [u;A]X
u

I [u;A] I� [u;A]
; (6.48)

= ~KI [u;A] I� [u;A] : (6.49)

Normalization by the average photon count K models the SNR in each image plane. The

constant ~K is introduced to compact the notation. An analytical expression for the image

derivative requires di¤erentiating the image with respect to the Zernike parameter. Ignoring

the constant �x�y
(�si)

2 , which will be replaced by SNR scaling, and di¤erentiating yields:

@

@Ai
I [u;A] =

@

@Ai
fI [u;A] I� [u;A]g ; (6.50)

=
@

@Ai
fI [u;A]g I� [u;A] + @

@Ai
fI� [u;A]g I [u;A] : (6.51)

The image �eld, I, is calculated via the discrete Fraunhofer di¤raction integral of the pupil

function:

I [u;A] =
�x�y

(�si)
2 DFT fP [n;A]g; (6.52)

=
�x�y

(�si)
2

X
n

P [n;A] exp
�
�j2�
N
[n � u]

�
; (6.53)

=
�x�y

(�si)
2

X
n

WP [n] exp fjP� [n;A]g exp
�
�j2�
N
[n � u]

�
: (6.54)
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Exchanging the order of summation and di¤erentiation, it is easy to show that @
@AI

� =�
@
@AI

��
:

@

@Ai
I [u;A] =

X
n

WP (n)
@

@Ai
[exp fjP� [n;A]g]�

exp

�
�j2�
N
(x � u)

�
; (6.55)

@

@Ai
I� [u;A] =

X
n

WP (x)
@

@Ai
[exp f�jP� [n;A]g]�

exp

�
j
2�

N
[n � u]

�
; (6.56)

=

�
@

@Ai
I [u;A]

��
; (6.57)

Substituting (6.57) and (6.51) into (6.49):

@

@Ai
I [u;A] = ~K

�
@

@Ai
[I [u;A]] I� [u;A] +

�
@

@Ai
I [u;A]

��
I [u;A]

�
: (6.58)

To further de�ne the image derivative, evaluate the derivative of the exponential phase term

in (6.56):
@

@Ai
[exp fjP� [n;A]g] = j exp fjP� [n;A]g

@

@Ai
P� [n;A] : (6.59)

The phase function, P�, and its derivative are de�ned for each of the Zernike modes:

P� [n;A] = AiZi [n] +
X
l2S
l 6=i

AlZl [n] ; (6.60)

@

@Ai
P� [n;A] = Zi [n] : (6.61)

Substituting (6.61) and (6.59) into (6.55) gives:

@

@Ai
I [u;A] = j

X
n

WP [n]Zi [n] exp fjP� [n;A]g �

exp

�
�j2�
N
[n � u]

�
; (6.62)

= jDFT fWP [n]Zi [n] exp fjP� [n;A]gg : (6.63)
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Substituting (6.63) into (6.58) produces the derivative of the expected image:

@

@Ai
I [u;A] = j ~KDFT fWP [n]Zi [n] exp fjP� [n;A]gg I� [u;A] +

~K (jDFT fWP [n]Zi [n] exp fjP� [n;A]gg)� I [u;A] ; (6.64)

= �2 ~K Im fDFT fWP [n]Zi [n] exp fjP� [n;A]gg I� [u;A]g : (6.65)

Using this closed form expression for the image derivative, the Fisher information matrix

entry in (6.45) becomes:

JDij = Ea

8>>><>>>:
XNvNW

l=1

4 ~K2

svl (I[u;A])+�2ro
�

svl (Im fDFT fWP [n]Zi [n] exp fjP� [n;A]gg I� [u;A]g)�

svl (Im fDFT fWP [n]Zj [n] exp fjP� [n;A]gg I� [u;A]g)

9>>>=>>>; (6.66)

Combining this result with the a priori matrix, JP , yields a straightforward method for

evaluating the CRLB. The only nontrivial calculation is the expectation over the parameter

set a. This integral cannot be evaluated analytically. Instead it may be approximated

using a Monte Carlo simulation. The Monte Carlo simulation requires a sequence of

random atmospheric realizations formed using an appropriate distribution of the parameters

a. Using random atmospheric realizations, an ensemble average of JDij values can be

computed. The average value of JD is then used to form JT :

JT =

X
k

JDk

Nk
+��1a ; (6.67)

where JDk represents a single Monte Carlo realization of the matrix JD, and Nk represents

the number of Monte Carlo trials. Thus, the lower bound on residual mean squared error

is given by: D
P 2�e

E
= Trace

i2S

�
J�1T

	
+
X
i=2S

E
�
a2i
	
; (6.68)

where the trace of the matrix is taken over only the parameters included in the set S.
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6.3 Adjusting Design Variables to Minimize CRLB

There are many variables contributing to estimator performance, some are environ-

mental variables over which the system designer has little choice, but others o¤er �exibility

to the designer. Flexible wavefront sensor design variables should be adjusted to some

ideal setting for a given set of environment variables. The ideal sensor con�guration can be

de�ned as that con�guration of �exible design variables which minimizes CRLB for some

set of environment variables. Recall the list of key environment and design variables from

Section 5.5. The CRLB is calculated by Monte Carlo simulation using atmospheric phase

screens that contain a limited set of Zernike polynomials. Due to the limited set of Zernike

polynomials present in the simulation, there may be a signi�cant di¤erence between actual

performance and the derived lower bound. With this in mind, the designer may view the

minimum CRLB settings as a starting point when adjusting the design to optimize perfor-

mance. In the next two subsections, I will demonstrate using the CRLB to make ideal

design choices for a whole plane projection sensor and a half plane projection sensor. The

whole plane projection sensor, the Z2�4 sensor, was discussed in Chapter 5. The half plane

projection includes two vectors from each CCD and is the image information used by the

Z2�10 sensor to be detailed in Chapter 9.

Whole Plane Projection CRLB. The Z2�4 sensor design variables along with the

operational variables constitute a multi-dimensional domain space for the CRLB function.

An exhaustive search for ideal design settings would involve minimizing the CRLB over the

range of all design variables for every location in the operational space. Rather than attempt

such a global minimization, I will examine the CRLB at a limited number of operating points

and the minimization will be conducted with respect to each design variable independently.

Further, to reduce the amount of analysis shown here, the operational space will be limited

to a range over the Fried parameter, r0, and the average photon count per subaperture per
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exposure period, K. The set of design variables will be limited to:

�2 � �1 � projection separation angle, (6.69)

�1 � the �rst CCD projection angle, (6.70)

��a4 � defocus diversity, (6.71)

and NW � window size. (6.72)

Within the inertial range, the analytical expression for the phase spectrum relies heavily on

the ratio DP
r0
. For this reason, performance within the inertial range is largely a function of

the ratio DP
r0
rather than each variable independently. For this reason, I have chosen to �x

DP and vary r0. This will provide an indication of how performance varies with the ratio

without independently varying bothDP and r0. For all CRLB plots included in this section,

the subaperture diameter will be �xed at 0:07m and the environment variables L0 and l0

are �xed at L0 = 10m, l0 = 0:01m. In Figures 6.2 through 6.7 the environment variable

r0 is �xed at 0:05m. Figure 6.2 demonstrates how the CRLB for residual mean squared

error varies with respect to separation angle between the two CCD arrays. The CRLB

indicates that a separation angle of approximately 90 degrees between image projections is

ideal. Using this ideal separation angle, the CRLB can be plotted for varying start angle.

For instance, Figure 6.3 shows how CRLB varies with respect to choice of projection angle

�1 given a separation angle of 90 degrees. The CRLB varies randomly over the range of

�1 angles in Figure 6.3. The variance of the CRLB is small enough to indicate that no

signi�cant change in the lower bound occurs over the range of �1 values. This reveals

that for a �xed separation angle of 90 degrees between projections, the CRLB is e¤ectively

invariant to CCD rotation. Based on these results, the remaining CRLB plots will depict

con�gurations where �1 = 0� and �2 = 90�. Figure 6.4 shows how CRLB indicates the ideal

defocus diversity for a high SNR case. Examining the plot in Figure 6.4, the CRLB is

minimized when the defocus diversity is approximately 0:35 radians. Similarly, Figure 6.5

shows how CRLB indicates the ideal defocus diversity in a low SNR case is approximately

0:15 radians. Given the ideal diversity choices, the CRLB may be used to select a window

length. Figure 6.6 demonstrates how CRLB varies over window length in high SNR.

Figure 6.7 demonstrates how CRLB varies over window length in low SNR. The CRLB
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Figure 6.2 Z2�4 estimator
D
P 2�e

E
lower bound versus separation angle, �2 � �1. DP =

0:07m, �ro = 2:13 counts, r0 = 0:05m, L0 = 10m, l0 = 0:01m, and WN = 14
pixels.
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Figure 6.3 Z2�4 estimator
D
P 2�e

E
lower bound versus projection angle �1 given that �2 =

�1 + 90. DP = 0:07m, �ro = 2:13 counts, r0 = 0:05m, L0 = 10m, l0 = 0:01m,
and WN = 14 pixels.
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Figure 6.4 Z2�4 estimator
D
P 2�e

E
lower bound versus ��a4 for K = 1000 photons per

subaperture (high SNR). DP = 0:07m, �ro = 2:13 counts, r0 = 0:05m,
L0 = 10m, l0 = 0:01m, and WN = 9 pixels.
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Figure 6.5 Z2�4 estimator
D
P 2�e

E
lower bound versus ��a4 for K = 100 photons per

subaperture (low SNR). DP = 0:07m, �ro = 2:13 counts, r0 = 0:05m, L0 =
10m, l0 = 0:01m, and WN = 9 pixels.
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Figure 6.6 Z2�4 estimator
D
P 2�e

E
lower bound versus NW for K = 1000 photons per

subaperture (high SNR). DP = 0:07m, �ro = 2:13 counts, r0 = 0:05m,
L0 = 10m, and l0 = 0:01m.
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Figure 6.7 Z2�4 estimator
D
P 2�e

E
lower bound versus NW for K = 100 photons per sub-

aperture (low SNR). DP = 0:07m, �ro = 2:13 counts, r0 = 0:05m, L0 = 10m,
and l0 = 0:01m.
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versus NW results demonstrate that the bene�t gained from increasing the window length

beyond 11 pixels is minimal. In practice, the ideal window length will be driven largely by

the maximum amount of time allotted for CCD read out and the time required to manage

the additional pixels in each image projection. The CRLB plots here are useful in that

they demonstrate a knee in the performance curve around the 7�11 pixel range. Using the

middle of the knee on the CRLB versus NW plots, I have selected a 9� 9 pixel window and

plotted CRLB over a range of r0 and K values. The CRLB plot in Figure 6.8 demonstrates

performance using a 9� 9 pixel window. Numbers at each point for the Z2�4 CRLB plot

indicate the ideal defocus diversity for that point in the operating space.

De�ne the operating space as a set of environment variables each with some expected

range of values. The CRLB can be used to identify a region within the operating space where

a particular type of estimator is optimal. As an example, Figure 6.8 provides a comparison

of CRLB for the Z2�4 sensor for the case where only a2 and a3 are estimated, de�ne

this as the Z2;3 estimator, versus the case where parameters a2 through a4 are estimated.

