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 Abstract 

 

  Many problems exist where one desires to optimize systems with multiple, often 

competing, objectives.  Further, these problems may not have a closed form 

representation, and may also have stochastic responses. Recently, a method expanded 

mixed variable generalized pattern search/ranking and selection (MVPS-RS) and Mesh 

Adaptive Direct Search (MADS) developed for single-objective, stochastic problems to 

the multi-objective case by using aspiration and reservation levels.   However, the 

success of this method in approximating the true Pareto solution set can be dependent 

upon several factors.  These factors include the experimental design and ranges of the 

aspiration and reservation levels, and the approximation quality of the nadir point.  

Additionally, a termination criterion for this method does not yet exist.  In this thesis, 

these aspects are explored.  Furthermore, there may be alternatives or additions to this 

method that can save both computational time and function evaluations.  These include 

the use of surrogates as approximating functions and the expansion of proven single-

objective formulations.  In this thesis, two new approaches are developed that make use 

of all of these previous existing methods in combination.    
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MULTI-OBJECTIVE OPTIMIZATION OF MIXED VARIABLE, STOCHASTIC 
SYSTEMS USING SINGLE-OBJECTIVE FORMULATIONS 

 
 

I. Introduction 

1.1. Problem Setting  

Optimization over multiple objectives is not as simple or straightforward as 

optimization of a single objective.  There is typically no single optimal solution, as a 

solution may be better in one objective but worse in another.  This causes a competition 

among the objectives, and so a true optimum is viewed in terms of a set versus a single 

point.  This set, called the Pareto set or Pareto front, consists of those solutions that are 

not dominated, or those that are not worse for every objective than another solution in the 

set.  Further complicating matters is that the decision variables may also be discrete or 

categorical, and that there may be some uncertainty in the objective function(s) or 

constraint(s).  These problem settings are referred to as mixed variable and stochastic 

optimization, respectively.   

The classical optimization problem for a stochastic system can be formulated as 

follows,  

min ( ) ( , )Z w F x w=      (1.1a) 

subject to 

( , ) 0ig x w ≤ , {1,..., }i M∈ ,    (1.1b) 

1nx∈\ ,      (1.1c) 

2nw∈\ ,      (1.1d) 

where x represents the controllable design variables and w represents the random 

environment-determining variables.  Therefore, the goal is to minimize in some manner 
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over all feasible x and all possible values of w.  For stochastic systems, the notions of 

feasibility and optimality are highly dependent on the problem, and must be precisely 

defined [70]. 

All constraints are assumed to be deterministic, and the system under study is 

assumed to have an objective function that cannot be explicitly evaluated and must be 

estimated through some sort of simulation (in which input or control variables produce a 

response).  For simulation-based optimization, the general form of the stochastic 

objective function is typically replaced with its mathematical expectation.  Under the 

assumption that the observed response is an unbiased approximation of the true system 

response, the observed response can be represented by )()(),( xxfwxF wε+=  where f is 

the deterministic, “true” objective function value and ( )w xε  is the random error function 

associated with the simulation, where [ ( )] 0wE xε = . 
 

In this research the mixed variables are included as follows.  The decision space is 

partitioned into continuous and discrete variables, cΩ and dΩ  respectively, as categorical 

variables may be mapped to discrete values.  By further mapping the discrete values to 

the integers, the discrete part of the decision space can be represented as a subset of the 

integers, i.e. 
dd nΩ ∈] , where dn  is the dimension of the discrete space.  A solution 

x∈Ω  is denoted as ( )( , ) c dn nc dx x x= ∈ ×\ ]  where 
cc nx ∈\ , 

dd nx ∈] , and c dn n n= +  

is the dimension of the decision space.  With the inclusion of stochastic and multi-

objective elements to the classic formulation, the problem can be formulated as: 
 

     min [ ( )] [ ( ) ( )]wE F x E f x xε= +     (1.2a) 

subject to 

     ( ) 0,ig x ≤    {1,..., }i M∈ ,     (1.2b) 
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 where there are J  objectives and ( )( ) :
c dn n JF x × →\ ] \ .  That is, ( )1 2, ,..., JF F F F=  

and a solution x∗optimizes this set of objectives such that no other feasible point yields a 

better function value in all objectives. 

There has been much work done using genetic algorithms and other methods to 

solve deterministic, multi-objective problems.  However, these solutions can be random 

in their success and can vary in their completeness.  Recently, a provably convergent 

algorithm, known as Stochastic Multi-Objective Mesh Adaptive Direct Search 

(SMOMADS), was developed by Walston to solve the stochastic, multi-objective class of 

problems [70].  The algorithm combines mixed-variable generalized pattern 

search/ranking and selection (MVPS-RS) and Mesh Adaptive Direct Search (MADS) 

developed for single-objective stochastic problems, with three multi-objective methods: 

interactive techniques for the specification of aspiration/reservation levels, scalarization 

functions, and multi-objective ranking and selection.  Originally, the purpose of this 

thesis was to further develop SMOMADS; however, the research quickly evolved beyond 

that scope.   

1.2. Purpose of the Research 

SMOMADS samples aspiration and reservation levels to find points of 

intersection between the line, or plane, formed by a single set or design of aspiration and 

reservation levels and the Pareto front.  The aspiration and reservation levels represent 

levels at which a solution is either ideal (aspiration) or unacceptable (reservation).  The 

intersection is found using an achievement scalarization function of the objectives input 

into the pattern search method.  The achievement scalarization function uses the utopia 

point, nadir point, aspiration level, and reservation level to form a single objective 

formulation.  Although SMOMADS is convergent to Pareto solutions, the experimental 

design used may generate a front with considerable gaps in the objective space, thus 
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excluding desirable solutions.  Additionally, the reservation levels are likely dependent 

upon the estimate of the nadir point, which is the worst possible solution in the objective 

space.   This point is often overestimated by using the worst value for each objective, as 

its value is typically hard to determine in practice.  As mentioned, the achievement 

scalarization function uses the nadir point in its weighting of the objective functions.  

Therefore, using an incorrect nadir point may have some negative impact on 

SMOMADS.  The same may be true for the utopia point; however, the utopia point is 

typically easier to find as its components are the best value in each objective irrespective 

of the other objectives.  Additionally, little research has been conducted on the sensitivity 

of SMOMADS to the level of noise in the objective functions. 

Once a design has been run using SMOMADS, it is important to be able to 

quantify the quality of the Pareto front approximation, as with several objectives the 

quality cannot be visually determined.  Although the points found are Pareto optimal, 

there may exist large gaps or clusters, and desirable portions of the front may be missing.  

Quantification is not easily done, as fronts are not necessarily continuous, and for new 

problems the front is unknown.  There are a few methods for comparing approximations 

quantitatively, but they generally cannot be used to determine the completeness of an 

approximation (i.e. are any portions missing). 

Finally, because SMOMADS can be time-consuming, it may be more useful to 

use surrogates (models that approximate the true objectives) to help better determine the 

Pareto front after an initial set of design points have been used.  Furthermore, no true 

methodology exists for using SMOMADS in a manner that guarantees a “full” Pareto 

front approximation upon completion.  That is, no method exists to identify gaps or 

determine a point of termination.  Methods used to fill the gaps may be used in 

conjunction with, or perhaps even in lieu of, SMOMADS. 
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1.3. Problem Statement 

A main focus of this research is to determine the best experimental design to 

explore the Pareto objective space within SMOMADS.  More specifically, the focus is to 

look at various performance measures of the approximation to see which design performs 

best based upon desired attributes (spread, lack of clusters, etc.).  Further, this research 

examines the impact of the quality of the nadir point and the use of surrogates to help 

generate the Pareto front, so as to make SMOMADS as efficient as possible.   

Additionally, the sensitivity of SMOMADS to various levels of noise is evaluated, and an 

adaptive methodology is developed to use SMOMADS to find a representative Pareto 

front for any problem.  Finally, existing methods other than SMOMADS are also 

evaluated.  In particular, a bi-objective algorithm, BiMADS, is expanded to work for any 

number of objectives. 

1.4. Overview 

This thesis is organized as follows.  Chapter II reviews SMOMADS and the 

methods and techniques it uses.  In addition, existing multi-objective optimization 

methods, experimental designs, surrogate methods, nadir point approximations, and 

Pareto front quality metrics are reviewed.  Chapter III presents the specific 

implementations used and investigated, as well as the methodology used.  Chapter IV 

presents the data collection and analysis procedures, and the resulting analysis and 

computational results.  Algorithms developed in this research are also presented.  Chapter 

V presents the final conclusions and recommendations for future research. 

 



6 

II. Literature Review 

This chapter begins with an overview of the SMOMADS algorithm, and the 

methods that it uses.  The remaining sections cover experimental design concepts, 

surrogate methods, nadir point approximations, and Pareto front metrics as they apply to 

the SMOMADS algorithm. 

2.1. SMOMADS 

SMOMADS uses an achievement scalarization function to combine the multiple 

objectives into a single objective.  In this form, the problem can then be solved using 

single objective optimization methods.  Specifically, in the case of stochastic, linearly-

constrained problems, Generalized Pattern Search with Ranking and Selection (GPS-RS) 

can be used.  An extended version, Mesh Adaptive Direct Search with Ranking and 

Selection (MADS-RS) can be used when the problem is nonlinearly constrained.  Both 

methods can also be applied to mixed variable cases (MVPS-RS, MVMADS-RS).  A 

brief description of these methods follows, beginning with ranking and selection, 

followed by GPS-RS and MADS-RS. 

 2.1.1.  Ranking and Selection.    Problems with stochastic responses require a 

method to select a “best” point to account for variation, while also providing statistical 

assurance of correct selection.  Ranking and selection (R&S) considers multiple 

candidates simultaneously at a reasonable cost.  To do so, R&S detects a relative order of 

the candidates rather than generating precise estimates. 

 Let kX  denote the thk  element of a sequence of random vectors and kx denote a 

realization of kX .  For a finite set of candidate points { }1 2, ,...,
cnC Y Y Y=  with 2cn ≥ , let 

( ) ( ),q q qf f Y E F Y⎡ ⎤= = ⋅⎣ ⎦  denote the true mean of the response function F at qY  for each 

1,2,..., cq n= .  These means can be ordered (minimum to maximum) as [1] [2] [ ], ,...,
cnf f f .  
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Denote by [ ]qY C∈  the candidate from C with the thq  lowest true objective function 

value. 

 Given some 0δ > , called the indifference zone parameter, no distinction is made 

between two candidate points whose true means satisfy [2] [1]f f δ− < .  In such a case, the 

method is indifferent in choosing either candidate as best.  The probability of correct 

selection (CS) is defined as  
   [ ] [1] [ ] [1]select | ; 1, 2,..., 1q cP CS P Y f f q nδ α⎡ ⎤= − ≥ = ≥ −⎣ ⎦ ,      (2.1) 

where (0,1)α ∈  is the statistical significance level.  Because random sampling guarantees 

[ ] 1

c

P CS
n

= , the significance level must satisfy 10 1
cn

α< < − .   

 Because the true objective function values are unavailable, it is necessary to work 
with the sample means of F.  For each 1,2,..., cq n= , let qs  be the total number of 

replications at qY , and let { } ( ){ }1 1
, qq ss

qs qs qss s
F F Y W

= =
=  be the set of simulated responses, 

where 1{ } qs
qs sY =  are the replications at candidate point qY , and qsW  are realizations of the 

random noise.  For each 1,2,..., cq n= , the sample mean qF  is given by 

1

1 qs

q qs
sq

F F
s =

= ∑ .            (2.2) 

The sample means can be ordered and indexed , letting [ ]
ˆ

qY C∈  denote the candidate with 

the thq lowest estimated objective function value as determined by the R&S procedure.  

The candidate corresponding to the minimum mean response [1] [1]
ˆ arg( )Y F=  is chosen as 

the best point.  A generic R&S procedure is shown in Figure 2.1.1. 

2.1.2.   GPS-RS.    Pattern search algorithms are defined through a finite set of 

directions used at each iteration.  The direction set and a step length parameter are used to 

generate a discrete set of points, or mesh, around the current iterate.  The mesh at 

iteration k is defined to be  
{ }: D

k

nm
k k

x O

M x Dz z
∈

= + Δ ∈`∪        (2.3)  
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where Ok is the set of points for which the objective function f  has been evaluated by 

the start of iteration k, m
kΔ  is called the mesh size parameter, and D is a positive set of 

directions that span n\ .  An additional restriction on D is that each direction d D∈ , 

1, 2..., Dj n= , must be the product of some fixed nonsingular generating matrix n nG ×∈\  

by an integer vector n
jz ∈] [67].  For bound and linearly constrained problems, the 

directions in D must be sufficiently rich to ensure that polling directions can be chosen 

that conform to the geometry of the constraint boundaries, and that these directions be 

used infinitely many times.  A finite set of trial points, called the poll set, is then chosen 

from the mesh, evaluated, and compared to the incumbent solution.  If improvement is 

found, the incumbent is replaced and the mesh is retained or coarsened by increasing the 

mesh size parameter m
kΔ .  If not, the mesh is refined and a new set of trial points is 

selected.   

 

Procedure ( ), ,RS C α δ  

Inputs: { }1 2, ,...,
cnC Y Y Y= , (0,1)α ∈ , 0δ > . 

Step 1: For each qY C∈ , use an appropriate statistical technique to determine the number 

of samples qs  required to meet the probability of correct selection guarantee in 

(2.1), as a function of α , δ  and response variation of qY . 

Step 2: For each 1,2,..., cq n= , obtain replicated responses qsF , 1, 2,.., qs s= , and  

            compute the sample mean qF , according to (2.2). 

Return: ( )[1] [1]
ˆ argY F=  

Figure 2.1.1: A Generic R&S Procedure [70] 

At each iteration, an optional search may be conducted that although does not 

contribute to the convergence theory, does improve efficiency and performance.  The 

search evaluates a finite number of mesh points that may be generated using a variety of 

methods; in this research a Latin Hypercube.  If the search fails, the poll step is used.    
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In 1997, Torczon [67] defined and analyzed the derivative-free class of pattern 

search algorithms for unconstrained problems with continuously differentiable objective 

functions.  In this work, it was shown that a subsequence of pattern search iterates  

{ } n
kx ∈\  converges to a first order stationary point *x .  The connection between pattern 

search and the positive basis theory of Davis [26] was introduced by Lewis and Torczon 

[40].  Pattern search was subsequently extended by Lewis and Torczon to problems with 

bound constraints [41] and a finite number of linear constraints [42].  Audet and Dennis 

[14] introduced a slightly generalized version called generalized pattern search (GPS), 

adding a hierarchy of convergence results for unconstrained and linearly constrained 

problems, including a new thory based on the nonsmooth calculus of Clarke [22].  

Abramson [6] studied second-order behavior of GPS and showed that, under certain 

algorithmic choices, strict local maximizers and an entire class of saddle points can be 

eliminated from convergence consideration.   

Audet and Dennis [15] extended their approach to handle nonlinear constraints by 

adding a filter method [31] for GPS that accepts new iterates if improvement in the 

objective function or an aggregate constraint violation function is found. Alternatively, 

Lewis and Torczon [43] handled nonlinear constraints by solving a sequence of bound 

constrained augmented Lagrangian subproblems [23].   

Audet and Dennis [11] extended GPS to mixed variable problems, mixed variable 

pattern search (MVPS), with bound constraints by including user-specified discrete 

neighborhoods in the definition of the mesh, where the objective function f  is assumed 

to be continuously differentiable for fixed discrete variable values.  Abramson et.al. 

extended the results of [11] to linear [5] and non-linear constraints [1], again making use 

of the Clarke calculus [22], and the latter being augmented with a filter [15] to handle the 

nonlinear constraints. 
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The GPS framework, in conjunction with ranking and selection, was used by 

Sriver to address the random response case with mixed variables [64].  In this case, the 
poll set at each iteration is given by ( ) ( )k k kP x N x∪  where ( )kN x  is a user-defined set of 

discrete neighbors around xk and  

     { ( ,0) : }i
k k k kP x d d D= + Δ ∈          (2.4) 

where (d,0) denotes that continuous variables have been partitioned and that the discrete 

variables remain unchanged.  The set of discrete neighbors is defined by a set-valued 
function : 2N ΩΩ→ , where 2Ω  denotes the power set of Ω .  By convention, ( )x N x∈  

for each x∈Ω , and it is assumed that ( )N x  is finite.  A generic indifference-zone 

ranking and selection procedure ( , , )kRS P α δ  with indifference-zone parameter δ and 

significance level α is used to select among points in the poll set for improved solutions; 

i.e., δ-near-best mean.  Given a fixed rational number 1τ >  and two integers 1m− ≤ −  

and 0m+ ≥ , the mesh size parameter m
kΔ  is updated according to 

         1
kwm m

k kτ+Δ = Δ              (2.5) 

where 

    
{ }
{ }
0,1..., ,  if an improved mesh point is found

, 1,..., 1 ,  otherwise.
k

m
w

m m

+

− −

⎧⎪∈⎨
+ −⎪⎩

                 (2.6) 

If no improvement is found, an extended poll step is conducted to search about any 
discrete neighbor ( )ky N x∈  that satisfies ( ) ( ) ( )k k kf x f y f x ξ≤ < + , where kξ  is called 

the extended poll trigger.  Each neighbor satisfying this criteria, in turn, becomes the poll 

center, and the extended poll continues until either a better point than the current iterate is 

found, or else they are all worse than the extended poll center.  Sriver showed that this 

algorithm has an iteration subsequence with almost sure convergence to a stationary point 

“appropriately defined” in the mixed-variable domain [63].  The mixed-variable GPS-RS 

Algorithm is shown in Figure 2.1.2. 
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A General MVPS-RS Algorithm 
 

• INITIALIZATION: Let 0X ∈Ω , 0 0Δ > , 0ξ > , ( )0 0,1α ∈ , and 0 0δ > .  Set the 
iteration and R&S counters 0k =  and 0r =  respectively. 

 
• SEARCH STEP (OPTIONAL): Employ a finite strategy to select a subset of 

candidate solutions, ( )k k kS M X⊂  defined in (2.3) for evaluation.  Use R&S 
procedure { }( , , )k k r rRS S X α δ∪  to return the estimated best solution 

{ }[1]
ˆ

k kY S X∈ ∪ , update 1r rα α+ < , 1r rδ δ+ < , and 1r r= + .  If [1]
ˆ

kY X≠ , the step is 

successful, update 1 [1]
ˆ

kX Y+ = , 1k k+Δ ≥ Δ , see (2.5)-(2.6), and 1k k= + , and repeat 
SEARCH STEP.  Otherwise, proceed to POLL STEP. 

 
• POLL STEP: Set extended poll trigger kξ ξ≥ .  Use R&S procedure 

( ) ( )( , , )k k k r rRS P X N X α δ∪  to return the estimated best solution [1]Ŷ .  Update 

1r rα α+ < , 1r rδ δ+ < , and 1r r= + .  If [1]
ˆ

kY X≠ , the step is successful, update 

1 [1]
ˆ

kX Y+ = , 1k k+Δ ≥ Δ , see (2.5)-(2.6), and 1k k= + , and return to SEARCH 
STEP.  Otherwise, proceed to EXTENDED POLL STEP. 

 
• EXTENDED POLL STEP: For each discrete neighbor ( )kY N X∈  that satisfies 

the extended poll trigger condition ( ) ( )k kF Y F X ξ< + , set 1j =  and j
kY Y= , 

and do the following. 
- Use R&S procedure ( )( , , )j

k k r rRS P Y α δ , to return the estimated best 

solution [1]Ŷ .  Update 1r rα α+ < , 1r rδ δ+ < , and 1r r= + .  If [1]
ˆ j

kY Y≠ , set 
1

[1]
ˆj

kY Y+ =  and 1j j= + , and repeat this step.  Otherwise, set j
k kZ Y=  and 

go to the next step. 
 
- Use R&S procedure ( ), ,k k r rRS X Z α δ∪  to return the estimated best 

solution [1]Ŷ .  Update 1r rα α+ < , 1r rδ δ+ < , and 1r r= + .  If [1]
ˆ

kY Z= , the 

step is successful, update 1 [1]
ˆ

kX Y+ = , 1k k+Δ ≥ Δ , see (2.5)-(2.6), and 
1k k= + , and return to the SEARCH STEP.  Otherwise, repeat the 

EXTENDED POLL STEP for another discrete neighbor that satisfies the 
extended poll trigger condition.  If no such discrete neighbors remain in 
( )kN X , set 1k kX X+ = , 1k k+Δ < Δ , and 1k k= + , and return to the 

SEARCH STEP. 
Figure 2.1.2:  The Mixed-variable GPS-RS Algorithm [63] 
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2.1.3.  Mesh Adaptive Direct Search.   Mesh Adaptive Direct Search (MADS) is a 

class of algorithms developed by Audet and Dennis for minimization of nonsmooth 

functions of the type : { }nf ← +∞\ \∪  under general constraints nx∈Ω ⊆ \  where 

Ω ≠∅ .  The feasible region Ω  may be defined by blackbox constraints [12].  Thus, this 

class of algorithms is applicable also to nonlinearly constrained problems. 

MADS is similar to GPS in the generation of the mesh as well as in the rules for 

updating the mesh.  However, the key difference is that in MADS a separate poll size 
parameter k

pΔ  is introduced which controls the magnitude of the distance between the 

incumbent solution and trial points generated for the poll step, and that satisfies m p
k kΔ ≤ Δ  

for all k such that lim 0 lim 0m p
k K k k K k∈ ∈Δ = ⇔ Δ =  for any infinite subset of indices in K.  

In GPS, only one value p m
k k kΔ = Δ = Δ  is used, and a set of positive spanning directions 

kD D⊂  is chosen at each iteration.   

In the poll step of MADS, neither restriction generally holds and the MADS 

frame (analogous to the poll set in GPS) is defined to be 
     { }:m

k k k k kP x d d D M= + Δ ∈ ⊂ ,       (2.7) 

where kD  is a positive spanning set such that 0 kD∉  and for each kd D∈  the following 

conditions must be met [12]: 

• d can be written as a nonnegative integer combination of the directions in D: 

d Du=  for some vector Dknu∈` that may depend on the iteration number k, 

• the distance from the frame center xk to a frame point m
k k kx d P+ Δ ∈  is bounded 

above by a constant times the poll size parameter:  
max{ : }m p

k kd d d D′ ′Δ ≤ Δ ∈ , 

• limits of the normalized sets  :k k
dD d D
d

⎧ ⎫⎪ ⎪= ∈⎨ ⎬
⎪ ⎪⎩ ⎭

 are positive spanning sets.   

The mesh size parameter typically decreases to zero at a faster rate than the poll size 

parameter, which allows the set of directions in kD  used to define the MADS frame to be 
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chosen from increasingly larger sets as a limit point is approached.  Audet and Dennis 

[12] showed that if this set is dense in the limit, convergence to a stationary point in the 

nonsmooth case can be ensured.  They also provided an implementable instance in which 

directions are chosen randomly and a dense set of directions is acheieved with probability 

one [12].     

The general MADS algorithm is shown in Figure 2.1.3.  The extended algorithm for 

stochastic and mixed variable problems, the mixed variable MADS with ranking and 

selection (MVMADS-RS), is shown in Figure 2.1.4. 

 

A General MADS Algorithm 
 

• INITIALIZATION: Let 0x ∈Ω , 0 0
m pΔ ≤ Δ , , , , ,D G wτ − and w+  satisfy the 

requirements of a MADS frame set given in (2.7).  Set the iteration counter 

k=0.  

• SEARCH AND POLL STEP: Perform the SEARCH and possibly the POLL 

steps (or part of them) until an improved mesh point 1kx +  is found on the mesh 

kM , where kM  is defined as for GPS in (2.3). 

- OPTIONAL SEARCH: Evaluate fΩ  on a finite subset of trial points 

on the mesh kM . 

- LOCAL POLL: Evaluate fΩ  on the frame kP , where kP  is as given in 

(2.7).  

• PARAMETER UPDATE: Update 1
m
k+Δ and 1

p
k+Δ .  Set k=k+1 and go back to 

the SEARCH AND POLL step. 
Figure 2.1.3:  A General MADS Algorithm [12] 

 
 
 
 



14 

A General MVMADS-RS Algorithm 
 

• INITIALIZATION: Let 0X ∈Ω , 0p m
k kΔ ≥ Δ > , 0ξ > , ( )0 0,1α ∈ , and 0 0δ > .  

Set the iteration and R&S counters 0k =  and 0r =  respectively. 
 
• SEARCH STEP (OPTIONAL): Employ a finite strategy to select a subset of 

candidate solutions, ( )k k kS M X⊂  defined in (2.3) for evaluation.  Use R&S 
procedure { }( , , )k k r rRS S X α δ∪  to return the estimated best solution 

{ }[1]
ˆ

k kY S X∈ ∪ , update 1r rα α+ < , 1r rδ δ+ < , and 1r r= + .  If [1]
ˆ

kY X≠ , the step is 

successful, update 1 [1]
ˆ

kX Y+ = , 1
p p
k k+Δ ≥ Δ , 1

m m
k k+Δ ≥ Δ , and 1k k= + , and repeat 

SEARCH STEP.  Otherwise, proceed to POLL STEP. 
 
• POLL STEP: Set extended poll trigger kξ ξ≥ .  Use R&S procedure 

( ) ( )( , , )k k k r rRS P X N X α δ∪  to return the estimated best solution [1]Ŷ .  Update 

1r rα α+ < , 1rδ δ+ < , and 1r r= + .  If [1]
ˆ

kY X≠ , the step is successful, update 

1 [1]
ˆ

kX Y+ = , 1
p p
k k+Δ ≥ Δ , 1

m m
k k+Δ ≥ Δ  and 1k k= + , and return to POLL STEP.  

Otherwise, proceed to EXTENDED POLL STEP. 
 

• EXTENDED POLL STEP: For each discrete neighbor ( )kY N X∈  that satisfies 

the extended poll trigger condition ( ) ( )k kF Y F X ξ< + , set 1j =  and j
kY Y= , 

and do the following. 
- Use R&S procedure ( )( , , )j

k k r rRS P Y α δ  to return the estimated best 

solution [1]Ŷ .  Update 1r rα α+ < , 1rδ δ+ < , and 1r r= + .  If [1]
ˆ j

kY Y≠ , set 
1

[1]
ˆj

kY Y+ =  and 1j j= + , and repeat this step.  Otherwise, set j
k kZ Y=  and 

go to the next step. 
- Use R&S procedure ( ), ,k k r rRS X Z α δ∪  to return the estimated best 

solution [1]Ŷ .  Update 1r rα α+ < , 1rδ δ+ < , and 1r r= + .  If [1]
ˆ

kY Z= , the 

step is successful, update 1 [1]
ˆ

kX Y+ = , 1
p p
k k+Δ ≥ Δ , 1

m m
k k+Δ ≥ Δ  and 1k k= + , 

and return to the SEARCH STEP.  Otherwise, repeat the EXTENDED 
POLL STEP for another discrete neighbor that satisfies the extended poll 
trigger condition.  If no such neighbors remain in ( )kN X , set 1k kX X+ = , 

1
p p
k k+Δ < Δ , 1

m m
k k+Δ < Δ , and 1k k= + , and return to the SEARCH STEP. 

