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Abstract

This research develops mathematical programming techniques to solve an intel-

ligence, surveillance, and reconnaissance sensor assignment problem for USSTRAT-

COM. The problem as specified is hypothesized to be difficult (i.e. np-hard). With

the smallest test cases, the true optimal solution is found using simple optimization

techniques, but, due to intractability, the optimal solutions for larger test cases are

not found using these same techniques. Instead, heuristic techniques are applied to

several test cases in order to determine the best, robust methodologies to find true

or near optimal solutions. Specifically, simulated annealing (SA) is tested for con-

vergence properties across several different parameter settings. This research also

utilizes local search techniques with simple exchange neighborhoods of various sizes.

Mission prioritization is also examined via a weighted sum scalarization technique.
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INTELLIGENCE SURVEILLANCE AND RECONNAISSANCE

ASSET ASSIGNMENT FOR OPTIMAL MISSION

EFFECTIVENESS

1. Introduction

1.1 Background

1.1.1 Summary of Current Process

With the advent of complex sensor networks to track and detect multiple types

of targets with differing priorities, a dedicated methodology for assigning sensors to

missions in an operationally-relevant timeframe is required. Of particular note, this

problem is of interest to members of USSTRATCOM, as they attempt to improve

upon the scheduling of their sensor networks. This topic warrants investigative re-

search due to the inadequacies in the current process. As a high priority mission

becomes available, the current process involves cancelling all other missions and

tasking all assets against the high priority mission, even though the marginal contri-

bution of some of those assets is very small. Total mission probabilities are currently

calculated using an assumption of statistical independence between mission steps.

This assumption was made for simplicity sake, but may not always reflect reality.

There is currently no methodology available to select an optimal mix of assets to

accomplish all missions with a reasonable probability of success.

1.1.2 Process Example

A notional mission is depicted on Figure 1.1. In this example, a target detec-

tion prompts a mission. The mission involves four sequential tasks: identification,

tracking, queueing, and launch. Each of these tasks requires sensor support in order
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to be successful, and each of the available sensors has a given probability of success

at the individual stages. However, since the target’s position can never be known

a priori, and a sensor’s capability against a target is largely dependant upon sen-

sor orientation and distance, the probability of success is not constant. Hence, the

problem of sensor selection is one that has to be quickly resolved on a routine basis.

Figure 1.1 Theoretical Mission Stages

1.2 Problem Statement

Given a set of assignable sensors, each of which has a probability of accom-

plishing a set of missions (each with involves stages), find the binary assignment of

sensors to missions (and thereby also to stages) that maximizes the multicriteria,

p-dimensional objective function, F (x), where x is a valid set of assignments. The

mathematical problem statement is:

max
x∈Ω

F (x), (1.1)

x ∈ Bn

F (x) ∈ Rp

where F (x) : Bn → Rp , n corresponds to the number of binary variables associated

with the possible assignments of sensors to missions, and p corresponds to the total

number of missions over which we are trying to maximize the probability. Addition-

ally, in the above equation, x ∈ Ω is the set of all feasible sensor assignments. The
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specific feasibility constraints (sensors cannot be assigned to more than one mission,

etc.) will be discussed in Chapter 3.

1.3 Research Questions

This research seeks to answer the following questions. What multicriteria ob-

jective function can model USSTRATCOM’s mission success priorities? Can the

previously described multicriteria optimization problem for sensor assignment be

proven as either a difficult (i.e. np-complete) or easy (i.e. p) problem? What

solution methodologies (to include heuristic techniques if necessary) could best be

used to solve this problem in a timely fashion?

1.4 Research Focus

The main focus of this research will be developing a model that accurately

represents the USSTRATCOM sensor assignment problem and solves notional prob-

lems of varying size and complexity in a timely fashion. Since probabilities, missions,

sensor availabilities, and targets are changing on a daily basis, a robust methodology

is preferred.

1.5 Methodology

The development of a robust and efficient solution methodology initially in-

volves constructing a mathematical programming model for all potential missions.

In this case, the objective function is a probability of mission success (or some type

of expectation) which would be non-linear in nature, making this a Non-Linear Pro-

gramming (NLP) problem. Some of these probabilities are dynamic and change

based on scenario; hence, creating a robust model of analysis is crucial. This prob-

lem is hypothesized to be np-hard, and heuristic solution methodologies will be
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explored to search for better sensor configurations within a reasonable amount of

time.

1.6 Assumptions and Limitations

The current assumption for the evaluation of the objective function, F (x), is

that the probabilities of all events within the system are independent. USSTRAT-

COM is sponsoring a separate research effort to conduct the conditional probability

computations for F (x). Therefore, that portion of the problem is beyond the scope

of this research; the independence assumption will be used in this research.

Another major assumption is that the probability of success for a sensor as-

signed to a mission’s stage is known in sufficient time to be utilized as input. The

methodology for calculating these probabilities in an actual situation is largely de-

pendant upon sensor configuration, sensor location, and sensor capability, as well as

target location and target type. In some cases, a precise probability of success is not

known and estimates are used. For this research, notional probability values will be

randomly generated for various scenarios, since the methodology for finding an ideal

sensor configuration for any given scenario is of prime interest.

One requirement for this research is a methodology that solves the problem in a

reasonable amount of time. Finding the optimal solution to the problem within this

time limitation may not always be possible. In this case, heuristic search methods

may prove to be preferable to suit USSTRATCOM’s needs of quickly finding a high

quality solution.

1.7 Implications

The desired result of this research is an efficient methodology for assigning

sensors for daily mission assignments in a non-arbitrary, non-biased fashion. This

will allow for a greater mission success rate, which could significantly improve the
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US Intelligence, Surveillance, and Reconnaissance capabilities. Follow on efforts

could be expanded to impact future planning for expanding sensor networks based

on potential coverage gaps identified by this research.

1.8 Preview

Chapter 2 outlines the current literature in areas relevant to this research, in-

cluding: non-linear multi-criteria optimization problems, reliability engineering, and

heuristic techniques. Chapter 3 develops a methodology for sensor assignment based

on current non-linear multi-criteria optimization problems. Chapter 4 describes solu-

tion methods for the model outlined in Chapter 3, by applying the model to problem

instances similar to USSTRATCOMs configurations. Chapter 5 completes this re-

search with conclusions and recommendations for future research.
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2. Literature Review

This chapter discusses the literature pertinent to the assignment of Intelli-

gence, Surveillance and Reconnaissance (ISR) sensors to accomplish various missions.

The first section outlines basic complexity classes and problem reduction. The

second section describes models which relate to the techniques that will be devel-

oped in this research. The third section examines sensor assignment methodologies

currently used to create redundant, reliable networks. The fourth section discusses

techniques for comparing feasible solutions to multicriteria optimization problems

(MOP) in order to determine which solutions are better. This chapter concludes by

outlining heuristics techniques that are applicable to the model developed in this

research.

2.1 Complexity

Prior to presenting background information specifically for this problem, it is

necessary to include a brief, general discussion of problem computational complexity.

2.1.1 Decision Problems

Problem classification theory does not directly address optimization problems,

but rather applies to decision problems. A decision problem refers to a problem that

has a specific YES-NO answer. In the case of the previously discussed optimization

problem given by: max {F (x) : x ∈ Ω,x ∈ Bn}, the corresponding decision problem

is stated as: Does there exist an x ∈ Ω with value F (x) ≥ k [40]?

2.1.2 Classes P, NP and NP-Complete

The classes np and p refer to the number of elementary mathematical opera-

tions (i.e., additions, multiplications, comparisons, etc.) that are required to solve
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a given problem as a function of the problem’s size. For any problem in np, given

a feasible answer to the decision problem (a YES), the fact that the answer is YES

can be verified in a polynomial number of operations or polynomial time. np signi-

fies non-deterministic, polynomial time and p signifies polynomial time, hence p is a

subset of np (p ∈ np). Given a decision problem Q ∈ p, suppose an algorithm exists

that solves Q in polynomial time; this implies that Q is easy. In contrast, problems

for which there has not yet been found an algorithm to solve in polynomial time are

said to be in a class called np-complete. The class np-complete was proven to be

non-empty using the SATISFIABILITY problem [8]. Under the working hypothesis

that p 6= np (implying that a polynomial time algorithm to solve all problems in np

will never be found), the respective classes are shown in Figure 2.1 [29].

Figure 2.1 p, np, and np-complete, if p 6= np

2.2 Review of Well-known Problems

The next step involves reviewing some well-known optimization problems that

pertain to the approach of this research. First, the 0-1 knapsack problem (KP)

and its variants (to include the simple allocation problem (SAP), both linear and

non-linear) will be examined.

2-2



2.2.1 0-1 Knapsack Problem

The 0-1 knapsack problem (KP) is easily described [40]. Imagine that a hiker is

preparing for an overnight hike and can only carry a knapsack with weight capacity b,

consisting of n possible items, where aj is the weight of item j, and cj is the return

or ”utility” gained by carrying item j. The goal of the problem is to maximize

the overall utility of the knapsack, while never exceeding the weight constraint. A

decision variable, xj, has the value of 1 if the item is put in the knapsack and 0 if

the item is left behind. KP has the following mathematical form:

max
n∑

j=1

cjxj, (2.1)

subject to

n∑
j=1

ajxj ≤ b

x ∈ Bn

Its corresponding decision problem has been shown to be np-complete [25].

The original knapsack problem as formulated, however, has a much simpler

formulation: given aj, and b, find the binary assignment such that:

n∑
j=1

ajxj = b (2.2)

x ∈ Bn

It is this simplified version of knapsack upon which the original np-complete

proof is based [25].
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2.2.2 Simple Resource Allocation Problem

If the coefficients on the weight constraint are all set to 1 (i.e., aj = 1 ∀j =

1, 2, . . . , n), the problem is reduced to simply selecting b of the items to place into the

knapsack. If the objective function allows any concave (on the interval bounded by

b), non-linear, increasing function, fj(xj) to account for the contribution of each item

to the total utility, this problem becomes the Simple Resource Allocation Problem

(SRA) [27].

The Simple Resource Allocation Problem is an optimization problem that de-

termines the allocation of a fixed amount of resources to a given number of activities

in order to achieve the most effective results and is formulated as follows [24]:

max
n∑

j=1

fj(xj), (2.3)

subject to

n∑
j=1

xj ≤ b

x ∈ Zn

SRA has been used for both linear and non-linear applications including object

detection [4], marketing efforts [32], and portfolio selection [12]. SRA’s corresponding

decision problem is np-complete, when fj(xj) is non-linear for all j = 1, 2, . . . , n

[14] [24]. In Chapter 3, a modification of the SRA is used to select a ”portfolio” of

sensors to assign to various missions.
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2.3 Redundant Sensor Assignments

A review of reliability engineering concepts is also necessary to develop the

problem formulation outlined in this research.

2.3.1 Structure Functions

Consider the state of an n-component system. First, define an indicator vari-

able Ei, which is equal to 1 if the i-th component of the system is functioning properly

and 0 if the i-th component has failed. Also, define an overall system indicator vari-

able, E, for the entire system that is equal to 1 if the entire system is functioning

properly and 0 if the system has failed. After determining the disposition of each

Ei, the disposition of the entire system can be determined. Therefore, E is a func-

tion of Ei for all i = 1, 2, . . . , n; specifically, it is called a structure function, and is

designated by Φ, i.e., E = Φ(E1, E2, . . . , En) [37].