Dashed lines indicate Z2;3 estimator performance while solid lines indicate Z2�4 estimator

performance. Both cases are demonstrated over a range of r0 and K. The ordered pairs in

parentheses on the right hand side of the plot region indicate the ratio DP
r0
and the value of

r0 for the plot lines ending closest to the ordered pair. Once again, numbers at each plot

point location for the Z2�4 estimator indicate the ideal choice of diversity for that point in

the operating space. Note that the ideal choice for diversity for the Z2;3 estimator is always

0 radians and therefore the plot line points for Z2;3 estimator have no diversity indicators.

This �gure is included because it provides an indication of the region in the operating space

where there is opportunity for increased performance via estimating Z4. Speci�cally, the

�gure indicates that there is a limit, in the lower left of the plot region, as SNR decreases

and as r0 increases (as the ratio
DP
r0
decreases) beyond which there is little or no bene�t

from estimating a4.

Figures 6.2 through 6.7 demonstrate that minimum CRLB is a useful measure for

determining ideal design variable settings. Figure 6.8 demonstrates that the CRLB is

also useful for identifying regions in the operating space where a particular estimator can

provide superior performance. Actual performance will only match the CRLB in the event

that the estimator is e¢ cient. Thus, the assumption is that actual estimator performance
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Figure 6.8 Lower bounds on
D
P 2�e

E
versus K for several cases of r0. Dashed lines indi-

cate Z2;3 estimator performance bounds. Solid lines indicate Z2�4 estimator
performance bounds.

trends the same as the CRLB such that the CRLB provides a good starting point for design

choices. Along with performance comparisons to other estimators, Chapter 8 will provide

performance plots to compare with the CRLB results presented here. Also, the degree to

which simulated performance re�ects the same ideal design variable settings will determine

the e¤ectiveness of using CRLB to make such preliminary design choices. Comparing

simulated performance to the CRLB provides a means with which to verify that the sensor

simulation is producing valid results. In this manner, simulated performance and CRLB

results serve to compliment one another.

Half Plane Projection CRLB. In addition to the whole plane projection sensor

discussed in Chapter 5, this dissertation will provide a discussion detailing a half plane

projection sensor in Chapter 9. The half plane projection sensor is designed to estimate

coe¢ cients for Zernike polynomials Z2 through Z10. Just as in the previous subsection, a

set of �gures containing CRLB results for the half plane projection sensor are provided here

as a demonstration of how CRLB can be used to choose ideal design settings. Beginning

with projection separation angle and projection starting angle, Figures 6.9 and 6.10 show
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that the results for whole plane projections hold true for half plane projections as well: the

ideal separation angle is 90 degrees, and, given that �2 = �1 + 90
�, the CRLB is e¤ectively

invariant over a range of �1 values. Figures 6.11 and 6.12 demonstrate that the ideal
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Figure 6.9 Z2�10 estimator
D
P 2�e

E
lower bound versus separation angle, �2 � �1. DP =

0:07m, �ro = 2:13 counts, r0 = 0:05m, L0 = 10m, l0 = 0:01m, and NW = 14
pixels.

diversity settings are approximately 0:55 radians in high SNR and 0:4 radians in low SNR.

Although the values for the ideal diversity in each case here di¤er from the Z2�4 sensor

cases, there is a trend worth emphasizing: ideal diversity decreases as SNR decreases. This

is an indication that higher order coe¢ cients are di¢ cult to estimate in low signal situations.

In these situations, the sensor performs better by reducing diversity. Reducing the amount

of diversity in the sensor improves tilt and lower order coe¢ cient estimates at the cost of

higher order coe¢ cients. The CRLB plots in Figures 6.13 and 6.14 suggest that the knee

in performance improvement with respect to CCD window size occurs in the 8 � 12 pixel

range. Finally, Figures 6.15 and 6.16 provide plots of CRLB over a region of the operating

space. In these �gures, several design variables are �xed: �1 = 0, �2 = 90, and NW = 9

pixels. The environment variables L0 and l0 are also �xed at L0 = 10m and l0 = 0:01m.

CRLB is plotted as r0 varies in several steps from 0:04m to 0:14m and as K varies from
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Figure 6.10 Z2�10 estimator
D
P 2�e

E
lower bound versus projection angle �1 given that

�2 = �1 + 90. DP = 0:07m, �ro = 2:13 counts, r0 = 0:05m, L0 = 10m,
l0 = 0:01m, and NW = 14 pixels.
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Figure 6.11 Z2�10 estimator
D
P 2�e

E
lower bound versus ��a4 for K = 1000 photons per

subaperture (high SNR). DP = 0:07m, �ro = 2:13 counts, r0 = 0:05m,
L0 = 10m, l0 = 0:01m, and NW = 9 pixels.
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Figure 6.12 Z2�10 estimator
D
P 2�e

E
lower bound versus ��a4 for K = 100 photons per

subaperture (low SNR). DP = 0:07m, �ro = 2:13 counts, r0 = 0:05m,
L0 = 10m, l0 = 0:01m, and NW = 9 pixels.
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Figure 6.13 Z2�10 estimator
D
P 2�e

E
lower bound versus NW for K = 1000 photons per

subaperture (high SNR). DP = 0:07m, �ro = 2:13 counts, r0 = 0:05m,
L0 = 10m, and l0 = 0:01m.
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Figure 6.14 Z2�10 estimator
D
P 2�e

E
lower bound versus NW for K = 100 photons per

subaperture (low SNR). DP = 0:07m, �ro = 2:13 counts, r0 = 0:05m,
L0 = 10m, and l0 = 0:01m.

100 to 1000 average photons. The lower bound for the Z2�10 sensor is compared to the

bound for estimating tilt only (the Z2;3 sensor). Dashed lines indicate the Z2;3 sensor bound

while solid lines indicate the Z2�10 sensor bound. Numbers at each plot point location for

the Z2�10 sensor indicate the ideal choice of diversity for that point in the operating space.

Once again, the ideal diversity for estimating tilt only is assumed to be zero.

6.4 Summary

This chapter proposed that the MSE performance measure provides a sound method

for comparing simulated wavefront sensor designs. The discussion began with a derivation of

the residual MSE in terms of the von Kármán atmospheric modal parameters. A few cases of

perfect estimator performance were plotted in order to demonstrate the relationship between

residual wavefront MSE, the set of parameters estimated and the size of the aperture. In

the section on CRLB, the relationship between wavefront residual MSE and estimator error

was highlighted. Considering the wavefront sensor as a parameter estimator, it was easy to

see that the portion of the wavefront MSE which can be a¤ected translates directly to the
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Figure 6.15 Lower bounds on
D
P 2�e

E
versus K for several cases of r0. Dashed lines indi-

cate Z2;3 estimator performance bounds. Solid lines indicate Z2�10 estimator
performance bounds.
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Figure 6.16 Lower bounds on
D
P 2�e

E
versus K for several cases of r0. Dashed lines indi-

cate Z2;3 estimator performance bounds. Solid lines indicate Z2�10 estimator
performance bounds.
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estimator mean squared error. For unbiased estimators, the estimator mean squared error

becomes an estimator variance. The Cramér Rao lower bound provides a lower bound on

estimator variance. A method was developed for approximating the CRLB for the case

where the sensor CCDs are modeled as a Poisson process. This lower bound provides a

basis for validating simulated sensor performance and for selecting ideal settings for sensor

design variables. The CRLB was computed and example plots were provided for both the

whole plane and half plane projection based sensors. In each case, CRLB was used to

identify ideal settings for key design variables and regions within the operating space where

each sensor has the potential to o¤er improved performance over the tilt only sensor. It

is proposed that the CRLB will provide a complimentary performance measure with which

to compare to simulated performance. The combination of CRLB results and simulated

performance results should serve to provide con�dence in the sensor simulation results and

in the use of CRLB as means of establishing initial design variable settings.
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7. Simulating the Atmosphere

Simulating the wavefront sensor requires an implementation of the atmospheric model de-

rived in Section 2.2. Recall two of the key assumptions within the atmospheric model:

segments of the atmosphere can be compressed into discrete layers, and the atmospheric

phase is ergodic. These characteristics serve as guidelines for determining the suitabil-

ity of random process generation techniques for creating realizations of the statistical phase

model. The �rst assumption allows dividing the atmosphere into discrete layers, referred to

as the thin screen approach. The random e¤ects of phase delay in each layer are condensed

into an in�nitesimally thin phase modi�er. The assumption of ergodicity implies that,

within each thin screen, spatial statistics equal, in a statistical sense, appropriate temporal

statistics [54]. Using this assumption, a temporally evolving atmosphere can be modeled

under the assumptions of Taylor�s frozen �ow. Taylor�s frozen �ow hypothesis assumes

that the random nature of the phase in each layer is frozen except for a constant velocity

perpendicular to the optical axis [3]. Therefore, to accommodate both the thin screen and

ergodicity assumptions, the simulation must be able to generate thin phase realizations of

arbitrary length. The Fourier series method of phase screen generation is a good �t for

both of these criteria. Application of the Fourier series technique using an equal spaced

Cartesian sampling structure introduces signi�cant computational complexity. Logarith-

mically spaced sample structures have been suggested to reduce complexity and emphasize

lower frequencies [55]. Below, I will investigate the log-Cartesian sampling structure and

suggest a log-polar modi�cation to improve performance. To measure the �delity of each

technique, I compare the statistics of the random screens to the derived atmospheric model.

Many phase screen generation codes use a visual inspection of the structure function as a

veri�cation of performance [56], [57]. I will modify this measure in two ways. First, I will

use structure function percent error as a performance measure. Second, I will identify the

level of isotropy in the resulting screens by measuring structure function percent error over

a range of angles. The curvature sensor simulations discussed in Chapters 8 and 9 include

an implementation of the log-polar phase screen technique. Statistical errors in the phase

screens have the potential to e¤ect the sensor simulation results. In particular, the Z2�4

and Z2�10 sensors rely on accurate representation of lower order Zernike variance. For this

reason, I include the variance of the estimated Zernike coe¢ cients in the phase screen per-
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formance measure. The sections to follow provide a review of Fourier series phase screen

generation, a note on the bene�ts of log-polar frequency sampling, and a comparison of

phase screen statistical accuracy when using log-polar versus log-Cartesian sampling.