Figure 2.1.4: MVMADS-RS 



15 

2.1.4.  Aspiration/Reservation Levels and Scalarization Functions.   Now 

considering the case of multiple objectives, points on the Pareto front can be found by 

varying the relative importance, i.e. trade-off coefficients or weights, of the distance to a 

given point, as shown in Figure 2.1.5.  Using the utopia point U, any point between 

points D and E can be found.  By using aspiration point A and varying the weights or 

slope of the ray emanating from it, points between B and C can be found.  There are 

multiple methods for determining which ray to use [70].  The particular method 

implemented by SMOMADS uses the reservation point R as the second point in 

determining the direction of the ray [70].  This assumes that the decision maker has an 

idea of what is desired for each objective, as well as what minimum, or maximum, values 

are acceptable.  These values are referred to as the aspiration and reservation levels, 

respectively points A and R from Figure 2.1.5.   

 

(a) Component Achievement Functions 
for Minimized Criteria (Figure 4 in [47]) 

(b) Pareto solutions corresponding to different 
component achievement functions (Figure 3 in 
[47]) 

Figure 2.1.5: Component Achievement Functions for Pareto Optimal Solutions 

 The aspiration and reservation levels for each objective, ia  and ir , respectively, 

where 1,...,i M=  and M is the number of objectives, are then used inside of an 

achievement scalarization function of the form  
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1

(min( ) )
m

i
i

fx u uε
=

= − + ⋅∑ .            (2.8) 

The function ui, where  

 
( ) 1,      

( ) 1,           
( ),            

i i i i i i

i i i i i i i

i i i i i i

w a f f a
u w a f a f r

w r f r f

α

β

⋅ ⋅ − + <⎧
⎪= ⋅ − + ≤ ≤⎨
⎪ ⋅ ⋅ − <⎩

      (2.9) 

is of the type called component achievement functions; i.e., strictly monotone functions of 

the objective vector components fi (these functions are shown in Figure 2.1.5 (a)).  The 

minimization of (2.8) provides proper Pareto optimal solutions nearest the aspiration 

level (point K in Figure 2.1.5 (b)).  The notation used here was simplified from [70] to 

become more intuitive.       

  Walston used 1
i

i i

w
r a

=
−

and 5ε = [70].  Defining the nadir point as the 

component-wise supremum of all Pareto points ( b
if ), and the utopia point as the 

component-wise minimum of all feasible points ( g
if ), (0.1) i i

i g
i i

r a
a f

α
⎛ ⎞−

= ⎜ ⎟−⎝ ⎠
 if g

i ia f≠ .  

Otherwise, 7(0.1)
10
i i

i
r aα −

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

.  Similarly, ( 10) i i
i b

i i

r a
a f

β
⎛ ⎞−

= − ⎜ ⎟−⎝ ⎠
 if b

i ifα ≠ , and 

7( 10)
10
i i

i
r aβ −

−⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 otherwise.  Walston used these specifics in her implementation of 

SMOMADS [70].  The nadir and utopia points are defined in more detail in Section 2.2.  

2.1.5.   SMOMADS Results.  Walston proved that the sequence of iterates 

generated by each subproblem of SMOMADS contains a limit point that meets the first-

order necessary conditions for Pareto optimality, almost surely.  In addition, Walston 

proved if the sequence of iterates generated by a subproblem of SMOMADS converged 

to x̂∈Ω , then x̂  meets the first-order necessary conditions for optimality almost surely 

[70]. 

Solving the set of subproblems, i.e. using a set of different aspiration and 

reservation levels, results in a set of Pareto optimal solutions.  However, in general, if the 
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frontier is non-convex or discontinuous, the resulting approximation to the Pareto front 

may be missing points of potential interest (note it will always be missing points due to 

the infinite nature of the front) [32].  To account for this, Walston proposed as future 

research a second stage to SMOMADS, replacing the single-objective ranking and 

selection routine of MVPS-RS with the Multi-Objective Computing Budget Allocation 

algorithm (MOCBA).  However, there was indication that extending SMOMADS in 

some way may eliminate the need for the MOCBA phase.  For the purposes of this 

research, SMOMADS is considered a one-stage algorithm and methods are evaluated to 

find the best Pareto front and eliminate gaps (or missing portions of the front).  Another 

limitation of the SMOMADS algorithm is that there is no way to ensure the solutions 

found are as spread as possible along the Pareto front.  Specifically, extreme points are 

not identified so that a user can know if they are finding points along the whole front or 

only a small portion.  The SMOMADS method is summarized in Figure 2.1.6. 

 

SMOMADS Algorithm 

• Generate a set of Apriration/Reservation levels. 

• For each choice of Aspiration/Reservation levels, combine the 

objective functions into an achievement scalarization function, 

and solve using MVMADS-RS or MVPS-RS. 

• In the case of stochastic problems, because the solution 

converges to an efficient point with probability one in infinite 

iterations, check to ensure that a point is non-dominated before 

adding to the efficient set by comparing to solutions found thus 

far.  
Figure 2.1.6: SMOMADS Algorithm [70] 
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2.2. Nadir and Utopia Point Approximation 

Assuming at least one Pareto optimal solution exists, the nadir point N my ∈\  is 

characterized by the component-wise supremum of all efficient points [29]: 

 

Pareto
: sup ( )N m

m
x

y f x
∈

= ;  1,...,m M= .      (2.10) 

This point is not to be confused with an objective-wise maximum.  The utopia point is the 

objective-wise minimum over the feasible set, or component-wise infimum of the Pareto 

set.  That is, the utopia point is found by minimizing each objective and the 

thi component of the utopia point is the thi  objective’s minimum.  

As previously mentioned, SMOMADS uses both the utopia point and nadir point 

when creating the achievement scalarization function.  Furthermore, the Pareto front 

quality metrics that are dicussed in Section 3.2 also require use of these points, and it is 

likely the user will use the nadir point as a basis for choosing reservation levels and the 

utopia point as a basis for aspiration levels.  Therefore, it is important to have accurate 

estimations of these points.  The determination of the utopia point for any number of 

objectives involves only the solution of M single-objective problems over the whole 

feasible set Ω  [29].  However, trying to estimate the nadir point using M single-objective 

problems could possibly lead to an overestimation of the true nadir point as shown in 

Figure 2.2.1. 

 

 
Figure 2.2.1: Nadir and Worst Objective Vectors [27] 
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Pay-off tables, or single objective optimal solutions evaluated for all objectives, 

are sometimes used to estimate the nadir point, but this can result in either 

underestimation or overestimation.  Additionally, this optimization may be 

computationally expensive.  In the case of two objectives, lexicographic optimization can 

be used to find the true nadir point.  In the case of three objectives the PARETOQ-1 

algorithm, which solves bi-objective subproblems, or faces of the original feasible set, 

can be used [29].  However, in the case of nonlinear problems, or more than three 

objectives, lexicographic optimization and PARETOQ-1 fail.   

Another method for approximating the nadir point is to use a genetic or 

evolutionary algorithm.  Such algorithms are often used to do the multi-objective 

optimization itself, but by emphasizing extreme Pareto-optimal solutions, an estimate of 

the nadir point can be achieved quickly without doing the full optimization.  For this 

research, a slight modification of the Non-dominated Sorting Genetic Algorithm (NSGA-

II) with elitist extremized crowding was used.  For both the utopia and nadir points, 

weighted objective functions can be solved, using MVMADS-RS or MVPS-RS.  This is 

presented in Section 3.1.           

2.3. Pareto Set Quality Metrics 

For the purpose of this research, the definition of a Pareto optimal solution is 

taken from [70], given as follows: 
 

Definition 2.3.1.  A solution to a multi-objective optimization problem of the form 
min ( , ), : J

x
F x w F

∈Θ
Θ→ \  is said to be Pareto optimal at the point x̂  if there is no x∈Θ  

such that ˆ( ) ( )k kF x F x≤  for 1,...,k J=  and ˆ( ) ( )i iF x F x<  for some {1,..., }i J∈ . 
 

A solution is said to be dominated if it is not Pareto optimal with respect to the current 

Pareto approximation. 
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Given a set of points output from the SMOMADS algorithm, it is desirable to 

have some metric to determine the quality of the approximation to the true Pareto front, 

either to use as a termination criteria or as a means of comparison between fronts.  

Clearly, such points will be part of the true front, but large gaps may exist.  One aspect 

that makes such a metric difficult is that the true Pareto front may not be known.  

Therefore, the metric needs to allow for the fact that fronts are not necessarily known a 

priori.  Furthermore, metrics must also account for discontinuous or poorly-shaped 

fronts. 

 Few papers in the literature deal with instances where the true front is unknown a 

priori.  However, Wu and Azarm developed five quality metrics that do not make the a 

priori assumption [72].  These metrics use the utopia point, nadir point, and regions in the 

objective space to, at a minimum, be able to compare two approximated fronts.  Farhang-

Mehr and Azarm furthered these concepts by developing an information-theoretic 

entropy metric that, in the best case, not only can be used to compare fronts, but may also 

be able to assess the quality of a single front, without the a priori assumption [30].  These 

metrics are presented further in Section 3.2. 

2.4. Experimental Designs 

Sampling the infinite space of all possible aspiration and reservation levels for a 

given range to produce Pareto optimal solutions during SMOMADS is certainly 

intractable.  Therefore, it is important to sample in an intelligent manner, using 

experimental design methods.  Such methods allow the user to incorporate several 

considerations into each design investigated, and typically, to also fit a response surface.  

Furthermore, it is desired to sample smartly and quickly, so as to achieve the best Pareto 

front approximation as fast as possible. 

Traditional designs are factorial-based and allow estimation of linear and 

quadratic terms in least squares models.  Some designs may also be fractionated, or 
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reduced in size, by aliasing effects (i.e., assuming some effects are not significant; 

A A BC= + ).  This can greatly reduce the number of runs if not all effects are significant.  

Typically, only some main effects and two-factor interactions are significant, and being 

able to estimate these effects un-aliased can be important.  These traditional designs are 

presented further in Section 3.3.1.   

If the dimension of the sample space is large, the number of samples required for 

a factorial based design may grow rapidly.  It may also be the case that fitting a model is 

less important than sampling the space.  Therefore, designs that uniformly sample the 

design space with fewer points are desired.  The trade-off is that designs with fewer 

points may generate gaps in the sample space where no samples are taken.  Such designs 

include Latin hypercubes, orthogonal arrays, and quasi-Monte Carlo sampling [35].  

These are presented in detail in Section 3.3.2.         

2.5. Surrogates 

A surrogate is used to approximate a function that may be expensive to evaluate.  

Several surrogate approaches exist, with accompanying benefits and limitations.  

Interpolating surrogates, such as Kriging and radial basis functions, use an underlying 

weighted sum of basis functions to fit the data.  Least-squares regression may provide a 

good fit, but may only be useful to identify significant terms in a model.  Multi-adaptive 

regression splines (MARS) use a least-squares approach but fit the data piecewise (but 

with overlapping partitions). 

Mulitvariate interpolation is not as well developed as univariate.  Hermite 

interpolation has been expanded to the multivariate case, called Hermite-Birkhoff 

interpolation, where certain derivative information is known [28].  Quasi-interpolants use 

the sum of decaying functions centered at a point in the sample set to create 

approximating functions.  For this research, interpolation methods are restricted to 
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variations of Kriging and radial basis functions.  These are presented further in Section 

3.4.     

Other methods also exist, such as Artificial Neural Networks (ANN).  These 

models train and validate on sets of data and attempt to learn characteristics, so that a 

formed model can then be used to correctly predict a response from new data.  The 

limitation of such models is that a model may train differently on the same set of data due 

to random weights.  Nonetheless, these are also evaluated. 

2.6. Existing Multi-Objective Methods and Their Limitations 

It is perhaps important to explain why this research is even important.  There are 

many existing multi-objective methods, but most are limited in some fashion.  Much of 

the following comes from an excellent summary by Audet, Savard, and Zghal [13].   

Genetic algorithms are obviously random in their solutions and are thus limited in 

the confidence they can generate in the resulting solutions.   These algorithms also 

experience trouble in the mixed-variable case and with random elements present. 

The linear weighting method converts a multi-objective problem into a single-

objective problem by minimizing a convex combination of objectives, 

1
min ( )

p

i ix X i
w f x

∈ =
∑  ,      (2.11) 

where the weights iw  for 1, 2,..,i p=  are positive and sum to one.  However, this method 

is unable to generate points in any nonconvex part of the Pareto front. 

 Another method uses approximations to reference points, formulated as 
1/

1
min ( ) ( ) ,

qp q
i iqx X i

F x r f x r
∈ =

⎛ ⎞− = ∑ −⎜ ⎟
⎝ ⎠

                              (2.12) 

where these formulations try to find feasible solutions close to the reference points r.  

This method may generate non-efficient points. 
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 The weighted geometric mean approach uses a single-objective formulation to 

maximize the weighted geometric mean of differences between the components of the 

nadir point u and the objective functions   

1
max ( ( )) ,

p

i ix i

iu f x λ
=
∏ −                  (2.13) 

where ( )i if x u≤ , x X∈ , and 0iλ > .  This approach adds general constraints and requires 

the objective functions to be convex for a solution to be Pareto optimal. 

 The Normal Boundary Intersection approach by Das and Dennis [25] solves a 

series of single-objective optimization problems, with an additional equality constraint.  

This constraint maps the objective function value to a point on the normal emanating 

from a point in the Convex Hull of Individual Minima (CHIM), or the set of points in n\  

that are convex combinations of *( )iF x  where *
ix  is a global minimizer for 1,...,i n= , 

and the boundary of the set of attainable objective vectors.  This approach can be 

impractical in the blackbox optimization context [13].  Furthermore, NBI can have 

trouble finding extreme solutions in more than two objectives because there may be 

Pareto optimal points not in the CHIM, and NBI may find local solutions when the 

boundary is “folded” [25]. 

 Audet, Savard, and Zghal recently devised a method with the intention of 

avoiding all of the previously mentioned shortcomings.  This method is discussed in more 

detail in Section 3.6, but, as reported, is only applicable for two objectives.   

Walston’s work on SMOMADS applies to the stochastic case, but was more of a 

proof-of-concept rather than an optimal algorithm.  One goal of this research investigates 

using Walston’s work [70] in a more efficient manner and also implementing Audet, 

Savard, and Zghal’s work [13] for any number of objectives. 

 Chapter III presents the specific algorithms and methods analyzed in this thesis to 

further both the use of SMOMADS and BiMADS.  Concepts are introduced in an 

appropriate amount of detail, so that the reader may understand how they were 
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implemented, but also so as to be concise.  Also included in Chapter III are new 

algorithms and methods that resulted from this research, and any changes made to those 

from previous research. 

 



25 

III. Approach to the Problem 

The following sections detail the various pre-existing methodologies that were 

evaluated during the course of this research to better implement SMOMADS and to 

create an alternative algorithm to SMOMADS.  In addition, any modifications made to 

these methodologies are given here, as are a few new concepts and algorithms to be used 

in conjunction with SMOMADS and the alternative algorithm. 

3.1. Nadir and Utopia Point Approximation 

3.1.1.  Genetic Algorithm Approach.    To find the nadir point, two methods are 

evaluated in this research as alternatives to doing a maximization for each objective (and 

thus over-estimating the true nadir point).  First, an elitist extremized crowding NSGA-II 

algorithm is used to approximate the nadir point.  The concept for this algorithm came 

from Deb, Chaudhuri, and Miettinen [27].  Doing NSGA-II alone would perform the 

multi-objective optimization (or really the approximation thereof).  However, by using 

extremized crowding, only those solutions that may assist in developing the nadir point 

are emphasized (recall Figure 2.2.1). 

In general, genetic algorithms begin with an initial population of feasible points.  

Members of the population are then chosen for crossover and mutation operations, 

according to some fitness function, and then, depending upon the algorithm, either the 

resulting solutions or a best percentage of the two populations carry on to the next 

generation.  In an elitist scheme, a best number of solutions from one generation carry on 

to the next generation regardless.  Code written for NSGA-II by Aravind Seshadri [58] 

was used as a starting reference for implementing actual code for the elitist extremized 

crowding NSGA-II. 

The initial population is constructed by taking the lower bound (based off the 

simple linear bounds) of a given decision variable and adding the range (i.e., difference 
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between upper bound and lower bound) multiplied by a 0-1 random number.  For discrete 

variables, the initial value is randomly selected (uniformly) from the possible values for 

that variable.  Chromosomes consist of the decision variable and objective function 

values and are checked for feasibility.  If a chromosome has variable values that are 

infeasible, the chromosome is re-generated until feasible.  In each generation, a non-

dominated sort is then conducted which adds a ranking, or Pareto front number, to the 

chromosome according to the algorithm show in Figure 3.1.1, as taken from [58].  All 

completely non-dominated solutions are given a ranking of 1, that is, they most likely 

belong to the true Pareto front with respect to the current population. 

Once the non-dominated sort is complete, a crowding distance is added to each 

chromosome.  Solutions on a particular front are sorted from maximum to minimum 

based on each objective.  The extreme solutions, minimum and maximum, for each 

objective get a rank equal to 'N , where 'N  is the number of solutions on the front.  The 

solutions next to these extreme solutions get a rank of ( ' 1N − ) and so on.  After a rank is 

assigned to a solution for each objective, the maximum value of the ranks is declared as 

the crowding distance for that solution.  This helps to emphasize the solutions closer to 

the extreme solutions and therefore find the extreme points quicker.  In addition, this 

maintains a good diversity of solutions and reduces the chance of having non-Pareto 

optimal solutions remain in the first non-dominated front [27].  The solutions are then 

sorted, based upon their rank and crowding distance.  

Additionally, a uniqueness check may be conducted so that, if there are redundant 

solutions in the population, they are replaced by random solutions, similar to how the 

initial population was created.  This is done to help prevent stagnation. As convergence 

of the population is desirable, this feature may not be entirely advantageous.   
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Non-Dominated Sort 
• Initialize the front counter to one, i=1, { }1F = . 

• For each individual p in main population P do the following: 
- Initialize pS =∅ .  This set will contain all the individuals 

dominated by p.  Initialize 0pn = .  This will be the number of 

individuals that dominate p. 

- For each individual q in P, 
• If p dominates q, then add q to pS , i.e. { }p pS S q= ∪ , 

• Else if q dominates p, then increment the domination counter for 
p, i.e. 1p pn n= + . 

- If 0pn =  (i.e., no individuals dominate p), then p belongs to the first 

front.  Set rank of individual p to one, 1rankp = .  Update the first 

front set by adding p to 1F , 1 1 { }F F p= ∪ . 

• While the ith front is non-empty, iF ≠ ∅ , 

- Q ≠ ∅ .  This is the set for storing individuals on the (i+1)th front. 

- For each individual p in front Fi , 
• For each individual q in pS  (those individuals dominated by p), 

o  1q qn n= − , decrement the domination count for 

individual q. 
o If 0qn = , then none of the individuals in the subsequent 

fronts dominate q.  Set 1rankq i= + .  Update Q with 

individual q, Q Q q= ∪ . 
- Set 1, ii i F Q= + =  (the next front). 

Figure 3.1.1: Non-dominated Sort [58] 

Once the non-dominated sort and crowding distances, as well as the final sort, are 

complete, a binary tournament selection is conducted.  A mating pool with a size of 

approximately half the population is filled by repeatedly selecting two solutions from the 

population and choosing the one with lower rank, or in the case of an equal rank, the one 

with higher crowding distance.  The selection of chromosomes for the tournament takes 

place by further ranking the population based on Pareto front rank and crowding distance.  
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These ranks are then used to build a cumulative probability distribution with which to 

compare random number draws.  This process takes the place of a typical fitness 

function.  Once the mating pool is filled, chromosomes are chosen at random, and 

perhaps more than once, for crossover or mutation. 

The crossover operator used is Simulated Binary Crossover (SBX) and the 

mutation operator used is polynomial mutation [58].  SBX simulates the binary crossover 

observed in nature and is given as 

1, 1, 2,0.5[(1 ) (1 ) ]k k k k kc p pβ β= − + +        (3.1)  

     2, 1, 2,0.5[(1 ) (1 ) ],k k k k kc p pβ β= + + −         

where ,i kc  is the thi child with thk component, ,i kp  is the selected parent and kβ 0≥  is a 

sample from a random number.  That random number is generated using the density 

    
2

0.5( 1) ,      if 0 1
( ) 10.5( 1) , if >1.

c

c

c

c n

p

ηη β β
β

η β
β +
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⎩

      (3.2)  

This distribution may be obtained from a random number u uniformly sampled 

between (0,1) according to  
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η

η
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+
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⎪

−⎡ ⎤⎪⎣ ⎦⎩

       (3.3)  

cη  in (3.2) is the distribution index for crossover.  Deb, Chaudhuri, and Miettinen used a 

distribution index of 20 [27].   

The mutation operator uses polynomial mutation, 

     ( )u l
k k k k kc p p p δ= + −             (3.4)  

where kc  is the resulting child and kp  is the parent with u
kp  as the upper bound on the 

parent component, l
kp  the lower bound, and kδ  a small variation calculated from a 

polynomial distribution of the form 
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1
1

1
1

(2 ) 1,         if 0.5

1 [2(1 )] ,  if 0.5,

m

m

k k
k

k k

r r

r r

η

η
δ

+

+

⎧ − <⎪= ⎨
⎪ − − ≥⎩

       (3.5)    

where kr  is an uniformly sampled random number between (0,1), and mη  is the mutation 

distribution index.  Deb, Chaudhuri, and Miettinen also used a mutation distribution 

index of 20 [27].    

Discrete variables present a problem with regard to mutation and crossover 

because SBX and polynomial mutation are for continuous variables and resulting values 

will likely not be a part of the discrete set.  An analysis of various ways to account for 

this, and their effectiveness, is presented in Section 4.3.   

In the event of mixed variables or constraints other than simple bounds, the 

children are checked for feasibility, and if not feasible, the crossover or mutation is run 

again.  In the case of crossover, a maximum of 100 attempts are made at feasibility, with 

completion when two feasible children are obtained.  If 100 attempts complete without 

two feasible children, the single feasible child and one of the parents (randomly selected), 

or in the event of no feasible children, both parents, become the children.  Similarly for 

mutation, 100 attempts are made, and if a feasible child does not occur, the parent 

becomes the child.  The number of attempts is limited to 100, so as to limit the run-time 

of the algorithm.  Again, this process limits the speed of evolution when constraints or 

discrete variables are included, but increased generations should account for the effect.   

 Once the crossovers and mutations have completed in a generation, the starting 

population and the children are pooled into one population, where the non-dominated sort 

is again conducted and the extremized crowding distances are again calculated.  Here, the 

solution with maximum objective function value for each objective is made elite.  

Additionally, the remaining survivors are selected based on low rank, nearing the Pareto 

front, and high crowding distance.  The entire process is repeated for a number of 

generations.   
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It is important to note here that although the aforementioned algorithm in its 

entirety is based on NSGA-II and the literature, it was developed specifically for this 

research.    Again, performance of this algorithm on a suite of test problems and analysis 

on parameters are included in Section 4.3.   

3.1.2.  GPS/MADS Approach.  Obviously, a user may not have prior knowledge 

of the utopia or nadir points whatsoever.  Additionally, genetic algorithms, no matter how 

robust, are nonetheless heuristics.  Therefore, without requiring the speed of a heuristic, it 

would be advantageous to have a more “mathematically sound” method of determining 

the nadir point (and utopia point), that could still be efficient.  In addition, as much of this 

research is dependent upon use of MADS and GPS, it would be advantageous to also use 

MADS and GPS for this method. 

 

 
Figure 3.1.2: Utopia and Nadir Points 

  As mentioned in Section 2.2, the utopia point is found by performing an 

optimization for each objective separately.  Let *
ix  be the global minimizer of objective i 

and *( )iF x  be the vector of all objective function values for *
ix .  Then *( )i iF x  is the ith 

component of the utopia point; but also, some *( )j iF x , where j i≠ , is the jth component 

of the nadir point.  This is true because the utopia point components must occur at the 

extremes of the Pareto front to be non-dominated, and it is from the extremes of the 
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Pareto front that the nadir point is formulated, as shown in Figure 3.1.2.  Therefore the 

nadir point can be determined once the minimizers corresponding to the utopia point 

components are known.  Alternatively, finding the nadir point directly and accurately can 

be harder, as it constitutes a weighted objective method (minimizing all but one objective 

at a time).  GPS/MADS can be used to perform the single-objective optimizations to find 

the utopia. 

3.2. Approximated Pareto Front Quality Metrics   

A true Pareto front is infinite in nature, and therefore, any set of solutions output 

from SMOMADS is only an approximation to the true front.  In addition, not all Pareto 

fronts are continuous or well-shaped (e.g., a curve).  Therefore, just because a set of 

numerical solutions appears to be equally distributed over a region and well-shaped, it 

does not mean the complete front has been found.  It is important to be able to determine 

when a representative Pareto front has been found, under any circumstances, and under 

the assumption that the actual Pareto front is unknown.   

3.2.2. Quality Metrics.  Wu and Azarm first attempted to solve this problem using 

a set of five quality metrics [72].  Using the utopia point or its estimate (where g denotes 
“good”), 1( ,..., )g g

g mp f f=  and the nadir point or its estimate (where b denotes “bad”), 

1( ,..., )b b
b mp f f= , objective values are scaled, denoted by ( )kif x  for some point kx X∈ .  

The number of Pareto solutions found is denoted pn .   

 To fully develop the concepts behind the metrics, the definitions of the inferior, 

non-inferior, and dominant regions with respect to a point in the scaled objective space 

are needed.   
 

Definition 3.2.1.   An inferior region of a point jp  is defined as a hyper-rectangle, 

( )in jS p , such that for all ( )k in jp S p∈ , ( ) ( )i k i jf x f x>  and ( ) 1i kf x < for all 1,...,i m=  

where 1( ( ),..., ( ))k k m kp f x f x=  and 1( ( ),..., ( ))j j m jp f x f x= .  
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Definition 3.2.2.  A non-inferior region of a point jp , ( )nin jS p , is the complementary 

region of ( )in jS p ; that is, ( ( )) 1 ( ( ))nin j in jspace S p space S p= −  where space denotes some 

portion of the scaled objective space hyper-rectangle between 0 and 1. 
 

Definition 3.2.3.  A dominant region of a point jp , is the hyper-rectangle, ( )do jS p , such 

that for all ( )k do jp S p∈ , ( ) ( )i k i jf x f x<  and ( ) 0i kf x >  for all 1,...,i m= . 
 