2.3.2 Series, Parallel, and Mixed Systems

If Φ(E ) =
∏n

i=1 Ei (i.e., if one component fails, the entire system fails), the

system is said to be a series system. If Φ(E ) = 1− (
∏n

i=1(1− Ei)) (i.e. the system

only fails when all components fail), the system is said to be parallel redundant. The

combination of both series and parallel redundant components forms a mixed system.

Such a system that has a definite path is called a bridge structure network [37]. A

simple bridge structure network is shown in Figure 2.2. In this bridge structure, the

double index ij is used where i is the index of the parallel components within a given

serial stage, and j is the index for the serial stage.
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Figure 2.2 A Simple Bridge Structure Network

2.3.3 Probability Calculations for Mixed Systems

Assuming statistical independence of the probability (P (Eij)) of the individ-

ual components succeeding (i.e., the components function independently from one

another), the reliability of the system in Figure 2.2 is calculated as follows:

R = [1− (1− P (E11))(1− P (E21))][P (E12)] (2.4)

If a system consists of a process that must follow a sequence of events proba-

bilistically (where components may be assigned in both serial and parallel redundant

configurations), it can be modelled and calculated as such [3]. This is shown in Figure

2.3

Mathematically, the reliability of the bridge structure network in Figure 2.3

generalizes into the following form:

2-6



Figure 2.3 A General Bridge Structure Network

R =
m∏

j=1

(
1−

n∏
i=1

(1− P (Eij))

)
(2.5)

For this generalization, i is the index of parallel redundant components and

j is the index of stages in serial. The collection of elements in parallel form what

is called a subsystem, with the probability of success for an individual subsystem

calculated by the 1 − ∏n
i=1(1 − P (Eij)) portion of Equation 2.5. This method of

calculating an overall system probability will be utilized in this research to examine

the probabilities of success for various sensor assignments.
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2.3.4 Series-Parallel Redundant Allocation Problem

The series-parallel redundant allocation problem describes the problem of max-

imizing a given system’s reliability in a constrained environment [15]. One such

problem is stated as follows:

max R(x|ρ) =
m∏

j=1

(
1−

n∏
i=1

(1− ρij)
xij

)
(2.6)

subject to

m∑
j=1

n∑
i=1

wijxij ≤ W

m∑
j=1

n∑
i=1

cijxij ≤ C

x ∈ Zm×n

The objective function in Problem 2.6 is noticeably similar to Equation 2.5.

The decision variable, xij indicates the number of component i assigned to subsystem

j. Component i’s probability at properly functioning when assigned to subsystem

j is denoted by ρij. The number of available component choices is denoted by n,

and the number of subsystems is denoted by m. The value wij denotes the weight

of assigning component i to subsystem j; the max total weight is W . The value cij

denotes the cost of assigning component i to subsystem j; the max total cost is C.

Solution attempts on a set of 33 problem instances have been made in previ-

ous research efforts using surrogate constraints [33], linear approximations [23], and

Genetic Algorithms (GA) [5], [6], [41], with the best solutions to date found using a

GA methodology [41].

The general form of the series-parallel redundant allocation problem with χ

constraints is stated as:
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max R(x|ρ) =
m∏

j=1

(
1−

n∏
i=1

(1− ρij)
xij

)
(2.7)

subject to

m∑
j=1

n∑
i=1

aijkxij ≤ bk ∀ k = 1 . . . χ

x ∈ Zm×n

2.3.5 Multi-Objective Series-Parallel Redundant Allocation Problem

A multi-objective version of the general series-parallel redundant allocation

problem exists. In this formulation, reliability is maximized, while cost and weight

are minimized, subject to additional structural constraints. The multi-objective

series-parallel redundant allocation problem is stated as [36]:

max R(x|ρ) =
m∏

j=1

(
1−

n∏
i=1

(1− ρij)
xij

)
(2.8)

min W (x) =
m∑

j=1

n∑
i=1

wijxij

min C(x) =
m∑

j=1

n∑
i=1

cijxij

subject to

m∑
j=1

n∑
i=1

aijkxij ≤ bk ∀ k = 1 . . . χ

x ∈ Zm×n
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Several methodologies have been applied to this problem, including fuzzy op-

timization [9], [18], goal programming [17], [18], surrogate constraints [21], dynamic

programming [31], and the ε-constraint method [30].

2.4 Comparing Multicriteria Optimization Problems (MOP)

2.4.1 Single Objective Preference and Optimality

In single objective optimization problems, the comparison of one feasible solu-

tion to another is accomplished by the scalar comparison operation. In the case of

the maximization objective, a solution x̂ within the feasible region Ω, is preferred to

a solution x, if f(x̂) > f(x). Additionally, x̂ is said to be optimal if there is no other

x ∈ Ω such that f(x) > f(x̂) [34].

2.4.2 Multicriteria Efficiency

In the case of an MOP, the concept of efficiency replaces the idea of optimality.

Again, in the case of the maximization objective, a feasible solution x̂ ∈ Ω is called

efficient if there is no other x ∈ Ω such that F (x) ≥ F (x̂). The major difference

between a single objective problem and an MOP is that F (x) is now a vector-valued

function, such that F (x) ∈ Rp, and the ≥ operator now refers to the component-

wise comparisons of the individual vector components of F (x). For example in

R4, (3, 4, 2, 1) ≥ (2, 3, 2, 1) since every element in the left hand vector is greater

than or equal to every element in the right hand vector. It should be noted that the

component-wise operator does not order the entire space of Rp. Situations could arise

in which some elements of a vector are greater than or equal to their corresponding

elements in another vector, but this does not hold for all elements. For example,

(3,4,2,1) and (4,3,2,1) cannot be ordered using the component-wise operator, since

neither vector dominates the other in all four elements [11].
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2.4.3 Weighted Sum Scalarization

A common method for ordering feasible MOP solutions is to map from Rp → R1

via a weighted sum scalarization method [11]. Using this technique, the problem 1.1

is converted to:

max
x∈Ω

p∑

k=1

λkfk(x), (2.9)

x ∈ Bn

f(x) ∈ R

In this formulation, fk(x) represents the k-th individual component of the p-dimensional

multiple objective function, F (x). A mapping of this type allows individual priori-

ties for the various objectives within F (x) to be altered to suit the decision maker’s

priorities. This will be the main method to adapt the MOP objective function for

the sensor assignment problem because of its ease of quickly creating mappings to

R1, and the ability to customize the priorities with the weighted sum coefficients.

2.4.4 Other Methods of Ordering Multi-Objective Space

In addition to weighted sum methods, there are several different ways to order

multi-objective space. The ε-constraint method chooses a single objective to be op-

timized, and the other objectives are transformed into constraints [20]. This method

works well if acceptable thresholds for all objectives are well known, however; if the

goal is to appropriately share resources among several objectives, the method is not

necessarily appropriate.

Compromise points involve minimizing the normalized distance between all

points in the efficient set and the ideal point, composed of all individual objectives’

optimal solutions [11]. The problem with this method is it requires knowledge of

the entire efficient set for comparison purposes, and this is not always practically

possible.
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2.5 Related Heuristics Methods

This section presents a description of the major heuristics methodologies used

later in the research. Both methods, simple ascent and simulated annealing are clas-

sified as threshold algorithms because they select a neighbor of the current solution

(also called the incumbent solution) and compare the incumbent to the neighbor,

accepting or rejecting that neighbor according to some type of threshold [2].

2.5.1 Simple Ascent and Neighborhoods

For this research, simple ascent will refer to a simple local search procedure of

comparing a given feasible solution to another feasible neighboring solution. The new

solution is accepted as the incumbent solution if it has a better objective function

value than the current incumbent solution; it is rejected otherwise. In this case, the

threshold for acceptance is 0 (i.e., the difference between the new solution and the

incumbent solution must be greater than 0). Simple ascent is generally referred to

as iterative improvement [2]. Pseudocode for this process is presented in Figure 2.4.

INITIALIZATION: Generate a starting solution x.
Set the initial incumbent solution x∗ = x.

WHILE i < max iterations DO
Choose a random neighbor x′ of the current solution.
If f(x′) > f(x∗), set x∗ = x′

i = i + 1
END WHILE

OUTPUT: x∗.

Figure 2.4 Simple Descent Algorithm

If the value of max iterations is sufficiently high, the algorithm will eventually

converge to a point where no other neighbors have a better objective function value.

At this time, it can be said that convergence to a local optimal has happened if the

concavity of the region is not guaranteed [34]. The selection of the neighbor also

needs to be specified via a neighborhood function [2].
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2.5.2 Simulated Annealing

Simulated annealing is an algorithm that is analogous to the annealing process

of metal [26]. It is a local search algorithm that searches a neighborhood and makes

improving moves when the neighbor has a better objective function value than the

current incumbent solution. It also allows dis-improving moves in an effort to prevent

the trap of a local optima. Such dis-improving moves are probabilistically accepted

according to a threshold following an exponential distribution. The distribution

is specified by ∆, which is the distance between the incumbent solution and the

potential new incumbent, and c, which represents the temperature of the process [2].

The temperature is initialized at some level, and then decreased by a cooling

schedule, which typically follows a geometric progression. This process has both

an inner loop and an outer loop. In the outer loop, a frozen state of the system

is specified by some condition, which can either be a number of iterations or a

specific temperature level. In the inner loop, an equilibrium level is usually specified,

which is also often a predetermined number of iterations [2]. General pseudocode

for simulated annealing is presented in Figure 2.5.

In simulated annealing, several parameters require value specification. Those

parameters include: the initial starting solution x, the starting temperature c, the

frozen state, the equilibrium state, the random neighbor selection criteria, and the

cooling schedule for c. The goal of these parameter selections is to find the best

method to allow dis-improving moves early enough in the algorithmic process to

avoid stagnation in a local optima, and then transition to allowing only improving

moves later in the algorithmic process. The drawback to simulated annealing is that

the determination of appropriate values for these parameters often requires a large

amount of experimentation, especially when applied to the series-parallel redundant

allocation problem [28].
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INITIALIZATION: Generate a starting solution x.
Set the initial incumbent solution x∗ = x.
Determine a starting temperature c.

WHILE not yet frozen DO
WHILE not yet at equilibrium for this temperature DO

Choose a random neighbor x′ of the current solution.
Set ∆ = f(x′)− f(x)
If ∆ ≥ 0 (uphill move)

Set x = x′

If f(x) > f(x∗), set x∗ = x
Else (downhill move)

Choose a random number r uniformly [0,1].
If r < e−∆/c, set x = x′

END ‘WHILE not at equilibrium’ loop.
Lower the temperature c

END ‘WHILE not yet frozen’ loop.
OUTPUT: x∗.

Figure 2.5 Simulated Annealing Algorithm

2.5.3 Other Heuristics Techniques

Genetic algorithms is a heuristics technique that involves creating a random

population of solutions and then combining those solutions via a crossover operator

that combines the properties of two or more parent solutions. Mutations can also be

introduced to ensure diversity [22]. While genetic algorithms have produced the best

solutions for the single objective series-parallel reliability problem [41], this research

seeks to produce quality multi-objective solutions quickly on desktop computers, and

simulated annealing was selected since it generally requires less objective function

evaluations. Large populations can require, in a worst case scenario, a large amount

of objective function evaluations, making the algorithm very computationally de-

manding.