7.1 Fourier Series Phase Screen Generation

The mathematical foundation for the atmospheric simulation was outlined in Section

2.2 where I presented the derivation of the optical application of Kolmogorov�s turbulence

model and the von Kármán phase power spectrum, �P� (Note: the Fourier series technique

is not limited to any particular power spectrum). All that remains is to formulate a

method for creating random phase realizations with the same statistical characteristics as

the atmospheric model. The Fourier series method is a common technique for creating

random processes from spectral statistics. The following paragraphs provide a review

of the derivation of the Fourier series technique. Begin with the well known statistical

relationship between the power spectrum, �P� , and the autocorrelation, BP� , of a wide

sense stationary (WSS) random process, P� [22]:

�P� (K) =

Z
BP�(R) exp f�jK �Rg dR: (7.1)

This relationship along with F�, the Fourier transform of P�, is necessary to develop the

method. Consider a realization of the pupil phase, P�, denoted P̂�. Under the de�nition

of WSS, F̂� is delta correlated on K with average value equal to the power spectrum �P�

[22]. To demonstrate this property, begin with the Fourier transform of P�:

F̂�(K) =

Z
P̂�(R) exp f�jK �Rg dR: (7.2)

Forming the correlation yields:

E
n
F̂�(K1)F̂

�
�(K2)

o
= E

8>><>>:
Z
P̂�(R1) exp f�jK1�R1g dR1��Z
P̂�(R2) exp f�jK2�R2g dR2

��
9>>=>>; : (7.3)
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Applying
�R
f
��
=
R
f� gives:

E
n
F̂�(K1)F̂

�
�(K2)

o
= E

8><>:
Z Z

P̂�(R1)P̂
�
�(R2)�

exp f�j (K1�R1 �K2�R2)g dR1dR2

9>=>; : (7.4)

Exchanging the order of integration and expectation yields:

E
n
F̂�(K1)F̂

�
�(K2)

o
=

Z Z
E
n
P̂�(R1)P̂

�
�(R2)

o
�

exp f�j (K1�R1 �K2�R2)g dR1dR2; (7.5)

where the expectation is the ensemble average over many instances of F̂�. Making the

substitution: R1 = R2 �R, and applying the property in 7.1 above:

E
n
F̂�(K1)F̂

�
�(K2)

o
=

Z
exp f�jR2 � (K1 �K2)g dR2 ��Z
BP̂�(R) exp f�jK1�Rg dR

�
; (7.6)

= � (K1 �K2) (2�)
4�P�(K1): (7.7)

Thus, the correlation of the transform of the random process is related to the power spec-

trum. This relationship suggests that it is possible to generate a realization of F̂� by �ltering

a complex white noise process, N , with the power spectrum. For instance, suppose the form

F̂� (K) = (2�)
2�

1
2
P�
(K)N (K). Inverse transforming F̂� (K) would yield P̂�, an instance

of P�. The question remains: what are the requirements for the noise process? The noise

must have an appropriate mean and variance. Begin by solving for the mean:

E
n
F̂� (K)

o
=

Z
E
n
P̂�(R)

o
exp f�jK �Rg dR: (7.8)

The expected value of P̂� is zero per the atmospheric model. Substituting the suggested

form for F̂� into the left hand side above and evaluating the expectation gives:

(2�)2�
1
2
P�
(K)E fN (K)g = 0; (7.9)

E fRe fN(K)gg+ jE fIm fN(K)gg = 0: (7.10)
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Thus, the real and imaginary parts of N must be zero mean. Now �nd the second moment

by substituting the suggested F̂� into (7.7) and simplifying:

E

8<: (2�)2�
1
2
P�
(K1)N (K1)�

(2�)2�
1
2
P�
(K2)N

� (K2)

9=; = (2�)4 � (K1 �K2) �P� (K1) ;(7.11)

(2�)2�
1
2
P�
(K) (2�)2�

1
2
P�
(K)E fN(K)N�(K)g = (2�)4�P� (K) ; (7.12)

E fN(K)N�(K)g = 1: (7.13)

Expanding N into its real and imaginary components and simplifying:

E

8<: (Re fN(K)g+ j Im fN(K)g)�

(Re fN(K)g � j Im fN(K)g)

9=; = 1; (7.14)

E
n
(Re fN(K)g)2

o
+ E

n
(Im fN(K)g)2

o
= 1: (7.15)

From (7.10) it is clear that N must be zero mean to create the zero mean process P̂�,

however, according to (7.15) the variance of N depends on the combination of its real and

imaginary parts. If P̂� is a real process, then the real and imaginary parts of F̂� must be

considered independently. Implying that both the real and the imaginary parts must each

have a variance of 1:

E
n
(Re fN(K)g)2

o
= 1; (7.16)

E
n
(Im fN(K)g)2

o
= 1: (7.17)

Thus, the form for F̂� is acceptable provided that the real and imaginary parts of N are zero

mean, unit variance WSS processes. Combining these results, the inverse Fourier transform

provides a method for creating realizations of the phase process as follows:

P̂�(R) =
1

(2�)2

Z
(2�)2�

1
2
P�
(K)N (K) exp fjK �Rg dK; (7.18)

P̂�(R) =

Z
�

1
2
P�
(K)N (K) exp fjK �Rg dK; (7.19)
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Finally, separating P̂� into real and imaginary components, the method produces two inde-

pendent realizations:

P̂�1(R) = Re
n
P̂�(R)

o
; (7.20)

P̂�2(R) = Im
n
P̂�(R)

o
; (7.21)

where Re fN(K)g, and Im fN(K)g are distributed N (0; 1). This technique is acceptable

where many random screens are needed, however, if only a single screen is required for

simulation, it is common to take advantage of the spectral symmetry in real functions.

Recall that for a real valued function, x(t): F fx(t)g = F� fx(t)g. Using this relationship,

it is possible to create N as a Hermitian symmetric Gaussian noise process with real and

imaginary parts distributed N
�
0; 1p

2

�
:

E
n
(Re fN(K)g)2

o
+ E

n
(Im fN(K)g)2

o
= 1; (7.22)

E
n
(Re fN(K)g)2

o
=

1

2
; (7.23)

E
n
(Im fN(K)g)2

o
=

1

2
: (7.24)

Hermitian symmetry in N guarantees that P̂� is a real random process. The bene�t of

producing a single real screen is apparent when examining the reduction in computational

complexity in the Fourier series approximation.

In a computer application, the continuous Fourier transform must be approximated

by a �nite Fourier series:

P̂� [R] =
X
Ki2K

N [Ki]

�
�P� [Ki]

� [Ki]

� 1
2

exp fjK �Rg� [Ki] ; (7.25)

where K =

�
Ki : �P� [Ki]� [Ki] =

Z

i

�P� (�) d�

�
; (7.26)

and � [Ki] =

Z

i

d�: (7.27)


i is a member of a set of bounded regions in K such that:
[

i = the set of all K, and\


i = ?. The substitution of brackets, [�], for parentheses, (�), indicates that continuous

valued functions are being evaluated at a set of discrete locations. The Fourier transform
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has been approximated by a Fourier series evaluated at discrete locations Ki within the

domain K. The domain K has been divided into a countably in�nite set of regions 
i. A

single location Ki within each region in 
i is chosen such that the integrated power in the

region 
i equals the spectral density function evaluated at that location multiplied by the

area of the region. The set K is the set of discrete Ki locations to be included in the series

approximation. The function � [Ki] represents the K domain area included in each region


i. For the case where Hermitian symmetry is enforced in the complex coe¢ cients N , the

expression simpli�es to:

P̂� [R] =
X
Ki2K0

2�
1
2 [Ki] �

1
2
P�
[Ki]

24 Re fN [Ki]g cos (Ki �R)�

Im fN [Ki]g sin (Ki �R)

35 ; (7.28)

where the set K0 includes a unique half of the Hermitian symmetric set K. Generating a

real P̂� requires half the number of computations expended in creating a complex P̂�.

If P̂� is to be generated on a set of points where the x and y locations are known

in advance, then the trigonometric function evaluations can be precomputed and stored to

speed up �nal evaluation of the Fourier kernel. Expressing the K domain frequencies into

x and y components, the independent kernel computations for a complex P̂� are:

exp fjK �Rg = exp fjKxRxg � exp fjKyRyg : (7.29)

The kernel components for a real P̂� are:

Re fN (K)g cos (K �R)�

Im fN (K)g sin (K �R)
= cos (KxRx)

0@ Re fN (K)g cos (KyRy)�

Im fN (K)g sin (KyRy)

1A�
sin (KxRx)

0@ Re fN (K)g sin (KyRy)+

Im fN (K)g cos (KyRy)

1A :

(7.30)

7.2 Improving Isotropy and Reducing Kernel Size

Given either formula for generating P̂�, the phase screen implementation begins by

selecting a �nite set of discrete frequency locations to be included in K. The �nite set of
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boundary regions 
i will not include the entire domain K. The domain K is instead trun-

cated such that the bulk of the power spectrum is represented in the series approximation.

Nyquist sampling requires that theK domain is bounded by a maximum frequency dictated

by the minimum spatial separation in the screen. The spatial resolution is in turn selected

to adequately represent the chosen spectrum or to satisfy the requirements of a given simu-

lation, whichever condition is most restrictive. Assume that spectral representation is the

driving requirement. In the case of a von Kármán spectrum it is important to adequately

represent spectral content within the inertial range. With this requirement in mind, the

minimum spatial dimension should be linked to the inner scale, l0.

�x � l0
3
; (7.31)

fmax =
1

2�x
� 3

2l0
; (7.32)

�max =
�

�x
� 3�

l0
=
3��m
5:92

; (7.33)

� � jKj : (7.34)

The choice of �x � l0
3 ensures that the high frequency cut o¤ lies beyond the inertial range.

Recall that beyond �m the von Kármán spectrum decreases exponentially, therefore, the

bulk of the spectral power occurs below �m. Often, a minimum frequency is also speci�ed.

This is necessary when the power spectrum is not absolutely integrable, as with Kolmogorov,

or when simulation restrictions require. If the von Kármán spectrum is truncated, then

the minimum frequency should be related to the outer scale:

fmin � 1

10L0
; (7.35)

�min � 2�

10L0
=
�0
10
: (7.36)

Choosing fmin � 1
10L0

will ensure that fmin is below the inertial range. Once the represen-

tative region in K is established, a method is required for delineating the disjoint regions


i. If the Fourier series coe¢ cients are evaluated on an equally spaced Cartesian grid to

take advantage of Fast Fourier Transform (FFT) algorithms, the grid size becomes compu-

tationally prohibitive. For example, the K grid for the case: L0 = 10m and l0 = 0:01m
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# of K locations

P̂� real P̂� complex

p
2 420 840

Q 2 760 1520

4 3120 6240

Table 7.1 The number of K grid locations for a given Q: L0 = 10m and l0 = 0:01m

would contain 300002 locations. Reducing this number by half for the real versus complex

implementation still remains too cumbersome.

Taking advantage of the exponentially decaying power spectrum, it is possible to

compress the frequency domain information using a logarithmically spaced Cartesian grid

[57]. In this case, the logarithm of the K boundaries are equally spaced. This is sometimes

referred to as a constant Q frequency spacing:

Q =
�

��
; (7.37)

� � sample point, (7.38)

�� � sample bandwidth: (7.39)

The sizes of the resulting K grids for several Q values are listed in Table 7.1. The tabled

grid sizes are many orders of magnitude smaller than the grid size required for equal spaced

sampling. The reduction in computational complexity due to logarithmic frequency com-

pression is overwhelming. Of course, these numbers are meaningless if the frequency domain

compression leads to unsatisfactory statistical error in the screen realizations. The follow-

ing section provides a demonstration of structure function percent error and error in lower

order Zernike variance for an implementation using these Q values. Before reviewing the
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performance of the log-Cartesian sampling method, however, I will suggest another sampling

scheme.

Figure 7.1 (Left) An example of the equispaced Cartesian sample structure. (Center)
Log-Cartesian sampling. (Right) Log-polar sampling.

The �nal form for the phase spectrum �P� is a function of the magnitude � rather

than K. In an e¤ort to take advantage of the radially symmetric nature of the power

spectrum, I suggest evaluating the Fourier series over a log-polar grid. On a log-polar grid,

the radial or � axis is sampled logarithmically while the angular axis  is sampled equally.