 Therefore, for an observed Pareto solution set in the scaled objective space: 

( )1,..., pnP p p= , the inferior, non-inferior, and dominant regions can be expressed as 

follows:   

  
1

( ) ( )
pn

in in j
j

S p S p
=

= ∪        (3.6) 

     ( ( )) 1 ( ( ))nin inspace S P space S P= −       (3.7) 

 
1

( ) ( ).
pn

do do j
j

S P S p
=

= ∪        (3.8) 

1. Hyperarea Difference (HD) 

This metric quantitatively evaluates the difference between the size of the objective 

space dominated by an observed Pareto solution set and that of the space dominated by 

the true Pareto solution set, or rather the space difference between the inferior regions of 

the two sets.  The true set dominates the entire objective space; however, it is assumed to 

be unknown.  Therefore, the utopia point is used as an estimate of the true Pareto solution 

set, giving a space of the inferior region equal to 1.  Additionally, because the true set is 

unknown, it then becomes only possible to identify whether or not an observed Pareto 

solution set is worse than the true set when compared to another Pareto set.  Therefore, an 

observed set with a lower HD is considered to be better than an observed set with a 

higher HD.  Mathematically, HD is defined as:   
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( ) 1 ( ( ))
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j
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n n r n r l n m r
r

i kj
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HD P space S P

f x
− −

− + − − + +
+

=
= = = + = + =

= −
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∑ ∑ ∑ ∑ ∏

     (3.9) 

      Clearly, calculation of this metric becomes computationally expensive as the number 

of points becomes large, due to its recursive nature.  In the test runs for this research, 

approximately 24 points seemed to be the point at which the computation became 

expensive for problems with only two or three objectives. 

2. Pareto Spread 

The Pareto Spread metric is in fact a set of metrics.  The first metric is Overall Pareto 

Spread (OS), which quantifies how widely the observed Pareto solution set spreads over 

the objective space when the design objective functions are considered altogether.  The 

volume ratio of two hyper-rectangles, that of one defined by the utopia and nadir points, 

and one defined by extreme points of an observed Pareto solution set, is OS(P).  This 

metric is given by 

1 1
1

( ) max ( ) min [ ( )] .p p
m

n n
k i k k i k

i

OS P f x f x= =
=

⎡ ⎤= −⎣ ⎦∏      (3.10) 

 The second metric quantitatively depicts the solution range with respect to each 

individual design objective.  For a particular objective k, it is given by  
    1 1( ) max ( ) min [ ( )] .p pn n

k k k i k k iOS P f x f x= =⎡ ⎤= −⎣ ⎦       (3.11) 

 These metrics also can only be used to compare two observed sets, as the true 

Pareto solution set may not spread across the entire objective space.  A set with a higher 

spread is preferred to one with a lower spread. 

3. Accuracy of the Observed Pareto Frontier (AC) 

Pareto solutions not belonging to the current observed set must be non-inferior with 

respect to the current observed set and thus do not belong to either the observed set’s 

inferior or dominant region.  For an observed Pareto solution set or frontier 

approximation P, the quantity AP(P) denotes the region wherein an observed Pareto 
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frontier falls.  As the approximation becomes more accurate, AP(P) will go to zero.  It is 

given by   

( ) 1 ( ( )) ( ( )),in doAP P space S P space S P= − −       (3.12) 

where 

  
1 1 1

1 ( 1) 1
1

11 1 1 1 1

( ( )) ( 1) ... ... 1 max( ( )) ,
p p p p

j

l l r r

n n r n r l n m r
r

in i kjr k k k k k i

space S P f x
− −
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+

=
= = = + = + =
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1 1 1

1 ( 1) 1
1

1
1 1 1 1 1
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j

l l r r
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r
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space S P f x
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Important to note is that in [72], the dominant space equation used 
1

1 min( ( ))
j

r

i kj
f x

=
− .  

As the dominant region is between the minimums and the origin, the original equation 

has the ability to double-count the inferior region in its calculation and result in a 

negative numerical measure, which is not valid.  Again, it is clear the evaluation of these 

formulas becomes computationally expensive as the number of points becomes large.  

 The quantitative accuracy of the observed Pareto frontier AC(P), is then 

1/ ( )AP P .  An observed set with a higher AC(P) is preferred.  Again, this can only be 

used to compare two sets, as the true frontier may be discontinuous, and therefore, a pre-

defined criteria may be misleading; i.e., the observed set is missing some region of 

solutions.  However, a value of 1 is achieved when the observed set is empty. 

4. Number of Distinct Choices ( NDCμ ) 

Let the quantity (0,1)μ∈  be such that the m-dimensional objective space is divided 

into 1/ mμ  small grids or hyper-cubes (assume 1/μ is integer for simplicity).  This number 

should be chosen such that the decision-maker considers as similar any two solution 
points within a hypercube; i.e., an indifference region ( )T qμ , where q is an intersection of 

m grid lines in the objective space.   

The number of distinct choices is defined by 
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where 1 2( , ,..., )mq q q q=  with i iq l v=  and 1/v μ= , and where 
1  if   ,   ( )
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0  if  ,   ( ).
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                (3.14)  

This metric can be used to compare two solution sets, with a higher value being 

preferred.  However, again, this metric cannot be used to determine the quality of the set 

in relation to the true set unless there is some prior knowledge of the true frontier. 

5. Cluster (CLμ) 

The cluster metric accounts for the fact that sets of different sizes may give an 

equivalent number of distinct choices, and that in such a case, the smaller cardinality set 

is likely preferred.  The cluster metric is defined by  

         ( )( )
( )

N PCL P
NDC Pμ

μ

= ,      (3.15) 

where N(P) is the number of observed Pareto solutions.  If every solution is distinct, a 

value of 1 is achieved.  Therefore, a lower value, or closer to 1, is preferred.  A lower 

value implies the method being used to find the Pareto front is not finding redundant 

solutions.   In any case, this metric can only be used to compare solutions. 

 As explained, these metrics can only be used to compare observed, non-empty 

Pareto solution sets.  Furthermore, they can be conflicting, forcing tradeoffs among 

quality aspects.  Therefore, because different aspects may be more valuable to different 

decision-makers, for the purposes of this research, the metrics are not combined into a 

single metric and are left for interpretation.  This is additionally justified because some of 

the metrics do not possess a problem-specific range, and therefore, an equal consideration 

of more than one metric may be impossible in any aggregation.  Of course, in the event 

one solution set is better in every metric, the decision is trivial.  
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3.2.2.  Entropy Metric.  Farhang-Mehr and Azarm [30] sought to create a metric 

that could not only be used for comparison of sets, but also assessing the quality of a 

single set.  They created an information-theoretic entropy metric that quantifies the 

quality of a set in terms of distribution quality, or diversity, over the Pareto frontier.  This 

entropy encapsulates into a single scalar different aspects of the Pareto approximation 

such as uniformity of distribution, coverage, number of solution points, and clustering. 

 The basic concept is to use influence functions that provide information about the 

neighborhood in the feasible space of each solution point, and to create a density function 

that aggregates the influence functions for each hypercube on a grid.  Specifically, 

considering the m-dimensional objective space m mF ⊆ \ , the influence function of the 

thi solution point, : m
i FΩ → \  (here Ω  is no longer denoting the feasible set, but 

rather a function), is a decreasing function of the distance to the thi  solution point.   For 

example, Farhang-Mehr and Azarm [30] recommended the Gaussian influence function: 

   
2 2/ 21( )

2
rr e σ

σ π
−Ω =         (3.16)  

where i yr→  is a scalar that represents the Euclidean distance of the point y and the thi  

solution point.  A large value of σ  yields a level influence function with no significant 

peaks, while a small value yields a sharp influence function with significant peaks.   

 The density function at any point y in the feasible objective space is defined as the 

sum of the influence functions from all solution points.   That is, 
 

        
1

( ) ( )
N

i i y
i

D y r→
=

= Ω∑                    (3.17) 

where (.)iΩ  is the influence function for the thi solution point. 

 The end result is that the generated density hyper-surface consists of peaks and 

valleys that can be easily identified.  The peaks correspond to those areas with many 

nearby points, and the valleys correspond to those areas with few nearby points.  The 
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entropy metric measures how level the surface is.  Again using the concept of 

indifference regions, a grid is constructed in the feasible domain, where the density 

( )D D y=  of each cell is computed using the center of each cell, y.   The density is then 

normalized as:  
 

1 2

1 2
1 2

...
1 1 1

...
m

m
m

aa a

k k k
k k k

D

D
ρ

= = =

=
∑ ∑ ∑

                  (3.18) 

where ia  is the number of indifference regions in Objective i.   

The normalized densities then sum to 1, and the entropy is 
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... ln( )
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m
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k k k k k k
k k k

H ρ ρ
= = =

= −∑∑ ∑       (3.19) 

where max ln( )H n=  is the maximum possible value of H and n is the total number of grid 

centers.  Therefore, a set with higher entropy is more evenly spread throughout the 

feasible region in the objective space and provides a better coverage of the space.  For 
this research, the entropy metric is scaled such that [ ]max Scaled/ 0,1H H H= ∈ . 

 However, the Pareto frontier obviously is not the entirety of the m-dimensional 

objective space.  Therefore, using the normalized objective space, the observed Pareto set 

is projected into a 1m −  dimensional objective space that gives a more representative 

density hyper-surface for the Pareto frontier.  The vectors 1,..., mu uK K  are the Cartesian unit 

vectors along each normalized objective, respectively.  The projection direction 1vK  is the 

unit vector along pgpb (utopia and nadir points) and the projection hyperplane is 1m −  

dimensional, passing through pg, and is normal to the projection direction.  The remaining 
projection vectors jvK  are generated using Gram-Schmidt orthogonalization: 
 

        
( ) ( ) ( )
( ) ( ) ( )

1 1 2 2 1 1

1 1 2 2 1 1
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− −

− −
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The solution points, 1( ,..., )mf f f= , are then projected, using these projection vectors.  

This process is depicted in Figure 3.2.1.   

It is in this projected space that the influence functions and density functions are 

calculated, and thus the entropy.  In addition, the entropy should be comparable between 

two sets, and a given set may not contain the entire front.  Therefore, the hypercube 

between the utopia point and nadir point is also projected to represent the feasible area 

and to be able to construct the indifference grid.  For this research, the center points of 

the grid are projected, so as to maintain the decision-maker’s true indifference regions.  

Constraints could be projected instead; however, this is sometimes difficult and 

computationally expensive in practice [30].   

 

 
Figure 3.2.1: Projection of Solution Points [30] 

The Pareto front may be discontinuous, and therefore, entropy cannot be used to 

quantify the quality of a single observed Pareto set unless separate projections are 

performed on known sub-regions (peaks will occur even in the case of a good 

approximation).  Additionally, the value of σ impacts the value of entropy differently 

based upon the observed Pareto points and grid size, further complicating any 

interpretation of the metric beyond a comparison of two sets.  Finally, a boundary effect 

may occur; i.e., points near any boundary will likely have a smaller density simply 



39 

because there is not as large a neighborhood around them for other feasible points to 

exist.  However, this mainly impacts the visual density surface only, with minimal impact 

on the actual entropy [30].      

Only unique projected density centers should be used to calculate entropy, as 

hyperdiagonals project to the same grid point, and the center may be falsely inflated.  

Figure 3.2.2 depicts a Pareto set both before and after projection.  Looking at the 

corresponding density surfaces in Figure 3.2.3, with σ too large, sensitivity is lost.  

Conversely, with σ too small, the sensitivity may become too great.  In general, in 

evaluating sample data for two and three objectives, 1 12σ =  seemed to provide the most 

reasonable, yet smooth, density surfaces and provided what appeared to be appropriate 

entropy values.  Therefore 1/12 is used in this research.   

 

Figure 3.2.2: Example Pareto Set 

A three objective example is shown in Figure 3.2.4 for further clarity, where the first plot 

depicts a Pareto approximation and the second plot depicts the density surface.  Here 

indifference values of 0.2 in each objective and 1 12σ =  were used. 
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Figure 3.2.3: Example Density Surfaces 

    

 
Figure 3.2.4: 3 Objective Example 

3.2.3. Further Considerations.  In the case of NDCμ
 , μ is an important parameter.  

There are two alternatives in deciding a value for this parameter: either specifying a value 

for every dimension, or using a single value, as presented in [72].   For this research, and 

to provide robustness, a value for every dimension is used.  The decision-maker is 

allowed to enter an indifference value, iω , for each original objective i.  The parameter 

iμ  that determines the number of cells in each objective space is then calculated using: 
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where the utopia and nadir points are not yet scaled.  Similarly, different indifference 

values are allowed for the entropy metric, which, as mentioned previously, are used to 

construct the grid before projection.  This allows the decision-maker’s preferences to be 

incorporated, as each dimension in the projected space no longer corresponds to a single 

objective.  

It is extremely important to mention something about the computational expense 

of these metrics in more than three objectives.  An entropy metric in four objectives 

requires 10000 indifference hypercubes when dividing each objective into only 10 bins.  

This further complicates the use of these metrics as termination criteria. 

3.3. Experimental Design 

Typically, experimental designs are used to screen factors or to fit models to data.  

For the purposes of this research, the interest is more in sampling such that the most 

representative set of Pareto points for the entire front, in as few runs as possible, is 

achieved.  In addition, if the resulting points are not representative enough, being able to 

fit models that yield the remaining points can be important.  These two objectives may 

be conflicting, in that designs that yield the best front may, in fact, yield a bad predictive 

model.   

3.3.1.  Factorial and Composite Designs. 

1. Full Factorial Designs 

Full factorial designs are produced combinatorially, using every possible 

combination of levels of factors (things being sampled to determine their relationship to 

the response), or in the case of this research, the aspiration and reservation levels.  The 

designer can choose a number of levels for each factor.  These designs grow rapidly in 
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size according to the number of factors and levels.  Fractional factorials use a subset of 

these runs using alias structures based on significance assumptions.  

2. Central Composite Design (CCD) 

The CCD is considered most useful for sequential experimentation and is an 

efficient method to fit a second-order model.  The CCD typically consists of a 2k  

factorial ( k  factors, 2 levels), or fractional factorial of Resolution V (no main effects or 

2-factor interactions aliased with each other, that is, no single column of the design 

matrix is the same as two columns of the design matrix multiplied by each other element 

by element) with Fn  runs, 2k  axial runs, and a number of center runs Cn .  For 

clarification, in design of experiments a specific design level or sample is often referred 

to as a run.  Using a distance 1/ 4( )Fnα =  for the axial runs yields a rotatable design; that 

is, the variance of the fitted values remains unchanged when the design is rotated about 

the center [48].  For the implementation of this research, the best fraction (fewest runs) 

for up to five objectives, yielding a Resolution V design, is used for the factorial portion.  

Beyond five objectives, a half fraction is used.   

Additionally, two variations of the standard or circumscribed CCD are 

investigated.  The face-centered CCD uses 1α =  to place axial points on the faces of the 

hypercube.  The second variation, an inscribed CCD, effectively scales down the 

circumscribed CCD to the design space hypercube. 

3. Box-Behnken 

The Box-Behnken design requires three levels and is formed by combining 2k  

factorials with incomplete block designs.  These are usually very efficient in terms of 

runs and are rotatable or nearly rotatable [48].   

4. Small Composite Design 

Other designs also exist that are based off of factorial or composite designs, with the 

aim of reducing the numbers of runs as much as possible, or increasing the efficiency.  
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These designs are typically saturated or near-saturated and are used when the cost 

prohibits the use of a standard design.  First, Plackett-Burman designs must be defined.  

These designs are two-level fractional factorial designs for studying 1k N= −  factors in 

N runs where N is a multiple of 4 [48].  As there is always an even number of factors in 

this research, these designs are not directly of interest, but are useful when constructing 

the small composite design. 

 The Small Composite Design (SCD) is a design such that the factorial portion is 

Resolution III* (defining relation does not contain any four-letter words, i.e., ABCD), 

augmented with center and axial runs.  This design aliases some main effects with 2-

factor interactions (2FI) and, therefore, main effects and 2FI are highly correlated [54].  

This could present a problem in the accuracy of the regression coefficients, although all 

coefficients are estimable in the second-order model [51].  For the initial sampling design 

(four and six factors), Draper-Lin SCDs are used.  These are constructed as described in 

[34] by:  

i) Calculating the minimum number of points for the cube-portion, 
2m p k= − , where ( 1)( 2) / 2p k k= + +  and k  is the number of factors  

ii) Starting from a two-level Plackett-Burman design with a number of 
experiments equal to or higher than m 

iii) Selecting k  columns of the original Plackett-Burman design and 
removing the rest 

iv)  In the case of duplicate rows, removing one row for each duplication 

v) Establishing the cube-portion with the rest of the rows 

vi) Adding the selected axial and center points 

For this research, appropriate SCDs are considered for two and three objectives.  

In the case of two objectives (four factors), columns 1,2,3, and 6 from the seven-factor 

Plackett-Burman are used with 1.41α =  (which is 41/4) and three center points, for a total 
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of 19 runs.  In the case of three objectives, columns 1-6 are used from the 19-factor 

Plackett-Burman with 1.57α =  (which is 61/4) and three center points, for a total of 35 

runs [68].  For any additional sampling that may be required with different than four or 

six factors (due to factor-screening), SCDs from [51] are used, with 1.41α =  for two and 

three factors, and 1.57α =  for five factors. 

5. Hybrid Designs 

Hybrid designs were developed to achieve the same degree of orthogonality as a 

CCD, to be near-minimum-point in size, and to be near-rotatable.  These designs use a  

k-1 factor CCD, with the thk factor set according to some optimality criteria [54].  

Unfortunately, these designs thus far are only for k =3,4,6,7, but are evaluated for two 

and three objectives in this research despite the lack of generality [54,57].  For this 

research, 416A (this designator entails the number of factors, number of runs, and 

variant) with an added center point, and 628A are used.  The design matrices can be 

found in [57].  These specific designs were chosen because, of the available hybrids, they 

provide the best efficiency, smallest maximum regional variance, rotatability, and 

information at the center of the design space [57].  In the case of three factors in further 

sampling, 311B is used due to its efficiency. 

6. Minumum-Run Resolution V Designs 

Minimum-run Resolution V designs are equireplicated two-level irregular fractions of 

Resolution V that can be used standalone, or as the factorial portion of a CCD.  These 

designs are typically beneficial for greater than five factors [44], allowing a savings of 

runs beyond a typical fractional design.  This design is only used in the present work for 

the three-objective case (22 runs), and axial and center points are added.  The specific 

matrix was obtained from [19].  Methods do exist to create these designs, but they are not 

implemented in this research. 
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7. Koshal Designs 

Koshal designs are saturated designs for modeling response surfaces of order greater 

than zero.  In the case of a first-order model, the Koshal design is really just the one-

factor-at-a-time design.  The first-order plus interaction and second-order Koshal designs 

are also evaluated in this research, with actual design matrices being available in [51].  

For strict DOE purposes, this design is likely not a good choice; however, the goal is 

really a balance between forming a model and exploring the design space.   

8. Alphabetic Optimality Criteria 

Designs can be generated for any number of runs according to some alphabetic 
optimality criteria.  Examples are D-Optimality, where 1( )TX X −  is minimized; A-

Optimality, where the sum of the variances of the regression coefficients is minimized; 

G-Optimality, where the maximum scaled prediction variance over the design region is 

minimized; and V-Optimality, where the average prediction variance is minimized.  

These computer-generated designs are generally inferior to either small composite or 

hybrid designs with respect to reducing the number of runs [48].  Furthermore, many of 

the previously mentioned designs were developed specifically for alphabetic optimality 

criteria.  In fact, using design optimality with a single criterion is the antithesis of design 

robustness [50].   

Regardless, a D-Optimal algorithm from MATLAB® is included for investigation 

as part of this research due to its immediate availability.  Here, the design is formed in 

order to fit the best quadratic model, and five center points, as well as axial points, are 

added to the design.  An exchange algorithm is used to optimize the design.   

It is interesting to note that alphabetic optimality criteria for multiple responses do 

not yield the same design as in the single-response case.  A method for finding such 

designs is available in the univariate case [36].  However, this research typically has more 
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than one regressor variable, and so the D-Optimal design will only be best with respect to 

a single response.   

9. Other Design Criteria 

Other methods have been developed to create designs that require fewer runs while 

optimizing some measure.  Specifically, low cost response surface measures (LCRSM) 

seek to minimize expected integrated mean squared error (EIMSE) for some number of 

runs and factors, while finding a best model among some set of candidates [8].  EIMSE is 

used so as to not ignore bias errors in a fitted model.  Although the resulting designs are 

useful, on a Pentium 450 MHz machine they can, for example, require an entire day to 

generate while only looking at 10 candidate models [8].  Therefore, they are not included 

in this research.  

3.3.2.  Other Sampling Methods.  Factorial and composite-based designs can grow in size 

rapidly.  Therefore, it may be desirable to sample as uniformly as possible with a 

restriction on the number of runs.  Furthermore, uniformity may be desirable in general.  

The following sampling methods provide alternatives that allow a designer to perform 

such sampling.  Unfortunately, these designs may also be far less desirable when forming 

a model, in this case, using aspiration and reservation levels. 

1. Latin Hypercube Sampling 

With Latin Hypercube Sampling (LHS), for a number of samples k, each variable 

is divided into k bins of equal probability.  Uniform probability distributions are assumed 

for the variables in this research.  Then, k samples are randomly taken with the following 

restrictions: 1) each sample is randomly placed inside a bin, and 2) for all one-

dimensional projections of the k samples and bins, there will be one and only one sample 

in each bin.  There exists more than one arrangement of bins and samples; thus, the 

performance of such a sampling may vary.  However, methods exist to reduce correlation 
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among samples, and in this research, this criterion is also included.  Lattice sampling is 

also investigated, where a sample is placed at the center of its respective bin. 

2. Orthogonal Array Sampling 

LHS is a special case of orthogonal array sampling (OA).  An OA produces a set 

of samples that yield uniform sampling in any t-dimensional projection of an n-

dimensional design space, where t n<  and t is called the strength.  In LHS, 1t = .   

Additional parameters include p, the number of bins in each variable, and λ, the 

number of samples in each bin following the projection.  The OA, denoted by 

OA(k,n,p,t), is such that, for any t columns of the array, each ordered t-tuple appears 

exactly λ times, and tk pλ=  [35].  For this research, OAs were constructed for the two 

and three-objective cases using OA(8,4,2,3), OA(80,6,2,4), OA(9,4,3,2), and 

OA(64,6,4,3)  [10].  In addition OAs were constructed for a number of factors other than 

four or six using OA(4,3,2,2), OA(8,5,2,2), and OA(16,5,4,2).  OAs are non-trivial to 

construct and are therefore often taken from publications.  However, Owen [65] has made 

available an archive of C-code that builds OAs.  A four sample, 2t =  OA is shown in 

Figure 3.3.1 for three dimensions. 

 

 
Figure 3.3.1: Example OA [35] 

3. Hammersley Sampling 

Hammersley sampling is a quasi-Monte Carlo sampling method that uniformly 

disperses sample sites throughout the design space for any number of samples N.  First, 

note that the radix-R notation of an integer p is defined as: 



48 

      0 1 ... m
mp p p R p R= + + + ,                 (3.22) 

where [ln( ) / ln( )]m p R= , and the brackets denote the integer portion.  The inverse 

number radix function for p is:  

     1 2 1
0 1( ) ... m

R mp p R p R p Rφ − − − −= + + + .     (3.23)  

 The Hammersley sequence of n-dimensional points is generated as: 
     ( )1 2 1

( ) / , ( ), ( ),..., ( )
nn R R Rx p p N p p pφ φ φ
−

= ,     (3.24) 

where 0,..., 1p N= − and the values for 1 1,..., nR R − are the first 1n −  prime numbers; i.e., 

(2,3,5,…) [35].  This algorithm is considered a modern design of experiment.     

4. Nearly Uniform Designs 

A uniform design is a space-filling design, the forming of which is an NP-Hard 

problem [46].  Therefore, various methods are used to form uniform, or nearly uniform, 

designs by minimizing a given discrepancy (measure of non-uniformity).  These designs 

are often used in quasi-Monte Carlo methods.  A uniform design (UD) for n runs and s 
factors is a n s×  matrix, where each column is a permutation of [ ]1, 2,..., n .  Let 

kjU u⎡ ⎤= ⎣ ⎦  be a uniform design and 1( ,..., )k k ksx x x= , where  
 

      
2 1

2
kj

kj

u
x

n
−

=  ,       (3.25) 

for 1,...,k n= ; 1,...,j s= .  1{ ,..., }nP x x= is called the induced design of U, i.e., the 

corresponding 0-1 range design to U.  The discrepancy value (quantitative measure of 

discrepancy) is denoted as ( ) ( )D U D P= .  A U-type design that minimizes the 

discrepancy (D-value) for a given n and s is the UD ( )s
nU n .  A design with a near-

minimal D-value is a nearly uniform design (NUD). 

Many measures of uniformity have been defined, to include star discrepancy 

(really just the Kolmogorov-Smirnov statistic), symmetrical discrepancy, and centered 

L2-discrepancy.  For the purposes of this research, the centered L2-discrepancy is used, 

denoted by CD(P), where  
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and P is as defined in [46].  Centered L2-discrepancy is invariant under coordinate 

rotation. 

 The method used in this research to form the NUD improves the design generated 

from the good lattice point (glp) method.  The cutting method of Ma and Fang [46] first 
uses the glp method to generate a NUD ( )s

pU p  using the following steps: 

1. Find the candidate set of positive integers  

, { : ,p sA a a p= <    gcd( , ) 1,ja p =    1,..., }j s=   

where gcd is the greatest common divisor. 
2. For each ,p sa A∈ , construct a a

kjU u⎡ ⎤= ⎣ ⎦ , where 
1(mod ) 1a j

kju ka p−= + , 1,...,k p= , and 1,...,j s= .  

3. Find ,p sa A∗ ∈  such that 
,

( ) min ( )
p s

a a
a AD U D U∗
∈= .  Then Ua

* is a NUD ( )s
pU p . 

With these steps alone, the cardinality of Ap,s may be smaller than desired.  For the 
cutting method, NUD ( )s

pU p  is found such that p n>>  and p or p+1 is prime.  In this 

research 79p =  is used for 50n < ; otherwise, the closest prime number to 1.5n is used.  

This worked fairly well in getting similar results to [46].  The resulting induced design is 
denoted as 1{ ,..., }pP c c C= = .  The following steps are conducted to complete the cutting 

method: 

1. For 1,...,l s= , the rows of C are reordered by sorting column l of C.  Each 

resulting matrix is denoted as ( ) ( )l l
kjC c⎡ ⎤= ⎣ ⎦ .    

2. For 1,...,m p= , let ( , ) ( , )l m l m
kjC c⎡ ⎤= ⎣ ⎦  where 

( )
1,

( , ) ( )
,

( )
,

,    ,  1,...,
,            ,  1,..., 1,  1,...,

,      ,  ,..., .

l
k m n j

l m l
kj k j

l
k p n j

c m n k n
c c m n k m j s

c m n k m n

+ − −

+ −

⎧ > =
⎪= ≤ = − =⎨
⎪ ≤ =⎩
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3. The elements of each column of ( , )l mC are relabeled by 1,2,…,n, according to their 

magnitude.  The resulting matrix is ( , )l mU . 

4. The matrices ( , )l mU are compared, and the one with the smallest CD(P) is chosen 

as the NUD ( )s
nU n . 