The tabu search procedure involves creating a tabu list of previously visited

solutions to avoid revisiting them and allows for some more efficient searching of the

feasible region [19]. While tabu search can also produce high quality solutions, an
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easy to implement method was desired for this research, but that does not preclude

exploring the use of Tabu search in future research.

2.6 Conclusion

This chapter reviewed the relevant literature to the techniques which are de-

veloped and presented in Chapter 3. It is by employing various aspects of these

concepts that a cohesive model to solve the sensor assignment problem is created.
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3. Methodology

This chapter begins by describing the construction of the Maximum Utility

Sensor Assignment Problem (MUSAP) under the independence of the sensor chain

assumptions which were stated in Chapter 1. Following that, the decision version of

MUSAP is hypothesized to be np-complete. This hypothesis is strengthened by

showing it to be an instance of the Simple Resource Allocation (SRA) problem. Due

to the intractability of the MUSAP problem in larger instances, the various heuristic

techniques that were used to solve MUSAP as well as the methodologies used to test

them are described.

3.1 Formulation of the Maximum Utility Sensor Assignment Problem

(MUSAP)

3.1.1 Decision Variables and Probability Settings

The key decision for this research is which sensors to assign to particular

missions during various stages in the decision process. This will be signified by

x ∈ Bα×β×χ where α is the total number of available sensors, β, is the total number

of missions, and χ is the number of stages in the decision process. Therefore,

xijk ≡




1 if sensor i is assigned to mission j, at stage k

0 otherwise.
(3.1)

The probabilities of success for a particular sensor i to perform mission j at

stage k, given the sensor was assigned, is designated by ρijk. Since the probability

of success is only greater than zero if the sensor is actually assigned, this probability

can be represented by the expression ρijkxijk. The bridge structure network for a

specific mission j is shown in Figure 3.1.
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Figure 3.1 General Bridge Structure Network for MUSAP (for a mission j)

3.1.2 Objective Function Construction

It is possible to construct an overall probability of success for a given mission

j at stage k, under the assumption that several sensors can be assigned in parallel

to that mission j at stage k. This probability is derived from the reliability theory

discussed in Chapter 2 and is given in Equation 3.2:

hk(x) = 1−
α∏

i=1

(1− ρijkxijk) ∀ j = 1, 2, . . . , β. (3.2)

This probability is the compliment of the probability of every single assigned

sensor failing. Put another way, it is the probability that at least one assigned sensor

accomplishes that a given mission’s stage.

3-2



The individual stages are independent, serial tasks; thus, the overall probability

of success for mission j across all stages is simply the product of the probability of

success of the individual stages, shown in Equation 3.3:

fj(x) =

χ∏

k=1

(
1−

α∏
i=1

(1− ρijkxijk)

)
=

χ∏

k=1

hk(x). (3.3)

Under the assumption that each of these missions has a weight, or significance,

wj, the overall objective function can now be stated in Expression 3.4:

β∑
j=1

wj

(
χ∏

k=1

[
1−

α∏
i=1

(1− ρijkxijk)

])
=

β∑
j=1

wjfj(x). (3.4)

3.1.3 Constraint Formulation

To ensure feasible sensor assignments, some structural constraints are neces-

sary. The first set of constraints ensures that it is not possible to assign more sensors

than are available at a given stage. Specifically,

α∑
i=1

β∑
j=1

xijk ≤ α ∀ k = 1, 2, . . . , χ. (3.5)

The second set of constraints prevents tasking sensors to more than one mission

at a given stage. Therefore,

β∑
j=1

xijk ≤ 1 ∀ i = 1, 2, . . . , α, k = 1, 2, . . . , χ. (3.6)
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3.1.4 Complete Mathematical Formulation of MUSAP

Combining the objective function and constrainst into a concise, mathematical

formulation produces:

max

β∑
j=1

wj

(
χ∏

k=1

[
1−

α∏
i=1

(1− ρijkxijk)

])
(3.7)

subject to:

α∑
i=1

β∑
j=1

xijk ≤ α ∀ k = 1, 2, . . . , χ

β∑
j=1

xijk ≤ 1 ∀ i = 1, 2, . . . , α, k = 1, 2, . . . , χ

xijk ∈ {0, 1} ∀ i = 1, 2, . . . , α, j = 1, 2, . . . , β, k = 1, 2, . . . , χ.

3.2 NP-Completeness of Maximum Utility Sensor Assignment Prob-

lem

It is hypothesized that MUSAP is np-complete, as it can be simplified to a

Simple Resource Allocation Problem.

3.2.1 MUSAP as a Simple Resource Allocation Problem

The decision problem associated with MUSAP is as follows:

Given a set of weights, wj; a multidimensional set of probabilities, ρijk; a max

number of sensors, α; a max number of missions, β; and a max number of stages, χ;

and a real-valued objective function target, F ; does there exist a binary assignment
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to x ∈ Bα×β×χ such that

β∑
j=1

wj

(
χ∏

k=1

[
1−

α∏
i=1

(1− ρijkxijk)

])
≥ F (3.8)

α∑
i=1

β∑
j=1

xijk ≤ α ∀ k = 1, 2, . . . , χ

β∑
j=1

xijk ≤ 1 ∀ i = 1, 2, . . . , α, k = 1, 2, . . . , χ

xijk ∈ {0, 1} ∀ i = 1, 2, . . . , α, j = 1, 2, . . . , β, k = 1, 2, . . . , χ.

The decision problem associated with MUSAP will be transformed into an

instance of the SRA problem, and SRA is known to be np-complete.

Given an instance of SRA (Decision Problem) with b, G, and a set of concave,

increasing, non-linear functions, fp (where there are a total of γ functions), does

there exist an integer assignment to y ∈ Zγ such that

γ∑
p=1

fp(yp) ≥ G (3.9)

γ∑
p=1

yp ≤ b

First, assign F = G and α = b. Assign χ = 1; this collapses the set of

constraints into one constraint (the set k will not be mentioned for the rest of this

section).
∑α

i=1 xij corresponds to yp (the sum of many binary variables is an integer).

γ = β and
∑γ

p=1 yp =
∑α

i=1

∑β
j=1 xijk, and the expression (

∏χ
k=1 [1−∏α

i=1(1− ρijkxijk)])

collapses to [1−∏α
i=1(1− ρijxij)].

The next step involves showing that wj [1−∏α
i=1(1− ρijxij)] is a concave, in-

creasing, non-linear function, fp(yp). For a given mission, j, assign all ρij to the same
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value (ρij for different missions can still be different). The specific determination of

ρij, and wj is such that the function fp(yp) is properly represented.

By setting ρij constant to a value, εj for a given mission, and setting wj equal to

some scalar, cj/εj, any concave, increasing, non-linear function can be approximated

within a desired degree of precision. This is demonstrated in Figure 3.2. In this case,

the scalar, cj is held constant at 1; however it may take on any value required to

scale the function, just as the value ρij may take on any value to shape the function.

Figure 3.2 Adjusting ρij and wj to create any concave, increasing, non-linear func-
tion

As more sensors are tasked against a mission (setting more xij = 1), the

concave, increasing, non-linear contribution to the objective function is created, just

as allocating more resources in SRA (increasing the value of yp) accomplished a

similar increase in the form of the function fp(yp).

It should be noted that this alone does not prove that MUSAP is np-complete,

but rather, strongly suggests it, as this simplification of MUSAP is a type of Resource

Allocation Problem. In order to accomplish that, it would be required to show that
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any function fp(yp) could be approximated in polynomial time to any desired degree

of precision by selection of coefficients ρij and wj.

3.3 Solving MUSAP to Optimality

It is important to solve some problem instances of MUSAP to optimality in

order to have a bases for comparison for the heuristics techniques that will be later

discussed. Since MUSAP is non-linear, a Linear Programming (LP) relaxation of

MUSAP is not available. Thus, Integer Programming solution methodologies (i.e.:

Branch and Bound, Branch and Cut, and Cutting Planes) cannot be used. La-

grangian relaxations are also ruled out due to the complexity of computing the par-

tial derivatives for this formulation. Dynamic Programming has a similar problem

due to the high dimensionality of the set of decision variables [35]. The technique

that remains is explicit enumeration.

3.3.1 Enumeration Methodology

The stages can be solved as individual stage problems, (gk(x) ∀k = 1, 2, . . . , χ)

and the product of the individual mission probabilities at each stage can be used to

determine the total mission probability. This is possible due to the independence of

stage probabilities assumption that was previously stated. This drastically reduces

the number of combinations which would require examination if this assumption was

not used.

At a given stage, with α available sensors, and β missions that they may be

assigned, there are βα feasible configurations. Each configuration may be examined,

evaluating its objective function value for each of the k = 1 to χ stages. This stage

function is designated gk(x). The independence assumption implies that this type of

search is sufficient. However, if it is necessary to search all possible configurations,

dependant upon the assignments in all stages, that number becomes (βα)χ.
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The enumeration process used assumes the independence of stages, and ex-

plicitly enumerates each of the βα feasible configurations and conducts the stage

objective function evaluation for gk(x), storing the best configurations by stage.

The best stage configurations are reassembled into the overall best configuration.

Pseudocode for the enumeration process is presented in Figure 3.3.

INITIALIZATION: Assign all xijk = 0
Assign the initial best configuration x∗k = 0 ∀k = 1, 2, . . . , χ

Assign the initial best solution f∗ = 0
Assign the initial best stage solution g∗k = 0 ∀k = 1, 2, . . . , χ

FOR j(1) = 1 to β

FOR j(2) = 1 to β

FOR j(3) = 1 to β

Continue nesting j(i) until i = α

FOR i = α

ASSIGN xi,j(i),• = 1
FOR k = 1 to χ

EVALUATE gk(xk)
IF gk(xk) > g∗k THEN g∗k = gk(xk),x∗k = xk

END

END

...

END

END

END

OUTPUT: x∗ (all x∗k aggregated)
OUTPUT: f(x∗) (best solution using all best stage configurations).

Figure 3.3 Enumeration Algorithm

3.3.2 Intractability of Full Enumeration

Even with the independence assumption, βα still has an exponential relation-

ship to the problem size, making it intractable. The number of function evaluations

that are required for the test problem sizes used in this research is shown in Table 3.1

(for simplification purposes, only 4 stages are tested, since there is a direct analogy

of 4 stages to the real world problem). Due to the exponential growth in the number
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of points that must be considered, only the smallest two test problem sizes are solved

using this method.

Table 3.1 Number of Feasible Points for Various Problem Sizes

sensors missions stages number of points
10 4 4 1.05× 106

10 7 4 2.82× 108

20 8 4 1.15× 1018

20 14 4 8.37× 1022

30 12 4 2.37× 1032

30 21 4 4.64× 1039

40 16 4 1.46× 1048

40 28 4 7.70× 1057

3.4 Approximating MUSAP Using Heuristic Methods

3.4.1 Initial Starting Points

The heuristic methods utilized require feasible starting points in order to begin.

Two construction techniques for creating those starting points were examined. Both

techniques use a greedy approach, but differ in what is rewarded “greedily”. The

idea of beginning with a greedy or semi-greedy starting point and then applying a

local search technique is called the Greedy Randomized Adapted Search Procedure

(GRASP) [13].