This pattern of sampling o¤ers a few advantages. Symmetric spacing of samples in the

angular dimension reduces anisotropy in the resulting screen realizations. �P� is symmetric

in the angular dimension within each sample region. This symmetry reduces the integral

required to �nd appropriate entries in K to a single dimension, �:

Ki = (�i;  i) ; (7.40)

where the  i�s are chosen by equally spacing an arbitrary number of  locations from 0 to

2� radians at each distinct � entry and the �i�s are selected to satisfy:

�P� [�i]��i =

Z

i

�P� (�) d�; (7.41)

and ��i =

Z

i

d�: (7.42)


i (not bold so as to be distinguished from 
i) is a member of a set of one-dimensional

bounded regions in � such that:
[

i = the set of all �, and

\

i = ?. This same

symmetry reduces the number of unique power, �P� , and area, �, calculations. Finally,
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using the polar sample structure makes the choice of sample density along � independent of

the number of samples in  . This is opposed to log-Cartesian sampling where the choice

of Q dictates the density of samples in both spectral dimensions. In this way, log-polar

sampling provides increased �exibility over the log-Cartesian structure.

7.3 Comparing Sampling Methods

Performance results using both log-Cartesian and log-polar frequency sampling are

presented here for comparison. For instance, Figures 7.2 and 7.3 demonstrate percent

structure function error at Q =
p
2 for log-Cartesian and log-polar sampling respectively.

Each simulation run includes the following set of standardized inputs: r0 = 0:088m, L0 =

10m, l0 = 0:01m, �min = 2�
10L0

, and �max = 3�
l0
. Structure function percent error is evaluated

at 1000 logarithmically spaced sample points in jRj. To demonstrate isotropy, the direction

of each vector of separation, R, is also evaluated at 5� increments in direction from 0� to

45�. The solid plot lines indicate the minimum and maximum structure percent error

over the range of directions. The + symbols indicate the spatial distances corresponding

to the set of discrete locations K along the Ky = 0 axis. To keep the number of kernel

samples consistent between the two methods of sampling, the number of samples in each

concentric ring of the log-polar grid is equal to the number of samples in each concentric

square in the log-Cartesian grid. The exception is the log-polar case for Q = 4 in Figure

7.7. For this case, I have elected to make the number of  samples constant for all � rings

at 24 (increments of 15� in  ). Organizing the sampling grid in this manner decreases the

total number of grid points from 3120 to 468. A comparison of the results in Figures 7.6

and 7.7 demonstrates that the log-polar technique can provide reduced structure error and

improved isotropy even after an 85% reduction in the number of kernel grid points.

In addition to limiting structure function error, maintaining accurate measure of error

in lower order Zernike mode variances is important to the sensor simulation. The accuracy

of the Zernike variance within the set of estimated parameters can a¤ect the performance

of the estimator by way of introducing error in the environment variable estimates. Table

7.2 contains Zernike coe¢ cient variance results estimated from 100; 000 screen realizations.

For this simulation, I maintained the same set of input parameters: r0 = 0:088m, L0 = 10m,

l0 = 0:01m, �min = 2�
10L0

, �max = 3�
l0
, and added the diameter of a subaperture, D = 0:07m.
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Figure 7.2 Structure function percent error versus separation distance for log-Cartesian
sampling with Q =

p
2.

Zernike
coe¢ cient:

a2;3 a4 a5;6 a7;8 a9;10 a11

log sampling
method:

cart. p olar cart. p olar cart. p olar cart. p olar cart. p olar cart. p olar

p
2 +16 +8 +21 +4 +21 +4 +8 +6 +11 +9 +27 +39

2 +6 +3 +10 +5 +10 +4 +5 +3 +8 +5 +11 +12

Q 4 0 0 +3 +2 +3 +2 +1 -1 +3 +2 -1 -3

6 -1 0 +2 +3 +1 +1 -2 -1 +2 +2 -2 -2

8 -2 0 +2 +2 +1 +1 -1 -1 +1 +1 -2 -2

Table 7.2 Percent error in Zernike coe¢ cient variance per varying Q value
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Zernike
coe¢ cient:

a2;3 a4 a5;6 a7;8 a9;10 a11

Q = 4;
� = 15�

0 +3 +2 -1 +1 -2

Table 7.3 Percent error in Zernike coe¢ cient variance.

Table 7.3 is provided to document Zernike variance for the case where  sampling is constant.

Recall the case: Q = 4 with 24  samples in each � ring. Table 7.3 shows that, even after

reducing the total number of sample points from 3120 to 468, the screen variance statistics

yield similar error within the estimated Zernike set.

Reducing the size of the kernel o¤ers an advantage in screen generation time, however,

the compression in frequency, while not evident in the average structure or Zernike basis

error, becomes evident from visual inspection of individual phase screens. Upon inspection,

screens generated using logarithmic compression (of any sampling scheme) exhibit visible

patterns as a result of the decreased number of frequency modes. Figures 7.8 and 7.9

o¤er examples of screens created using log Cartesian and log polar frequency sample grids

respectively. In these example screens, the frequency density parameter Q is set to
p
2

resulting in a kernel size of 420 samples. The third example screen (Figure 7.10) combines

Q = 3:6 and � = 15� using log polar sampling in order to get a kernel size of 420

samples. Each of these examples demonstrates the described pattern e¤ects. This gallery

of examples is provided merely to document that the compression becomes visible in the

output screens and not to down play the use of log frequency compression techniques. The

measures of quality are statistical based rather than based on visual aesthetics. These

examples may exhibit visible compression e¤ects, but they guarantee a speci�c statistical

quality threshold.

7.4 Summary

The Fourier series method for random process generation is ideal for creating the type

of phase realizations required in thin screen, frozen �ow atmospheric simulations. The

discussion above included a review of the mathematical background for creating random

process realizations using the Fourier series technique. Applying the Fourier series technique
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to phase screen generation revealed the need to trade reduced accuracy in the Fourier

series approximation for reduced computational complexity. The frequency domain sample

grid becomes too large when formed using an equally spaced Cartesian sampling structure.

This di¢ culty exposed the importance of using some method of compression in frequency.

Constant Q frequency sampling increases sampling density toward lower frequencies and,

as such, provides an ideal sample structure for compressing decreasing power law functions.

It has been shown that log-Cartesian grids o¤er an acceptable method for compressing

atmospheric spectral models and e¤ectively reducing the complexity in the Fourier series

calculations for phase screen generation [57], [14]. I have shown that log-polar sampling

further reduces the number of frequency grid points required for some maximum percent

error in the structure function while increasing isotropy in the screen realizations. Log-

polar sampling also introduces symmetry in the sample structure, which when combined

with symmetry in the spectrum, reduces the complexity of calculating the set of frequency

domain sample points. These attributes make the log-polar sampled Fourier series the

method of choice for the core of the atmospheric simulation.
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Figure 7.3 Structure function percent error versus separation distance for log-polar sam-
pling with Q =

p
2.
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Figure 7.4 Structure function percent error versus separation distance for log-Cartesian
sampling with Q = 2.
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Figure 7.5 Structure function percent error versus separation distance for log-polar sam-
pling with Q = 2.
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Figure 7.6 Structure function percent error versus separation distance for log-Cartesian
sampling with Q = 4.
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Figure 7.7 Structure function percent error versus separation distance for log-polar sam-
pling with Q = 4 and 24 equal spaced  samples in each concentric � band.
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Figure 7.8 Example 1024�1024 pixel phase screen created using log-Cartesian frequency
sampling: Q =

p
2, r0 = 0:088m, L0 = 10m, l0 = 0:01m, �x = 0:0032m.

Figure 7.9 Example 1024 � 1024 pixel phase screen created using log-polar frequency
sampling: Q =

p
2, r0 = 0:088m, L0 = 10m, l0 = 0:01m, �x = 0:0032m.
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Figure 7.10 Example 1024 � 1024 pixel phase screen created using log-polar frequency
sampling: Q = 3:6, � = 15�:
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8. Simulating the Z2�4 Wavefront Sensor

The sections to follow provide a brief description of the simulation techniques used and the

results of simulated Z2�4 sensor performance. The purpose of the simulation is to provide

a proof of concept for the sensor design and, as such, should include su¢ cient rigor to

provide insight into whether the sensor algorithm is viable and worthy of further research.

The results to follow demonstrate that the Z2�4 sensor outperforms ML and centroiding

techniques for point source wavefront sensing.

8.1 Constructing the Simulation

The simulation is divided into four segments: the source, the atmosphere, the optical

system and the sensor algorithm. The diagram in Figure 8.1 shows these high level seg-

ments. With the exception of the sensor algorithm, these segments are intended to model

Figure 8.1 Simulation block diagram.

the most signi�cant environmental e¤ects on sensor performance. The algorithm itself is

meant to mimic implementation as precise as possible with a computer simulation. In the

following sections, I will present each of the segments as they exist for this simulation and

discuss any associated assumptions.

Source and Atmospheric Propagation Models. The source is assumed to be in the far

�eld and is modeled as a plane wave input into the atmospheric model. It is assumed that

some object (distant star or beacon) is emitting incoherent light and is spatially unresolvable

by the optical system. Assume also that the optical system passes some quasimonochro-

matic band which will be represented by the center wavelength �. Signal to noise ratio is
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regulated within the optical system image plane and therefore the amplitude of the source

is arbitrary. The second segment in the simulation implements the atmospheric model

derived in Section 2.2. The atmospheric simulation replaces the column of atmosphere be-

tween the source and the optical system with a thin phase screen. Within the model, light

propagates in a vacuum between the source and the screen which is located at the optical

system aperture. The log polar Fourier series method discussed in Chapter 7 is used to

generate phase screens with atmospheric variables: r0, L0, and l0, and input parameters:

Q = 4 and � = 5�.

The Optical System. The simulated optical system is assumed to be aberration free.

The only aberration in the system is the known defocus diversity required by the wavefront

sensor algorithm. The optical system model begins with a discretized aperture. Modeling

a circular aperture on the Cartesian grid requires some approximation. The projection

operation for calculating Zernike coe¢ cients given in Section 2.3 must be discretized:

ai �
Z
d�WZ(�)Zi(�)P (�RP ; �) ; (8.1)

ai =
D2
P

N2

X
n

WZ [n]Zi [n]P [n] : (8.2)

Here, WZ [n], represents the discrete circular weighting function. If the integrated value of

the mask used to represent WZ [n] is not exactly 1, the error will a¤ect Zernike coe¢ cient

calculations. For this reason, the pixels intersected by the edge of the circular mask are

carefully weighted by calculating the area of the trapezoidal and chordal regions indicated

in Figure 8.2. Propagation from the pupil to the image plane is performed via the linear

systems approach using a scaled Discrete Fourier Transform:

I [u;A] =
�x�y

(�si)
2

X
n

P [n;A] exp
�
�j2�
N
[n � u]

�
; (8.3)

=
�x�y

(�si)
2 DFT fP [n;A]g; (8.4)

I [u;A] = K
jI [u;A]j2X
u

jI [u;A]j2
; (8.5)

= ~K jI [u;A]j2 : (8.6)
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Figure 8.2 Diagram of a single pixel bisected by a circular arc near the perimeter of a
circular aperture placed over a Cartesian grid.