The cutting method takes cuts, Figure 3.3.2(b) and Figure 3.3.2(c), of the original design, 

Figure 3.3.2(a), and for a coordinate wraps the cuts such that points are either near 0 or 1, 

Figure 3.3.2(d).  These points are uniformly scattered over the wrapped space and are 

linearly transformed, such that they are uniformly scattered over the unit space.  Further 

details and examples may be found in [46].   

 

 
Figure 3.3.2: Cutting Method [46] 

The cutting method is advantageous over just using the glp method, regardless of 

the discrepancy used.  As the number of runs and factors increases, the cutting method 

can become time-consuming, comparative to glp, but it is nonetheless fairly efficient and 

produces a more uniform design.   
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3.4. Surrogates 

Surrogates have several uses in this research.  First, function evaluations may be 

expensive, so it may be beneficial to form surrogates that can be used inexpensively.  

Secondly, instead of continuing to use GPS or MADS, it may be possible to simply use 

the surrogates in some manner to complete the Pareto front. 

Many surrogates have some underlying global polynomial.  Typically up to 

quadratic terms are included, although cubic terms may be used as well.  Terms of higher 

order often lose meaning or relevance and instabilities may arise [60].  Nonetheless, 

cubic terms are evaluated in this research, as appropriate.  Descriptions of some 

surrogates not entirely based upon a least squares approach follow. 

3.4.1. Kriging.  Kriging is an approximation scheme that interpolates data, relying 

on two component models, expressed as  

( ) ( ) ( )y x f x Z x= +        (3.27) 

where ( )f x  represents a global model, and ( )Z x  is the realization of a stationary 

Gaussian random function with zero mean and non-zero covariance that gives a localized 

deviation from the global model [71].  The function Z(x) typically produces localized 

deviations to interpolate the data, although a non-interpolating model is possible.  For this 

research Design and Analysis of Computer Experiments (DACE) is used to form Kriging 

surrogates [45].  Kriging assumes deterministic functions, that is, repeated runs for the 

same inputs give the same reponse.  Since the functions in this research are stochastic, the 

mean response is used for the surrogate.  In some cases, the noise affects the function 

enough so that very different responses can be achieved.  As it may be difficult to label 

some response more likely or more important than another, the mean is still considered 

the best method for aggregating multiple responses into one value, with the hope that the 

mean approaches the true response in the limit.   
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Specifically, in DACE data is normalized and the global model is built using a 

regression model of p functions, if , 1,...,i p= , such that 

    i ( ):, 1, 1 ,( , ) ( ) ...l l p l pF x f x f xβ β β= + + .      (3.28) 

The function Z(x) has a covariance between realizations ( )z w  and ( )z x of 

      i2[ ( ) ( )] ( , , )l l lE z w z x R w xσ θ= ,      (3.29) 

where 2
lσ is the process variance for the thl component of the response, x and w are 

design sites in n\ , and i( , , )R w xθ  is the correlation model with parameters nθ ∈\ .   

The set S of m design sites has the expanded design matrix, 

[ ]1( ),..., ( ) T
mF f s f s= .      (3.30) 

The predictor at a point x is defined as  

ˆ( ) ( ) ( )T Ty x f x r xβ γ∗ ∗= + ,                  (3.31) 

where 1 1 1( )T TF R F F R Yβ ∗ − − −=  from generalized least squares, Y is the matrix of 

responses, *γ is computed via the residuals *R Y Fγ β∗ = − , and 
i( , , )ij i jR R s sθ= , , 1,...,i j m= ,       (3.32) 

i i
1( ) ( , , ),..., ( , , )

T

mr x R s x R s xθ θ⎡ ⎤= ⎣ ⎦ .     (3.33) 

DACE also restricts the correlations to the form: 
i i

1
( , , ) ( , )

n

j j j
j

R w x R w xθ θ
=

= ∏ − .                            (3.34) 

Specifically, i ( , )j jR dθ , where j j jd w x= − , can be defined in one of seven ways [45]: 

1. Exponential: exp( )j jdθ−  

2. General Exponential: 1exp( )n

j jd
θ

θ +− , where 10 2nθ +< ≤   

3. Gaussian: 2exp( )j jdθ−  

4. Linear: { }max 0,1 j jdθ−  

5. Spherical: 31 1.5 0.5j jξ ξ− + , { }min 1,j j jdξ θ=   

6. Cubic: 2 31 3 2j jξ ξ− + , { }min 1,j j jdξ θ=  
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7. Spline: 
2 3 

3

1 15 30 ,       0 0.2
( ) 1.25(1 ) ,            0.2 1

0,                              1.

j j j

j j j

j

ξ ξ ξ
ς ξ ξ ξ

ξ

⎧ − + ≤ ≤
⎪= − < <⎨
⎪ ≥⎩

, j j jdξ θ=  

 The choice of regression polynomial, correlation function, and θ parameters can 

significantly affect the quality of a surrogate in its prediction.  The parameter θ can take 

any positive value, with a smaller value corresponding to a flatter approximation.  It is 

optimized within DACE, given that more restrictive upper and lower bounds are provided 

by the user.  Without knowledge of appropriate bounds, θ can be estimated by 

maximizing a likelihood function as an unconstrained nonlinear optimization problem, or 

by an alternative method proposed by Mardia and Marshall [37].  However, both of these 

methods could require exhaustive evaluation of values for θ.   

In this research, the lower and upper bounds on the θ vector are determined by the 

NOMADm software [2].  In this approach, the conditioning of the correlation matrix 

from GLS is used to iteratively halve the lower bound from initial θ values, and the 

correlation matrix itself is used to iteratively double the upper bound until a criterion is 

met.   

The discussion on bounds for θ is important because lower values for the θ vector 

are generally desirable, although not always.  Low values are often achieved by using 

more sample sites [21], and a higher θ causes the correlation to deteriorate more quickly 

[55].  An example is given in Figure 3.4.1, depicting a reduced quadratic polynomial on 

Dias Γ2 Objective 1 data (the objective is the z-axis) in plots (a) and (b).  The effect of θ 

is clear as the small bumps, or mounds, in the surface disappear with the smaller θ  

vector.  Of course, with a constant polynomial the θ vector can cause significant bumps 

in the surface, shown in Figure 3.4.1(c).               
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(a) Thetas: 20, 30 (b) Thetas: 0.5, 0.5 

Figure 3.4.1: Example Reduced Quadratic Kriging Surrogate 

 

 
Figure 3.4.2: Constant Kriging Surrogate (Thetas: 10,10) 

 In the case of high noise, a nugget parameter can be introduced into the 

correlation function to smooth the data for a non-interpolating Kriging model.  However, 

in this research the noise level is generally not assumed to be large, so this should not be 

required.  To quantify the quality of the Kriging surrogate, a cross-validation approach 

can be employed.  In general, the surrogate can be formed using subsets of samples, with 

the remaining samples used to estimate mean square error [62,59].  This is necessary 

because, although interpolation has zero error, it does not mean the surrogate is an 

effective predictor.  The cross-validation method developed in Section 4.11 is based on 

analysis from this research. 

It should be mentioned that a method called cokriging exists.  Cokriging is similar 

to Kriging, but uses secondary performance functions highly correlated to the primary 
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function, such as gradient information, in the event the primary function is expensive to 

evaluate.  Unfortunately, the inference from auxiliary data becomes extremely demanding 

as dimensionality increases, because correlation and cross-correlation between variables 

and their partial derivatives is required [71].   

3.4.2. Radial Basis Functions.  Radial Basis Functions (RBFs) also have the 

ability to approximate non-linear functions and to interpolate data.  A RBF φ has a 

symmetric output around a center μ , a sample site.  That is ( )( )
p

x xφ φ μ= − , where 

p
⋅ is a vector p-norm, normally with 1 ≤ p ≤ 2 (in this research, we assume the 

Euclidean-norm, 2p = ).  A set of RBFs serves as a basis for representing multiple 

functions expressible as linear combinations of chosen RBFs and a polynomial function 

p(x):  

     ( )
1

( ) ( )
m

j j
j

y x p x w x xφ
=

= + ∑ − .     (3.35) 

(3.35) can be expensive with a large number of RBFs, and so a k -means clustering 

algorithm is sometimes used to reduce the number of RBFs employed [71].  In this 

research however, there should be no need to limit the number of RBFs. 

Several RBFs exist with various advantages to each.  The bi-harmonic, ( )r rφ =  

with a linear polynomial, and the tri-harmonic or cubic spline, 3( )r rφ = with a quadratic 

polynomial, are popular for fitting functions of three variables.  The multi-quadric, 
2 2( )r r cφ = + , is useful for fitting topographical data.  The thin-plate spline, 

2( ) log( )r r rφ = , is popular for fitting smooth functions of two variables.  Other RBFs 

include the inverse quadric, 2 2 1/ 2( ) ( )r r cφ −= + , and the Gaussian, 2( ) exp( )r crφ = −  [9].   

Recall that r is the norm from (3.35), and c∈\  is a positive, fixed constant.  In this 

research, all of the mentioned RBFs are evaluated, as well as constant, linear, quadratic, 

and cubic polynomials (with and without interaction terms).  The RBF estimator code 

developed by Abramson [3] was used as a starting point and expanded for this research.   
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It should be mentioned that RBFs are much more general than presented here.  

The following are the general definitions of classes of RBFs [56]:  

1.  Surface splines are any RBF such that ( ) kr rφ = , k ∈`  and odd, or    

    ( ) log( )kr r rφ = , k ∈`  and even. 

2.  Multiquadrics are any RBF such that 2 2( )
k

r r cφ = + , k > 0 and k ∉` . 

3.  Inverse multiquadrics are any RBF such that 2 2( )
k

r r cφ = +  and k < 0. 

4.  Gaussians are any RBF such that 2( ) exp( )r crφ = − .   

 To solve for the weights w and polynomial coefficients 'c  (note this 'c  vector is 

different than the scalar in the RBF), the weights are such that for interpolation values 

1( ,..., )mf f f= , ( ) ( )y x f x= , where ( )y x  is the true response.  Additionally, because 

there are more parameters than data,    

1
( ) 0

m

j j
j

w p x
=
∑ = .       (3.36) 

This gives the system  

            
0 ' 0T

A P w f
P c

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
,      (3.37) 

where ( ),i j i jA x xφ= −  for i,j=1,…,m, , ( )i j j iP p x=  for i=1,…n, j=1,…,k, and k is the 

number of polynomial coefficients in the basis representation  [9,24].   

The remaining question is how to determine the scalar c for the applicable RBFs.  

Hans Bruun Nielsen suggested a value of 1 in all cases [24].  In cases of large ranges of 

distances, this value has little impact.  In general, there does not currently exist a best 

way to choose c [17].  For the multi-quadric RBF, Franke found that using the average 

distance between centers worked well [17].  Furthermore, as c becomes larger, accuracy 

increases.  However, over a finite rectangular grid, as c increases, problems with 

conditioning of A from (3.37) are much more likely to occur.  Therefore, for this research 

the average distance between centers is generally used, so as to provide some accuracy 
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benefit, but also to prevent too much degradation in the condition of A.  This is further 

justified by results presented in Section 4.11. 

Baxter [17] provided an in-depth look at RBFs and the conditioning of A in the 

case of multi-quadric and Gaussian RBFs.  In general, Baxter cautioned against the use of 

Gaussian RBFs, noting the inability to interpolate constants on a grid and sensitivity to c.  

Effective preconditioners for the preconditioned conjugate gradient method (PCG) were 

presented by Baxter [17], however, these matrices could not in all cases be generalized.  

Fortunately, using the identity matrix (i.e., no preconditioning) still reduces error, 

although it requires more iterations of PCG.  Unfortunately, PCG in either case does not 

always guarantee an efficient means of solving any near-singular system.  For this 

research, if a system is identified as ill-conditioned, singular-value decomposition is 

applied to achieve better coefficients.     

An example of how RBFs interpolate data is shown in Figure 3.4.3.  The first plot 

depicts the interpolation using an underlying constant polynomial, while the second plot 

depicts how these interpolations are less pronounced with a different polynomial and 

kernel (the effect of the polynomial should be clear).  This data is again Dias Γ2 

Objective 1 data (z-axis is the objective).       

 

  
(a) Bi-Harmonic Constant  (b) Tri-Harmonic Reduced Quadratic 

Figure 3.4.3: RBF Surrogates 
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3.4.3. Nadaraya-Watson Estimator.  Kernel regression or kernel smoothing is a 

nonparametric fitting method, the cornerstone of which is the Nadaraya-Watson 

estimator.    This estimator is used to approximate a function at a point x according to 

    1

1

( )
ˆ ( )

( )

N

i h i
i

N

h i
i

F K x X
f x

K x X
=

=

∑ −
=

∑ −
,                 (3.38) 

where iF  is the function value of design site Xi, hK is the kernel function which has the 

property ( ) 1hK x+∞
−∞ =∫ , ix X−  is input as a 2-norm divided by h, and h is the smoothing 

parameter or bandwidth [63].  Viewing the approximation as a weighted sum, hK  

determines the “shape” of the weights, and h determines the “size.”  The degree of 

nonlinearity is essentially determined by h, with smaller values of h allowing more 

curvature, but also allowing outliers to affect the estimation.  A univariate example is 

shown in Figure 3.4.4. 

 

 
Figure 3.4.4.  Effect of h on curvature [63] 

Code developed by Abramson, Dunlap, and Sriver is used in this research to form 
the surrogate [4].  Kernels, ( )K u , that are evaluated include: uniform, 0.5 ( 1)I u⋅ ≤ ; 

triangle, (1 ) ( 1)u I u− ≤ ; Epanechnikov, 20.75 (1 ) ( 1)u I u⋅ − ≤ ; quartic,  
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2 215 16 (1 ) ( 1)u I u⋅ − ≤ ; triweight, 2 335 32 (1 ) ( 1)u I u⋅ − ≤ ; Gaussian, 

21 exp( 0.5 )
2

u
π
⋅ − ; and cosinus, cos ( 1)

4 2
u I uπ π⎛ ⎞ ≤⎜ ⎟

⎝ ⎠
.  I is an indicator function that 

returns a 0-1 value, depending on whether the expression given in the input argument is 

satisfied or not.  Lower and upper bounds for h are input, with a golden section search 

optimizing h with respect to sum of squared errors in a cross-validation approach.  For 

this research, a lower bound of 0.1 and an upper bound of 50 are used.   

3.4.4. Artificial Neural Networks (ANN).  Artificial Neural Networks (ANN) are 

also investigated in this research.  An ANN is a structure of nodes, weights, and 

functions, which attempts to “learn” data, so that, it can yield a correct response output 

for any new data.  Theoretically, ANNs work like the human brain, simulating biological 

information processing by processing data through neurons, or brain cells.  As knowledge 

accumulates, connections between the neurons strengthen; i.e., weights become more 

accurate.  A drawback of ANNs is that they often over-train, or learn traits too well, and 

become bad predictors.  Additionally, ANNs are typically not deterministic, and will train 

differently upon every instance.   

Neural networks contain layers, with each layer containing neurons.  A typical 

model consists of an input layer, output layer, and one or more hidden layers.  The hidden 

layer(s) allow the network to learn non-linear relationships.  The optimal number of 

neurons in the hidden layer(s) and the optimal number of hidden layers can be problem-

dependent, but a rule of thumb is to start with one hidden layer with a number of neurons 

equal to half of the total number of variables in the input and output layers [18].  The 

number of neurons and layers should never exceed the total number of input and output 

variables.  Activation functions, g, determine the response of each neuron and introduce 

the non-linear relationships. 



60 

Looking at a single node or neuron, as illustrated in Figure 3.4.5, input data is 

weighted and summed with a constant bias term θi, after which this sum is input to the 

activation function g.     

 

 
Figure 3.4.5: Neuron in ANN [39] 

Within MATLAB®, the activation function g can be chosen as the identity, hyperbolic 

tangent, or 1log sig( )
1 xx

e−=
+

.   

In this research, two ANNs are evaluated: a generalized regression network, and a 

feed-forward backpropagation network.  In the generalized regression network, two 

layers are used.  The first uses radial basis neurons with bias; the second uses identity 

neurons without bias.  The radial basis neurons use an activation function of 
2xe− .  A 

spread parameter allows the user to vary the smoothing.  The feed-forward 

backpropogation network uses a user-defined number of layers, number of neurons 

within the layers, and activation functions.  Weights and bias are determined by 

backpropogation, reducing the sum of squares of the differences between the generated 

outputs and the desired outputs.  MATLAB® provides many options for backpropogation.  

In this research the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is used, due its 

better computational efficiency over other methods included in MATLAB®.  The BFGS 

algorithm adjusts variables iteratively according to 1k k k kx x pα+ = + , where kα is selected 

to minimize error along the search direction kp , using a backtracking line search.  The 

initial search direction is the negative gradient of the error, and successive search 
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directions are calculated by solving ( )k k kB p f x= −∇ [52].  The approximate Hessian 

1kB +  is updated using 

1

T T
k k k k k k

k k T T
k k k k k

B s s B y yB B
s B s y s+ = − + ,      (3.39) 

where 1k k ks x x+= − and ( ) ( )1k k ky f x f x+= ∇ −∇ . 

3.5. Least Squares & Factor-Screening Methods 

For this research, least squares regression is evaluated as a possible surrogate and 

method to screen factors.  It must be noted here that although it is best to capitalize on the 

properties of the response surface methodology designs, this may not happen in practice.  

Runs of the design may lead to dominated points within SMOMADS.  These points 

should not be used in fitting any surrogate as they negatively impact the model (i.e., only 

want Pareto points), and thus are essentially removed from the design.  Therefore, the 

runs that do not lead to dominated points will not always be the entirety of the design, 

and orthogonality, rotatability, etc. may be lost.  It could be argued that this eliminates 

the usefulness of many of the designs evaluated in this research.  However, because the 

number of runs in these designs differs, and because it did no harm to evaluate all 

designs, all designs are included.  Furthermore, the coded design matrices are used to 

form the least squares models, in the event desirable properties such as orthogonality and 

rotatability remain intact. 

It is assumed here for brevity that the reader is somewhat familiar with ordinary 

least squares (OLS), weighted least squares (WLS), generalized least squares (GLS),  the 

general linear model (GLM), and corresponding techniques such as the Box-Cox method.  

Therefore not all terms or methods are explicitly defined.   If this is not the case, a good 

review can be found in Montgomery, Peck, and Vining [49]. 

The typical linear regression model is of the form y X β ε= + , where the 

parameters (β) are linear, X is the design matrix, and y is the response.  Ordinary least 
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squares (OLS) makes the assumption that 2~ (0, )NIDε σ and the errors are uncorrelated.  

Using the least-squares normal equations, β can be estimated using 1ˆ ( )T TX X X yβ −= , 

where X  has a leading column of ones to estimate the intercept term.  A variance 

inflation factor (VIF) is an indicator of multi-collinearity, and if larger than 10 indicates a 

regressor that is near linearly dependent to, and thus contributes similar information as, 

another regressor.  Therefore TX X  may become near singular, adversely affecting the 

coefficient estimates, and so a corresponding regressor may need to be removed from the 
model.  The VIFs are calculated according to 2 1(1 )j jVIF R −= − , where 2

jR  is the 
2 1 residual TotalR SS SS= −  value (SS denoting sum of squares) obtained by regressing the jth 

predictor on the remaining predictors.  The Box-Cox method is a procedure that identifies 

a best power transformation for the response to correct nonconstant variance. 

Generalized least squares (GLS) is a more general regression method, of which 

OLS can be considered a special case.  The variance may be nonconstant and the 

observations may be uncorrelated or correlated.  GLS assumes some variance/covariance 

structure to account for this.  Weighted least squares (WLS) is another case of GLS 

where errors are assumed uncorrelated but the variance is not assumed constant. 

For this research, use of the GLM beyond the normal model is likely to be of little 

benefit.  Many GLMs are problem-specific, but all assume the response variable 

distribution is a member of the exponential family and have a link function that provides 

the relationship between the linear predictor and the mean of the distribution function.  

For example, logistic regression requires a binary response variable, Poisson regression is 

used for count data of a rare event, and gamma regression requires a positive response 

(with log canonical link).  This research requires a generalized method for regression, so 

GLMs other than the normal (response variable distribution is assumed to be normal and 

the canonical link is the identity) will typically be inappropriate, not to mention that the 

noise affects the response such that the data would likely have to be changed, not just 
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transformed by some power method, to meet the needs of these models (i.e., gamma must 

be non-negative).  Additionally, these models can have dispersion problems, which if 

significant enough, are not as easy to correct as the normal distribution case.   

3.5.1. Model Building Approach.  Given that no prior knowledge of any model is 

assumed in this research, a computationally efficient approach for constructing good 

models is needed.  Unfortunately, a “best” model can only be guaranteed if all possible 

regressions are used.  In all possible regressions, all subsets of regressors are used to form 

models.  These models are compared, and the best is chosen.  This is clearly inefficient as 

the number of regressors and responses increases.   

Alternatively, stepwise regression methods attempt to intelligently select variables 

for the model without evaluating all possible regressions.  Forward selection inserts 

regressors one at a time into the model based upon largest correlation to the response, 

adjusting the correlations for the effect of the previously entered regresssors (partial 

correlations).  Equivalently, the regressor with the largest partial F statistic (t-statistic) 

can be added.  Forward selection is problematic in that, as regressors enter, other 

regressors previously entered may become insignificant.  Stepwise regression attempts to 

correct the problems of forward selection by dropping regressors at each iteration if their 

t-statistic is less than some removal criterion. 

Backward elimination begins with all candidate regressors in the model.  The 

smallest t-statistic is compared with some preselected value as a removal criterion.  

Regressors are removed until no regressor’s t-statistic exceeds the removal criterion.  

Backward elimination often serves as a good selection procedure [49].          

In 1978, Berk noted that forward selection tends to agree with all possible 

regressions for small subset sizes, while backward elimination tends to agree for large 

subset sizes.  No method typically works better than another, and so it may be best to fit 

multiple models.  However, for multi-objective problems a model is required for each 
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objective, and so as the number of objectives and samples increases, the time required to 

formulate the models becomes much larger.  For the surrogate, only a good, not 

necessarily optimal, prediction or set of factors is needed, as the stochastic nature of the 

problem likely prevents a near-perfect model regardless.  The approach taken to screen 

factors and build a regression surrogate is as shown in Figure 3.5.1. 

 
1. Choose either OLS or WLS. 
      Using coded variables, where the variables are on the range [-1,1] (Hi, Lo), with   
      the exception of axial runs: 
2. Fit the full model using up to cubic polynomial terms and 2FI terms, checking for 

available degrees of freedom. 
3. Remove Multicollinear terms iteratively (VIF>10), removing the least significant 

regressor among the idenitifed regressors and those with correlation > 0.5 to the 
identified regressor. 

4. Run Box-Cox. 
5. Fit model, check for outliers using studentized residuals r.  If 3>ir , remove 

point i while fitting models. 
6. Check significance of regression (using F-test) and regression coefficients (using 

T-tests).  If all coefficients are significant, and regression is significant, return 
model.  Otherwise remove least significant coefficient. 

7. If only one regressor is left and the model with one regressor is insignificant, 
return all main effects. 

8. Continue Steps 5-8 until model returned.  Return significant terms, main effects 
(including those from significant interactions), and create natural model. 

Figure 3.5.1: Factor Screening/Regression Method 

Available degrees of freedom are used to choose the problem-dependent starting 

model.  Box-Cox is run early so as to not transform the response too many times, or too 

late in the process, as nonconstant variance may affect which regressors appear 

significant.  The model is mainly built using coded variables so as to take advantage of 

those designs that are orthogonal (assuming all design levels achieve non-dominated 

responses).  This algorithm is by no means perfect, but it is an effective, quick method of 
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reducing the factors that need to be sampled when attempting to fill gaps in the objective 

space, if it is possible.   

R-squared metrics (adjusted and predicted) are all returned upon completion of 

the model.  Unfortunately, DOE and regression is an art, and so it cannot be said that this 

method or another method is a definitive best approach.  GLS is not included because a 

correlation would have to be assumed, and because DACE uses GLS for its underlying 

polynomial already. 

 3.5.2. Multivariate Adaptive Regression Splines.  Multivariate Adaptive 

Regression Splines (MARS) do not assume that there is some singular relationship 

between regressors and the response.  Instead, MARS partitions the input space into 

regions (which may overlap), each with its own regression equation [66] or in the pure 

sense, combination of basis functions.  In other words, a set of common basis functions 

with different coefficients and knots where the regression equation changes, is used.  

MARS is an expansion of recursive partitioning regression, where the design space is 

partitioned into separate regressions to reduce error.  Friedman [33] gives a 

comprehensive explanation and development of MARS.   

MARS is an extremely powerful algorithm; reasonable models can be fit to noise.  

Unfortunately, it is also computationally inefficient.  MARS is not an all-possible 

regressions approach of basis functions, partitions, and variables, but it can be close 

(especially dependent upon the code implementation).  Computational shortcuts 

presented by Friedman [33] and smart coding can make the algorithm more efficient.  

However, as allowable interactions and observations for which a basis function is 

positive increase, the computation time becomes exceedingly costly.  Friedman 

referenced 20 and 1000, respectively, for maximum allowable interactions and 

observations, relative to a SUN Microsystems Model 3/260) [33].  Of course, such a 
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machine is extremely out-powered by modern computers, but is evident that these models 

are not cheap to compute.   

The problem with computation relative to this research is that as the number of 

objectives or variables increase, so too do the interactions and likely the number of data 

points.  Four objectives need 28 2FI for the aspiration and reservation levels, and at three 

objectives, with a full factorial there will likely be at least 1000 data points to optimally 

partition.  Furthermore, the aspiration and reservation levels may not serve well as 

predictors, and so, using Dias Γ1 as an example, there are 435 2FI for the corresponding 

30 decision variables without having prior knowledge of the significant interactions.    

The final downfall is that there exist multiple responses for which to fit a model, 

meaning a computationally expensive model has to be formed many times.  Thus, the 

general use (for example, 10 objectives) of MARS is questionable versus other surrogate 

methods when it comes to computational time. 

Therefore, the MARS-inspired algorithm in this research is more of a recursive 

partitioning approach.  The computational time was a concern, because no matter how 

powerful the algorithm, it could be possible that surrogates simply are not a good method 

to approximate the Pareto front, or that surrogates continually need to be formed.  

Therefore, too much time should not be spent on forming the model.  Originally, the 

author intended to write code for a MARS implementation, but came to realize just how 

inefficient aspects of the algorithm could be given certain instances.  The implementation 

of MARS/Recursive Partitioning developed for this research is shown in Figure 3.5.2. 

The sub-models are only valid over the range of the design sites, so a pure 

distance method cannot be used when predicting.  Similarly, the regions do not 

necessarily overlap as in the true MARS algorithm.  In the event a point falls in between 

regions, the global model is used to predict.  The primary drawback of this 

implementation is that an outlier can cause early termination and the partitioning 
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algorithm may not find the best partition to fit a new model.  Also, eventually a small 

subset of points may be used to fit the sub-regression model, and thus these models may 

give misleading information despite the better fit.  Unfortunately, there is no easy way to 

choose knots or partitions for the model without either prior knowledge of the surface or 

doing something similar to the true and expensive MARS approach.  As SMOMADS is 

computationally expensive enough, the use of a full MARS algorithm is not likely to be 

of value if the goal is to expand to any number of objectives, variables, etc. 