The first technique, called greedy individual, follows the basic idea that “ev-

eryone works where they do best.” With this technique, each sensor is considered at

each stage in the decision process. A sensor i is assigned to a mission j during stage

k if its probability of detection, ρijk is greater than its probability of detection for

any other mission j, at that stage. The advantage of this technique is that it con-

structs a starting point in few mathematical operations. The pseudocode for greedy

individual is shown in Figure 3.4.
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INITIALIZATION: Assign all xijk = 0
FOR k = 1 to χ

FOR j = 1 to β

FOR i = 1 to α

IF ρijk =MAX(ρi•j) THEN xijk = 1
END

END

END

OUTPUT: Feasible assignment of x

Figure 3.4 Greedy Individual Construction Algorithm

The second technique, called greedy marginal, follows the basic idea that “ev-

eryone works where their marginal contribution is highest.” With this technique (as

with greedy individual), each sensor is considered at each stage in the decision pro-

cess. The difference between the two techniques is that a sensor i is assigned to

mission j during stage k if its contribution to the objective function is greatest. This

technique takes longer to construct, as it requires a partial objective function evalu-

ation for each potential assignment during the construction phase. The pseudocode

for greedy marginal is shown in Figure 3.5.
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INITIALIZATION: Assign all xijk = 0
Assign Lk = the set of unassigned sensors i for a given stage k

Assign the initial best configuration x∗k = 0 ∀k = 1, 2, . . . , χ

Assign the initial best stage solution g∗k = 0 ∀k = 1, 2, . . . , χ

FOR k = 1 to χ

FOR j = 1 to β

Randomly Choose i ∈ Lk

xijk = 1 , Lk = Lk/i

END

EVALUATE gk(x) , ASSIGN g∗k = gk(x)
END

FOR k = 1 to χ

FOR j = 1 to β

FOR i = 1 to α

IF i is unassigned, THEN EVALUATE gk(x) for j = 1 to β,
ASSIGN xijk = 1 such that gk(x) is the best of evaluated solutions, Lk = Lk/i

END

END

END

OUTPUT: Feasible assignment of x

Figure 3.5 Greedy Marginal Construction Algorithm

3.4.2 Neighborhood Functions

A simple exchange network is used to generate feasible neighbors during the

iteration process. Essentially, a stage and sensor are picked at random, and then

the sensor is swapped to another randomly chosen mission within that stage. The

number of swaps that are performed is determined by the size of the neighborhood.

In this research, 1-, 2-, and 3-swap neighborhoods are considered as starting neigh-

borhoods (used at the beginning of the iteration scheme) with 1-, 2-, 3-, and 4-swap

neighborhoods being considered as ending neighborhoods (used at the end of the

iteration scheme). The psuedocode for an n-swap neighborhood function is shown

in Figure 3.6. In this scheme, a sensor, i, and a stage, k, are randomly chosen, its

current assignment is deleted, and it is randomly assigned to a new mission, j. It

is possible (but improbable) that the output will be the exact same configuration

as the input configuration. In order to guarantee a true swap, a comparison would
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be required to ensure the new sensor assignment was not the same previous assign-

ment. Since this would involve more mathematical operations in order to prevent

an improbable event, the check was not included.

INPUT: A current feasible configuration, x, number of swaps, n

FOR m = 1 to n

Randomly choose k (stage)
Randomly choose i (sensor)
Set xi•k = 0
Randomly choose j (mission)
Set xijk = 1

END

OUTPUT: Feasible assignment of x

Figure 3.6 n-swap Neighborhood Function

The degree of intensification and diversification is also one of the major ex-

perimental factors examined by this research. Intensification implies searching in

neighborhoods that are very close to the incumbent point, whereas diversification

implies searching in neighborhoods that are farther from the incumbent point [19].

These concepts are relative to other neighborhoods. For example, a 2-swap neigh-

borhood is more intense than a 3-swap neighborhood, but it is more diverse than a

1-swap neighborhood.

In Figure 3.7 (assuming a maximization objective), at the point x1, using

the more intense neighborhood, n(1), no improving point can be found. If the

more diverse neighborhood, n(2) is utilized, the improving point x2 can be found.

However, once the point x2 is reached, the neighborhood n(1) can once again find

improving moves. Since the perimeter of n(2) is bigger than the perimeter of n(1), it

is easier to find improving moves (when they exist), because there are less points to

search. Once the algorithm has converged to a local optimal, diverse neighborhoods

are required to escape.

The size of the neighborhood determines the degree of intensification and di-

versification that is going on in the heuristic at that point of time. For the purposes
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Figure 3.7 Simple Example of Various Neighborhood Sizes

of this research 1-swap neighborhoods are the most intense neighborhoods that will

be used; 4-swap neighborhoods are the most diverse neighborhoods. The right mix

between intensification and diversification is crucial in order to converge to high qual-

ity, near optimal solutions. Three types of diversification strategies are examined:

switching to the next bigger neighborhood after 50%, or 75%, or never diversifying.

This implies that the diversification parameter d is set to 0.5, the first 50% of the

iterations are performed using an n-swap neighborhood, and the remaining iterations

are performed using an (n + 1)-swap neighborhood.

3.4.3 Simple Ascent Applied to MUSAP

The simple ascent algorithm described in Figure 2.4 was tested on all the

problem sizes shown in Figure 3.1. Simple ascent also served as a control group to

compare against simulated annealing algorithms that were limited to the same num-

ber of iterations. In order to ensure that the algorithm’s performance was not due
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to the uniqueness of a specific problem, ten problem instances for each of the eight

problem sizes were constructed (for a total of eighty problems). One hundred repli-

cations were performed to give the results greater statistical merit. The pseudocode

for simple ascent applied to MUSAP is shown in Figure 3.8.

INITIALIZATION: Generate a starting solution x
INPUT neighborhood size n, diversification rule d, max iterations
ASSIGN the initial incumbent solution f∗ = f(x)
WHILE count < max iterations DO

IF count < d·(max iterations) THEN s = n, ELSE s = n + 1
Choose a random neighbor x′ of the current solution using a neighborhood of size s

IF f(x′) > f(x∗), set x∗ = x′

count = count + 1
END WHILE

OUTPUT: x∗ , f(x∗).

Figure 3.8 Simple Descent Algorithm Applied to MUSAP

3.4.4 Simulated Annealing Applied to MUSAP

The simulated annealing algorithm described in Figure 2.5 was also tested

on all problem sizes shown in Table 3.1. Initial temperature was calculated as the

distance from the starting point and the ideal point. The ideal point is defined as

the point at which all individual objectives are maximized [11]. In this case, it is

the point in which each mission has the highest probability of success, achieved by

assigning all sensors to that mission alone. This will be as close to 1 as is possible

with asymptotic convergence. For this research, a value of 1 is used for each mission

value’s ideal state which assumes equal weights of wj = 1, so the ideal objective

function value for the weighted sum function is β, which implies that all missions

succeeded with probability 1.

The pseudocode for simulated annealing applied to MUSAP is shown in Figure

3.9. The inner equilibrium was determined by an inner loop number of iterations,

and the frozen state was determined by an outer loop number of iterations, that

exceeded the inner loop iterations by a factor of 10. Many different techniques
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INITIALIZATION: Generate a starting solution x
INPUT neighborhood size n, diversification rule d, cooling parameter γ, inner iterations
ASSIGN the initial incumbent solution f∗ = f(x), initial temperature c = β − f∗

ASSIGN (outer iterations) = 10 · (inner iterations)
ASSIGN max iterations = (inner iterations) · (outer iterations)
FOR outer = 1 to outer iterations

FOR inner = 1 to inner iterations
IF count < d·(max iterations) THEN s = n, ELSE s = n + 1

Choose a random neighbor x′ of the current solution using a neighborhood of size s

∆ = f(x′)− f(x)
IF ∆ ≥ 0 (uphill move)

Set x = x′

If f(x) > f(x∗), set x∗ = x
ELSE (downhill move)

Choose a random number r uniformly [0,1].
If r < e−∆/c, set x = x′

END inner loop.
c = γ · c
END outer loop.

OUTPUT: x∗ , f(x∗).

Figure 3.9 Simulated Annealing Applied to MUSAP

for setting inner and outer loop iterations have been attempted [1], [7], [10], [38].

Unfortunately, simulated annealing has performance ambivalence with respect to

application, implying a set of parameters the works well for one type of problem

has no guarantee of working for other problems [2]. It is for this reason that the

factor of 10 of outer loop iterations exceeding inner loop iterations was assigned, as

it allows more cooling iterations for larger sized problems on a proportional basis.

The cooling schedule was exponential, implying that at every outer loop iteration,

the temperature was multiplied by a cooling parameter, γ [2]. The value of γ is an

experimental factors examined by this research.

3.4.5 Experimental Design

The experimental factors tested in this research are listed in Table 3.2. The

total number of potential configurations is 72 (3 neighborhood types × 4 settings for
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γ × 2 starting points constructions × 3 diversification rules). These 72 combinations

are explicitly stated in Appendix A.

Table 3.2 Experimental Factor Settings

Experimental Factors
neighborhood γ starting point diversify after

1-swap 0 (Simple Ascent) marginal 50%
2-swap 0.9 (Simulated Annealing) individual 75%
3-swap 0.8 (Simulated Annealing) - never

- 0.7 (Simulated Annealing) - -

These factor levels are very general in order to establish a baseline and were

chosen after a smaller screening experiment determined that they may be the bounds

of interest for the parameter settings.

3.5 Conclusion

This chapter outlined all of the analytical techniques that were used in this

research. Their performance and implementation is detailed in Chapter 4.
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4. Implementation and Results

This chapter outlines the implementation of the algorithms described in Chap-

ter 2, specific results by problem type, and overall results trends.

4.1 Preliminary Algorithm Settings

In order to evaluate the 72 algorithms from Tables A.1, A.2, and A.3, ten

random problem instances were constructed for each of the the eight problem sizes

shown on Table 3.1, for a total of 80 problem instances. To generate a problem

instance, a random number between 0 and 1 was assigned to each of the values

for ρijk. This assumes that each sensor has at least some probability of being able

to perform every stage of every mission. Since the algorithms have probabilistic

iteration schemes, 100 attempts are made with each of the 10 problem instances for

each of the 8 problem sizes, for a total of 1000 attempts to solve each problem size

per algorithm.

4.1.1 Evaluation Criteria

The main evaluation criteria is the percentage of the 1000 attempts in which

the algorithm provides solutions within 1%, 5%, and 10% of the optimal solution

(if known) or the overall best solution found for that problem instance. These are

tested against the various α×β×χ sized problems designated on Table 3.1, where α

is the number of sensors, β is the number of missions, and χ is the number of stages

in the problem as specified in Chapter 3. For example a problem size designated

10×4×4 has 10 sensors, 4 missions, and 4 stages.
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4.1.2 Sensor Saturated vs. Sensor Sparse Networks

A distinction is made between the sensor saturated and sensor sparse networks.

The problem sizes 10×4×4, 20×8×4, 30×12×4, and 40×16×4 are designated as

sensor saturated, since there are 2.5 sensors available for every mission. Whereas,

the problem sizes 10×7×4, 20×14×4, 30×21×4, and 40×28×4 have approximately

1.43 sensors available for every mission. This density difference results in significant

variation in computational requirements. For example, assuming two sensors of equal

probability for mission stage success of 0.5, assigning one sensor to mission A has a

probability of success of 0.5, but assigning two sensors to that mission would give is

a probability of success of 0.75.