The scale factor ~K accounts for SNR in the CCD array by forcing the total intensity in

the image plane to equal some average photon count K. Note that the average photon

count, K, is a per subaperture count and, as such, must be divided among the total num-

ber of image planes and scaled by the e¢ ciency of the beam splitting device. The DP

diameter circular aperture is inscribed in an N � N sample aperture grid and the rela-

tionship between the sample dimensions in the aperture plane to the image plane grid is:

[�u;�v] =
h
�n �f

2DP
;�m �f

2DP

i
: Due to its e¢ ciency, the Fast Fourier Transform (FFT) is

used to compute the DFT operation. The FFT requires that the aperture plane and image

plane be composed of the same size grid. For this reason, the aperture plane is zero padded

to create a 2N � 2N grid prior to the FFT operation.

It is advantageous to position the optical axis at the center of the windowed region

in the image plane. Symmetry in positive and negative tilt e¤ects, for instance, is best

utilized when the projection window is split evenly along the optical axis. For this reason,

the optical axis is centered within the [0; 0] grid location when the image plane window

length is odd. When the window length is even, the optical axis is located at [�0:5;�0:5].

For the case of Nyquist pixel sizing, the half pixel shift in the optical axis is accomplished

by inserting ��
8 of arti�cial x and y-tilt in the aperture. Recall the discussion in Section

4.3 and substitute �1=2 pixels for �u in (4.33):

A2 =
�1
2RP��

2f
: (8.7)
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Substituting the Nyquist sampled image plane pixel, �� = �f
2DP

, yields:

A2 =
�1
2RP

�f
2DP

2f
;

A2 =
��
16
:

Converting A2 to units of radians reveals that an input of ��8 radians of tilt is required to

shift the image by �0:5 pixels. Examples of the zero padded aperture mask and di¤raction

limited point spread functions for even and odd length projection windows are provided in

Figure 8.3.
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Figure 8.3 (Left) Zero padded aperture mask WZ [n]. (Center) Di¤raction limited PSF:
entire image plane after performing FFT. (Right) Di¤raction limited PSF:
windowed image plane. (Top) Odd NW . (Bottom) Even NW .

The expected image I is combined with noise in the CCD. The details of the CCD

noise model are similar to Cain�s tilt estimator analysis [1]. CCD noise may be categorized

as either signal dependent or independent. Signal dependent noise includes all random

light-matter interaction and is modeled as independent Poisson random processes within

each detector pixel. This noise term, commonly referred to as shot noise or photon noise,

becomes the dominant noise contribution under high light conditions. There are many

contributors to signal independent noise. In this simulation, signal independent noise will
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be comprised of read out noise and A/D conversion noise. Signal independent noise becomes

the dominant noise contribution under low SNR conditions. The read out noise term is

meant to include e¤ects such as clock noise, camera noise, and ampli�er bu¤er noise. The

A/D conversion noise is the result of a scaling and �ooring operation. Assuming that the

voltage step size in the A/D conversion process is equal to the voltage associated with a

single photon detection, the scaling factor is unity and the A/D conversion is modeled as

a simple �ooring operation. Finally, the detected signal is biased with the read out noise

variance as suggested by the discrete model in (3.67) and any negative counts are set to

0. Condensing this description into a convenient mathematical form, the detected image

projection may be described by:

v (d[) = max (0;�oor [v (Poisson fI[g) + nro] + �ro) ; (8.8)

where nro � NvNW length vector of nro noise, (8.9)

nro � N (0; �ro) ; (8.10)

and �ro � NvNW length vector of �ro: (8.11)

The Sensor Algorithm. The sensor algorithm is implemented just as it would be in

an embedded application with the exception of running in the Matlab compiler environment.

In essence, the only simulated portion of the algorithm is its interface with the CCD data.

All input data are generated from the models described in previous sections. Strategies for

evaluation of the likelihood metric and maximizing the likelihood were described in Chapter

5. All parameter estimates are calculated in series in the computer simulation. However,

a real system could compute the tilt estimates in parallel. Such a system would be more

complex, but would reduce computation time and increase the sensor bandwidth.

8.2 Sensor Performance

The performance plots in this section serve to qualify the use of minimum CRLB as a

basis for design variable selection and to compare the performance of the projection curva-

ture sensor to the projection based ML tilt sensor and the more common two-dimensional

centroid based tilt sensor. I will begin by presenting a series of simulated performance plots

with overlaid CRLB results from Section 6.3, Figures 6.2 through 6.7. Note that, while the
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performance plots here should trend the same as the CRLB plots, the simulation results will

di¤er from CRLB results for two reasons. The �rst reason is that the estimator algorithm

is not e¢ cient. This means that the variance of the estimator algorithm will approach the

lower bound but will not equal the lower bound. The second reason is that the CRLB cal-

culations use Zernike based phase screens to model atmospheric phase turbulence whereas

the simulations represented here use polar sampled Fourier series phase screens. The polar

sampled phase screens contain higher order phase information which tends to increase the

variance of a low order parameter estimator like the one used in the Z2�4 sensor.

Figure 8.4 contains a plot of simulated residual MSE versus projection separation an-

gle. The following design variable and environment variable settings were used: DP =

0:07m, �ro = 2:13 counts, r0 = 0:05m, L0 = 10m, l0 = 0:01m, K = 1000 photons,

��a4 = 0:4 radians, and NW = 14 pixels. The minimum residual error occurs when the

separation angle, �2��1, equals 90 degrees. Based on this result, the remaining simulation

plots will contain simulated performance examples with a projection separation angle of 90

degrees. The CRLB result for whole plane projection separation angle is included with an

independent y-axis. The CRLB plot line is the dashed line and corresponds to the y-axis

on the right hand side of the plot. Notice that although the y-axis scaling indicates di¤er-

ent MSE ranges, the separation angle at which the simulation minimum occurs equals the

separation angle at the CRLB minimum point. Figure 8.5 demonstrates the performance

versus projection angle �1. CRLB continues to be plotted as a dashed line scaled to the

right hand side y-axis for Figures 8.5 through 8.9. This example suggests that performance

is e¤ectively invariant to starting projection angle provided that the separation angle is 90

degrees. A cursory sampling over a two-dimensional range of start angles and separation

angles reveals that the ideal separation angle is �90 degrees and that performance is e¤ec-

tively invariant to starting angle under any �xed separation angle. Due to this result, the

projection angle con�guration for the remaining performance examples will be limited to

cases where �1 = 0� and �2 = 90�. Figure 8.6 contains a plot of residual wavefront MSE

versus defocus diversity for a high SNR case: DP = 0:07m, �ro = 2:13 counts, r0 = 0:05m,

L0 = 10m, l0 = 0:01m, K = 1000 photons, and NW = 7 pixels. The ideal diversity (min-

imum point) is approximately the same as the CRLB minimum: CRLB minimum occurs

at about 0:375 radians versus the performance minimum at about 0:4 radians. Figure 8.7

8-6



0.195

0.2

0.205

0.21

0.215

0.22

Z 2
4

 S
en

so
r R

es
id

ua
l M

S
E

 [r
ad

2 ]

40 50 60 70 80 90 100 110 120 130 140
0.182

0.184

0.186

0.188

0.19

0.192

Z 2
4

 S
en

so
r C

R
LB

 fo
r R

es
id

ua
l M

S
E

 [r
ad

2 ]

CCD Separation Angle [degrees]

Figure 8.4 Z2�4 estimator
D
P 2�e

E
versus separation angle, �2��1. r0 = 0:05m, L0 = 10m,

l0 = 0:01m, �ro = 2:13 counts, and NW = 14 pixels.
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Figure 8.5 Z2�4 estimator
D
P 2�e

E
versus projection angle �1 given that �2 = �1 + 90

�.

r0 = 0:05m, L0 = 10m, l0 = 0:01m, �ro = 2:13 counts, and NW = 14 pixels.
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Figure 8.6 Z2�4 estimator
D
P 2�e

E
versus ��a4 for K = 1000 photons per subaperture.

r0 = 0:05m, L0 = 10m, l0 = 0:01m, �ro = 2:13 counts, and NW = 7 pixels.

provides a plot of residual wavefront MSE versus defocus diversity for a low SNR case. All

simulation parameters are the same except the photon count: K = 100. The result in

Figure 8.7 suggests that the ideal choice of diversity is very close to that suggested by min-

imizing the performance bound: ideal �a4 � 0:1. Notice that the plot near the minimum is

nearly �at indicating that minimal MSE bene�t is gained by applying diversity between the

image planes. This is an indication that the bene�ts of the sensor over tilt only estimation

are reduced as SNR decreases. This characteristic will become more apparent in curvature

sensor versus tilt only sensor comparison plots to follow. Figures 8.8 and 8.9 contain plots

of residual wavefront MSE versus projection window length for high and low SNR cases

respectively. The plots of MSE performance versus window length when compared to the

CRLB plots demonstrate an increase in the slope of the performance curve as the size of the

window is decreased below 10 pixels. This result supports using CRLB as an initial choice

for window length. It is worth noting, however, the choice of NW should not be solely

based on minimum MSE. The required system bandwidth may dictate a shorter window

length than that which provides the best performance. In cases where bandwidth is the
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Figure 8.7 Z2�4 estimator
D
P 2�e

E
versus ��a4 for K = 100 photons per subaperture.

r0 = 0:05m, L0 = 10m, l0 = 0:01m, K = 100, �ro = 2:13 counts, and WN = 7
pixels.
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Figure 8.8 Z2�4 estimator
D
P 2�e

E
versus NW for K = 1000 photons per subaperture.

r0 = 0:05m, L0 = 10m, l0 = 0:01m, and �ro = 2:13 counts.
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Figure 8.9 Z2�4 estimator
D
P 2�e

E
versus NW for K = 100 photons per subaperture. r0 =

0:05m, L0 = 10m, l0 = 0:01m, and �ro = 2:13 counts.

limiting factor, performance and CRLB indicate a signi�cant increase in MSE for NW < 7

pixels.

Figure 8.10 provides a demonstration of sensor performance over a range of SNR

and r0 values with all other operating variables �xed: DP = 0:07m, L0 = 10m, l0 = 0:01m,

NW = 7 pixels and �ro = 2:13 counts. Figure 8.10 compares sensor performance when using

the Z2;3 estimator (dashed plot lines) to performance when using the Z2�4 estimator (solid

plot lines). These results suggest that, as SNR and DP
r0
decrease, the ideal con�guration for

the estimator requires less defocus diversity, e¤ectively converting the sensor from a Z2�4

sensor into a Z2;3 sensor. This is consistent with the results from the CRLB analysis. The

CRLB suggested operating regions beyond which it is no longer advantageous to estimate

a4. These threshold values can be derived from the CRLB plot in Figure 6.8. The threshold

values in Figure 8.10 are slightly more conservative than lower bound threshold values in

Figure 6.8. Of course, this does not preclude the use of CRLB for determining the limits on

the operating space, but o¤ers evidence that those limits set by CRLB may be optimistic

and should be compared with simulated performance.
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Figure 8.10 Simulated
D
P 2�e

E
versus K for several cases of r0. Dashed lines indicate Z2;3

estimator performance. Solid lines indicate Z2�4 estimator performance.