 
1. Check available degrees of freedom and fit largest model, up to cubic terms, over 

the entire region using WLS, Box Cox, and backward elimination 
(Multicollinearity correction optional). 

2. Use squared error as lack of fit measure (LOF).  
3. Set maximum number of subregions to the floor of the number of samples divided 

by the number of predictor variables. 
4. While the number of subregions is less than the maximum, partition each 

subregion approximately in half, using the point with the worst squared error from 
the previous model as the “center” of the new region. 

5. Fit a new model to the new subregion and check for improvement in squared 
error.  If there is improvement, continue partitioning, otherwise stop partitioning 
that region. 

Figure 3.5.2: MARS/Recursive Partitioning Implementation 

The truncated cubic functions from MARS were also not added, although it would 

be beneficial to have such functions, as they do not directly correspond to the 

implementation used here.  An appropriate modification of those functions could 

probably be determined, but it is shown in Section 4.11 that the least squares approaches 

were not of great value in general.   

A recursive approach for Kriging, RBFs, etc. could also be attempted.  However, 

as these surrogates are designed to globally interpolate, it becomes much less 

straightforward.   
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3.6. Using Single-Objective Formulations (BiMADS) 

Audet, Savard, and Zgahal [13] recently devised the BiMADS method for solving 

bi-objective problems using MADS.  This method uses the ordering property of 2-

dimensional space in conjunction with reference-point based single objective 

formulations to approximate the Pareto front, such that there are no gaps within some 

tolerance.  Additionally, this method avoids limitations presented by other methods 

(excluding SMOMADS).  The ordering property is the property that sorting data in two 

dimensions, specifically the Pareto front points, will result in properly placing points in 

the 2-dimensional space.  Therefore, determining which points are neighbors in space is 

straightforward and the size of a gap in the Pareto front can be easily interpreted by 

Euclidean distance.  However, this property does not generalize to more than two 

dimensions, which means that solving problems with more than two objectives is 

problematic. 

BiMADS relies upon a series of single objective optimizations to solve for the 

Pareto front.  These single-objective formulations rely on a reference point pr∈\  in the 

objective space (of dimension p) and are of two forms.  The first form, the normalized 

formulation, is defined as 

   
{1, 2,..., }

1 2
( )ˆˆ ˆ: min ( ) ( ( ), ( ),..., ( )) max

i p

i i
r r r px X

i

f x rR x f x f x f x
s

ψ φ
∈∈

−
= = ,               (3.40) 

where ns∈\ .  Figure 3.6.1 depicts the level sets of this formulation and the product 

formulation, and shows intuitively why these formulations and an appropriate reference 

point work to fill gaps in the Pareto space. 

The second single objective formulation, the product formulation, is defined as 
2

1 2
1

: min ( ) ( ( ), ( ),..., ( )) (( ( )) )
p

r r r p i ix X
i

R x f x f x f x r f xψ φ +∈
=

= = − −∏�� �  ,        (3.41) 

where ( ( )) max{ ( ),0}i i i ir f x r f x+− = −  for 1,2,...,i p= .  This formulation is advantageous 

over the previous in that it preserves the differentiability of the orginal problem. 
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(a) Normalized Formulation (b) Product Formulation 

Figure 3.6.1: Level Sets [13] 

 Audet, Savard, and Zgahal [13] proved that the optimal solutions to these 

formulations for p objectives ( 2p ≥ ) are Pareto optimal, and that the formulations 

preserve local Lipschitz continuity and a condition involving Clarke descent directions 

for all objectives and rψ .  The actual BiMADS algorithm is shown in Figure 3.6.2.  The 

initial points for this algorithm can be chosen by any means, but are recommended to be 

those found when solving for the utopia point to ensure the true spread of solutions. 

BiMADS begins with some initial set of points and rapidly works towards the 

Pareto front.  At each iteration, the algorithm searches for three points such that the 

distances between the three are maximal, while using the weighting so that a valid gap is 

not identified continually (if a discontinuous front).  The starting iterate is then changed 

to match the solution to the middle point, and the reference point is built using the two 

endpoints.  Solving the single-objective formulation generates Pareto points around the 

middle point and fills the two gaps, or works further towards the true Pareto front. 

BiMADS is very fast and works extremely well in two objectives.  With three or 

more objectives, the ordering property ceases to exist.  The gap algorithm presented in 

Section 3.7 is used in this research to eliminate the need for the ordering property.  Using 

the gap algorithm, or some visualization technique, a slightly different approach can be 

taken than that of BiMADS.   
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INITIALIZATION: 
• Apply the MADS algorithm from 0x  to solve 1min ( )x X f x∈  and 2min ( )x X f x∈ . 

• Let 1 2{ , ,..., }J
LX x x x=  be an ordered list of pairwsie nondominated points such 

that 1 2
1 1 1( ) ( ) ... ( )Jf x f x f x< <  and 1 2

2 2 2( ) ( ) ... ( )Jf x f x f x> > .  Initialize the 

weight ( ) 0w x =  for all x X∈  and let 0δ > . 

MAIN ITERATIONS: Repeat 

•  REFERENCE POINT DETERMINATION: 

o If 2J > , let 
( )

2 21 1

2,..., 1

( ) ( ) ( ) ( )ˆ arg max
1

j j j j

j J j

F x F x F x F x
j

w x

− +

= −

− + −
∈ =

+
, 

and define the reference point ˆ ˆ1 1
1 2( ( ), ( ))j jr f x f x+ −= . 

o If 2J = , let ˆ 2jx x= , define the reference point 2 1
1 2( ( ), ( ))r f x f x=  and set 

( )

22 1
ˆ

2

( ) ( )

1
j

F x F x

w x
δ

−
=

+
. 

o If  1J = , let ˆ 1jx x= , ˆ
ˆ( ) 1

j
jw x
δδ =
+

 and apply the MADS algorithm from 

ĵx  to solve 1min ( )x X f x∈  and 2min ( )x X f x∈ .  Terminate MADS when the 

mesh size parameter mΔ drops below ˆ ˆ( ) ( )j jOδ δΔ =  and continue to the 
step UPDATE LX . 

• SINGLE-OBJECTIVE FORMULATION MINIMIZATION:  Solve a single-
objective formulation rR  using the MADS algorithm fom starting point ĵx .  

Terminate MADS when the mesh size parameter mΔ drops below ˆ ˆ( ) ( )j jOδ δΔ =  

or if a maximal number of objective evaluations is attained. 
• UPDATE LX : 

Add to LX  all nondominated points found in the current iteration, remove dominated 

points from LX , and order the resulting list of points.  Increase weights: 
ˆ ˆ( ) ( ) 1j jw x w x← +  for each Lx X∈ .  

Figure 3.6.2: BiMADS [13] 

Instead of identifying three points, two bounds or endpoints of a single gap are 

identified and used to create the reference point.  This single gap is relative to one or 

more objectives and their indifference values.  These boundary solutions can then be used 
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as starting iterates for the corresponding single-objective formulation and one or both 

starting iterates will likely work to fill the identified gap along the objective(s).  This 

works in part because BiMADS makes no assumption about where the middle point is in 

reference to the other two.  The use of this approach from here on will be termed 

nMADS.   

Audet, Savard, and Zgahal also recommend two metrics for the uniformity 

distribution of Pareto solutions based upon the squared distance between nondominated 

points.  These metrics do not add much information to the entropy, cluster, and number of 

distinct points metrics already introduced in Section 3.2, and were more important within 

the context of BiMADS. 

3.7. Identifying Gaps in the Pareto Front 

After the initial estimation of the Pareto front, it is critical to find any gaps that 

may exist, specifically with regard to a set of indifference values.  Recall from Section 

3.2 that indifference values form a grid of indifference regions over the objective space 

such that a decision-maker is indifferent between any two solutions within a single 

indifference region.  These indifference values are used in nMADS to generate a required 

fidelity for the Pareto front.  A gap, for the purposes of this research, consists of two 

endpoints that do not satisfy indifference values with respect to at least one objective, 

such that there are no other points between those endpoints on the current Pareto 

approximation in the unsatisfied objectives.   

3.7.1. Limited Methods.  First, as the entropy and distinct point metrics already 

build a grid of points, that grid (either projected or non-projected) could be checked 

quickly for which grid hypercubes lack points.  This is problematic for several reasons.  

For one, the projected grid is less desirable, in that points along hyper-diagonals are 

projected to the same location in the projected space.  Therefore, an empty projected 

hypercube has no direct meaning.  Second, only those hypercubes on the Pareto front are 
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of interest, and in some cases, distinguishing these from the other hypercubes could be 

difficult.  Finally, if the points are projected, dimensionality is lost.   

For instance, consider Figure 3.7.1 in which a front in two objectives is shown 

with indifference values iω  for 1,2i = , where there exist two points with no gap in the 

first objective, but a gap in the second. When the front is projected, this curve becomes a 

line, and the gap in the second objective may be lost.   
 

 
Figure 3.7.1: Projection 

Further considering a hypercube grid based on the indifference values, 

hypercubes can be removed based on dominance and inferiority to the current Pareto 

approximation.  This too has its problems.  Two examples are shown in Figure 3.7.2 with 

the Pareto points in green and hypercube centers in blue.  Figure 3.7.2(a) shows a front 

that is very narrow in all three objectives, while Figure 3.7.2(b) shows a front that is part 

of a sphere.   

It is clear that there are many grid hypercubes that are neither dominated by, nor 

are inferior to, the current Pareto approximation, but the majority of them are not a part of 

the true Pareto approximation.  It should be clear that further intensifying the criteria may 

validly elimate points for one front, but not another.  Adding some distance criteria to 
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ensure the grid hypercubes are near the current approximation is also problematic, in that 

a large gap may exist and will not be found.   

 

 
(a) Viennet3 (b) Tamaki 

Figure 3.7.2: Removing Grid Hypercubes Based on Dominance 

Therefore, using a pre-formed grid presents more serious disadvantages than 

advantages.  This inferiority and dominance approach could also be implemented using 

randomly generated points within the bounds of the Pareto approximation.  However, 

some of these points will lie off of the front, and it is uncertain whether or not randomly 

generated points will fall within true gaps.  The method developed for this research deals 

solely with those points found by SMOMADS/nMADS in the objective space, and not a 

grid.   

3.7.2.  The Gap Algorithm.  To identify gaps in the m-dimensional Pareto front, 

care was taken to make the algorithm as computationally efficient as possible.  The 

efficiency is restricted by the fact that the points lie in m-dimensional space.  The general 

notion behind the algorithm is to use indifference values to identify missing portions of 

the Pareto approximation and to determine when a point has other points surrounding it.  

Given a vector of indifference values, ωK , each point should have another point within iω  

and  iω−  (above and below) in each objective i.  The extreme points in each objective are 

a special case, requiring only a point above for a minimum, or below for a maximum 
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(since the extreme points constitute the current bounds of the Pareto approximation).  

Euclidean distance is used to determine when points are near each other in the Pareto 

space.    

The current Pareto approximation objective function values are sorted one 

objective at a time.  The points corresponding to the maximum and minimum in each 

objective are identified as extreme points.  Searching through the approximate Pareto 

solutions with respect to a particular objective, differences in objective function value are 

compared to the respective indifference value.  This constitutes searching the objective 

space one-dimensionally.  

For a given objective i, the search is first conducted in ascending fashion, and 

then later descending fashion, starting from each data point, proceeding through 

respective data points to look for gaps “above” and “below.”  This is to ensure each point 

is “surrounded”, by having a point of greater and lesser objective function value within 

iω  for each objective i.  However, because of the one-dimensional sort, Euclidean 

distance must be used to determine if a point that is within iω  in function value in 

objective i, is truly in the same part of the Pareto front as the starting data point.  If a 

successive point in the search (with respect to the point the search is started from) is 
within the distance criteria, critd c ω= ⋅ K  (c recommended to be 0.5), and is within the 

particular indifference value iω , there is no gap.  

If the difference in objective function value between points is larger than iω , a 

distance vector is checked and the closest point above or below (depending on the search 

being conducted) the current point is found.  If the difference in objective function value 

for that point and the current also is larger than iω , then the gap is considered valid.  

Otherwise, it is ignored and will be found later with respect to another objective, since 

the distance criteria was not met.  That is, if those points do represent a gap, their 

objective function values cannot be within every indifference value and so it will be 
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found with respect to another objective.  Due to the nature of sorting, these precautions 

are necessary, as illustrated by the parabola missing a piece of its curve, shown in Figure 

3.7.3.  It would be easy to accidentally identify no gaps by using sorting.       
 

 
Figure 3.7.3: Parabola 

Using the closest point “above” or “below” does not necessarily correspond to 

filling in empty space the fastest.  Consider the portion of a Pareto front shown in Figure 

3.7.4, where the grey box represents the indifference region and the red circle represents 

a set distance criteria.  The current point, in green, has a point above and below in the 

first objective and only below in the second.  However, in looking above on the y-axis 

(searching Objective 2), Point 1 is outside the distance criteria but is within 2ω .  

Therefore the algorithm moves on to Point 2.  This point satisfies the distance criteria but 

does not satisfy 2ω .  The algorithm would stop at this point and identify a gap using the 

current point and Point 2 because any future point will also be outside of 2ω , and Point 2 

is closest.   

In this two-dimensional view, it would appear that using Point 3 would be better 

than Point 2, and it in fact could be.  However, Point 3 could be in an entirely different 

part of the Pareto front once a third objective is considered.  This is the purpose of using 

the closest point above or below, so that the center point of any gap identified is as near 

as possible, or on, the true Pareto front.  Adding other criteria to try and determine the 
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“best” endpoint adds computational effort and may mistakenly move to other portions of 

the Pareto front (a large Euclidean distance could signify the best endpoint or another 

point that is in a very different part of the front).   

 

 
Figure 3.7.4: Searching Around a Point 

There of course is the possibility the same gap is identified multiple times or 

similar gaps are identified.  Using the Euclidean distance between center points of gaps 

comparative to critd , only distinct center points can be retained.  If a gap is filled only 

with respect to one problem objective, that gap will be identifiable again in the other 

problem objectives if those are not simultaneously filled (if two endpoints constituted a 

gap for more than one objective, it is possible all of those objectives will be satisfied after 

one attempt to fill the gap; any added point adds a new value for all objectives).  Gaps 

should then be sorted according to Euclidean distance between the endpoints, as filling 

larger gaps first is preferable.   

In practice, the algorithm was relatively efficient even with as many as 3500 

points, 8 objectives, and 10 indifference regions in each objective (~10 seconds on a 2.1 

GHz, 1GB RAM machine).  The algorithm is shown in Figure 3.7.5.   
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1. Pick some c > 0 and set critd c ω= ⋅ K , where ωK  is a vector of indifference values. 

2. For each objective m, sort the Pareto objective data (n solutions) in ascending 

order of function value.  Set 1j = . 

a. For each data point j , relative to the sorted data, search below: 

i. Let 1i = . 

ii. If 1j =  or j n= , that data point is an extreme point.  Set 1j j= +  

or stop respectively. 
iii. If m m

j j i mf f ω−− ≤  and m m
j j i critf f d−− ≤ , set 1j j= + . 

iv. Else, if m m
j j i mf f ω−− > , find the closest point k to j, from point 1 

to 1j −  using Euclidean distance. 

1.  If m m
j k mf f ω− ≤ , set 1j j= +  (will add in another 

objective; did not satisfy the distance previously). 
2. Else, add ( ),j k  as a gap. Set 1j j= + . 

v.  Else, 1i i= + . 

b. Search above using same process as (a), except using j i+  instead of j i−  

in (iii) and (iv), and also using points 1j +  to n  in (iv). 

3. Remove gaps with a distance between their centers less than critd  (retaining one). 

Figure 3.7.5: Gap Algorithm 

 3.7.3.  Limitations of the Algorithm.  There is an unavoidable drawback to this 

method when using more than two objectives.  For example, Figure 3.7.6 depicts a 

Tamaki problem Pareto approximation in only two objectives, with Pareto points in blue, 

and identified gaps in green.  Because the algorithm looks above and below each point, 

but using a distance criteria (in this case, 0.5 of the norm of the indifference regions: [0.1, 

0.1, 0.1]), as long as a point has some other point within its vicinity with an acceptable 

higher or lower objective function value (although that point may be on a diagonal), no 

gap is found.  In reality, the red circle is a gap, but since all of its surrounding points meet 
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the criteria, no gap is stored.  Hopefully, as the algorithm progresses, either new points 

will fill that gap, or the algorithm will be able to identify it (due to noise or the directions 

in GPS/MADS).  Of course, if a user can visually identify the gap, dependence on this 

algorithm is not required.  In practice, if a gap was not identifiable in a given iteration of 

SMOMADS or nMADS, it was identified in later iterations, due to new approximate 

Pareto points being added.  
 

 
Figure 3.7.6: Identified Gaps 

 This drawback is further exemplified in Figure 3.7.7.  In searching above and 

below, there is some chance that for any two objectives, two points may account for both 

the above and below points in both objectives (versus four points).  This is shown in 

Figure 3.7.7(a), with a potential unidentified gap represented by the purple arrows and the 

indifference region shown as the grey box.  The points each have another point within the 

indifference value above and below in each objective, and a string of such points can 

result in a circular gap, as in Figure 3.7.6.   
 

  
(a) Searching Above/Below (b) Searching Every Diagonal 

Figure 3.7.7: Searches 
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The correction for this would be partly combinatorial.  Each point would need 

other points above in one objective and above in another, below in one objective and 

above in another, etc.  Essentially points would be required in the diagonal regions 

illustrated in Figure 3.7.7(b).  This, in fact, has more problems associated with it.  First, 

this too allows gaps, as points may fall ever so slightly within these sub-hypercubes 

associated with the diagonals, which would still allow empty regions (rectangular gaps) 

to occur.  Furthermore, consider Figure 3.7.8.  It should be clear that many of the points 

on this front would be identified incorrectly as gaps because they have no points in a 

certain diagonal direction (the red arrow).  Therefore, the algorithm given in Figure 3.7.5 

is better, because it allows for any shape of curvature in the Pareto front. 

A required tolerance could be used to ensure objective function values change by 

at least some amount, so that the unidentifiable circular or rectangular gaps do not occur.  

However, due to noise, this tolerance could be misleading, and choosing a value for the 

tolerance may not be straightforward.  Furthermore, the increasing number of criteria to 

be met will make the algorithm less efficient as the number of objectives increase, 

without providing in practice a significant advantage over the algorithm given in Figure 

3.7.5.     

 

 
Figure 3.7.8: Viennet3 
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 As was mentioned previously, the algorithm performed exteremely well in 

practice.  Figure 3.7.9 shows both a two-objective and three-objective example, with 

Pareto points in blue, identified gaps in green, and indifference regions on the axes.  In 

the three-objective problem all of the gaps (centers) were correctly identified, but one 

additional gap was falsely identified.  However, identifying incorrect gaps is not a 

problem because it will not occur often, and Pareto points are still identified.  It is more 

important that the true gaps were all identified.    

 

  
(a) Fonseca F1 (b) Viennet3 

Figure 3.7.9: Gap Examples 

Intensifying the distance criterion identifies more gaps.  In practice, a value of 

0.5c = seemed to work best.  When looking at these plots, the reader should keep in mind 

that gaps can only be found inside the bounds of the Pareto points found thus far.  The 

algorithm is limited in that it follows the current approximation and is not robust enough 

to interpret the surface the data represents.  

3.8. Visualization of N-Dimensions 

As the number of objectives increases beyond three, one can no longer visualize 

the Pareto front.  Therefore, a decision-maker becomes entirely reliant upon metrics, 

indifference regions, and the gap algorithm.    Fortunately, there has been some work 

done in this area so as to be able to visualize any number of objectives.  This enables the 
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method to catch any gaps that are not caught by the gap algorithm, or to determine that 

the current approximation is sufficient.  There are, in fact, a variety of methods for 

visualizing n-dimensions, to include the obvious two- or three-objectives at-a-time 

approach, graph morphing, and physical programming visualization.  The limitation in 

these methods is that the information can become overwhelming and difficult to piece 

together in one representation. 

3.8.1. HSDC.  Agrawal, Lewis, and Bloebaum first developed a method, called 

Hyper-Space Diagonal Counting (HSDC) and then a visualization, Hyperspace Pareto 

Frontier (HPF), so as to be able to visualize the entire Pareto space in two dimensions 

intuitively (i.e., easily interpreted) [7].   

HSDC is based on the premise of Cantor’s counting method from complexity 

theory.  Cantor’s counting method is used to prove that the set of rational numbers is 

countable, by establishing a one-to-one correspondence between the rationals and the set 

of natural numbers.  HSDC maps points to a line by counting along hyperdiagonals that 

move away from the origin.  Figure 3.8.1 shows example hyperdiagonals for two 

objectives and three objectives, where in the two objective case counting is performed 

along the red diagonals, starting at bin (1,1).  

 

 
 

(a) 2 Objectives (b) 3 Objectives 
Figure 3.8.1: Hyperdiagonals 
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   First, note that the number of points on a level, or hyperdiagonal, is given by, 
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,      (3.42)  

where { }2,3,...n∈  is the number of objectives, and l is the level.  The total number of 

elements up to a particular level or hyperdiagonal is given by  

      
1

l
n n
l lTE E=∑        (3.43) 

and the sum of the indices at a particular level is given by 1lS n l= + − .  Note that the 

size of the hyperdiagonals continually increases.  For example, in Figure 3.8.1(a) the 

count at bin (2,5) is 17, at bin (3,5) is 24, at bin (4,5) is 32, and at bin (5,5) is 41.    

Generating the HPF is done first by putting the objective function values into 

bins, with the objective functions grouped into two sets, counting each set using HSDC.  

These counts provide the linear indices for each point on the two-dimensional graph.  The 

two-dimensional graph can then be interpreted as moving away from the origin, along the 

hyperdiagonals in the respective objectives, where a count of the number of points in a 

specific bin can also be added.  Depending on the number of bins, the number of levels 

necessary for counting becomes 1l nb n= − + .  The number of bins must be consistent in 

all objectives; otherwise, the counting becomes biased.  In this research, the indifference 

values are used to find a common bin size, using the smallest number of resulting bins 

from all objectives (where the indifference values are used to bin each objective), for 

speed purposes. 

The objective function values can also be grouped intelligently.  With positive 

correlation of objective function values, the counts will be distributed across many levels.  

With negative correlation points will group on levels, and with zero correlation, pockets 

of bins develop.  Therefore, grouping objectives based on the most positive correlation 

yields the most Pareto-like view.   
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For the implementation in this research, objectives are grouped in near-equal 

sized sets.  Objectives are grouped according to correlation, with larger positive 

correlation meaning objectives are grouped together, and larger negative correlation 

meaning objectives are grouped separately.  Specifically, the two objectives with largest 

positive correlation are grouped first, and then objectives are added to that group based 

on the maximum cumulative correlation (sum of the correlations) with the objectives 

already in the group until the maximum group size is reached.  The event may occur 

where a particular objective has large positive and large negative correlations with other 

objectives, in which case its selection is not necessarily appropriate.  However, any 

alternative automated method also has its drawbacks.  An example of a three-dimensional 

Pareto front using HSDC is shown in Figure 3.8.2(b). 

HSDC has the limitation that some neighborhoods are lost when forming the 

visualization.  Furthermore, different objective grouping schemes cause different HPF 

visualizations.   

 

 
(a) Pareto Front (b) HSDC View (c) PC 

Figure 3.8.2: Example Views 

3.8.2.  Parallel Coordinates.  The method of parallel coordinates plots each 

objective function on a tick of the x-axis, and connects the objective functions with lines 

[7,20,53].  For this research, the objective functions are normalized so that the y-axis of 

one objective function does not prevent data from another from being seen.  The major 



84 

drawback of using parallel coordinates is that as the number of solutions grows, the 

visualization can become too dense, and thus extremely difficult to interpret.  Such an 

example is shown in Figure 3.8.2(c).   

3.8.3. HRV.  Chiu and Bloebaum developed Hyper-Radial Visualization (HRV) as 

a visualization that did not suffer any of the problems of other n-dimensional 

visualizations [20].  The specific goal of this visualization is to view the n-dimensional 

space in a straightforward manner, such that “good” regions of the performance space 

may be identified. 

HRV uses the normalized objective function values, iF� ∈ [0,1], for each objective 

i=1,…,n.  The Hyper-Radial Calculation (HRC) value is computed as:    
2
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.       (3.44) 

Because the objectives are normalized, [0,1]HRC∈ .  Part of the intent behind 

normalizing the objective function values is that the utopia point, or best estimate thereof, 

becomes the zero vector.   

The objectives are split into two groups S1 and S2 such that 1 2 {1,..., }S S n=∩ .   

This gives one HRC value for each group, HRC1 and HRC2.   The Hyper-Radial Value 

(HRV) is then 2 2( 1) ( 2)HRV HRC HRC= + .  The HRV is truly the squared radius of the 

Pareto point from the utopia or minimum reference point.  This value can be compared to 

indifference curves (developed from the indifference values, shown in Figure 3.8.3) to 

determine the quality of a point, with closer to the utopia point being better.  This method 

is referred to as the Direct Sorting Method (DSM). 
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Figure 3.8.3: Indifference Curves [20] 

 

 
Figure 3.8.4: HRV Example 

To maintain an unbiased representation, the two groups of objective functions 
must be equal in size, 1 2S S= .  In the event of an odd number of objectives, a dummy 

objective is added, with a value of zero for all points.  This maintains the unbiased 

representation, although it modifies the axes values.  With the unbiased representation, 

the grouping of objectives becomes unimportant in relation to the indifference curves.   
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Pareto points may then be classified by preference.  Chui and Bloebaum implement a 

hybrid preference structure that combines elitist and inclusive structures.  This is shown 

in Table 3.8.1.  Each coding number corresponds to a specific color.  An example of the 

HRV representation is shown in Figure 3.8.4.  
 

Table 3.8.1: Color-Coding for Hybrid Preference Structure [20] 

Color-Coding Preference Criteria 
11 Pareto points with all Highly Desirable (HD: 0-20% from Lowest Value) 
21 Pareto points with all Desirable (D: 20-40%) and at least one HD 
22 Pareto points with all D 
31 Pareto points with Tolerable (T: 40-60%) and better and at least one HD 
32 Pareto points with only T and D 
33 Pareto points with all T 
41 Pareto points with Undesirable (U: 60-80%) and better and at least one HD 
42 Pareto points with U and better (no HD) and at least one D 
43 Pareto points with only U and T 
44 Pareto points with all U 
51 Pareto points with HU (Highly Undesirable: 80-100%) and better and at least one HD 
52 Pareto points with HU and better (no HD) and at least one D 
53 Pareto points with HU and better (no D or HD) and at least one T 
54 Pareto points with only U and HU 
55 Pareto points with all HU 

 

3.8.4. Using Visualizations Computationally to Find Gaps.  A short discussion on 

using these visualizations computationally to find gaps is warranted because it would be 

best to require no user interaction.  Unfortunately, none of these visualizations can be 

used in the computational context to find gaps.  Parallel coordinates have no new 

information, and so the gap algorithm would still be required.  HSDC uses binning to 

represent the data, counting along hyperdiagonals that get further away from the origin.  