4.1.3 Solvable Problems

Through explicit enumeration, the smallest problem sizes from Table 3.1 were

solved (the 10×4×4 and 10×7×4 problem instances) with all values of wj = 1, which

implies that each mission is of equal importance. Thus, the optimal solution will be

the solution that equally distributes the sensors amongst the missions. As indicated

in Chapter 3, this required 1.05× 106 and 2.82× 108 objective function evaluations.

Due to intractability, larger problem sizes were not attempted. The optimal solutions

for these 20 problems are used as basis for comparison to assess the performance of

the algorithms. For the 60 larger problem sizes, the overall best answer found is used

in place of the optimal solution for a comparison basis. The optimal solutions are

shown in Table B.1.

4.1.4 Initial Construction Settings

Analysis of the smallest problem sizes, (10×4×4 and 10×7×4) demonstrates

that the more sensor-sparse problem of 10×7×4 has a greater difficulty in finding

quality solutions on a regular basis, as shown in Tables B.2, B.3, B.4, and B.5.
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It is hypothesized that the more sparse sensor networks have a greater tendency

to get stuck in local optimal because many local optima are located when a mission

is set to automatically fail. This becomes more evident when sparse sensor networks

are being optimized; however, it is a possibility given any scenario.

It is possible for a solution to find a neighbor that may improve the overall

objection function value, but do so by failing to accomplish one of the stages for

a mission, thereby forcing the mission to automatically fail. This will result in the

objective function contribution for all sensors assigned to the failed mission to be

zero. In subsequent iterations of the algorithm, all the neighbors of that solution

which remove any sensors from the failed mission stages will always produce better

objective function values, by converting a sensor objective function contribution

of zero to a positive value. Once the algorithm has assigned a particular sensor

configuration that allows for a failure of a mission, it has a high probability for

continuing to remove sensors away from that mission. This phenomenon has the

effect of creating numerous local optima.

In the case of the greedy individual construction, the initial constructions do

not even guarantee that all missions will be attempted. Thus, with these construc-

tions, the algorithm does not produce quality solutions very frequently. In contrast

to the greedy individual constructions, the greedy marginal constructions are de-

signed to require all missions to succeed. As a result, it was required to modify the

algorithms so that automatic failure of missions are strictly prohibited.

To test the efficacy of these modifications, the 10×4×4 and 10×7×4 problem

sizes were re-accomplished, producing the results in Table B.6, Table B.7, Table B.8,

and Table B.9 respectively. These results demonstrate that especially in sensor sparse

networks, better quality solutions can be produced by these methods. Additionally,

a large degree of local optima can be avoided. It also has the effect of eliminating

36 of the 72 algorithms from consideration, as only algorithms with greedy marginal

constructions guarantee avoidance of this particular type of local optimal. The
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algorithms removed from consideration are the algorithms with the greedy individual

starting points (13-24, 37-48, and 61-72).

For the purposes of implementation, it was necessary to track the probability of

success for the individual missions with a mission function, hj(x). The algorithms in

Figure 3.8 and Figure 3.9 have not changed, with the exception of any move from the

incumbent solution also having the additional requirement of minj(hj(x)) 6= 0, which

explicitly states that no moves that allow automatic mission failures are allowed.

4.1.5 Iteration counts for Inner Loop Equilibrium

With these new algorithms, the inner loop iteration counts were then specified.

For saturated networks, the number of sensors was used for the inner loop iterations,

since it was desirable to link the inner loop iterations to the problem size parameter.

This is because it is reasonable to assume that larger problems would require more

iterations to properly explore the space. The final iteration counts are shown in

Table 4.1.

Table 4.1 Number of Inner, Outer and Total Iterations for Various Problem Sizes

size inner outer total
10×4×4 10 100 1000
10×7×4 28 280 7840
20×8×4 20 200 4000

20×14×4 39 390 15210
30×12×4 20 300 9000
30×21×4 43 430 18490
40×16×4 40 400 16000
40×28×4 46 460 21160

For sparse networks, iteration counts were varied (beginning with the number

of sensors in the problem) to determine the number of iterations for which the best

algorithm continues to produce at least 75% of final solutions within 10% of the

overall best solution found (or the true optimal in the case of the 10×4×4 and

10×7×4 sized problems). The algorithms were run with a relatively large number
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of inner loop iterations (twice the number of sensors) to establish the best solutions

to be used as comparison bases for subsequent problems.

4.2 Results by Problem Size

4.2.1 Problem Size 10×4×4

The results for Problem Size 10×4×4 are in Table B.6. Recall that for this

problem, the optimal solution was first found using explicit enumeration; all 36

algorithms produced solutions within within 10% of the optimal, with the worst

being Algorithm 27 at 98.8% of the trials within 10% of optimal, and the best being

tied between Algorithms 9, 29, 30, 33, 53, 56, and 57, all at 100% of the trials within

10% of the optimal. These excellent solutions result from the fact that the sensor

saturated networks have numerous acceptable configurations and less local optima.

When the evaluation criteria required solutions to be within 5% of optimal criteria,

all 36 algorithms still perform fairly well, with Algorithm 10 the worst at 84.5% and

Algorithm 57 the best at 96.8%. Lastly, when requiring solutions to be within 1%

of optimal, Algorithm 10 performed the worst at 2.2%, and Algorithm 53 performed

the best at 25.9%.

With the aggregated results in Table B.7, several observations with respect to

this problem size can be made about the different parameter settings’ efficacy. The

diversification rule of “never” actually allowing diversification outperforms the other

diversification settings (within 10%, 99.7% of the time; within 5%, 92.2% of the time;

and within 1%, 17.1% of the time). Diversifying after 50% of the iterations is the

worst diversification setting.

The 2-swap neighborhood outperforms the other two neighborhood functions,

producing solutions within 10% of the optimal 99.9% of the time; within 5%, 93.5%

of the time; and within 1%, 18.2% of the time. The best parameter setting for γ,
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is 0 (implying Simple Ascent) which produced solutions within 10% of the optimal

99.7% of the time, within 5%, 94.5% of the time, and within 1%, 17.3% of the time.

4.2.2 Problem Size 10×7×4

The results for problem size 10×7×4 by algorithm are displayed in Table B.8.

For the evaluation criteria of producing solutions within 10% and within 5% of the

optimal solution, Algorithm 54 performed best (76.3% and 35.0%) and Algorithm

49 performed the worst (33.7% and 10.2%). When the criteria required solutions to

be with 1% of the optimal, Algorithm 55 performed best (2.5%), and Algorithm 28

is the worst (0.1%).

The aggregated results for problem size 10×7×4 in Table B.9 show that the best

diversification rule is to “never” diversify; this technique produces solutions within

10% of the optimal 61.3% of the time, within 5%, 24.4% of the time, and within 1%,

1.2% of the time. The 2-swap neighborhood is the preferred neighborhood function

which, producing solutions within 10%, 71.0% of the time, within 5%, 31.2% of the

time, and within 1%, 1.5% of the time. The best parameter setting for γ is 0.9

for 10% and 5% of the optimal, achieving values of 63.9% and 23.4% respectively;

however, a γ setting of 0 (Simple Ascent) produces the best results when the criteria

requires solutions to be within 1% of optimal, achieving it 1.1% of the time.

4.2.3 Problem Size 20×8×4

The results for problem size 20×8×4 by algorithm are in Table B.10. For the

evaluation criteria of producing solutions within 10% and within 5% of the best

solution found thus far, all of the algorithms perform well (above 94%). When

the criteria required solutions to be with 1% of the best solution found thus far,

Algorithm 49 is the best (19.8%), and Algorithm 10 is the worst (0.0%).
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The aggregate results for problem size 20×8×4 in Table B.11. For the evalu-

ation criteria of producing solutions within 10% and within 5% of the best solution

found thus far, all of the algorithms perform well (above 96%). The best diversifi-

cation rule is to “never” diversify; this technique produces solutions within 1% of

the optimal, 10.8% of the time. The 1-swap neighborhood is the best neighborhood

function which produces the best solutions, getting within 1%, 14.6% of the time.

The best parameter setting for γ is 0 (Simple Ascent) and produces the best results

when the criteria requires solutions to be within 1% of optimal, achieving it 11.1%

of the time.

4.2.4 Problem Size 20×14×4

The results for problem size 20×14×4 by algorithm are in Table B.12. For the

evaluation criteria of producing solutions within 10% of the best solution found thus

far, Algorithm 54 performed best (75.5%) and Algorithm 10 the worst (6.2%). For

the evaluation criteria of producing solutions within 5% of the best solution found

thus far, Algorithm 50 performed best (15.4%) and Algorithms 9, 10, and 11 the

worst (0.0%). When the criteria required solutions to be with 1% of the optimal, all

algorithms perform poorly (under 0.3%).

The aggregated results for problem size 20×14×4 in Table B.13 again show that

the best diversification rule is to “never” diversify; this technique produces solutions

within 10% of the optimal 49.1% of the time, and within 5%, 8.8% of the time. The

2-swap neighborhood is the preferred neighborhood function, producing solutions

within 10%, 58.7% of the time. The 1-swap neighborhood is the best neighborhood

function which produces the best solutions, getting within 1%, 10.3% of the time.

The best parameter setting for γ is 0.9 (Simple Ascent) when the goal is within 10%

and 5% of the best solution (47.7% and 7.2%). When the criteria required solutions

to be with 1% of the optimal, all parameter settings perform poorly (under 0.2%).
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4.2.5 Problem Size 30×12×4

The results for problem size 30×12×4 by algorithm are in Table B.14. These

results are consistent with what the sensor saturated networks have already demon-

strated thus far. For the evaluation criteria of producing solutions within 10% and

within 5% of the best solution found thus far, all of the algorithms perform well

(99.0% or better). When the criteria required solutions to be with 1% of the best

solution found thus far, Algorithm 50 is the best (45.2%), and Algorithm 10 is the

worst (0.0%).

The aggregate results for problem size 30×12×4 are in Table B.15. For the

evaluation criteria of producing solutions within 10% and within 5% of the best

solution found thus far, all of the algorithms perform well (above 99%). The best

diversification rule is again to “never” diversify; this technique produces solutions

within 1% of the optimal, 23.5% of the time. The 1-swap neighborhood is the best

neighborhood function which produces the best solutions, getting within 1%, 32.4%

of the time. The best parameter setting for γ is 0 (Simple Ascent) which produces

the best results when the criteria requires solutions to be within 1% of the best

solution found thus far, achieving it 18.3% of the time.

4.2.6 Problem Size 30×21×4

The results for problem size 30×21×4 by algorithm are in Table B.16. For the

evaluation criteria of producing solutions within 10% of the best solution found thus

far, Algorithm 50 performed best (75.1%) and Algorithm 10 the worst (0.2%). For

the evaluation criteria of producing solutions within 5% of the best solution found

thus far, Algorithm 50 performed best (20.9%) and Algorithms 6, 9, 10, 11, 12, 33,

34, 35, 36, 57, 58, 59, and 60 the worst (0.0%). When the criteria required solutions

to be with 1% of the optimal, all algorithms perform poorly (under 0.2%).