The �nal set of performance �gures o¤er a comparison of the curvature sensor perfor-

mance with two existing techniques. The two techniques are the common two-dimensional

centroid based estimator and a projection based ML tilt estimator. Figures 8.11 and 8.12

overlay the centroid performance against the results from Figure 8.10. The centroid sensor

performance varies over a range of image plane window sizes. To demonstrate how centroid

performance changes with increasing window size, colored plot lines fred, green, blue, cyang

correspond to performance over the set NW = f5; 6; 7; 8g respectively. Figure 8.13 overlays

the projection based ML tilt estimator performance against the Z2�4 sensor results from

Figure 8.10. Here the ML tilt sensor operates with minimal prior distribution knowledge:

the maximization algorithm uses a range of �5�2;3 in the search for the likelihood maxi-

mum. The ML tilt uses simulated long dwell images in its expected image lookup table.

Seeing the successful performance of the Z2�4 sensor begs the question: why stop

estimating parameters at defocus? The simple answer is that estimating parameters higher

than a4 increases the residual MSE of the estimator beyond the performance set by the
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Figure 8.11 Comparison of simulated centroiding tilt estimator performance to the Z2;3
and Z2�4 MAP estimator over a range of r0 and K values.
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Figure 8.12 Comparison of simulated centroiding tilt estimator performance to the Z2;3
and Z2�4 MAP estimator over a range of r0 and K values.
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Figure 8.13 Comparison of simulated projection based ML tilt estimator performance to
the Z2;3 and Z2�4 MAP estimator over a range of r0 and K values.

Z2�4 estimator over the majority of the simulated operating space. The performance plot

in Figure 8.14 demonstrates this phenomenon. The solid plot lines depict the residual MSE

for the Z2�4 sensor seen in previous �gures. The dashed plot lines indicate the residual

MSE for a whole plane projection sensor attempting to estimate parameters a2 through a6.

The design variables and environment variables used in the simulation are DP = 0:07m,

L0 = 10m, l0 = 0:01m, NW = 7 pixels and �ro = 2:13 counts. Notice that the whole plane

Z2�6 sensor either performs on par with or fails to perform better than the Z2�4 sensor

throughout the operational space. This example suggests that, in order to estimate more

parameters, the sensor will require additional information from the CCD.

8.3 Sensitivity Analysis

This section contains performance results from a series of simulations in which the

sensor was purposefully given erroneous estimates of the environment variables: r0, L0, and

l0. The intent is to provide a demonstration of the sensor�s robustness under the in�uence

of inaccurate environment variable estimates. Several design variables remain constant
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Figure 8.14 Solid plot line depicts Z2�4 estimator performance. Dashed plot line indi-
cates Z2�6 performance.

throughout each of the �gures to follow: DP = 0:07m, NW = 7 pixels and �ro = 2:13. Also

consistent throughout is the choice of plot line styles and their corresponding data series.

Solid lines indicate Z2�4 sensor performance, while dashed lines indicate ML tilt sensor

performance. The ML performance lines are included as comparison lines to highlight points

where poor estimates of the environment variables negate the Z2�4 sensor�s performance

advantage. The true value of the environment variable for each plot line is indicated by the

� symbol along the solid line and a  symbol along the dashed line. Each point along the

solid performance lines represents an average value from 30 random cases. A con�dence

interval at each plot point is indicated by a pair of triangles: one pointing upward for +1�

and one pointing downward for �1�.

Figure 8.15 demonstrates r0 sensitivity in high SNR, K = 1000 photons, at three

locations in the operating space. The true values of the parameter r0 = f0:04m, 0:05m,

0:1mg correspond to the three pairs of plot lines. As indicated by the x-axis labeling, the

estimates of r0 range from 0:02m to 0:2m. However, the entire range is not tested for each

r0 case. The range of test values is selected based on the true value of r0. Figure 8.16
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Figure 8.15 Solid lines indicate residual MSE versus r0 estimate. Dashed lines represent
the Z2;3 ML estimator performance threshold. The true value of r0 is indi-
cated by an � (solid line) or circle (dashed line). Triangles indicate �1�:
K = 1000.

provides the same r0 sensitivity analysis at low SNR: K = 200 photons. Figure 8.17 shows

L0 sensitivity in high SNR: K = 1000 photons. The true L0 value is set at 10m while the

estimate of L0 is in the set f1m, 10m, 100mg. Just as in the r0 analysis �gures, the solid

line indicates Z2�4 performance while the dashed line indicates ML tilt performance. The

true value of L0 for each performance line is indicated by the � symbol along the solid line

and a along the dashed line. Figure 8.18 provides the same L0 sensitivity analysis at low

SNR: K = 200 photons. Figure 8.19 demonstrates l0 sensitivity in high SNR: K = 1000

photons. The true l0 value is set at 0:01m while the estimate of l0 is in the set f0m, 0:01m,

0:1mg. Figure 8.20 provides the same l0 sensitivity analysis at low SNR: K = 200 photons.

The results of the sensitivity analysis demonstrate that the sensor performance de-

pends on the r0 estimate more so than the estimates of L0 and l0. In fact, the sensor�s

performance is nearly invariant to L0 and l0 estimates. The simulated cases indicate that

when L0 and l0 are unknown, the best course of action is to overestimate L0 (set L0 � 100m)
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Figure 8.16 Solid lines indicate residual MSE versus r0 estimate. Dashed lines represent
the Z2;3 ML estimator performance threshold. The true value of r0 is indi-
cated by an � (solid line) or circle (dashed line). Triangles indicate �1�:
K = 200.

and set the l0 estimate equal to zero. The sensitivity to r0 is most evident in low SNR and

at high DP
r0
. It is worthwhile to note that, although its performance is degraded, the Z2�4

sensor performs on par with or better than the ML tilt sensor over the range of simulated

r0 estimates.

8.4 Summary

This chapter began with a brief description of the Z2�4 sensor simulation. Simulated

performance plots were provided in order to demonstrate the search for ideal design variable

settings, and to provide an estimate of sensor performance over a typical range of the

operating space. Simulated performance examples used to predict ideal design variable

settings show that the computer simulation and the calculated CRLB results compliment

each other. The fact that the CRLB results and simulated results derive similar conclusions,

increases con�dence in the simulation accuracy and suggests that CRLB is an adequate tool

for making preliminary design choices. A comparison of the Z2�4 sensor performance to
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Figure 8.17 Solid lines indicate residual MSE versus L0 estimate. Dashed lines represent
the Z2;3 ML estimator performance threshold. The true value of L0 is
indicated by an � (solid line) or circle (dashed line). Triangles indicate
�1�: K = 1000.
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Figure 8.18 Solid lines indicate residual MSE versus L0 estimate. Dashed lines represent
the Z2;3 ML estimator performance threshold. The true value of L0 is
indicated by an � (solid line) or circle (dashed line). Triangles indicate
�1�: K = 200.
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Figure 8.19 Solid lines indicate residual MSE versus l0 estimate. Dashed lines represent
the Z2;3 ML estimator performance threshold. The true value of l0 is indi-
cated by an � (solid line) or circle (dashed line). Triangles indicate �1�:
K = 1000.

the centroid and tilt-only ML estimator revealed that, under the simulated conditions, the

Z2�4 sensor performance is on par with or better than the other sensor designs for cases

where the average photon count is greater than 100 photons per subaperture and the ratio
DP
r0
is greater than 0:5.
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Figure 8.20 Solid lines indicate residual MSE versus l0 estimate. Dashed lines represent
the Z2;3 ML estimator performance threshold. The true value of l0 is indi-
cated by an � (solid line) or circle (dashed line). Triangles indicate �1�:
K = 200.
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9. The Z2�10 Wavefront Sensor

This chapter provides the details and simulated performance results for a curvature sensor

designed to estimate Zernike polynomial coe¢ cients a2 through a10. To aid with coe¢ cients

higher than a4, half plane image projections are used. This sensor provides estimates in two

stages as did the Z2�4 sensor. The tilt estimates are formed in the �rst stage and all higher

order estimates are formed in the second stage making the Z2�10 highly parallelizable. If all

higher order estimates are computed in parallel, the only additional complexity over the Z2�4

sensor comes from managing half plane image projections which increases the computational

complexity by about 67%. The sections to follow outline the major di¤erences between

the Z2�4 sensor and the Z2�10 sensor and provide an analysis of Z2�10 sensor simulated

performance.

9.1 Image Projections

The Z2�10 sensor design uses half plane image projections. The half plane image

projection is de�ned as a concatenated pair of projections. The windowed region in the

image plane is divided between the two projections. The windowed region is divided evenly

if the window length is even. The odd center row of pixels is summed into the second

half image projection when the window length is odd. Figure 9.1 provides a diagram of

the Z2�10 image projections. The projection operations included in the Z2�10 estimator

expressions are:

f(1;N1);NW gv (Di;�i) , (9.1)

f(N2;NW )gv (Di;�i) , (9.2)

f(1;N1);NW gv (D1;0;D2;90) , (9.3)

f(N2;NW )gv (D1;0;D2;90) , and (9.4)

f(1;N1);(N2;NW )gv (D1;0;D2;90) , (9.5)

where N1 = �oor(NW =2), (9.6)

and N2 = �oor(NW =2) + 1. (9.7)
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Figure 9.1 Diagram of the Z2�10 sensor�s half plane image projection operation for 6� 6
pixel and 5� 5 pixel windows.

Note that each of the half plane projections are read from the CCDs only once. The projec-

tion operations are expressed as unique operations here solely for mathematical convenience.

The tilt estimator and the a4 estimator still require whole plane projections. The whole

plane projections are constructed from the sum of half plane projections.

Due to the half plane projection requirement, the Z2�10 sensor must process more

data than the Z2�4 sensor. The chart in Figure 9.2 describes the relative di¤erence in

computational complexity of estimating a2 through a10 based on the di¤erence in projection

data and the level of parallel or serial computation. Thus, any design using half plane

image projections accepts the engineering trade-o¤ of increased information in exchange
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Figure 9.2 Relative computational complexity between serial and parallel estimator con-
�gurations.

for increased read noise, increased CCD read time, and increased computation time. The

increased information provides the ability to estimate Zernike polynomials beyond Z4.

9.2 Likelihood Expressions

The sensor hardware provides four half plane image projections from each subaper-

ture. Figure 9.3 diagrams the read out and �ow of the four image projections through

the estimator algorithm. Each likelihood expression requires four inputs: a detected image

projection, a reference image projection, a set of atmospheric parameter estimates and an

estimate of the current photon level, K. Solid lines indicate the �ow of real time detected

image projections. Dashed lines indicate information used for reference image projections

which are computed and stored into lookup tables during sensor calibration. The heavily

outlined blocks in Figure 9.3 indicate locations where a likelihood expression is evaluated.

Each parameter is estimated independently. The tilt parameters must be estimated �rst.
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Figure 9.3 Diagram shows the �ow of image projections through the Z2�10 estimation
algorithm.