By binning, some local information is lost, and furthermore some bins correspond to non-

existent areas in space because the hyperdiagonals continually get longer.  Therefore, a 

gap that is found may not truly be a region in space, and gaps may exist that will not be 

found due to the effect of binning.  HRV uses hyper-radials, and thus can map points 

from different regions to the same location.  Therefore, any gap found in the HRV space 
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will not have a singular meaning in three or more objectives.  Instead, only radii can be 

identified that have no points, but this is easily done visually.   

3.9. Final Dominance Check 

Walston checked points for dominance as they were added to the approximate 

Pareto set, against those previously added.  However, she suggested adding a final check, 

since points added after other points may, in fact, dominate.  In some of the Chapter IV 

results, some dominated points were, in fact, retained.  A check was eventually added in 

this research, but not before many plots were already done; thus many of them could 

contain a few dominated points.   

Because all points have already been checked against those points prior to them, 

they simply need to be checked against those points following them.  The combination of 

these two checks also saves some time versus a single final check, as points may be 

removed earlier in the process.  An alogrithm such as BiMADS requires only Pareto 

points at any iteration, and so this savings in time is valuable.   

In the stochastic case, there is a possibility that the maximum amount of noise is 

subtracted from each objective.  The probability of this is very small, but it could occur.  

As shown in Figure 3.9.1, if this were to occur, many “valid” Pareto points already found 

would be dominated.  Depending upon the shape of the front, and as the number of 

objectives or noise increases, this can become increasingly troublesome.  As every 

possible solution, and not just the final, is checked for dominance using the BiMADS 

approach, there are opportunities in a localized area for this problem to occur, and “valid” 

Pareto solutions already found could be removed.  This could also add a great deal of 

computational time, since the random number generation now becomes critical in 

achieving maximum noise (it is harder to get to the minimum curve consistently).  

Furthermore, this forces the approximation below the true Pareto front, which would 

cause the efficiency of BiMADS/nMADS to be lost.   
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SMOMADS and nMADS both concentrate on regions, and by using a mean 

response from R&S, the effect of noise is reduced.  Therefore this case of domination 

becomes much less probable.  Walston discussed a method that could be used within the 

R&S framework from the Multi-Objective Computing Budget Allocation algorithm 

(MOCBA) to help prevent this dominance problem, by using probabilities that a point is 

dominated.  Such probabilities may be difficult to formulate and imply some sort of 

tolerance from a threshold, which will be discussed shortly.  Fortunately, in practice, this 

dominance event did not seem to occur. Of course, that may change at large noise levels.   

 

 
Figure 3.9.1: Noise Limitation in 2 Objectives 

Any use of a tolerance could be difficult, as an estimate of noise would be 

required, and there would have to exist some notion of a cut-off.  Interestingly, in the 

general case, no confident estimate of noise can ever be achieved in the black-box 

context because a deviation in noise may constitute a much larger or much smaller 

deviation in objective function value, such as in the case of a piece-wise or sensitive 

objective function.  Tolerance could also be generated from indifference values, or in the 

case of a surrogate solution, an estimate of error.  However, this too has its difficulties as 
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error may vary by region and indifference values can be subjective.  Additionally, in 

allowing for some tolerance, non-Pareto solutions may be accepted.  

The concepts and proposals from this chapter are tested and analyzed in Chapter 

IV.  Additionally, where necessary, the concepts are put together to form two new 

general algorithms.  These algorithms are also tested and analyzed in Chapter IV.  
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IV. Results and Analysis 

The analysis and results of the methodologies presented in Chapter III follow.  

Further development of some of those concepts is also developed as part of the analysis.  

A general approach is presented for each section, followed by the analysis. 

4.1. Testing Approach 

The initial SMOMADS algorithm used for this research was acquired directly 

from Walston [70].  The various runs were conducted on four computers, ranging from 

2.19 to 3 GHz and 500 to 3GB RAM.  Three were Pentium machines on the AFIT 

network, and thus performed slower than would be normally expected, courtesy of 

network patches, etc.  None of the runs were conducted on high-performance machines 

for one of three reasons: 1) the code was experimental and thus had to be continually 

tweaked and modified whenever errors arose; 2) too much data had to be saved to too 

many locations to easily use Open Office on Linux; and 3) achieving a level of code and 

algorithm quality that could be used on a desktop machine was more desirable.  The 

machines used for each set of runs are identified when time is presented as a metric.  

Each test problem during a set of runs (section of this thesis) was conducted using a 

single machine for consistency. 

An identical suite of test problems was generally used in this research to compare 

with the results of Walston [70].  Specific test problems and the specific implementations 

tested by Walston [70] are listed in Table 4.1.1, where FF denotes full factorial, CCD 

denotes Central Composite, and BB denotes Box-Behnken.  

Data analysis was conducted using appropriate statistical and design of 

experiment techniques, when appropriate.  Results are often shown for only a 

representative subset of the complete test set, although analysis was done for every 

problem (to keep thesis length reasonable).  The specific problem formulations used by 
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Walston [70] follow in Section 4.2.  It is important to note that the approximations found 

by Walston [70] were dependent upon ranges determined from published Pareto fronts 

and their observed utopia and nadir points, where often the published front came from 

genetic algorithms [69].   
 

Table 4.1.1: Problem Set (Walston) 

Test Problem 
# 

Vars 
# 

Objs Var Type 
# Test 
Points 

Experimental 
Design Solver 

Viennet4 2 3 Continuous 4209 FF,CCD, BB MVPS-RS 
Viennet3 2 3 Continuous 4096 FF MVPS-RS 

Poloni 2 2 Continuous 10272 FF MVPS-RS 
Tamaki 3 3 Continuous 145 FF,CCD MVMADS-RS 
Dias Γ1 30 2 Continuous 697 FF,CCD MVPS-RS 
Dias Γ2 30 2 Continuous 625 FF MVPS-RS 

Fonseca F1 2 2 Continuous 10036 FF,CCD MVPS-RS 
Schaffer F3 1 2 Continuous 11250 FF,CCD MVPS-RS 

Srinivas 2 2 Continuous 697 FF,CCD MVMADS-RS 
DTLZ7 2 2 Continuous 36 FF,CCD MVPS-RS 

Disk Brake 4 2 Mixed 108 CCD MVMADS-RS 
 

4.2. Test Problems 

In general, uniformly distributed random noise was added to and subtracted from 

each objective function, so that the expected value of the noise was zero.  In Walston’s 

work [70], noise was simply added to the objectives, in essence raising the objective 

function values such that, with large amounts of noise, the optimization would become 

much easier for MADS/GPS (it is easier to find –5, than –10 for a minimization).  

Walston [70] added 1% of the maximum objective function value (nadir point 

component) to each objective, with the exception of Viennet4, where the noise was not 

scaled.   

These test problems encompass a good variety with respect to the number of 

decision variables, types of constraints, and types of objectives, convexity and non-

convexity, and discontinuity.  All are re-formulated as minimization problems, as the 
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code accompanying this research requires.  However, in the experimental design results 

section, some of the problems may be shown as maximizations (the results multiplied by 

–1), while in later sections, they will be shown as minimizations.  This was just a result of 

those batch files being based on Walston’s original files [70] used to generate the plots.   

The problem formulations follow, to include the starting iterates used.  Walston’s 

results [70] for these problems are not shown until Section 4.17.  

4.2.1.  Viennet4. 

   min ( )
2 2

1 2
1 1 2

( 2) ( 1), 3
2 13

x xF x x − +
= + +  

                
2 2

1 2 2 1
2 1 2

( 3) (2 )( , ) 13
175 17

x x x xF x x + − −
= + −  

                        ( )
2 2

1 2 1 2
3 1 2

(3 2 4) ( 1), 15
8 27

x x x xF x x − + − +
= + +  

subject to 

1 24 4 0x x+ − ≤  

1 1 0x− − ≤  

1 2 2 0x x− − ≤  
2

1 2, [ 4, 4]x x ∈ −  

Walston tested this problem using a CCD, Box-Behnken, and full factorial design using 3 

levels, with 5 replications for each design [70].  For this research, an initial starting iterate 

of [0,0]  was used. 

4.2.2.  Viennet3.  

 min 2 2 2 2
1( , ) 0.5( ) sin( )F x y x y x y= + + +  

                  ( )
2 2

2
(3 2 4) ( 1), 15

8 27
x y x yF x y − + − +

= + +  

          
2 2( )

3 2 2

1( , ) 1.1
( 1)

x yF x y e
x y

− −= −
+ +

 

subject to 

3 , 3x y− ≤ ≤  
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Walston tested this problem using a full factorial with 4 levels and 5 replications [70].  

An initial starting iterate of [0,0]  was used. 

4.2.3.  Poloni. 
  min ( ) 2 2

1 1 1 2 2, 1 ( ) ( )F x y A B A B= + − + −  

            ( ) 2 2
2 , ( 3) ( 1)F x y x y= + + +  

subject to  

,x yπ π− ≤ ≤  

where, 

1 0.5sin(1) 2cos(1) sin(2) 1.5cos(2)A = − + −  

2 1.5sin(1) cos(1) 2sin(2) 0.5cos(2)A = − + −  

1 0.5sin( ) 2cos( ) sin( ) 1.5cos( )B x x y y= − + −  

2 1.5sin( ) cos( ) 2sin( ) 0.5cos( )B x x y y= − + −  

Walston noted that for this problem the published solution contained obviously 

dominated points [70].  She also noted that aspiration and reservation levels generally 

resulted in points on the middle of the Pareto front, but after adjustment of the ranges, 

points on the lower right side of the curve were found.  Poloni was originally a 

maximization problem.  An initial starting iterate of [0,0]  was used. 

4.2.4.  Tamaki. 
                min ( )1 , ,F x y z x= −  

( )2 , ,F x y z y= −  

( )3 , ,F x y z z= −  

subject to 
2 2 2 1x y z+ + ≤  

, , 0x y z ≥  

This problem was originally a maximization problem.   An initial starting iterate of 

[1,1,1]  was used, even though it is infeasible with respect to the nonlinear constraint. 
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4.2.5. Dias Γ1. 

 min 1 1( )F x x=
G  

              
30

1
2 30

2

2

( )( ) 1 9 1
29 1 9

29

i

i i

i

x F xF x
x=

=

⎡ ⎤
⎢ ⎥⎡ ⎤⎛ ⎞ ⎢ ⎥= + −⎜ ⎟⎢ ⎥ ⎛ ⎞⎢ ⎥⎝ ⎠⎣ ⎦ + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑
∑

GG  

subject to 

0 1,ix≤ ≤    1, 2,...,30i =  

where, 

1 30[ ,..., ]x x x=
G  

On this problem, Walston used confined ranges to fill gaps in the objective space [70].  

When proper noise was added and subtracted, the second objective could yield imaginary 

numbers.  The square root term was set to zero whenever this occurred.  An initial 

starting iterate of 30[0]  was used. 

4.2.6.  Dias Γ2. 

                           min 1 1( )F x x=
G   

        

2

30
1

2 30
2

2

( )( ) 1 9 1
29 1 9

29

i

i i

i

x F xF x
x=

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎡ ⎤⎛ ⎞ ⎢ ⎥⎜ ⎟= + −⎜ ⎟⎢ ⎥ ⎢ ⎥⎛ ⎞⎜ ⎟⎝ ⎠⎣ ⎦ +⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

∑
∑

GG  

subject to 

0 1,ix≤ ≤    1, 2,...,30i =  

where, 

1 30[ ,..., ]x x x=
G  

Dias Γ2 is nearly identical to Dias Γ1, with only a change in the second objective.   An 

initial starting iterate of 30[0]  was used. 

 

 



95 

4.2.7.  Fonseca F1. 
 min ( ) 2 2

1 1 2 1 2, 1 exp( ( 1) ( 1) )F x x x x= − − − − +  

         ( ) 2 2
2 1 2 1 2, 1 exp( ( 1) ( 1) )F x x x x= − − + − −  

subject to 

12 2x− ≤ ≤  

22 2x− ≤ ≤  

An initial starting iterate of [0,0]  was used for Fonseca F1.  This problem is nonconvex. 

4.2.8.  Schaffer F3. 

                     min ( )1

,          1
2 ,    1 3

4 ,      3 4
4 ,   4

x x
x x

F x
x x

x x

− ≤⎧
⎪− + < ≤⎪= ⎨ − < ≤⎪
⎪− + <⎩

 

                2
2 ( ) ( 5)F x x= −  

subject to 

5 10x− ≤ ≤  

 Here the first objective is a piece-wise function.  Walston again created specific ranges 

in order to achieve her results [70].  An initial starting iterate of 1.5 was used.  This 

problem is discontinuous. 

4.2.9.  Srinivas. 
                  min ( ) 2 2

1 , ( 2) ( 1) 2F x y x y= − + − +  

             ( ) 2
2 , 9 ( 1)F x y x y= − −  

subject to 

20 , 20x y− ≤ ≤  
2 2 225 0x y+ − ≤  

3 10 0x y− + ≤  

On this problem, Walston noted that the published solution contained many dominated 

solutions [70].  An initial starting iterate of [10,10] was used.   
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4.2.10.  DTLZ7. 
               min ( )1 1 2 1,F x x x=  

                    ( )
2

1 1 1
2 1 2 2

2 2

sin(8 ), (1 10 ) 1
1 10 1 10

x x xF x x x
x x

π⎛ ⎞⎛ ⎞
⎜ ⎟= + − −⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

 

subject to 

1 20 , 1x x≤ ≤  

An initial starting iterate of [0,0]  was used for DTLZ7.  This problem is discontinuous. 

4.2.11.  Disk Brake. 

                min 5 2 2
1 2 1 4( ) 4.9 10 ( )( 1)F x x x x−= × − −
G  

           
6 2 2

2 1
2 3 3

3 4 2 1

9.82 10 ( )( )
( )

x xF x
x x x x
× −

=
−

G  

subject to 

2 1( ) 20 0x x− − ≥  

430 2.5( 1) 0x− + ≥  

3
2 2
2 1

0.4 0
3.14( )

x
x x

− ≥
−

 

3 3 3
3 2 1

2 2 2
2 1

2.22 10 ( )1 0
( )

x x x
x x

−× −
− ≥

−
 

2 3 3
3 4 2 1

2 2
2 1

2.66 10 ( ) 900 0
( )

x x x x
x x

−× −
− ≥

−
 

155 80x≤ ≤  

275 110x≤ ≤  

31000 3000x≤ ≤  

42 20x≤ ≤  

where, 

1 2 3 4( , , , )x x x x x=
G  

The discrete variable, 4x , represents the number of disks in the brake.  An initial starting 

iterate of [55,75,1000, 2] was used.  Due to constraints, values for the discrete variable 



97 

may be reduced to { }2,3,...,11 .  Mixed variable problems in NOMADm require a 

discrete neighbor file.  To be consistent with Walston [70], an iterate’s discrete neighbors 

were set to be 1±  from the current value, provided that a neighbor still had a value 

between 2 and 11.  

4.3. Nadir Point Genetic Algorithm 

The Nadir point genetic algorithm was tested using a DOE approach with a full 

factorial design with either two or three levels, dependent upon the factor.  The specific 

levels tested are shown in Table 4.3.1.  Replenishment refers to only keeping unique 

individuals in the population and inserting new randomly-generated individuals into the 

population to replace duplicates. 
 

Table 4.3.1: GA Test Levels 

Factor Low Center High 
Population 100 - 200 
Generations 500 - 1000 

Distribution Index 10 20 30 
Probability of 

Crossover 
0.5 - 0.9 

Replenishment Off - On 
 

Again, the “true” nadir points were still considered the published points, as 

presented by Walston [70].  Additionally, 1% of the nadir component was added for 

noise.  The levels were based on recommended settings for NSGA-II, and in the case of 

low generations, this setting was found by initial testing, running the GA on a few 

problems using different values. 

Using runtime (in seconds) and Euclidean distance between the GA solution and 

“true” point as measures, results follow in Table 4.3.2.  The best solution to use as a 

response, that is, either the overall maximums found (O) in each objective, the final first 

front maximum objective values (P), or final population objective maximums (F), was 
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found using a paired t-test with a significance level of 0.05, using the Euclidean distance 

to the “true” nadir point as a measure.  Note this is using all runs for the response.  

Significant factors are highlighted in gray by problem, with the best setting denoted.   

The Disk Brake problem is intentionally not in Table 4.3.2 and will be discussed 

later in this section.  For the Dias Γ1, DTLZ7, Poloni, Schaffer F3, Srinivas, and 

Viennet3 problems, the overall solution was significantly worse (statistically) than the 

other two solutions.  For the Dias Γ2, Fonseca F1, and Viennet4 problems, the final 

population solution was statistically best.   For the Tamaki problem, the final non-

dominated front was statistically best, although the practical difference was minimal.  

However, for the DTLZ7, Fonseca F1, Schaffer F3, Srinivas, Tamaki, and Viennet3 

problems, the final population and final non-dominated front solution averages were 

either identical or near-identical.  In addition, for the Viennet4 problem, the final 

population solution was far better than the final non-dominated solution.  Therefore, the 

best solutions listed in Table 4.3.2 should be considered appropriately. 
 

Table 4.3.2: GA Results 

Problem 
Best 

Solution 
Avg 

Distance Measure Population Generations 
Probability of 

Crossover 
Dias Γ1 P 0.18 Time Low Low  

   Distance High High  
Dias Γ2 F 1.17 Time Low Low Low 

   Distance  High  
DTLZ7 P 0.37 Time Low Low Low 

   Distance    
Fonseca F1 F 0.007 Time Low Low Low 

   Distance    
Poloni P 27.84 Time Low Low Low 

   Distance    
Schaffer F3 P 0.05 Time Low Low Low 

   Distance    
Srinivas P 29.81 Time Low Low Low 

   Distance    
Tamaki P 0 Time Low Low Low 

   Distance    
Viennet3 P 1.93 Time Low Low Low 

   Distance    
Viennet4 F 8.09 Time Low Low Low 

   Distance  Low  
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 Distibution index and replenishment are not shown in Table 4.3.2 because they 

were never significant for any measure or problem.  The Dias Γ1 and Dias Γ2 results 

suggest using a higher number of individuals in the population and higher number of 

generations to minimize the distance measure, but obviously this is detrimental time-

wise.  The Viennet4 results suggest using a low number of generations, but the regression 

model was, in fact, a poor model, and the raw data did not necessarily support this 

finding.  The crossover appears to be time-consuming (as a low probability of crossover 

is significantly faster than using a high probability of crossover) and it, replenishment, 

and the distribution index appeared to have no global impact on solution quality. 

Clearly, a low number of crossovers, and if possible, small population size and 

number of generations is better for computational time.  In addition, either the final 

population or non-dominated front should be used as the solution.  At this point, it was 

important to look more closely at the raw data, both for settings to use, and to explain 

how the estimation could be so good for most problems, but very poor for the Poloni, 

Srinivas, and Viennet4 problems.  It became clear at this point, that perhaps the “true” 

nadir points from published solutions were, in fact, not the true nadir points. 

Looking at the raw data, it became apparent that using a low probability of 

crossover, low population size, high number of generations, and the final population 

estimation yielded the best overall solution quality among all problems.  Replenishment 

was turned off, as doing so provided a slight advantage in a few problems, and a 

distribution index of 20 was used because it was the recommended value [27].  A lower 

or higher index yielded slight advantages in respective problems, but no clear advantage 

emerged as 20 also sometimes yielded an advantage.  Recall that these factors did not 

have significantly effect results for time or distance.  Furthermore, the DOE analysis did 

not indicate increasing generations beyond 1000 would be of any substantial benefit.  

With replenishment off, the final population should converge to the final non-dominated 
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front, and if not, using the final population maximums allows for a higher value estimate 

of the nadir point components (in case the algorithm is not finished coverging). 

At these settings, results follow in Table 4.3.3 for all but the Disk Brake problem.  

Here, 0.5% of the maximum objective function value was added and subtracted again as 

noise.  The published deterministic nadir point, as well as that found by MADS-RS with 

noise (presented in the next section) are included.  For the Srinivas and Viennet4 

problems, the algorithm overestimated the nadir point compared to MADS-RS/GPS-RS.  

Overall, the algorithm performed reasonably well.   
 

Table 4.3.3: GA Nadir Points at Chosen Settings 

Problem Time Published MADS-RS GA  
Dias Γ1 123 1, 1 1, 1.38 1.00, 1.16 
Dias Γ2 120 1.1, 1.1 1, 1.6 1.01, 1.28 
DTLZ7 118 0.85, 1.4 1, 1.7 0.81, 1 

Fonseca F1 109 1.01, 1.01 1, 1 1, 1 
Poloni 126 30, 50 18.41, 24.72 16.64, 25.01 

Schaffer F3 124 1, 16 1, 16 (GPS-RS) 0.99, 15.95 
Srinivas 126 250, 10 222.9, 21.83 278.19, 17.84 
Tamaki 59 0, 0, 0 0, 0, -0.01 0, 0, 0 

Viennet3 65 10, 18, 0.2 8.1, 17.24, 0.2 8.28, 17.13, 0.19 
Viennet4 73 7.5, -11, 26 7.65, -12.47, 25.79 9.91, -11.47, 33.64 

 

The Disk Brake problem is the only example of a mixed variable problem tested, 

and it was the problem for which the performance of the GA was the poorest.  The 

published nadir point was [2.75, 33], whereas the MADS-RS solution was [2.8, 48.25].  

Using random selection for the discrete variable mutation and crossover, the overall nadir 

point estimate (O) was consistently better than the other two estimates (P,F), often 

corresponding to individuals from the initial population.  Only in a few cases did the 

other estimates have a reasonable solution for Objective 2; otherwise, they typically were 

on the range of 3-6 for Objective 2.  One of the typical solutions is shown in Figure 4.3.1.  

The better solutions did not appear to correlate in any way to parameter settings.  Using a 
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lower probability of crossover and higher mutation rate could not, and did not, correct the 

problem.  Generations and population size were significant factors with respect to time. 
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Figure 4.3.1: Typical Initial Disk Brake GA Final Non-Dominated Front 

A plethora of crossover and mutation possibilities were tested with regard to the 

discrete variable, now without noise.  Running with some of the prescribed settings found 

using the other ten problems, crossovers were performed by: 1) random selection from 

the discrete set; 2) doing Simulated Binary Crossover (SBX) and finding the nearest 

discrete neighbor; 3) randomly selecting from the parents (both children could have the 

same value); 4) switching between parents; and 5) taking the mean of the variable 

between the parents, and rounding up and down.  Mutation was similarly done several 

ways: 1) random selection from the discrete set; 2) finding the nearest neighbor to the 

polynomial mutation; and 3) leaving the discrete variable untouched.  Additionally, 2000 

generations were evaluated.   

Testing each combination of crossover and mutation, the true nadir component for 

Objective 1 was consistently found in the final population (2.793), with the exception of 

two combinations that came to 2.8.  However, only four combinations managed to come 

close to the second objective component (an estimate >40, otherwise the estimate was 

2.55).  This could be partly random, as with all possible combinations no clear trend 
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emerged.  These four instances, shown in Table 4.3.4, were then replicated 10 times each.  

The results of the 40 runs for Objective 2 are shown in Table 4.3.5. 
 

Table 4.3.4: Disk Brake Instances 

Instance Generations 
Probability of 

Crossover Replenishment 
Crossover 

Type 
Mutation 

Type 

1 2000 0.9 Off Random 
Selection 

Random 
Selection 

2 2000 0.9 Off 
Nearest 

Neighbor to 
SBX 

Nearest 
Neighbor to 
Polynomial 
Mutation 

3 1000 0.9 Off Parent Switch Random 
Selection 

4 2000 0.5 Off Ceiling/Floor 
Mean Value 

Random 
Selection 

 
Table 4.3.5: Disk Brake Runs, Objective 2 

1 (120) 2 (107) 3 (50) 4 (96) 
2.56 3.13 2.56 2.56 

43.47 3.13 2.56 42.92 
2.57 3.13 2.56 2.56 
2.56 3.13 42.78 2.56 
2.56 2.56 2.56 2.56 
2.56 3.13 2.56 2.56 
2.56 2.56 2.56 45.05 
42.68 3.13 2.56 2.56 
2.56 3.52 2.60 2.56 
2.56 2.56 2.56 2.56 

 

None of the instances consistently achieved a desirable value, and they often 

converged to somewhere near 2.55.  However, it is likely due to random number draws, 

selecting the particular discrete value, that the extreme solution is ever achieved.  

Therefore, random selection in the crossovers and mutations is likely suitable and a much 

larger population size may be of value.  Leaving replenishment off is best nonetheless.  

Further, note that the probability of crossover may be left low, and in the end, generations 

and population size will likely need to be increased and replications conducted, to get the 
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extreme solution.  This may not be true in all MVP however, as this analysis is only 

based on a single problem. 

Since the initial runs were done with noise added, each of the remaining problems 

was run an additional ten times using the determined settings without noise added, to 

determine the effect of the noise on the estimation.  The average results follow in Table 

4.3.6.  Note the MADS results here are also without noise added. 
 

Table 4.3.6: GA W/Out Noise 

Problem Time GA  Published MADS 
Dias Γ1 46 1, 1.02 1, 1 1, 1 
Dias Γ2 49 1, 1.01 1.1, 1.1 1, 1 
DTLZ7 46 0.82, 1 0.85, 1.4 0.82, 1 

Fonseca F1 46 1, 1 1.01, 1.01 1, 1 
Poloni 46 16.77, 25.64 30, 50 16.77, 28.22 

Schaffer F3 48 1, 16 1, 16 1, 16 (GPS) 
Srinivas 45 277.65, 18 250, 10 225.55, 2.34 
Tamaki 45 0, 0, 0 0, 0, 0 0, 0, -0.03 

Viennet3 45 7.58, 17.04, 0.176 10, 18, 0.2 8.1, 17.04, -0.03 
Viennet4 52 11.00, -11.34, 34.09 7.5, -11, 26 7.61, -12.22, 22.08 

 

Over all problems, the solutions were extremely consistent for the GA, typically 

converging to a single solution each run, and were often of good quality.  However, in the 

Viennet4 problem, the first component of the nadir point is high compared to MADS, 

although the GA was consistent in getting a value of 11.  A similar event occurred with 

the first objective of Srinivas.  The results for the GA without noise and with noise are 

reasonably similar.     

In conclusion, the GA seems useful for getting an approximation on most 

problems, but performing replications is recommended so as to give the algorithm 

enough chances to converge to the correct solution.  At the same time, it may be best to 

use MADS in the MVP case, although that conclusion is based off of only one problem.  