The aggregate results for problem size 30×21×4 are in Table B.17. These

results show that the best diversification rule is to “never” diversify; this technique
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produces solutions within 10% of the best solution found thus far 44.8% of the time,

and within 5%, 7.7% of the time. The 1-swap neighborhood is the neighborhood

function which produces the best solutions: within 10%, 58.1% of the time and

within 1%, 12.1% of the time. The best parameter setting for γ is 0.9 when the goal

is within 10% of the best solution (38.0%) and a setting for γ of 0.7 when the goal

is within 5% of the best solution (5.4%). When the criteria required solutions to be

with 1% of the optimal, all parameter settings perform poorly (under 0.2%).

4.2.7 Problem Size 40×16×4

The results for problem size 40×16×4 by algorithm are in Table B.18. For

the evaluation criteria of producing solutions within 10% and within 5% of the best

solution found thus far, all of the algorithms perform well (99.5% or better). When

the criteria required solutions to be with 1% of the best solution found thus far,

Algorithm 49 is the best (68.3%), and Algorithms 11 and 12 perform the worst

(0.0%).

The aggregate results for problem size 40×16×4 are in Table B.19. For the

evaluation criteria of producing solutions within 10% and within 5% of the best

solution found thus far, all of the algorithms perform well (above 99.9%). The best

diversification rule is again to “never” diversify; this technique produces solutions

within 1% of the optimal, 35.8% of the time. The 1-swap neighborhood is the

neighborhood function which produces the best solutions (within 1%, 53.7% of the

time). The best parameter setting for γ is 0 (Simple Ascent) which produces the

best results when the criteria requires solutions to be within 1% of the best solution

found thus far, achieving it 30.6% of the time.

4.2.8 Problem Size 40×28×4

The results for problem size 40×28×4 by algorithm are in Table B.20. For

the evaluation criteria of producing solutions within 10% of the best solution found

4-9



thus far, Algorithm 50 performed best (76.6%) and Algorithms 9, 10, 11, and 12 are

the worst (0.0%). For the evaluation criteria of producing solutions within 5% of

the best solution found thus far, Algorithm 50 and 51 performed best (20.9%) and

Algorithms 5, 6, 7, 8, 9, 10, 11, 12, 31, 32, 33, 34, 35, 36, 57, 58, 59, and 60 are the

worst (0.0%). When the criteria required solutions to be with 1% of the optimal, all

algorithms perform poorly (0.0%).

The aggregate results for problem size 40×28×4 are in Table B.21. These

results show that the best diversification rule is to “never” diversify; this technique

produces solutions within 10% of the best solution found thus far 41.8% of the time,

and within 5%, 5.4% of the time. The 1-swap neighborhood is the neighborhood

function which produces the best solutions: within 10%, 59.7% of the time and

within 1%, 8.9% of the time. The best parameter setting for γ is 0.9 when the goal

is within 10% of the best solution (38.0%) and a setting for γ of 0.8 when the goal

is within 5% of the best solution (3.3%). When the criteria required solutions to be

with 1% of the optimal, all parameter settings perform poorly (0.0%).

4.3 Overall Implementation Observations

4.3.1 Algorithm Type and Cooling Schedule

Simulated Annealing with a cooling schedule of 0.9 produces the highest quality

results only in the sparse networks. In the sensor saturated networks, the Simple

Ascent algorithm is more effective at returning high quality solutions. This may be

because sensor saturated networks have far less local optimal than the sensor sparse

networks.

4.3.2 Neighborhood Functions

The 1-swap and 2-swap neighborhoods proved to be the best neighborhoods by

consistently performing well in the test problems. Larger neighborhoods performed
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very poorly, especially in the larger problem sizes. In the larger neighborhoods, there

are many different points to search with higher n-swap neighborhoods such that the

probability of finding improving moves is smaller. In this case, the simpler methods

are better.

4.3.3 Diversification Rules

The diversification rule which prevented diversification outperformed the di-

versification rules of switching to larger neighborhoods after 50% or 75% of the

iterations. The implication for MUSAP is that starting off with a strategy and uti-

lizing it throughout, the algorithm performs much better than attempting to switch

midstream. This does not rule out the possibility of using a different type of diversi-

fication strategy that doesn’t use the ”switch after certain percentage of iterations”

rule.
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5. Conclusions and Future Research

5.1 Conclusion

This research has formulated the USSTRATCOM’s sensor assignment problem

as a type of resource allocation problem. It has further shown the utility of simulated

annealing and simple ascent (iterative improvement) to solve that formulation. As

the problems became more complex, simulated annealing with geometric cooling

schedules emerged as the most effective algorithm.

5.2 Future Research

Future research could focus on four general areas. First, the independence

assumptions could be relaxed, using a more robust objective function. Second, the

specific parameters of the simulated annealing algorithm could be better specified.

Third, the weights and priorities of the missions, along with mission drop thresholds

could be added. And lastly, other heuristics techniques could be applied to this

problem.

5.2.1 Inserting Dependant Probabilities

A separate research effort was underway concurrently with this research to

determine the calculation of the objective function using dependant probabilities.

Once that effort is complete, the algorithms in this research should be tested with

the new objective function. As mentioned in Chapter 3, without the independence

assumption, the number of feasible solutions that need to be searched increases

exponentially. This implies that heuristics techniques will continue to be necessary

to produce quality solutions in a reasonably short amount of time.
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5.2.2 Simulated Annealing Parameter Specification

The precise ratio of inner loop to outer loop iterations was assumed by this

research to be 10. That number should be examined to see if it creates the most

efficient convergence behavior. The cooling schedule could also be examined with

greater fidelity, as opposed to the few values that were examined. A dynamic search

neighborhood could also be implemented in order to determine if more local optima

can be avoided.

5.2.3 Varying Weights

This research assumed that all missions were weighed equally. Higher priority

missions could be assigned to determine if the configurations provided give acceptable

mission success probabilities. If those probabilities are not acceptable, a procedure

for deciding the best missions to drop in order to maximize the remaining missions

could be created.

5.2.4 Other Heuristics Techniques

Other techniques were not utilized primarily due to the desire for a fast, high

quality solution. However, Genetic Algorithms (GA) have proven utility in the single

objective versions of the series-parallel redundant assignment problem [41], so it is

possible that GA could prove utility in this problem.
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Appendix A. Experimental Settings

In order to test all possible combinations of the various factors that could effect

algorithm performance, an experimental design with 72 different algorithm configu-

rations was constructed. Those configurations are summarized in Tables A.1, A.2,

and A.3.

Table A.1 Algorithm Configurations

ref alg type neighborhood γ starting point diversify after
1 Simple Ascent 1-swap 0 marginal 50%
2 Simulated Annealing 1-swap 0.9 marginal 50%
3 Simulated Annealing 1-swap 0.8 marginal 50%
4 Simulated Annealing 1-swap 0.7 marginal 50%
5 Simple Ascent 2-swap 0 marginal 50%
6 Simulated Annealing 2-swap 0.9 marginal 50%
7 Simulated Annealing 2-swap 0.8 marginal 50%
8 Simulated Annealing 2-swap 0.7 marginal 50%
9 Simple Ascent 3-swap 0 marginal 50%
10 Simulated Annealing 3-swap 0.9 marginal 50%
11 Simulated Annealing 3-swap 0.8 marginal 50%
12 Simulated Annealing 3-swap 0.7 marginal 50%
13 Simple Ascent 1-swap 0 individual 50%
14 Simulated Annealing 1-swap 0.9 individual 50%
15 Simulated Annealing 1-swap 0.8 individual 50%
16 Simulated Annealing 1-swap 0.7 individual 50%
17 Simple Ascent 2-swap 0 individual 50%
18 Simulated Annealing 2-swap 0.9 individual 50%
19 Simulated Annealing 2-swap 0.8 individual 50%
20 Simulated Annealing 2-swap 0.7 individual 50%
21 Simple Ascent 3-swap 0 individual 50%
22 Simulated Annealing 3-swap 0.9 individual 50%
23 Simulated Annealing 3-swap 0.8 individual 50%
24 Simulated Annealing 3-swap 0.7 individual 50%
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Table A.2 Algorithm Configurations (Con’t)

ref alg type neighborhood γ starting point diversify after
25 Simple Ascent 1-swap 0 marginal 75%
26 Simulated Annealing 1-swap 0.9 marginal 75%
27 Simulated Annealing 1-swap 0.8 marginal 75%
28 Simulated Annealing 1-swap 0.7 marginal 75%
29 Simple Ascent 2-swap 0 marginal 75%
30 Simulated Annealing 2-swap 0.9 marginal 75%
31 Simulated Annealing 2-swap 0.8 marginal 75%
32 Simulated Annealing 2-swap 0.7 marginal 75%
33 Simple Ascent 3-swap 0 marginal 75%
34 Simulated Annealing 3-swap 0.9 marginal 75%
35 Simulated Annealing 3-swap 0.8 marginal 75%
36 Simulated Annealing 3-swap 0.7 marginal 75%
37 Simple Ascent 1-swap 0 individual 75%
38 Simulated Annealing 1-swap 0.9 individual 75%
39 Simulated Annealing 1-swap 0.8 individual 75%
40 Simulated Annealing 1-swap 0.7 individual 75%
41 Simple Ascent 2-swap 0 individual 75%
42 Simulated Annealing 2-swap 0.9 individual 75%
43 Simulated Annealing 2-swap 0.8 individual 75%
44 Simulated Annealing 2-swap 0.7 individual 75%
45 Simple Ascent 3-swap 0 individual 75%
46 Simulated Annealing 3-swap 0.9 individual 75%
47 Simulated Annealing 3-swap 0.8 individual 75%
48 Simulated Annealing 3-swap 0.7 individual 75%
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Table A.3 Algorithm Configurations (Con’t)

ref alg type neighborhood γ starting point diversify after
49 Simple Ascent 1-swap 0 marginal never
50 Simulated Annealing 1-swap 0.9 marginal never
51 Simulated Annealing 1-swap 0.8 marginal never
52 Simulated Annealing 1-swap 0.7 marginal never
53 Simple Ascent 2-swap 0 marginal never
54 Simulated Annealing 2-swap 0.9 marginal never
55 Simulated Annealing 2-swap 0.8 marginal never
56 Simulated Annealing 2-swap 0.7 marginal never
57 Simple Ascent 3-swap 0 marginal never
58 Simulated Annealing 3-swap 0.9 marginal never
59 Simulated Annealing 3-swap 0.8 marginal never
60 Simulated Annealing 3-swap 0.7 marginal never
61 Simple Ascent 1-swap 0 individual never
62 Simulated Annealing 1-swap 0.9 individual never
63 Simulated Annealing 1-swap 0.8 individual never
64 Simulated Annealing 1-swap 0.7 individual never
65 Simple Ascent 2-swap 0 individual never
66 Simulated Annealing 2-swap 0.9 individual never
67 Simulated Annealing 2-swap 0.8 individual never
68 Simulated Annealing 2-swap 0.7 individual never
69 Simple Ascent 3-swap 0 individual never
70 Simulated Annealing 3-swap 0.9 individual never
71 Simulated Annealing 3-swap 0.8 individual never
72 Simulated Annealing 3-swap 0.7 individual never
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Appendix B. Results Tables