The tilt likelihood expressions used in the Z2�10 estimator are given by:

Lmap2(A2) =
X
l

�
f(1;N1);NW gvl (D1;0) + f(N2;NW )gvl (D1;0) + �

2
ro

�
�

ln
�
f(1;NW )gvl (L23I1;0 [A2]) + �

2
ro

	
�

f(1;NW )gvl (L23I1;0 [A2])�
A22
2�22

: (9.8)

Lmap3(A3) =
X
l

�
f(1;N1);NW gvl (D2;90) + f(N2;NW )gvl (D2;90) + �

2
ro

�
�

ln
�
f(1;NW )gvl (L23I2;90 [A3]) + �

2
ro

	
�

f(1;NW )gvl (L23I2;90 [A3])�
A23
2�23

: (9.9)
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Recall that each parameter estimate is formed by maximizing the likelihood with respect

to the parameter:

max
Ax

Lmapx (Ax)

����
Ax=Âx

: (9.10)

Unlike higher order parameters, the tilt estimates are computed from whole plane projec-

tions. Therefore, the two half plane projections are summed to create a single whole plane

projection prior to evaluation of the likelihood expression. Once tilt estimates are avail-

able, all higher order parameters may be estimated using the tilt estimates as indices into

the tables of preregistered image projections. The estimator selects the preregistered Z4

through Z10 projections with the closest matching pair of tilt values:

�
~A2; ~A3

�
=

 
round

 
Â2
�A2

!
�A2; round

 
Â3
�A3

!
�A3

!
: (9.11)

The likelihood for Z4 is computed from whole plane projections much like the tilt likelihood:

Lmap4(A4) =
X
l

�
f(1;N1);NW gvl (D1;0;D2;90) + f(N2;NW )gvl (D1;0;D2;90) + �

2
ro

�
�

ln
n
f(1;NW )gvl

�
L4I1;0

h
~A2; ~A3; A4

i
;L4 I2;90

h
~A2; ~A3; A4

i�
+ �2ro

o
�

f(1;NW )gvl
�
L4I1;0

h
~A2; ~A3; A4

i
;L4 I2;90

h
~A2; ~A3; A4

i�
� A24
2�24

:

(9.12)

The likelihood for all higher order estimates is given by:

Lmapx (Ax) =
X
l

�
f(1;N1);(N2;NW )gvl (D1;0;D2;90) + �

2
ro

�
�

ln
n
f(1;N1);(N2;NW )gvl

�
LxI1;0

h
~A2; ~A3; Ax

i
;Lx I2;90

h
~A2; ~A3; Ax

i�
+ �2ro

o
�

f(1;N1);(N2;NW )gvl
�
LxI1;0

h
~A2; ~A3; Ax

i
;Lx I2;90

h
~A2; ~A3; Ax

i�
� A2x
2�2x

:

(9.13)

9.3 Sensor Performance

This section contains several examples of Z2�10 sensor simulated performance. The

simulated performance will be used for design variable selection and it will be compared
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with the projection based ML tilt sensor and the more common two-dimensional centroid

based tilt sensor. To compare the results of using CRLB versus simulation performance as

a metric for design variable selection, I will begin by overlaying the series of plots found in

Section 6.3 onto simulated sensor performance. Just as with the Z2�4 sensor simulation,

the performance plots here should trend the same as the CRLB plots but will di¤er from

CRLB results in overall magnitude. The discrepancy between CRLB calculations and

the simulation is attributable to variance in the estimator and the di¤erence between the

random phase generation method used in the CRLB calculations versus the method used

in simulation.
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Figure 9.4 Z2�10 estimator
D
P 2�e

E
versus separation angle, �2 � �1. r0 = 0:05m, L0 =

10m, l0 = 0:01m, and NW = 14 pixels.

Figure 9.4 contains a plot of residual MSE versus projection separation angle. The

following design variable and environment variable settings were used: DP = 0:07m, �ro =

2:13 counts, r0 = 0:05m, L0 = 10m, l0 = 0:01m, K = 1000 photons, ��a4 = 0:55 radians,

and NW = 14 pixels. The CRLB result for half plane projection separation angle is included

with an independent y-axis. The CRLB plot line is the dashed line and corresponds to

the y-axis on the right hand side of the plot. The simulated performance results in Figure

9.4 agree with the CRLB results indicating that the ideal choice of separation angle is 90
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degrees. Using this result, Figure 9.5 demonstrates simulated performance versus �1 for a

separation angle of 90 degrees. Figure 9.5 echoes the results seen in CRLB plots for both
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Figure 9.5 Z2�10 estimator
D
P 2�e

E
versus projection angle �1 given that �2 = �1 + 90

�.

r0 = 0:05m, L0 = 10m, l0 = 0:01m, and NW = 14 pixels.

the Z2�4 and Z2�10 sensors (Figures 6.3 and 6.10) and in the performance results for the

Z2�4 sensor (Figure 8.5): residual MSE is e¤ectively invariant over the range of �1 given

that the di¤erence between projection angles is 90 degrees. Note that the CRLB continues

to be represented by a dashed plot line scaled to the right hand side y-axis for Figures 9.5

through 9.9. Figure 9.6 contains a plot of residual wavefront MSE versus defocus diversity

for a high SNR case: DP = 0:07m, �ro = 2:13 counts, r0 = 0:05m, L0 = 10m, l0 = 0:01m,

K = 1000 photons, and NW = 9 pixels. Performance in Figure 9.6 suggests that the ideal

diversity is approximately 0:55 radians, which is the same as the CRLB result. Figure 9.7

provides a plot of residual wavefront MSE versus defocus diversity for a low SNR case. The

simulation inputs are the same as those used in the previous example except the photon

count: K = 100. The result in Figure 9.7 corresponds to the CRLB result once again.

Performance suggests that the ideal choice of diversity at low SNR is approximately 0:3

radians. CRLB suggests that the ideal diversity is about 0:4 radians. Figures 9.8 and

9.9 contain plots of residual wavefront MSE versus projection window size for high and low
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Figure 9.6 Z2�10 estimator
D
P 2�e

E
versus ��a4 for K = 1000 photons per subaperture.

r0 = 0:05m, L0 = 10m, l0 = 0:01m, and NW = 9 pixels.
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Figure 9.7 Z2�10 estimator
D
P 2�e

E
versus ��a4 for K = 100 photons per subaperture.

r0 = 0:05m, L0 = 10m, l0 = 0:01m, K = 100, and WN = 9 pixels.

9-8



SNR cases respectively. The plots of simulated performance versus window size indicate
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Figure 9.8 Z2�10 estimator
D
P 2�e

E
versus NW for K = 1000 photons per subaperture.

that sensor performance is best when the window size is about 12 � 12 pixels. Required

system bandwidth may dictate a shorter window length than that which provides ideal

performance. In cases where system bandwidth requires reading out fewer pixels, it is

important to note that the CRLB and simulated performance plots indicate a signi�cant

reduction in performance for projection vector lengths shorter than 8 pixels.

Figures 9.10 and 9.11 provide a demonstration of the Z2�10 sensor performance over

a range of SNR and r0 values with all other operating variables �xed: DP = 0:07m, L0 =

10m, l0 = 0:01m, NW = 9 pixels and �ro = 2:13 counts. The solid plot lines represent

Z2�10 performance. The dashed plot lines represent tilt only performance. The tilt

only performance lines are the same dashed plot lines found in the whole plane projection

performance plot in Figure 8.10. The tilt only performance lines are included in this �gure

in order to demonstrate the lower bounds in the operating space on SNR and the ratio DP
r0

beyond which it is no longer advantageous to implement the higher order estimator. Recall,

for instance, that the tilt only performance shown here o¤ers the additional advantage of

using a 7 pixel window versus NW = 9 pixels. When compared with the performance of the
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Figure 9.9 Z2�10 estimator
D
P 2�e

E
versus NW for K = 100 photons per subaperture.
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Figure 9.10 Simulated
D
P 2�e

E
versus K for several cases of r0. Dashed lines indicate Z2;3

sensor (whole plane projections) performance. Solid lines indicate Z2�10
sensor (half plane projections) performance.

9-10



100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.35

0.45

0.45

0.55
0.55

0.55
0.55(1.4,0.05)0

0.25
0.4

0.4 0.45 0.45 0.5 (0.7,0.1)

( D
P
/r

0
, r

0
 )

Average Photons per Subaperture

R
es

id
ua

l M
S

E
 [r

ad
2 ]

Figure 9.11 Simulated
D
P 2�e

E
versus K for several cases of r0. Dashed lines indicate Z2;3

sensor (whole plane projections) performance. Solid lines indicate Z2�10
sensor (half plane projections) performance.

Z2;3 sensor, it is easy to see the advantages and disadvantages of estimating higher order

parameters . The advantage of the Z2�10 sensor increases as SNR increases. The Z2�10

sensor does not provide signi�cant improvement over the tilt only whole plane projection

sensor when K < 200 photons per subaperture.

The next set of performance �gures o¤er a comparison of the Z2�10 curvature sensor

performance with the projection based ML tilt estimator and the two-dimensional centroid

based estimator. Figures 9.12 and 9.13 overlay the centroid performance. There is no direct

comparison of window length in the centroiding case with a projection length because the

centroid estimator uses two-dimensional data. Additionally, the ideal centroiding window

size changes over the operational space. For these reasons, I have included several centroid

performance plot lines for each case of r0 to demonstrate centroid performance at di¤erent

window sizes. The set of colors fred, green, blue, cyang correspond to the window sizes

in the set f5; 6; 7; 8g respectively. Figures 9.14 and 9.15 overlay the ML tilt estimator

performance. The ML performance lines shown here are the same lines from Figure .

9-11



Figures 9.12 through 9.15 reveal that Z2�10 sensor performance is on par or better than

both tilt estimators throughout the entire operational range.
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Figure 9.12 Comparison of simulated centroiding tilt estimator performance to the Z2�10
estimator over a range of r0 and K values.

9.4 Sensitivity Analysis

This section contains performance results from a series of simulations in which the

sensor was purposefully given erroneous estimates of the environment variables: r0, L0, and

l0. The intent is to provide a demonstration of the sensor�s robustness under the in�uence

of inaccurate environment variable estimates. Several design variables remain constant

throughout each of the �gures to follow: DP = 0:07m, NW = 9 pixels and �ro = 2:13. Also

consistent throughout is the choice of plot line styles and their corresponding data series.

Solid lines indicate Z2�10 sensor performance, while dashed lines indicate ML tilt sensor

performance. The ML performance lines are included as comparison lines to highlight points

where poor estimates of the environment variables negate the Z2�10 sensor�s performance

advantage. The true value of the environment variable for each plot line is indicated by the

� symbol along the solid line and a  symbol along the dashed line. Each point along the
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Figure 9.13 Comparison of simulated centroiding tilt estimator performance to the Z2�10
estimator over a range of r0 and K values.
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Figure 9.14 Comparison of simulated projection based ML tilt estimator performance to
the Z2�10 estimator over a range of r0 and K values.
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Figure 9.15 Comparison of simulated projection based ML tilt estimator performance to
the Z2�10 estimator over a range of r0 and K values.

solid performance lines represents an average value from 30 random cases. A con�dence

interval at each plot point is indicated by a pair of triangles: one pointing upward for +1�

and one pointing downward for �1�, where � represents the 30 sample standard deviation.