Furthermore, as the complexity and number of objectives increase, generations and 
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replications should be increased.  No ranking and selection procedure was used inside the 

algorithm because the effect of the noise should be somewhat mitigated by the large 

number of crossovers and mutations that take place, and because it would add time to the 

runs.  As was seen with low noise, the mean response and a good nadir point 

approximation seemed to emerge from the algorithm. 

4.4. MADS Nadir/Utopia Points 

MADS, and GPS in some cases, was also used to find the utopia and nadir points.  

Runs were completed such that given a number of replications the best solution was taken 

from those replicates.  Each replication number was itself replicated and Table 4.4.1 

includes an average best point found using 5, 10, and 20 replications of MADS (or if 

asterisked, one run of GPS).  The best point found overall was included in Table 4.3.3.  

Objectives used here were deterministic.  The computational time was at most on the 

order of minutes; however, this was using a limit of 50000 function evaluations and 

would be faster otherwise.  Note that using MADS or GPS is preferable to the GA, due to 

fewer function evaluations. 

Five to ten replications are enough to find an accurate estimate of the utopia or 

nadir point.  However, depending upon the fidelity required, even fewer replications may 

suffice (as in two or three).  Many of these results were duplicated using different starting 

iterates in an attempt to make the results more robust.  Additionally, in contrasting to 

those points found in Walston [70], either the same points, or perhaps better estimations 

of the nadir and utopia points, were found here.   

Schaffer F3 was an interesting problem in that it is extremely sensitive to its only 

variable and for some unknown reason the implementation of MADS used in this 

research had difficulty accurately estimating the utopia and nadir points, while GPS did 

not.  Further investigation is needed to explain this phenomenon.   
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Table 4.4.1: MADS Utopia and Nadir Points 

Problem # Reps MADS Nadir 
Published 

Nadir MADS Utopia 
Published 

Utopia 
Dias Γ1 5 1, 1 1, 1 0, 0 0, 0 

 10 1, 1  0, 0  
 20 1, 1  0, 0  

Dias Γ2 5 1, 1 1.1, 1.1 0, 0 0, 0 
 10 1, 1  0, 0  
 20 1, 1  0, 0  

DTLZ7 5 0.818, 1 0.85, 1.4 0, -0.240 0, -0.6 
 10 0.818, 1  0, -0.479  
 20 0.818, 1  0, -0.479  

Disk Brake 5 2.796, 49.965 2.75, 33 0.127, 2.071 0, 0 
 10 2.793, 49.965  0.127, 2.071  
 20 2.793, 49.965  0.127, 2.071  

Fonseca F1 5 1, 1 1.01, 1.01 0, 0 0, 0 
 10 1, 1  0, 0  
 20 1, 1  0, 0  

Poloni 5 16.7723, 25 30, 50 1, 0 0, 0 
 10 16.772, 28.224  1, 0  
 20 16.772, 25.000  1, 0  

Schaffer F3* 1 1, 16 1, 16 -1, 0 -1, 0 
Srinivas 5 224.554, 2.167 250, 10 10.114, -217.555 0, -250 

 10 221.829, 2.226  10.102, -217.611  
 20 224.400, 2.326  10.102, -217.500  

Tamaki 5 -0.012, 0, -0.004 0, 0, 0 -1, -1, -0.993 -1, -1, -1 
 10 -0.033, -0.033, -0.059  -1, -0.999, -1  
 20 -0.016, -0.008, -0.016  -1, -0.998, -1  

Viennet3 5 6.515, 17.037, -0.035 10, 18, 0.2 0, 15, -0.1 1, 15, -0.2 
 10 8.099, 17.037, -0.035  0, 15, -0.1  
 20 8.099, 17.037, -0.035  0, 15, -0.1  

Viennet4 5 7.611, -12.205, 21.846 7.5, -11, 26 3.324, -12.984, 15.009 3.3, -13, 15 
 10 7.611, -12.204, 21.849  3.323, -12.984, 15.009  
 20 7.611, -12.221, 21.913  3.323, -12.984, 15.009  

 

Using MADS with a starting iterate of 0 1x =  and eight LHS sites in the search 

step, a utopia point of [-1, 0.3906] and a nadir point of [0.375 16] were consistently 

achieved.  Using starting iterates 0 1x < , a utopia point of [-0.625, 0.3906] and nadir point 

of [0.375, 19.14] were consistently achieved.  Furthermore, using 0 4.5x = , a utopia point 

of [-0.625, 0.25] and nadir point of [0.5 19.14] were consistently achieved.  However, by 

increasing the number of LHS sites to 40, in ten replications a utopia point of [-1, 0.0156] 

and a nadir point of [1.125, 16] were found.  These estimates are very near the true 

points.  Again, using GPS instead of MADS, the true utopia and nadir points were always 

found ([-1 0], [1 16]).  The Viennet4 and DTLZ7 problems were also run using GPS, 
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with the Viennet4 problem having extremely similar results to those shown for MADS, 

and the DTLZ7 problem surprisingly not doing as well as in the MADS case unless the 

number of LHS sites was increased to 10.   

These MADS and GPS estimates were then used to create new noise levels equal 

to 1% of the nadir objective function value.  The values used are included in Table 4.4.2.  

They were also used to create the indifference values for the problems, typically set at 0.1 

times the difference in utopia and nadir components.   
 

Table 4.4.2: Noise Values and Indifference Values 

Problem Noise Indifference 
Dias Γ1 0.01, 0.01 0.1, 0.1 
Dias Γ2 0.01, 0.01 0.1, 0.1 
DTLZ7 0.0082, 0.01 0.085, 0.2 

Disk Brake 0.03, 0.49 0.275, 3.3 
Fonseca F1 0.01, 0.01 0.1, 0.1 

Poloni 0.17, 0.29 3, 5 
Schaffer F3 0.01, 0.16 0.2, 1.5 

Srinivas 2.25, 0.024 25, 26 
Tamaki 0.01, 0.01, 0.01 0.1, 0.1, 0.1 

Viennet3 0.08, 0.17, 0.001 0.9, 0.3, 0.04 
Viennet4 0.076, 0.12, 0.22 0.42, 0.2, 1.1 

 
 

Table 4.4.3: MADS-RS w/Noise 

Problem Utopia Nadir 
Dias Γ1 0, 0 1, 1.38 
Dias Γ2 0, 0 1, 1.6 
DTLZ7 0, 0 1, 1.7 

Disk Brake 0.12, 2.08 2.8, 48.25 
Fonseca F1 0, 0 1, 1  

Poloni 1.04, 0 18.41, 24.72 
Schaffer F3* -1, 0.03 0.97, 16 

Srinivas 10.09, -217.68 222.9, 21.83 
Tamaki -1, -1, -1 0, 0, -0.01 

Viennet3 -0.01, 15.01, -0.1 8.1, 17.24, 0.2 
Viennet4 3.34, -12.93, 14.92 7.65, -12.47, 25.79 
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A set final set of runs was conducted using ten replications and +/-0.5 of the noise 

values from Table 4.4.2, to see the effect of noise on the estimations.  The results are 

shown in Table 4.4.3.  The introduction of noise begins to affect the estimation adversely 

(for example, the DTLZ7 utopia point), but most estimates are still reasonable.  These 

estimations, with a set of replications, should probably be conducted multiple times on 

problems with unknown extreme points.  Although GPS does not need to be replicated on 

a deterministic objective, GPS-RS does need to be replicated, in the event noise affects 

the optimization. 

4.5. Exploration of SMOMADS Parameters 

4.5.1.  Test Approach.  The use of MADS-RS and SMOMADS is not always 

straightforward.  The implementation of MADS in the NOMADm software randomly 

selects a set of positive spanning directions in its poll step.  Therefore, the objective 

function value found at the conclusion of a run is in no way deterministic, even without 

noise.  This is true for the achievement scalarization function, and thus adds a random 

component into the true objective space.  In addition, a CCD or LHS can be used to find 

points in the search step.  Although using a CCD may provide more stability (in terms of 

a LHS design being random), the number of function evaluations required grows 

exponentially as the number of factors or variables increases.  For example, the Dias Γ1 

or Γ2 problems have 30 decision variables which results in a MATLAB® error due to the 

memory required.  Because of this, a LHS was always used in this research.   

The runs presented in this section followed a set of runs described in Appendix A 

that were done prior, which yielded similar results.  The purpose of the initial runs was to 

determine the effect of the nadir point estimate, the number of replications, the level of 

noise, and the range over which aspiration and reservation levels were to be sampled.  

Published nadir points were found to be likely incorrect in some cases, and accurate nadir 

points yielded better results than overestimated nadir points (using maximum possible 
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objective function values).  The initial results also showed that there is little advantage to 

performing more than two replications of a design, with respect to generating unique 

Pareto points.   

 
Table 4.5.1: Range Bounds 

 Aspiration Levels Bounds Reservation Levels Bounds 

AR1 ,0.99 ( , )g g b
i i if mean f f⎡ ⎤×⎣ ⎦  1.01 ( , ),g b b

i i imean f f f⎡ ⎤×⎣ ⎦  

AR2 ,
3

g b
i ig g

i i

f f
f f

⎡ ⎤−
⎢ ⎥+
⎢ ⎥⎣ ⎦

 ,
3

g b
i ib b

i i

f f
f f

⎡ ⎤−
⎢ ⎥−
⎢ ⎥⎣ ⎦

 

AR3 
2 2,
5 5

g g b g g b
i i i i i if f f f f f⎡ ⎤− ⋅ − + −⎢ ⎥⎣ ⎦

2 2,
5 5

b g b b g b
i i i i i if f f f f f⎡ ⎤− − + −⎢ ⎥⎣ ⎦

 

Within the following tables, AR refers to the design space used to create the 

aspiration and reservation levels, where Table 4.5.1 shows the lower and upper bounds 

used for the six ranges, in three combinations.  Here, g
if  denotes Objective i of the 

utopia point and b
if  denotes Objective i of the nadir point.  NRI refers to using I 

replications of the design.  ND1 refers to using a good estimate of the nadir point, and 

ND2 refers to using an over-approximation based on maximum objective function values 

(except for the Tamaki and Fonseca F1 problems, where an overestimation is not 

possible).  Both points are shown in Table 4.5.2, in that order.  The words bogus points 

refer to the number of dominated points found.   

All metrics were computed using true utopia and nadir points, so as to be 

comparable.  All runs were with a CCD and 2 replications (unless NR3).  AR1, AR2, 

AR3, ND1, and ND2 runs were all conducted with low noise.  The three replicate run 

used AR1, low noise, and the true nadir point.  The ND1 and ND2 runs were conducted 

using AR1.  MADS-RS was used to perform the optimizations.   
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Table 4.5.2: Test Settings 

Problem 1
gf  2

gf  3
gf  1

bf  2
bf  3

bf  1μ  2μ  3μ  
Viennet4 3.3 -13 15 7.5; 23 -11; -4 26; 90 0.42 0.2 1.1 
Viennet3 1 15 -0.2 10; 10 18; 61 0.2; 1 0.9 0.3 0.04 

Poloni 0 0  30; 32 50; 52  3 5  
Tamaki -1 -1 -1 0 0 0 0.1 0.1 0.1 
Dias Γ1 0 0  1; 1 1; 10  0.1 0.1  
Dias Γ2 0 0  1.1; 1.1 1.1; 10  0.1 0.1  

Fonseca F1 0 0  1.01 1.01  0.1 0.1  
Schaffer F3 -1 0  1; 4 16; 169  0.2 1.6  

Srinivas 0 -250  250; 687 10; 180  25 26  
DTLZ7 0 -0.6  0.85; 1 1.4; 11  0.085 0.2  

Disk Brake 0 0  2.75; 4 33; 50  0.275 3.3  
 

As stated previously, Walston [70] strictly added noise (no subtraction).  In this 

research noise was added differently, but in a way that ensures an expected value of zero.  

Noise was added by multiplying a uniform random number on [-1,1] by 0.5%, 1%, 5%, 

and 10% (N1, N2, N3, N4 respectively) of the respective nadir component, yielding 

ranges of 1%, 2%, 10% and 20%.  Noise level will be referred to using the +/- numbers, 

not the range.  These runs were adequate because there was no evidence during the initial 

runs that interactions were significant, relative to main effects (the columns in the tables 

being main effects).  All runs here were done with a limit of 50000 function evaluations. 

4.5.2.  Results.  Again, only a representative subset of problems is shown for 

brevity, even though analysis was conducted on all problems. 
 

Table 4.5.3: DTLZ7 Measures 

Measure AR1 AR2 AR3 N1 N2 N3 N4 ND1 ND2 
Bogus Pts 36 38 43 36 44 39 41 36 55 
Entropy 0.93 0.85 0.94 0.93 0.95 0.95 0.96 0.93 0.33 

OS 5.25 0.95 2.62 5.25 2.72 8.37 1.64 5.25 0.56 
OS1 1.00 0.99 1.01 1.00 1.01 1.08 1.05 1.00 0.08 
OS2 5.23 0.96 2.60 5.23 2.70 7.78 1.57 5.23 6.82 
NDC 12 7 12 12 14 16 15 12 6 
CL 3.00 4.86 2.42 3.00 2.00 2.06 2.07 3.00 2.83 

Time 1520 1551 3533 1520 1733 1785 1890 1520 1473 
Largest Gap 6.10 0.52 2.35 6.10 1.25 3.77 0.41 6.10 5.04 

Avg Gap 1.27 0.35 0.82 1.27 0.53 1.55 0.29 1.27 5.00 
# Gaps 6 4 4 6 7 7 5 6 2 
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Table 4.5.3 gives results for DTLZ7, which has a discontinuous Pareto front.  As 

expected, as noise increases so does computational time.  Using the true nadir point 

provides a much better approximation of the front.  Looking at OS2, the necessity for a 

final check for domination is apparent.  Recall from Section 3.2 that any value above 1 

implies either the utopia or nadir point is not estimated correctly, but correct points are 

being used here, so the high values have to be due to noise.  AR1 and AR3 each had a 

point that single handedly caused such high OS2 values.  Otherwise, AR1 and AR3 are 

relatively comparable, but the design levels used in AR3 cause a much higher run-time. 

For the mixed variable Disk Brake problem, with results shown in Table 4.5.4, 

AR1 and AR3 are again comparable, except that AR3 has a bigger largest gap.  

Additionally, here AR1 requires more time.  Furthermore, the over-estimated nadir point 

finds better extreme solutions.  Note that three replicates provided no advantage over 

two, as was expected. 
 

Table 4.5.4: Disk Brake Measures 

Measure AR1 AR2 AR3 NR3 N1 N2 N3 N4 ND1 ND2 
Bogus Pts 10 16 9 10 10 11 18 22 10 14 
Entropy 0.83 0.79 0.83 0.83 0.83 0.83 0.86 0.83 0.83 0.90 

OS 0.16 0.07 0.18 0.18 0.16 0.12 0.27 0.23 0.16 0.53 
OS1 0.47 0.32 0.48 0.48 0.47 0.46 0.65 0.37 0.47 0.98 
OS2 0.34 0.23 0.38 0.36 0.34 0.27 0.41 0.64 0.34 0.54 
NDC 9 7 9 9 9 9 8 10 9 9 
CL 2.89 2.86 3.00 2.89 2.89 2.78 2.25 1.40 2.89 2.44 

Time 406 331 290 395 406 431 1427 1431 406 1286 
Largest Gap 1.47 3.74 3.59 6.67 1.47 3.64 5.57 16.77 1.47 9.15 

Avg Gap 1.47 3.74 2.44 4.17 1.47 2.08 4.46 6.17 1.47 4.82 
# Gaps 1 1 2 2 1 2 3 3 1 4 

 

Results for the non-convex problem Fonseca F1 are shown in Table 4.5.5.  As in 

most cases, AR2  did not perform as well as AR1 and AR3, which performed equally 

well, except that AR1 was much faster.  This seemed to be because AR3 samples outside 

the utopia and nadir point ranges, requiring more time for the optimization to reach the 

Pareto front.  One interesting finding is that increased noise did not correlate to increased 
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time.  Also, as can be seen in Figure 4.5.1, three replications provided minimal 

improvement over two. 
 

Table 4.5.5: Fonseca F1 Measures 

Measure AR1 AR2 AR3 NR3 N1 N2 N3 N4 ND1 ND2 
Bogus Pts 40 37 52 78 40 41 43 57 40 - 
Entropy 0.85 0.71 0.81 0.94 0.85 0.94 0.84 0.90 0.85 - 

OS 1.02 1.01 1.02 1.02 1.02 1.03 1.12 0.99 1.02 - 
OS1 1.01 1.01 1.01 1.01 1.01 1.02 1.07 1.00 1.01 - 
OS2 1.01 1.00 1.01 1.01 1.01 1.01 1.05 0.99 1.01 - 
NDC 10 6 9 11 10 13 14 7 10 - 
CL 3.20 5.83 2.22 2.73 3.20 2.38 2.07 2.14 3.20 - 

Time 1261 1062 2752 1665 1261 1035 1101 1252 1261 - 
Largest Gap 0.66 0.84 0.56 0.38 0.66 0.28 0.38 0.46 0.66 - 

Avg Gap 0.40 0.81 0.41 0.30 0.40 0.20 0.23 0.29 0.40 - 
# Gaps 4 2 4 5 4 7 6 5 4 - 
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(a) 2 Reps (b) 3 Reps 

Figure 4.5.1: Fonseca F1 Replications 

 
Table 4.5.6: Poloni Measures 

Measure AR1 AR2 AR3 NR3 N1 N2 N3 N4 ND1 ND2 
Bogus Pts 38 38 31 60 38 45 48 47 38 35 
Entropy 0.58 0.52 0.71 0.59 0.58 0.68 0.78 0.81 0.58 0.68 

OS 0.13 0.11 0.97 0.11 0.13 1.04 1.90 0.88 0.13 0.91 
OS1 1.05 1.00 1.08 0.89 1.05 1.03 1.84 0.82 1.05 0.96 
OS2 0.12 0.11 0.90 0.12 0.12 1.01 1.03 1.08 0.12 0.95 
NDC 5 4 8 4 5 7 10 9 5 6 
CL 6.80 8.50 5.13 12.00 6.80 3.86 2.40 2.78 6.80 6.17 

Time 458 348 1287 815 458 1051 1957 2259 458 1388 
Largest Gap 6.99 12.42 18.32 6.75 6.99 24.97 20.78 13.16 6.99 19.30 

Avg Gap 6.99 12.42 13.43 6.75 6.99 14.73 11.62 11.03 6.99 12.34 
# Gaps 1 1 2 1 1 2 4 2 1 2 
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The results for the Poloni problem are shown in Table 4.5.6.  This is another 

discontinuous front.  Here, the over-estimated nadir point performed better for AR1.  

However, using AR3 with the true nadir point, a better approximation was made.  In fact, 

when looking at the raw data, AR1 was missing high values in the second objective.  

Those values in AR3 came from the axials of the CCD.  This happened consistently, and 

indicates that axials are important.  However, this only applies to CCDs.  AR1 and AR3 

are shown in Figure 4.5.2. 
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Figure 4.5.2: Poloni AR 

 
Table 4.5.7: Srinivas Measures 

Measure AR1 AR2 AR3 NR3 N1 N2 N3 N4 ND1 ND2 
Bogus Pts 22 16 17 49 22 25 24 30 22 27 
Entropy 0.84 0.90 0.88 0.83 0.84 0.87 0.89 0.92 0.84 0.82 

OS 0.97 0.96 0.97 0.93 0.97 0.97 0.91 0.81 0.97 0.88 
OS1 0.96 0.94 0.97 0.98 0.96 0.95 0.90 0.88 0.96 0.97 
OS2 1.01 1.02 1.00 0.95 1.01 1.02 1.00 0.91 1.01 0.92 
NDC 9 11 12 8 9 9 14 13 9 6 
CL 5.56 5.09 4.58 7.38 5.56 5.22 3.43 3.23 5.56 7.50 

Time 222 191 367 189 222 263 420 559 222 157 
Largest Gap 63.11 45.57 69.54 66.85 63.11 63.06 51.96 53.50 63.11 117.83 

Avg Gap 59.53 40.12 68.73 59.19 59.53 55.21 51.67 44.17 59.53 99.16 
# Gaps 4 5 2 4 4 4 2 2 4 2 

 

The Srinivas problem results are shown in Table 4.5.7.  Using the true nadir point 

is again advantageous.  This was one of the rare cases where AR2 performed well.  
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However, AR3 performed just as well.  Looking at the raw data, the points AR1 was 

missing often came from the center points, and sometimes the factorial-portion of the 

CCD for AR3.   

The Tamaki problem results are shown in Table 4.5.8.  Three replicates provide 

only a slight advantage, and similar to previous runs, AR3 is better than AR1.  But again, 

those points not in AR1 that are in AR3 are relative to the CCD axials.  Here, like the 

Fonseca F1 results, increased noise does not necessarily result in increased run time.  The 

reason for this was unclear, except that with increased noise, MADS-RS could converge 

to a poor solution under the right circumstances (random number draws, etc.), or good 

solutions were found due to randomness. 
 

Table 4.5.8: Tamaki Measures 

Measure AR1 AR2 AR3 NR3 N1 N2 N3 N4 ND1 ND2 
Bogus Pts 2 1 5 2 2 5 29 51 2 - 
Entropy 0.78 0.75 0.77 0.78 0.78 0.79 0.81 0.84 0.78 - 

OS 0.27 0.15 0.81 0.34 0.27 0.56 0.60 0.38 0.27 - 
OS1 0.64 0.55 0.96 0.71 0.64 0.84 0.84 0.74 0.64 - 
OS2 0.68 0.48 0.93 0.68 0.68 0.81 0.89 0.80 0.68 - 
OS3 0.63 0.58 0.91 0.71 0.63 0.84 0.80 0.65 0.63  
NDC 40 32 46 49 40 43 45 43 40 - 
CL 2.90 3.66 2.46 3.57 2.90 2.63 1.98 1.56 2.90 - 

Time 2662 1262 1331 4848 2662 3140 1206 572 2662 - 
Largest Gap 0.25 0.17 0.78 0.20 0.25 0.78 0.88 0.29 0.25 - 

Avg Gap 0.23 0.15 0.31 0.17 0.23 0.33 0.51 0.22 0.23 - 
# Gaps 3 2 13 3 3 8 4 9 3 - 

 

The trends were clear in these runs.  Additional replications of a design beyond 

two still appear to have no real benefit.  Furthermore, in general, it is best to use the true 

nadir point, or at least a good estimate thereof.  AR1 generally performed better than 

AR3, and in all cases but one, most unique points from AR3 came from the CCD axials. 

It is clear from the results that, in general, more noise means more computational 

time.  However, +/-10% of the nadir objective function value appears to be too much 

noise for SMOMADS to generate reasonable solutions.     
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Figure 4.5.3: Disk Brake with 10% Noise 

For example, consider the corresponding plot for Disk Brake in Figure 4.5.3.  

Clearly, the front has lost all shape, and many of the points are not on the true front.  This 

may be more pronounced because Disk Brake is a mixed variable problem.  The Pareto 

front for Poloni (see Figure 4.5.4a) has also lost most of its shape, while the front for 

Fonseca F1 (see Figure 4.5.4b) has not been too adversely affected by the high level of 

noise. 
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(a) Poloni (b) Fonseca F1 

Figure 4.5.4: Problems with 10% Noise 

Therefore, a single level of noise cannot be determined which may overwhelm 

MADS-RS or GPS-RS for all problems.  However, a +/-5% noise level seems to retain 

most of the Pareto front shape and keep the front nearly correct across all problems.  This 

level was applied to the Dias Γ1 and Disk Brake problems (see Figure 4.5.5), and to the 
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Viennet3 and Viennet4 problems (see Figure 4.5.6).  Note the improvement specifically 

in the Disk Brake problem (Figure 4.5.5 versus Figure 4.5.3). 
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(a) Dias Γ1 (b) Disk Brake 

Figure 4.5.5: Two Objective Problems 5% Noise  
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(a) Viennet3 (b) Viennet4  

Figure 4.5.6: Three Objective Problems 5% Noise  

4.6. Experimental Design for Aspiration and Reservation Levels 

4.6.1.  Test Approach.  Based on previous findings, these runs were done using 

two replications, 0.5% noise, MADS/GPS-estimated nadir points, and AR1.  The noise 

was chosen to best represent Walston’s [70] original intention to use 1% noise and so that 

the runs would not be too time consuming.  Results from Section 4.5 showed that AR1, 

plus the axials from AR3, provided the best design range.  However, the goal of these 

runs was to find a best experimental design, and to see if perhaps even using any sort of 
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design levels involving AR3 could be avoided so that only one design would have to be 

used (instead of one design for AR1 and one for AR3). 

All designs from Section 3.3 were evaluated, as appropriate.  For those designs 

where a specific number of samples was required, a number equal to the number of runs 

for a CCD was used.  Walston had noted that a CCD seemed to provide the best initial 

front during her experimentation [70].  In a few cases, designs were also tested with 

fewer points than the CCD.  Additionally, Hammersley sequence sampling and near 

uniform designs were expanded to sample on a coded [-2,2] range, to include axial run 

space.  The D-optimal design was tested using three levels with center points and axials 

added.  However, as will be discussed, the D-optimal runs were accidentally, and 

fortunately, run using a different range. 

In the case of the full factorial design, only three levels were used.  Walston [70] 

used four or five levels; however, as the number of objectives increases, this becomes 

extremely intractable.  In fact, at three objectives the five-level full-factorial is likely not 

a valuable option and becomes a brute force method by having an extremely large 

number of design levels.  Certainly as the combinations of design levels and random 

number draws increase, more distinct points result.  In the case of the Viennet3 and 

Viennet4 problems, the full-factorial at 3 levels was too much for the computers to 

handle.  Therefore, these were evaluated with a limit of 500 on the number of function 

evaluations, rather than the 50000 function evaluation limit.  All runs presented were 

conducted using MADS-RS. 

Results follow for each problem in a table where metrics are columns and designs 

are rows.  The key for the designs is shown in Table 4.6.1. 
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Table 4.6.1: Design Key 

Design Description 
FF(i) Full factorial with i levels 

CCD(-) C: Circumscribed, I: Inscribed, F: Face-centered 
BB Box-Behnken 

LatinR(i) Random Latin Hypercube with i samples 
LatinL(i) Lattice Latin Hypercube with i samples 

LatinRC(i) Random Latin Hypercube with reduced correlation and i samples 
LatinLC(i) Lattice Latin Hypercube with reduced correlation and i samples 
OA(Multi) Orthogonal Array using more than 2 levels 

OA Orthogonal Array using 2 levels 
Hamm(i) Hammersley sequence sampling using i samples 

Hamm-A(i) Hammersley sequence sampling using i samples taken over the [-2,2] coded range 
Dopt(i) D-Optimal design using i samples 
Hybrid Hybrid design 
SCD Small Composite design 

Koshal1 Linear Koshal design 
Koshal1+ Linear with interactions Koshal design 
Koshal2 Quadratic Koshal Design 

U(i) Near-Uniform design with i samples 
U-A(i) Near-Uniform design with i samples taken over the [-2,2] coded range 
MR5 Minimum Resolution V design 

 

4.6.2.  Results.  Although the runs themselves were not replicated, the problems 

acted like replications, due to their large number.  Therefore, consistent trends were 

noted.   