Table B.1 Optimal solutions for problem size 10×4×4 and 10×7×4

Problem Instance
size 1 2 3 4 5 6 7 8 9 10

10×4×4 3.88342 3.80867 3.71343 3.76942 3.73889 3.78874 3.73763 3.65259 3.73694 3.77561
10×7×4 5.59497 5.14499 5.11788 5.48895 5.64245 5.17348 5.79044 5.43078 5.32223 5.34225
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Table B.2 Results for problem size 10×4×4

Algorithm
dist 1 2 3 4 5 6 7 8 9 10 11 12
10% 84.4% 98.2% 94.4% 91.0% 89.2% 99.5% 97.4% 95.6% 95.0% 99.8% 98.6% 98.2%
5% 78.4% 88.0% 85.5% 84.3% 85.1% 90.4% 89.7% 88.0% 86.7% 84.6% 88.2% 86.7%
1% 16.6% 12.4% 13.0% 15.6% 15.9% 8.8% 12.1% 14.7% 9.9% 2.7% 6.5% 9.1%

Algorithm
dist 13 14 15 16 17 18 19 20 21 22 23 24
10% 76.6% 98.4% 93.8% 92.3% 89.8% 99.9% 97.8% 95.7% 96.3% 99.5% 98.1% 98.4%
5% 74.7% 88.4% 85.5% 86.2% 86.9% 90.2% 90.8% 88.6% 92.5% 83.5% 88.0% 88.4%
1% 27.4% 13.4% 16.9% 19.5% 26.8% 7.9% 12.7% 16.4% 13.8% 3.5% 5.3% 8.2%

Algorithm
dist 25 26 27 28 29 30 31 32 33 34 35 36
10% 84.3% 98.5% 92.7% 90.6% 90.3% 99.5% 96.8% 95.5% 95.6% 99.4% 98.4% 97.5%
5% 78.8% 87.3% 82.9% 81.0% 85.7% 90.1% 89.0% 88.7% 90.2% 85.2% 89.2% 90.7%
1% 15.9% 12.1% 13.8% 12.6% 17.5% 10.8% 14.9% 17.8% 12.1% 4.0% 11.1% 10.1%

Algorithm
dist 37 38 39 40 41 42 43 44 45 46 47 48
10% 76.8% 97.7% 94.0% 93.5% 90.5% 99.2% 97.5% 95.7% 95.8% 99.5% 98.8% 97.7%
5% 75.5% 86.5% 84.8% 84.6% 88.2% 90.3% 89.9% 88.9% 91.6% 86.6% 91.4% 88.7%
1% 25.9% 9.8% 16.3% 15.0% 29.8% 12.2% 19.5% 17.9% 18.9% 3.8% 9.9% 8.8%

Algorithm
dist 49 50 51 52 53 54 55 56 57 58 59 60
10% 85.1% 97.6% 93.6% 91.0% 89.6% 99.2% 97.5% 94.9% 95.7% 99.8% 98.8% 97.3%
5% 76.5% 85.6% 84.2% 81.3% 84.6% 93.3% 91.5% 88.0% 91.8% 92.7% 92.5% 90.2%
1% 13.8% 14.2% 15.4% 13.6% 22.0% 15.9% 22.0% 23.4% 17.2% 9.0% 13.5% 16.9%

Algorithm
dist 61 62 63 64 65 66 67 68 69 70 71 72
10% 77.9% 97.9% 94.8% 93.0% 90.7% 99.5% 97.5% 94.7% 96.2% 99.5% 98.3% 98.0%
5% 75.6% 85.3% 83.1% 85.7% 88.7% 92.6% 89.5% 89.4% 93.2% 90.2% 91.0% 91.0%
1% 24.0% 13.8% 16.6% 18.2% 31.1% 15.4% 19.6% 22.6% 23.8% 6.5% 13.1% 15.7%

Table B.3 Aggregate results for problem size 10×4×4

Aggregate Results
Diversification Rule Neighborhood γ Construction

dist 50% 75% never 1-swp 2-swp 3-swp 0.9 0.8 0.7 0 Mrg Ind
10% 94.9% 94.8% 94.9% 91.2% 95.6% 97.9% 99.0% 96.6% 95.0% 88.9% 95.0% 94.8%
5% 86.6% 86.9% 87.8% 82.9% 89.1% 89.4% 88.4% 88.2% 87.2% 84.7% 86.9% 87.4%
1% 12.9% 14.2% 17.4% 16.1% 17.8% 10.6% 9.8% 14.0% 15.3% 20.1% 13.5% 16.1%
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Table B.4 Results for problem size 10×7×4
Algorithm

dist 1 2 3 4 5 6 7 8 9 10 11 12
10% 9.0% 6.9% 1.8% 1.1% 9.6% 11.5% 5.2% 4.5% 8.4% 9.9% 6.8% 4.0%
5% 0.1% 0.2% 0.1% 0.0% 0.3% 1.1% 0.1% 0.0% 0.4% 0.4% 0.3% 0.3%
1% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Algorithm
dist 13 14 15 16 17 18 19 20 21 22 23 24
10% 6.8% 7.1% 2.1% 1.2% 13.5% 10.5% 5.6% 3.6% 19.7% 11.0% 4.9% 4.5%
5% 0.3% 0.3% 0.0% 0.0% 1.6% 0.3% 0.3% 0.2% 1.8% 0.2% 0.0% 0.2%
1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0%

Algorithm
dist 25 26 27 28 29 30 31 32 33 34 35 36
10% 5.2% 6.2% 2.5% 0.9% 10.2% 12.3% 5.8% 4.4% 8.5% 12.3% 7.9% 5.0%
5% 0.0% 0.2% 0.0% 0.0% 0.2% 0.5% 0.4% 0.3% 0.1% 0.6% 0.6% 0.3%
1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Algorithm
dist 37 38 39 40 41 42 43 44 45 46 47 48
10% 5.5% 6.2% 2.0% 1.1% 13.1% 10.8% 5.2% 2.7% 22.1% 11.4% 8.4% 4.3%
5% 0.4% 0.2% 0.1% 0.0% 1.4% 0.4% 0.1% 0.2% 2.6% 0.7% 0.3% 0.1%
1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Algorithm
dist 49 50 51 52 53 54 55 56 57 58 59 60
10% 4.7% 5.3% 2.3% 1.1% 10.6% 12.1% 5.5% 4.1% 10.5% 11.9% 8.2% 5.8%
5% 0.0% 0.2% 0.1% 0.1% 0.1% 0.7% 0.1% 0.3% 0.4% 1.1% 0.5% 0.1%
1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Algorithm
dist 61 62 63 64 65 66 67 68 69 70 71 72
10% 4.7% 4.2% 1.8% 0.9% 12.8% 11.4% 6.2% 5.5% 21.0% 12.3% 8.4% 5.8%
5% 0.3% 0.4% 0.1% 0.0% 2.0% 0.7% 0.3% 0.3% 1.8% 0.8% 0.6% 0.4%
1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0%

Table B.5 Aggregate results for problem size 10×7×4

Aggregate Results
Diversification Rule Neighborhood γ Construction

dist 50% 75% never 1-swp 2-swp 3-swp 0.9 0.8 0.7 0 Mrg Ind
10% 7.1% 7.3% 7.4% 3.8% 8.2% 9.7% 9.6% 5.0% 3.4% 10.9% 6.7% 7.7%
5% 0.4% 0.4% 0.5% 0.1% 0.5% 0.6% 0.5% 0.2% 0.2% 0.8% 0.3% 0.5%
1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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Table B.6 Results for problem size 10×4×4: Algorithm Modification

Algorithm
dist 1 2 3 4 5 6 7 8 9 10 11 12
10% 99.3% 99.4% 99.5% 99.7% 99.9% 99.8% 99.8% 99.5% 100% 99.7% 99.7% 99.3%
5% 92.9% 89.5% 90.6% 91.6% 95.9% 90.6% 91.2% 92.0% 95.5% 84.5% 90.1% 88.5%
1% 17.6% 13.4% 17.2% 17.6% 19.0% 8.3% 13.4% 16.5% 8.3% 2.2% 6.1% 6.8%

Algorithm
dist 25 26 27 28 29 30 31 32 33 34 35 36
10% 99.3% 99.3% 98.8% 99.5% 100% 100% 99.8% 99.9% 100% 99.9% 99.9% 99.6%
5% 90.4% 90.2% 88.0% 88.2% 95.9% 92.2% 92.0% 94.6% 95.5% 89.4% 90.1% 92.6%
1% 16.2% 11.1% 16.2% 16.3% 21.5% 11.5% 18.4% 20.8% 12.7% 3.2% 11.1% 11.8%

Algorithm
dist 49 50 51 52 53 54 55 56 57 58 59 60
10% 99.0% 98.8% 99.5% 99.5% 100% 99.7% 99.8% 100% 100% 99.8% 99.9% 99.9%
5% 91.7% 87.1% 86.5% 89.8% 95.8% 93.3% 93.6% 94.6% 96.8% 90.8% 92.0% 94.6%
1% 17.5% 13.3% 14.9% 16.7% 25.9% 17.7% 22.3% 22.6% 16.7% 8.8% 13.0% 15.8%

Table B.7 Aggregate results for problem size 10×4×4: Algorithm Modification

Aggregate Results
Diversification Rule Neighborhood γ

dist 50% 75% never 1-swp 2-swp 3-swp 0.9 0.8 0.7 0
10% 99.6% 99.7% 99.7% 99.3% 99.9% 99.8% 99.6% 99.6% 99.7% 99.7%
5% 91.1% 91.6% 92.2% 89.7% 93.5% 91.7% 89.7% 90.5% 91.8% 94.5%
1% 12.2% 14.2% 17.1% 15.7% 18.2% 9.7% 9.9% 14.7% 16.1% 17.3%

Table B.8 Results for problem size 10×7×4: Algorithm Modification

Algorithm
dist 1 2 3 4 5 6 7 8 9 10 11 12
10% 50.8% 65.3% 54.4% 53.2% 67.5% 71.9% 70.0% 66.7% 58.5% 53.2% 55.4% 58.7%
5% 22.2% 25.1% 19.4% 20.5% 28.1% 30.2% 26.7% 27.9% 18.3% 11.7% 12.2% 15.4%
1% 0.7% 1.0% 0.3% 0.6% 1.5% 0.6% 0.6% 0.9% 0.2% 0.0% 0.1% 0.1%

Algorithm
dist 25 26 27 28 29 30 31 32 33 34 35 36
10% 41.0% 55.0% 49.3% 43.1% 68.6% 73.0% 66.9% 72.3% 62.9% 61.9% 64.0% 64.4%
5% 13.0% 17.2% 16.2% 12.3% 29.7% 33.6% 28.8% 32.4% 21.3% 17.3% 18.7% 19.4%
1% 0.7% 0.7% 0.5% 0.1% 1.9% 0.8% 1.2% 2.3% 0.5% 0.2% 0.4% 0.2%

Algorithm
dist 49 50 51 52 53 54 55 56 57 58 59 60
10% 33.7% 48.3% 41.2% 38.7% 71.3% 76.3% 74.5% 73.0% 68.1% 70.3% 70.5% 69.7%
5% 10.2% 15.0% 12.1% 12.9% 34.0% 35.0% 34.7% 33.2% 25.4% 25.6% 28.1% 26.0%
1% 0.4% 0.6% 0.4% 0.4% 2.4% 1.8% 2.5% 1.7% 1.4% 0.9% 0.5% 1.0%