Figure 9.16 demonstrates r0 sensitivity in high SNR, K = 1000 photons, at three

locations in the operating space. The true values of the parameter r0 = f0:04m, 0:05m,

0:1mg correspond to the three pairs of plot lines. As indicated by the x-axis labeling, the

estimates of r0 range from 0:02m to 0:2m. However, the entire range is not tested for each

r0 case. The range of test values is selected based on the true value of r0. Figure 9.17

provides the same r0 sensitivity analysis at low SNR: K = 200 photons. Figure 9.18 shows

L0 sensitivity in high SNR: K = 1000 photons. The true L0 value is set at 10m while

the estimate of L0 is in the set f1m, 10m, 100mg. The three pairs of lines correspond

to the previous r0 cases: 0:04m, 0:05m, and 0:1m respectively. Just as in the r0 analysis

�gures, the solid line indicates Z2�4 performance while the dashed line indicates ML tilt

performance. The true value of L0 for each performance line is indicated by the � symbol

along the solid line and a  along the dashed line. Figure 9.19 provides the same L0
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Figure 9.16 Solid lines indicate Z2�10 residual MSE versus r0 estimate. Dashed lines
represent the Z2;3 ML estimator performance threshold. The true value of
r0 is indicated by an � (solid line) or circle (dashed line). Triangles indicate
�1�: K = 1000.
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Figure 9.17 Solid lines indicate Z2�10 residual MSE versus r0 estimate. Dashed lines
represent the Z2;3 ML estimator performance threshold. The true value of
r0 is indicated by an � (solid line) or circle (dashed line). Triangles indicate
�1�: K = 200.
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Figure 9.18 Solid lines indicate residual MSE versus L0 estimate. Dashed lines represent
the Z2;3 ML estimator performance threshold. The true value of L0 is
indicated by an � (solid line) or circle (dashed line). Triangles indicate
�1�: K = 1000.
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sensitivity analysis at low SNR: K = 200 photons. Figure 9.20 demonstrates l0 sensitivity
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Figure 9.19 Solid lines indicate Z2�10 residual MSE versus L0 estimate. Dashed lines
represent the Z2;3 ML estimator performance threshold. The true value of
L0 is indicated by an � (solid line) or circle (dashed line). Triangles indicate
�1�. K = 200.

in high SNR: K = 1000 photons. The true l0 value is set at 0:01m while the estimate of l0

is in the set f0m, 0:01m, 0:1mg. Once again the three pairs of plot lines correspond to the

three r0 cases. Figure 9.21 provides the same l0 sensitivity analysis at low SNR: K = 200

photons.

The results of the sensitivity analysis demonstrate that the sensor performance de-

pends on the r0 estimate more so than the estimates of L0 and l0. In fact, the sensor�s

performance is nearly invariant to L0 and l0 estimates. The simulated cases indicate that

when L0 and l0 are unknown, the best course of action is to overestimate L0 (set L0 � 100m)

and set the l0 estimate equal to zero. The sensitivity to r0 is most evident in low SNR and

at high DP
r0
.
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Figure 9.20 Solid lines indicate Z2�10 residual MSE versus l0 estimate. Dashed lines
represent the Z2;3 ML estimator performance threshold. The true value of
l0 is indicated by an � (solid line) or circle (dashed line). Triangles indicate
�1�. K = 1000.
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Figure 9.21 Solid lines indicate Z2�10 residual MSE versus l0 estimate. Dashed lines
represent the Z2;3 ML estimator performance threshold. The true value of
l0 is indicated by an � (solid line) or circle (dashed line). Triangles indicate
�1�. K = 200.
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9.5 Summary

This chapter began with a brief description of the Z2�10 sensor and the half plane

image projection. Simulated performance plots were provided in order to demonstrate the

search for ideal design variable settings, and to provide an estimate of sensor performance

over a typical range of the operating space. Performance was compared to the CRLB

results. As was the case with the Z2�4 sensor, simulated Z2�10 sensor performance and

the calculated CRLB results compliment each other. Once again, the similarity between

simulation and CRLB results increases con�dence in the simulation accuracy and suggests

that CRLB is an adequate tool for making preliminary design choices for the Z2�10 sensor.

A comparison of the Z2�10 sensor performance to the centroid and tilt only ML estimator

revealed that, under the simulated conditions, the Z2�10 sensor performance is on par with

or better than the other sensor designs for cases where the SNR is greater than 200 photons

per subaperture.
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10. Conclusion

The temperature and pressure throughout the atmosphere change constantly. These factors

contribute signi�cantly to the index of refraction which a¤ects the way that light propagates

through the atmosphere. In optical imaging systems, the atmosphere�s turbulent nature

has the e¤ect of introducing an extended lens with randomly �uctuating aberrations into the

optical path. Unfortunately, these random aberrations often represent the limiting factor

in image resolution for a given optical system. Wherever applications require imaging

through the atmosphere, adaptive optics (AO) systems o¤er the ability to improve the

quality of imaging. Adaptive optics improve image quality by sensing and compensating

for the random phase �uctuations injected by the atmosphere. The device responsible

for detecting atmospheric phase aberrations is called a wavefront sensor. The focus of

this research is the design and simulation testing of two new options for wavefront sensing.

The AO wavefront sensors simulated in this research estimate lower order phase modes in

the aperture from intensity measurements in the image plane. The di¢ culties involved in

detecting wavefront phase from image intensity include: distinguishing lower order modes

amid higher order modal e¤ects and maintaining performance under low SNR and the

in�uence of CCD read noise. This research demonstrates two projection based sensor

designs which o¤er improvements in each of these categories over existing sensor designs.

10.1 Research Contributions

The primary research contributions are the development and simulation testing of

two projection based wavefront curvature sensors for adaptive optics. The Z2�4 and Z2�10

wavefront sensors proposed here would replace the traditional physical devices used in in-

terferometric or Hartmann style sensing devices with a beamsplitter, a pair of projection

based CCDs and a computer processor. These wavefront sensors are designed to detect

several low order harmonics which comprise a large percentage of the atmospheric aberra-

tions. By improving tilt estimates and adding the ability to detect curvature modes, the

proposed wavefront sensors are able to signi�cantly reduce wavefront residual mean squared

error and expand the operating space of existing sensor designs.

Due to the rate at which the atmospheric turbulence evolves, adaptive optics systems

must operate using bandwidths greater than several hundred hertz. A signi�cant portion of
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the AO loop is dedicated to the control electronics and manipulating the deformable mirror

leaving only a few milliseconds to solve the wavefront sensing problem. CCD read out can

represent a large portion of the sensor processing time when processing periods are on the

order of a millisecond. To save time with CCD read out, previous research has proposed

compressing two-dimensional images into vectors of pixels called image projections. The

vector based wavefront sensor must detect wavefront phase from the compressed image

information. This dissertation demonstrates that curvature modes up to the 10th Zernike

polynomial can be estimated from image projections.

This research presents a unique modi�cation to existing image projection techniques.

I have developed two MAP estimators: the �rst of which uses whole plane image projections

and the second uses half plane image projections. The MAP estimator requires the wave-

front sensor to evaluate and minimize a Bayesian risk function. This process can be reduced

to maximizing a likelihood function over multiple parameters. Maximizing the likelihood

metric over the multidimensional parameter space inherent to the curvature estimation

problem can present a challenging task. I have shown here that su¢ cient information ex-

ists in the image projections to estimate several lower order parameters independently. By

estimating parameters independently, the multidimensional problem is reduced to several

one-dimensional minimization problems. The accuracy and e¢ ciency of the maximization

process can be further enhanced by strategically applying a quadratic curve �t through the

likelihood. Under the simulated conditions, Zernike tilt modes 2 and 3 can be estimated

independently. Once the tilt estimates are formed, curvature modes Z4 through Z10 can

be independently estimated. The proposed sensors�performance in high SNR match the

performance of a tilt only sensor while operating with a larger DP
r0

ratio. For systems

currently using the tilt only sensor, this design o¤ers the trade-o¤ of maintaining current

performance while increasing the subaperture size and hence reducing the total number of

subapertures and the complexity of the AO system or enjoying improved performance at

the same subaperture size.

The description of each wavefront sensor also includes a list of key design variables and

operating variables. The development of these wavefront sensors included the derivation of

a projection based performance bound. The performance bound was shown to provide an

e¤ective measure for selecting ideal design variable settings as a function of the operating
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environment. As an aside to prototype sensor simulation and testing, this dissertation

developed the log polar sampling strategy for improving accuracy and isotropy in extensible

phase screen generation.

10.2 Future Work

This research shows that it is possible to improve wavefront sensing performance

over existing techniques in speci�c simulated conditions. The next step may be to prove

whether a hardware implementation of the sensor design can provide similar bene�ts. Test-

ing a hardware implementation of the projection based wavefront sensor with a narrowband

source would su¢ ce to demonstrate the type of CCD read noise rejection and the rela-

tive decrease in CCD read time that could be achieved over existing two-dimensional data

sensors. A true test of the projection based sensor may be limited by the availability of

specially designed CCD arrays. Although the technology exists to construct a fast, e¢ -

cient projection based array, the cost of producing CCDs speci�cally designed for projection

based wavefront sensing remains under investigation. In addition to hardware testing, the

simulation testing can be improved. Increased complexity in the atmospheric simulation

modeling might include temporal simulations using Taylor�s frozen �ow and multilayered

atmospheric models.

The sensor software algorithm can be modi�ed independent of the CCD hardware

design. As such, projection based hardware research and testing can begin while enhance-

ments to the curvature sensor algorithm continue to be a subject of future research. Perhaps

the most limiting factor in the software algorithm is the need for a point source or guide

star reference. Section 4.2 discussed techniques for estimating the object along with the

unknown wavefront phase using phase diversity. The drawback was that phase diversity

loops are computationally intense. This makes phase diversity di¢ cult to implement in real

time AO applications. The bandwidth problem suggests investigating the use of projections

in frequency domain MSE estimators for phase diversity applications. For instance, the

Gonsalves metric has been proven to work for two-dimensional image data, but it�s perfor-

mance using image projection data should be investigated. The Fourier analysis required

for phase diversity applications is computationally expensive. Image projections would

allow a one-dimensional transform versus a two dimensional transform signi�cantly reduc-
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ing the amount of computation required to implement the Gonsalves metric. In addition

to reducing complexity via the one-dimensional transform, portions of the Fourier analysis

could be precomputed much like the phase screen transform implementation. If a strategic

set of OTF frequency points can be determined which provide better ability to estimate

lower order Zernikes then the full phase diversity technique may be traded for a low order

Zernike estimator capable of operating in higher bandwidth real time applications.

The sensitivity analysis demonstrated an interrelationship between the sensor perfor-

mance and the quality of atmospheric parameter estimates. The use of this sensor design in

conjunction with atmospheric parameter estimation techniques should be investigated. As

an example, this sensor design might be used in a feedback loop con�guration with existing

r0 estimators to improve the overall AO system performance.

The research here considered performance for a single sensor subaperture. Phase

reconstruction using higher order modal estimates continues to be a subject of research.

Future work in this area includes the design and performance of a fast wavefront recon-

struction method using Zernikes 2 through 10.

In the area of phase screen generation, I suggest trying to reduce the percent error in

screen structure outside the inertial range. Large spatial correlation errors created by the

inherent periodicity of the Fourier transform might be reduced via implementation using

some other transform technique that allows for decorrelating long spatial distances within

the screen realizations. It may also be worth while to investigate the use of digital �ltering

techniques and spectral estimation to further reduce error in phase screen generation via

a feedback loop. For instance, the spectrum could be estimated using screen realizations.

If the choice of spectral sample points was somehow tied to the screen structure error then

the choice of sample locations could be modi�ed to reduce that error. This would provide a

measure with which to de�ne the ideal set of frequency sample locations for a given number

of frequency sample points.
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