Table B.9 Aggregate results for problem size 10×7×4: Algorithm Modification

Aggregate Results
Diversification Rule Neighborhood γ

dist 50% 75% never 1-swp 2-swp 3-swp 0.9 0.8 0.7 0
10% 60.5% 60.2% 61.3% 47.8% 71.0% 63.1% 63.9% 60.7% 60.0% 58.0%
5% 21.5% 21.7% 24.4% 16.3% 31.2% 20.0% 23.4% 21.9% 22.2% 22.5%
1% 0.6% 0.8% 1.2% 0.5% 1.5% 0.5% 0.7% 0.7% 0.8% 1.1%
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Table B.10 Results for problem size 20×8×4: Algorithm Modification

Algorithm
dist 1 2 3 4 5 6 7 8 9 10 11 12
10% 99.2% 100% 100% 99.9% 99.7% 100% 100% 100% 99.9% 100% 100% 100%
5% 98.0% 99.5% 99.5% 99.4% 98.9% 98.8% 98.8% 98.2% 95.2% 94.2% 94.3% 95.0%
1% 17.7% 10.1% 9.0% 10.3% 8.2% 2.2% 1.8% 2.2% 0.2% 0.0% 0.1% 0.3%

Algorithm
dist 25 26 27 28 29 30 31 32 33 34 35 36
10% 98.8% 100% 99.9% 99.5% 99.9% 100% 99.9% 100% 100% 100% 100% 100%
5% 97.7% 99.6% 99.1% 98.7% 98.9% 99.6% 99.1% 99.3% 97.8% 96.7% 97.1% 96.1%
1% 17.7% 12.8% 12.5% 14.1% 12.8% 4.3% 4.7% 6.0% 2.0% 0.2% 0.4% 0.6%

Algorithm
dist 49 50 51 52 53 54 55 56 57 58 59 60
10% 96.8% 100% 99.8% 99.9% 99.5% 100% 99.9% 100% 99.8% 100% 100% 100%
5% 96.0% 99.4% 99.3% 99.2% 99.1% 99.8% 99.5% 99.6% 99.0% 98.5% 98.7% 98.7%
1% 19.8% 17.0% 16.4% 17.4% 19.3% 10.7% 10.1% 12.4% 2.5% 1.1% 1.3% 1.3%

Table B.11 Aggregate results for problem size 20×8×4: Algorithm Modification

Aggregate Results
Diversification Rule Neighborhood γ

dist 50% 75% never 1-swp 2-swp 3-swp 0.9 0.8 0.7 0
10% 99.9% 99.8% 99.6% 99.5% 99.9% 100% 100% 99.9% 99.9% 99.3%
5% 97.5% 98.3% 98.9% 98.8% 99.1% 96.8% 98.5% 98.4% 98.2% 97.8%
1% 5.2% 7.3% 10.8% 14.6% 7.9% 0.8% 6.5% 6.3% 7.2% 11.1%

Table B.12 Results for problem size 20×14×4: Algorithm Modification

Algorithm
dist 1 2 3 4 5 6 7 8 9 10 11 12
10% 30.7% 66.2% 54.4% 52.6% 43.5% 47.1% 46.0% 46.5% 10.7% 6.2% 7.6% 8.4%
5% 6.2% 13.3% 10.4% 10.1% 3.4% 1.1% 2.1% 1.8% 0.0% 0.0% 0.0% 0.1%
1% 0.1% 0.0% 0.2% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Algorithm
dist 25 26 27 28 29 30 31 32 33 34 35 36
10% 27.4% 63.0% 50.0% 49.9% 54.6% 63.9% 65.3% 62.4% 18.9% 15.0% 17.4% 17.8%
5% 7.6% 12.7% 9.0% 9.9% 8.8% 6.9% 6.9% 9.2% 0.1% 0.0% 0.2% 0.1%
1% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Algorithm
dist 49 50 51 52 53 54 55 56 57 58 59 60
10% 26.4% 62.3% 54.4% 48.1% 58.4% 75.5% 71.1% 69.6% 29.6% 29.9% 30.8% 32.7%
5% 7.7% 15.4% 10.6% 10.4% 13.7% 14.6% 14.4% 15.3% 1.0% 1.0% 0.7% 0.9%
1% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%

Table B.13 Aggregate results for problem size 20×14×4: Algorithm Modification

Aggregate Results
Diversification Rule Neighborhood γ

dist 50% 75% never 1-swp 2-swp 3-swp 0.9 0.8 0.7 0
10% 35.0% 42.1% 49.1% 48.8% 58.7% 18.8% 47.7% 44.1% 43.1% 33.4%
5% 4.0% 6.0% 8.8% 10.3% 8.2% 0.3% 7.2% 6.0% 6.4% 5.4%
1% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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Table B.14 Results for problem size 30×12×4: Algorithm Modification

Algorithm
dist 1 2 3 4 5 6 7 8 9 10 11 12
10% 99.9% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
5% 99.6% 100% 100% 99.9% 99.8% 100% 100% 100% 99.9% 99.9% 99.9% 99.7%
1% 27.4% 24.3% 19.7% 22.4% 7.4% 4.9% 4.6% 7.9% 0.3% 0.0% 0.2% 0.2%

Algorithm
dist 25 26 27 28 29 30 31 32 33 34 35 36
10% 99.9% 100% 99.9% 100% 100% 100% 100% 100% 100% 100% 100% 100%
5% 99.0% 100% 99.9% 99.7% 99.8% 100% 100% 100% 100% 100% 100% 100%
1% 38.2% 34.5% 29.6% 30.9% 14.2% 14.9% 14.4% 13.9% 1.2% 0.5% 0.7% 0.8%

Algorithm
dist 49 50 51 52 53 54 55 56 57 58 59 60
10% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
5% 99.2% 100% 99.9% 99.6% 100% 100% 100% 100% 100% 100% 100% 100%
1% 41.5% 45.2% 36.9% 38.6% 32.1% 26.7% 26.4% 23.8% 2.7% 2.7% 2.4% 3.5%

Table B.15 Aggregate results for problem size 30×12×4: Algorithm Modification

Aggregate Results
Diversification Rule Neighborhood γ

dist 50% 75% never 1-swp 2-swp 3-swp 0.9 0.8 0.7 0
10% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
5% 99.9% 99.9% 99.9% 99.7% 100% 100% 100% 100% 99.9% 99.7%
1% 9.9% 16.2% 23.5% 32.4% 15.9% 1.3% 17.1% 15.0% 15.8% 18.3%

Table B.16 Results for problem size 30×21×4: Algorithm Modification
Algorithm

dist 1 2 3 4 5 6 7 8 9 10 11 12
10% 39.0% 60.6% 56.2% 53.7% 25.5% 19.2% 27.3% 26.3% 0.7% 0.2% 0.2% 0.4%
5% 5.3% 7.2% 7.3% 6.7% 0.4% 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0%
1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Algorithm
dist 25 26 27 28 29 30 31 32 33 34 35 36
10% 43.4% 69.1% 61.9% 61.5% 42.8% 45.4% 49.6% 48.2% 2.3% 1.4% 2.1% 2.3%
5% 10.0% 14.3% 13.0% 12.5% 1.4% 1.1% 0.7% 2.3% 0.0% 0.0% 0.0% 0.0%
1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Algorithm
dist 49 50 51 52 53 54 55 56 57 58 59 60
10% 44.6% 75.1% 65.2% 66.4% 58.7% 65.2% 65.7% 66.4% 8.6% 5.8% 7.3% 9.0%
5% 11.1% 20.9% 17.9% 19.1% 5.5% 4.3% 5.6% 8.3% 0.0% 0.0% 0.0% 0.0%
1% 0.1% 0.0% 0.0% 0.5% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0%

Table B.17 Aggregate results for problem size 30×21×4: Algorithm Modification

Aggregate Results
Diversification Rule Neighborhood γ

dist 50% 75% never 1-swp 2-swp 3-swp 0.9 0.8 0.7 0
10% 25.8% 35.8% 44.8% 58.1% 45.0% 3.4% 38.0% 37.3% 37.1% 29.5%
5% 2.3% 4.6% 7.7% 12.1% 2.5% 0.0% 5.3% 5.0% 5.4% 3.7%
1% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0%
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Table B.18 Results for problem size 40×16×4: Algorithm Modification
Algorithm

dist 1 2 3 4 5 6 7 8 9 10 11 12
10% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
5% 100% 100% 99.7% 99.7% 99.9% 100% 100% 100% 100% 100% 100% 100%
1% 50.5% 38.6% 36.9% 39.9% 12.4% 7.7% 9.4% 7.5% 0.7% 0.1% 0.0% 0.0%

Algorithm
dist 25 26 27 28 29 30 31 32 33 34 35 36
10% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
5% 100% 100% 99.9% 99.6% 100% 100% 100% 100% 100% 100% 100% 100%
1% 62.0% 56.3% 51.0% 52.6% 28.8% 23.3% 19.1% 21.8% 1.6% 0.8% 1.0% 1.0%

Algorithm
dist 49 50 51 52 53 54 55 56 57 58 59 60
10% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
5% 100% 100% 99.9% 99.6% 99.9% 100% 100% 100% 100% 100% 100% 100%
1% 68.3% 64.9% 63.5% 59.7% 46.7% 41.9% 36.8% 36.4% 4.6% 2.4% 2.4% 1.8%

Table B.19 Aggregate results for problem size 40×16×4: Algorithm Modification

Aggregate Results
Diversification Rule Neighborhood γ

dist 50% 75% never 1-swp 2-swp 3-swp 0.9 0.8 0.7 0
10% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
5% 99.9% 100% 100% 99.9% 100% 100% 100% 99.9% 99.9% 100%
1% 17.0% 26.6% 35.8% 53.7% 24.3% 1.4% 26.2% 24.5% 24.5% 30.6%

Table B.20 Results for problem size 40×28×4: Algorithm Modification
Algorithm

dist 1 2 3 4 5 6 7 8 9 10 11 12
10% 40.3% 52.0% 48.0% 49.1% 13.0% 5.6% 10.2% 12.9% 0.0% 0.0% 0.0% 0.0%
5% 2.7% 2.2% 3.0% 3.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Algorithm
dist 25 26 27 28 29 30 31 32 33 34 35 36
10% 53.7% 66.7% 60.6% 61.3% 31.9% 25.6% 28.9% 30.0% 0.2% 0.1% 0.1% 0.3%
5% 4.5% 7.8% 8.7% 7.4% 0.6% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Algorithm
dist 49 50 51 52 53 54 55 56 57 58 59 60
10% 63.9% 76.6% 70.8% 73.0% 54.1% 51.1% 52.1% 55.1% 2.3% 1.3% 0.3% 1.2%
5% 9.6% 16.9% 16.9% 15.5% 2.5% 0.8% 1.2% 1.7% 0.0% 0.0% 0.0% 0.0%
1% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table B.21 Aggregate results for problem size 40×28×4: Algorithm Modification

Aggregate Results
Diversification Rule Neighborhood γ

dist 50% 75% never 1-swp 2-swp 3-swp 0.9 0.8 0.7 0
10% 19.3% 30.0% 41.8% 59.7% 30.9% 0.5% 31.0% 30.1% 31.4% 28.8%
5% 0.9% 2.4% 5.4% 8.2% 0.6% 0.0% 3.1% 3.3% 3.1% 2.2%
1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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