The Dias Γ1 results are shown in Table 4.6.2.  A few notable results emerged.  All 

of the Latin Hypercube sampling methods performed extremely competitively, as did the 

Koshal1 and Koshal1+ designs.  The D-optimal design, although only a 20 sample 

design, took a long time to complete as a result of the actual generation of the design.  In 

some cases, the spreads are on the order of ~1.3, due to the lack of a final dominance 

check, and thus the gaps are really one less in number for such designs.  In Figure 4.6.1, 

Hammersley(36) and FF(3) are shown.  Hammersley sequence sampling may be able to 

achieve a better result in fewer points than other designs.  This also held true for the near-

uniform designs, although Hammersley(36) performed best here.  Also, the face-centered 

and inscribed CCDs performed better than the circumscribed CCD. 

.     
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Table 4.6.2: Designs for Dias Γ1 

Design Bogus Entropy OS OS1 OS2 NDC CL Time 
Largest 

Gap 
Avg. 
Gap 

# 
Gaps 

FF(3) 88 0.87 1.33 1.01 1.32 20 3.70 6698 0.34 0.23 4 
CCD(C) 32 0.83 1.32 1.01 1.31 16 2.50 3811 0.35 0.24 5 
CCD(I) 21 0.91 1.32 1.01 1.31 20 2.55 724 0.30 0.19 4 
CCD(F) 23 0.93 1.33 1.01 1.32 19 2.58 4018 0.40 0.23 8 

BB 16 0.93 1.33 1.01 1.32 18 2.11 3056 0.24 0.19 6 
LatinR(36) 32 0.94 1.01 1.00 1.00 17 2.35 247 0.28 0.18 5 
LatinL(36) 29 0.92 1.02 1.00 1.01 16 2.69 193 0.25 0.22 4 

LatinRC(36) 27 0.91 1.00 1.00 1.00 16 2.81 297 0.25 0.21 5 
LatinLC(36) 34 0.96 1.01 1.01 1.00 15 2.53 199 0.27 0.20 4 
OA(Multi) 4 0.93 0.95 0.99 0.96 8 1.75 47 0.42 0.21 6 

OA 5 0.84 0.86 1.00 0.86 7 1.57 42 0.46 0.26 5 
Hamm(36) 24 0.96 1.30 1.00 1.30 19 2.53 773 0.28 0.20 2 
Hamm(20) 13 0.92 1.24 1.00 1.24 13 2.08 371 0.35 0.21 7 
Dopt(20) 35 0.80 1.33 1.01 1.32 12 2.58 6116 0.69 0.41 6 
Hybrid 9 0.93 1.33 1.01 1.32 13 1.92 1769 0.31 0.24 6 
SCD 11 0.85 1.33 1.01 1.32 12 2.25 1845 0.41 0.25 5 

Koshal1 2 0.84 0.90 1.00 0.90 8 1.50 36 0.43 0.31 4 
Koshal1+ 8 0.91 0.95 1.00 0.95 10 1.80 77 0.44 0.30 3 
Koshal2 9 0.95 1.00 1.00 1.00 12 2.08 632 0.30 0.19 5 
U(36) 29 0.85 1.00 1.00 1.00 14 3.07 193 0.29 0.21 4 
U(20) 12 0.89 1.00 1.00 1.00 13 2.15 236 0.31 0.23 4 

U-A(36) 32 0.93 1.03 1.00 1.03 16 2.50 190 0.28 0.22 3 
U-A(20) 14 0.95 0.99 1.00 0.99 14 1.86 243 0.29 0.22 3 

Hamm-A(36) 27 0.93 0.98 1.00 0.98 11 4.09 334 0.17 0.16 3 
Hamm-A(20) 12 0.91 0.98 1.00 0.98 13 2.15 110 0.30 0.20 5 
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(a) FF(3) (b) Hammersley(36) 

Figure 4.6.1: Dias Γ1 FF and Hammersley Results 

The Dias Γ2 results are shown in Table 4.6.3.  The impracticality of using the full 

factorial design is evident in the time required.  It provided some benefits versus the 

CCDs, but this should be expected, due to the larger number of design levels.  The Box-
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Behnken design provided no advantage over the CCDs.  Further, the face-centered and 

circumscribed CCDs performed nearly the same, while the inscribed did better in the high 

(larger objective function value) Objective 1 region.  Again, Latin hypercube sampling 

performed very well according to the Pareto quality metrics as did Hammersley sequence 

sampling and uniform design over both ranges.  To show the good overall spreads and 

spread of points, the FF(3), LatinLC(36) and U(20) designs are shown in Figure 4.6.2. 
 

Table 4.6.3: Designs for Dias Γ2 

Design Bogus Entropy OS OS1 OS2 NDC CL Time 
Largest 

Gap 
Avg. 
Gap 

# 
Gaps 

FF(3) 110 0.83 1.34 1.01 1.33 15 3.47 32772 0.35 0.25 6 
CCD(C) 39 0.84 1.33 1.01 1.32 12 2.75 9279 0.39 0.32 5 
CCD(I) 40 0.90 0.99 1.00 0.99 12 2.67 1889 0.43 0.23 4 
CCD(F) 39 0.72 1.34 1.01 1.33 12 2.75 10632 0.75 0.45 5 

BB 27 0.79 1.34 1.01 1.32 13 2.08 8253 0.61 0.36 5 
LatinR(36) 38 0.95 1.01 1.01 1.00 15 2.27 465 0.30 0.18 5 
LatinL(36) 42 0.95 1.02 1.01 1.01 14 2.14 476 0.37 0.25 5 

LatinRC(36) 40 0.90 1.00 1.00 1.00 11 2.91 459 0.35 0.26 4 
LatinLC(36) 30 0.91 1.01 1.00 1.00 15 2.80 440 0.23 0.20 4 
OA(Multi) 7 0.80 0.99 1.00 0.99 7 1.57 106 0.57 0.48 3 

OA 6 0.89 1.00 1.00 1.00 6 1.67 100 0.57 0.34 4 
Hamm(36) 30 0.92 1.33 1.01 1.32 16 2.63 1144 0.31 0.23 5 
Hamm(20) 15 0.82 1.30 1.00 1.30 11 2.27 968 0.62 0.28 5 
Dopt(20) 38 0.78 1.34 1.01 1.33 12 2.33 14927 0.46 0.37 4 
Hybrid 13 0.78 1.33 1.01 1.32 11 1.91 4919 0.66 0.27 6 
SCD 16 0.80 1.33 1.01 1.32 12 1.83 4361 0.50 0.37 4 

Koshal1 5 0.86 0.98 1.00 0.98 6 1.50 99 0.55 0.33 4 
Koshal1+ 13 0.84 0.99 1.00 0.99 6 2.17 161 0.79 0.39 4 
Koshal2 14 0.80 1.01 1.01 1.00 11 1.82 1703 0.56 0.32 4 
U(36) 48 0.88 0.99 1.00 0.99 11 2.18 437 0.34 0.22 5 
U(20) 16 0.95 1.00 1.00 0.99 13 1.85 250 0.28 0.19 4 

U-A(36) 41 0.88 1.01 1.01 1.00 13 2.38 440 0.34 0.23 5 
U-A(20) 16 0.92 1.01 1.01 1.01 14 1.71 258 0.30 0.22 5 

Hamm-A(36) 39 0.80 1.02 1.01 1.01 13 2.54 454 0.55 0.33 3 
Hamm-A(20) 17 0.86 1.02 1.01 1.01 11 2.09 263 0.38 0.31 3 
 

The Disk Brake results are shown in Table 4.6.4.  A difference in the spread 

metrics among designs is clear.  Looking at Figure 4.6.3, Dopt(20) has better extreme 

points in both objectives in only 20 points sampled, while also having a good distribution 

of points.  Hamm(36) had only one point near the extreme of Objective 2, while FF(3), 
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with its abundance of runs, managed to do as well as Dopt(20) in Objective 2, but not in 

Objective 1. 
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(a) FF(3) (b) LatinLC(36) (c) U(20) 
Figure 4.6.2: Designs for the Dias Γ2 Problem 

Some of what is seen in Disk Brake can be attributed to randomness.  As 

expected, Latin Hypercubes and other designs performed well with respect to the 

distribution of Pareto points.  However, these designs did not generate the extremes in 

either objective.  In fact, they often yielded values between 0 and 1.4 in Objective 1, and 

between 0 and 20 in Objective 2. 
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(a) FF(3) (b) Dopt(20) (c) Hamm(36) 
Figure 4.6.3: Designs for the Disk Brake Problem 

DTLZ7 results are shown in Table 4.6.5.  The CCD designs performed similarly 

(keeping in mind the spread values were affected by dominated, or bogus, points).  

However, the CCD(I) takes much less time to complete.  Furthermore, the Hammersley 
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and uniform designs again perform well, as does Latin Hypercube sampling.  The reader 

should note that the OA designs, Hybrid, SCD, and Koshal designs are dominated by the 

other designs.   Figure 4.6.4 depicts the full-factorial, inscribed CCD, and U-A(36) 

designs.  Note the U-A design is clearly competitive with the full-factorial design.  Also 

the full factorial design plot has a different scale in Objective 2 due to dominated points 

being retained because of noise in Objective 1. 
 

Table 4.6.4: Designs for Disk Brake 

Design Bogus Entropy OS OS1 OS2 NDC CL Time 
Largest 

Gap 
Avg. 
Gap 

# 
Gaps 

FF(3) 89 0.89 0.47 0.48 0.99 15 4.87 4837 10.15 6.83 5 
CCD(C) 26 0.81 0.17 0.47 0.36 10 4.60 806 1.37 1.37 1 
CCD(I) 28 0.76 0.05 0.22 0.22 6 7.33 272 0.00 0.00 0 
CCD(F) 27 0.84 0.14 0.48 0.29 9 5.00 613 0.00 0.00 0 

BB 15 0.81 0.13 0.47 0.28 9 4.33 203 1.09 1.09 1 
LatinR(36) 22 0.81 0.13 0.40 0.32 9 5.56 264 0.00 0.00 0 
LatinL(36) 25 0.80 0.11 0.36 0.31 8 5.88 269 0.00 0.00 0 

LatinRC(36) 22 0.80 0.18 0.44 0.40 9 5.56 269 5.33 3.57 2 
LatinLC(36) 24 0.79 0.09 0.37 0.25 8 6.00 261 0.00 0.00 0 
OA(Multi) 5 0.77 0.04 0.25 0.17 6 2.17 65 0.00 0.00 0 

OA 1 0.78 0.06 0.24 0.24 6 2.50 60 4.03 4.03 1 
Hamm(36) 25 0.81 0.42 0.43 0.98 9 5.22 584 33.23 33.23 1 
Hamm(20) 6 0.81 0.33 0.38 0.86 8 4.25 449 26.70 26.70 1 
Dopt(20) 32 0.95 0.76 0.76 1.00 16 2.13 5329 13.89 7.79 4 
Hybrid 13 0.83 0.11 0.41 0.27 7 3.00 481 3.02 3.02 1 
SCD 6 0.82 0.12 0.40 0.31 9 3.56 469 0.00 0.00 0 

Koshal1 2 0.73 0.03 0.17 0.18 4 3.00 53 3.65 3.65 1 
Koshal1+ 8 0.73 0.02 0.16 0.14 4 4.50 117 0.00 0.00 0 
Koshal2 8 0.74 0.04 0.21 0.18 6 4.33 128 0.00 0.00 0 
U(36) 24 0.81 0.11 0.39 0.29 9 5.33 275 0.00 0.00 0 
U(20) 7 0.81 0.09 0.34 0.27 7 4.71 145 0.00 0.00 0 

U-A(36) 17 0.83 0.13 0.47 0.29 9 6.11 263 0.00 0.00 0 
U-A(20) 9 0.84 0.13 0.47 0.27 8 3.88 153 0.00 0.00 0 

Hamm-A(36) 26 0.82 0.13 0.46 0.28 9 5.11 270 0.00 0.00 0 
Hamm-A(20) 5 0.81 0.12 0.43 0.29 10 3.50 151 0.00 0.00 0 
 

The results for the Fonseca F1 problem are shown in Table 4.6.6.  General design 

performance trends repeated.  However, the CCD(I) , Latin Hypercube designs, 

Hammersley designs, and uniform designs truly outperformed the full factorial design.  

To illustrate this, FF(3), Hamm(36) and U-A(36) are shown in Figure 4.6.5, where the 
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space-filling designs filled gaps that the full-factorial design did not, and uniformly 

distributed points along the Pareto front. 

 
Table 4.6.5: Designs for DTLZ7 

Design Bogus Entropy OS OS1 OS2 NDC CL Time 
Largest 

Gap 
Avg. 
Gap 

# 
Gaps 

FF(3) 93 0.95 7.72 1.01 7.65 14 4.93 7764 8.57 1.83 6 
CCD(C) 37 0.95 1.22 1.01 1.21 12 2.92 2480 0.34 0.25 5 
CCD(I) 23 0.92 0.97 0.99 0.97 11 4.45 371 0.37 0.26 3 
CCD(F) 41 0.92 3.58 1.01 3.54 13 2.38 2744 1.96 0.89 6 

BB 24 0.95 3.04 0.99 3.06 9 3.33 1621 2.96 1.02 4 
LatinR(36) 14 0.94 0.92 0.98 0.94 10 5.80 96 0.34 0.26 4 
LatinL(36) 32 0.95 1.04 1.12 0.93 11 3.64 96 0.53 0.31 5 

LatinRC(36) 28 0.95 0.76 0.90 0.84 9 4.89 95 0.37 0.27 3 
LatinLC(36) 21 0.95 0.93 0.98 0.95 10 5.10 95 0.35 0.26 3 
OA(Multi) 3 0.97 0.72 0.95 0.75 8 1.88 24 0.38 0.27 3 

OA 1 0.94 0.69 0.86 0.80 6 2.50 23 0.38 0.28 4 
Hamm(36) 19 0.94 4.28 0.98 4.38 11 4.82 410 5.09 1.48 4 
Hamm(20) 13 0.94 3.97 0.95 4.17 8 3.38 341 4.99 1.20 5 
Dopt(20) 33 0.95 1.05 1.00 1.05 10 3.30 4099 0.50 0.37 4 
Hybrid 16 0.90 2.64 0.99 2.67 9 2.00 1178 2.48 0.79 5 
SCD 9 0.91 1.37 0.98 1.39 10 2.90 1184 0.59 0.43 4 

Koshal1 2 0.95 0.82 0.89 0.92 5 2.40 19 0.40 0.36 4 
Koshal1+ 4 0.86 0.83 0.90 0.92 6 3.67 33 0.60 0.47 3 
Koshal2 7 0.90 5.08 0.98 5.18 8 3.38 347 6.25 1.82 4 
U(36) 22 0.95 0.91 0.94 0.97 9 5.56 101 0.28 0.25 3 
U(20) 8 0.97 0.80 0.87 0.92 9 3.56 53 0.29 0.26 3 

U-A(36) 28 0.97 1.00 1.00 1.00 11 4.00 97 0.35 0.26 4 
U-A(20) 8 0.96 0.99 0.99 1.00 10 3.20 53 0.35 0.30 3 

Hamm-A(36) 24 0.98 0.99 1.00 1.00 11 4.36 93 0.25 0.24 3 
Hamm-A(20) 10 0.96 0.84 0.96 0.87 6 5.00 52 0.39 0.32 3 

 

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-2

0

2

4

6

8

10

12

Obj1

O
bj

2

 
-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Obj1

O
bj

2

 
-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Obj1

O
bj

2

(a) FF(3) (b) CCD(I) (c) U-A(36) 
Figure 4.6.4: DTLZ7 Designs 
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Table 4.6.6: Designs for Fonseca F1 

Design Bogus Entropy OS OS1 OS2 NDC CL Time 
Largest 

Gap 
Avg. 
Gap 

# 
Gaps 

FF(3) 104 0.88 1.02 1.01 1.01 12 4.83 9040 0.49 0.36 4 
CCD(C) 43 0.91 1.01 1.01 1.00 11 2.64 5063 0.44 0.33 5 
CCD(I) 41 0.94 1.00 1.00 1.00 13 2.38 289 0.38 0.21 6 
CCD(F) 42 0.82 1.00 1.00 1.00 8 3.75 4704 0.69 0.49 3 

BB 28 0.86 1.01 1.00 1.00 9 2.89 4414 0.66 0.48 3 
LatinR(36) 33 0.93 1.00 1.00 1.00 11 3.55 286 0.35 0.25 4 
LatinL(36) 32 0.94 1.00 1.00 1.00 14 2.86 280 0.42 0.25 5 

LatinRC(36) 33 0.96 1.00 1.00 1.00 11 3.55 287 0.36 0.29 4 
LatinLC(36) 36 0.94 1.01 1.00 1.00 15 2.40 286 0.31 0.19 6 
OA(Multi) 8 0.88 0.99 0.99 1.00 5 2.00 71 0.56 0.41 4 

OA 5 0.89 0.97 0.99 0.98 6 1.83 63 0.52 0.40 4 
Hamm(36) 37 0.97 1.01 1.00 1.00 15 2.33 961 0.31 0.20 6 
Hamm(20) 20 0.96 1.00 1.00 1.00 12 1.67 910 0.29 0.23 6 
Dopt(20) 44 0.93 1.01 1.01 1.00 11 2.00 6743 0.45 0.28 6 
Hybrid 16 0.91 1.01 1.00 1.01 9 2.00 2937 0.47 0.33 5 
SCD 13 0.88 1.01 1.01 1.00 13 1.92 2597 0.53 0.25 6 

Koshal1 5 0.85 0.99 0.99 1.00 5 1.80 58 0.70 0.52 3 
Koshal1+ 6 0.84 1.00 1.00 1.00 7 2.86 201 0.50 0.40 4 
Koshal2 16 0.85 1.00 1.00 1.00 7 2.57 167 0.67 0.52 3 
U(36) 40 0.96 1.00 1.00 1.00 13 2.46 286 0.38 0.27 4 
U(20) 13 0.96 1.00 1.00 1.00 10 2.70 161 0.41 0.36 4 

U-A(36) 37 0.97 1.00 1.00 1.00 15 2.33 302 0.29 0.20 5 
U-A(20) 15 0.97 1.00 1.00 1.00 12 2.08 165 0.39 0.28 5 

Hamm-A(36) 41 0.91 1.00 1.00 1.00 11 2.82 293 0.51 0.26 5 
Hamm-A(20) 17 0.86 1.01 1.01 1.00 11 2.09 159 0.64 0.36 4 
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(a) FF(3) (b) Hamm(36) (c) U-A(36) 
Figure 4.6.5: Fonseca F1 Design Comparison 

The results for the Poloni problem are shown in Table 4.6.7.  Other designs, such 

as the D-Optimal and Hybrid, again outperformed the full-factorial design.  Many of the 

designs had trouble finding the points near the maximum objective function values for 

both objectives.  Only the Dopt(20) design performed well, although the space-filling 
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designs showed promise.  The Hybrid and Hamm-A(36) designs each only had one point 

near the maximum in Objective 2, although Hamm-A(36) also had one point near the 

maximum in Objective 1.  These three designs are shown in Figure 4.6.6.   
 

Table 4.6.7: Designs for Poloni 

Design Bogus Entropy OS OS1 OS2 NDC CL Time 
Largest 

Gap 
Avg. 
Gap 

# 
Gaps 

FF(3) 97 0.64 0.12 1.04 0.12 7 9.29 8580 5.72 5.72 1 
CCD(C) 37 0.61 0.11 0.91 0.12 5 7.00 3216 7.92 7.92 1 
CCD(I) 40 0.47 0.00 0.08 0.05 1 32.00 309 0.00 0.00 0 
CCD(F) 39 0.58 0.11 0.95 0.12 5 6.60 4299 6.73 6.73 1 

BB 22 0.61 0.11 0.95 0.11 5 6.40 2390 7.66 7.66 1 
LatinR(36) 34 0.56 0.03 0.36 0.08 3 12.67 309 0.00 0.00 0 
LatinL(36) 37 0.51 0.02 0.27 0.09 2 17.50 301 0.00 0.00 0 

LatinRC(36) 32 0.54 0.02 0.27 0.08 2 20.00 309 0.00 0.00 0 
LatinLC(36) 38 0.53 0.02 0.27 0.08 2 17.00 294 0.00 0.00 0 
OA(Multi) 4 0.52 0.01 0.18 0.08 2 7.00 81 0.00 0.00 0 

OA 4 0.48 0.00 0.09 0.05 1 12.00 70 0.00 0.00 0 
Hamm(36) 45 0.53 0.02 0.23 0.07 2 13.50 310 0.00 0.00 0 
Hamm(20) 14 0.51 0.10 0.90 0.11 3 8.67 529 11.46 11.46 1 
Dopt(20) 27 0.84 0.89 1.01 0.88 10 3.90 3520 17.94 11.02 2 
Hybrid 10 0.61 0.80 0.88 0.91 5 4.80 1208 22.51 13.11 2 
SCD 14 0.58 0.13 1.08 0.12 5 4.80 1262 3.87 3.87 1 

Koshal1 5 0.46 0.00 0.05 0.04 1 9.00 61 0.00 0.00 0 
Koshal1+ 12 0.46 0.00 0.05 0.04 1 14.00 119 0.00 0.00 0 
Koshal2 14 0.51 0.09 0.84 0.11 2 10.00 589 11.77 11.77 1 
U(36) 38 0.59 0.21 0.30 0.71 4 8.50 308 17.92 17.92 1 
U(20) 16 0.52 0.02 0.24 0.07 2 12.00 173 0.00 0.00 0 

U-A(36) 32 0.60 0.22 0.31 0.73 4 10.00 313 18.25 18.25 1 
U-A(20) 14 0.56 0.03 0.34 0.09 3 8.67 178 0.00 0.00 0 

Hamm-A(36) 37 0.61 0.23 0.32 0.74 4 8.75 308 18.82 18.82 1 
Hamm-A(20) 18 0.53 0.02 0.25 0.08 2 11.00 172 0.00 0.00 0 
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Figure 4.6.6: Poloni Designs 
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The results for the Srinivas problem are shown in Table 4.6.8.  Latin Hypercube 

sampling did not do as well in terms of finding extreme values.  Dopt(20) performed well 

again in terms of spreads and entropy, however, in looking at the raw data, it could be 

seen that this was mainly a result of the added axial points, which corresponded to most 

of the more extreme values.  The same extreme values were those missing from U-A(36) 

and Hamm-A(36), as these designs fill space and thus did not have levels at the edges of 

the design space.  The inscribed CCD did not perform as well here.  The other CCDs did 

generate good spreads and entropy, but points are still rather non-uniform on the front.  

FF(3), Dopt(20), and U-A(36) are shown in Figure 4.6.7.  The full-factorial design did 

well likely in part due to its abundance of design levels. 

 
Table 4.6.8: Designs for Srinivas 

Design Bogus Entropy OS OS1 OS2 NDC CL Time 
Largest 

Gap 
Avg. 
Gap 

# 
Gaps 

FF(3) 77 0.94 0.99 0.96 1.03 12 7.08 1788 43.08 41.25 2 
CCD(C) 27 0.85 0.83 0.92 0.90 8 5.63 548 62.90 60.77 3 
CCD(I) 22 0.83 0.49 0.71 0.69 8 6.25 492 39.57 39.57 1 
CCD(F) 25 0.83 0.90 0.96 0.94 7 6.71 573 70.08 61.56 4 

BB 14 0.83 0.22 0.46 0.47 6 6.67 394 0.00 0.00 0 
LatinR(36) 13 0.82 0.46 0.69 0.66 12 4.92 518 36.13 36.13 1 
LatinL(36) 7 0.91 0.64 0.81 0.79 13 5.00 513 0.00 0.00 0 

LatinRC(36) 8 0.88 0.49 0.71 0.69 13 4.92 523 0.00 0.00 0 
LatinLC(36) 9 0.90 0.64 0.81 0.79 13 4.85 512 0.00 0.00 0 
OA(Multi) 6 0.83 0.21 0.46 0.44 6 2.00 132 51.99 46.39 2 

OA 3 0.67 0.06 0.25 0.24 3 4.33 114 0.00 0.00 0 
Hamm(36) 16 0.90 0.60 0.78 0.76 14 4.00 518 0.00 0.00 0 
Hamm(20) 7 0.88 0.52 0.73 0.71 11 3.00 287 48.21 41.69 2 
Dopt(20) 20 0.83 1.00 1.02 0.98 10 4.60 1017 63.94 55.04 3 
Hybrid 4 0.86 0.47 0.71 0.66 8 3.75 244 62.42 53.17 2 
SCD 7 0.89 0.56 0.77 0.73 8 3.88 285 68.35 68.35 1 

Koshal1 1 0.79 0.20 0.46 0.45 4 3.25 104 61.44 60.18 2 
Koshal1+ 6 0.78 0.21 0.47 0.45 5 4.00 274 0.00 0.00 0 
Koshal2 4 0.85 0.55 0.70 0.78 7 4.29 838 89.41 89.41 1 
U(36) 7 0.89 0.59 0.78 0.76 13 5.00 525 35.82 35.55 2 
U(20) 5 0.86 0.33 0.58 0.57 12 2.92 298 0.00 0.00 0 

U-A(36) 13 0.89 0.73 0.86 0.84 13 4.54 523 48.89 46.96 2 
U-A(20) 6 0.89 0.34 0.59 0.58 11 3.09 302 0.00 0.00 0 

Hamm-A(36) 12 0.90 0.70 0.85 0.83 15 4.00 552 43.20 41.54 2 
Hamm-A(20) 6 0.90 0.71 0.84 0.84 10 3.40 311 67.43 59.54 2 
 



126 

0 50 100 150 200 2
-250

-200

-150

-100

-50

0

50

Obj1

O
bj

2

 
0 50 100 150 200 250

-250

-200

-150

-100

-50

0

Obj1

O
bj

2

20 40 60 80 100 120 140 160 180 200 22
-220

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

Obj1

O
bj

2

(a) FF(3) (b) Dopt(20) (c) U-A(36) 
Figure 4.6.7: Srinivas 

The results for the Tamaki problem are shown in Table 4.6.9.  The full-factorial 

design appears to have performed best according to the metrics, but when looking at the 

raw data it appears to have generated extreme points by chance.  In looking at the levels 

and their responses, the same levels do not necessarily correspond to the same objective 

function values and there is a large mssing portion of the Pareto front in every objective.  

Additionally, the run time was rather large compared to its counterparts.  Dopt(40) 

performed well, generating a reasonable approximation, but here the extreme values did 

not correspond to the axials.  The SCD’s metrics can be attributed to one extreme point, 

and thus it did not do as well as many of the other designs.  The Hamm-A(59) and U-

A(40)  designs performed better than the SCD but failed to generate the  extreme values.  

It can be argued that the CCD(C) did even better than the full-factorial.  The FF(3) and 

CCD(C) are shown in Figure 4.6.8, while Dopt(40) and Hamm-A(59) are shown in 

Figure 4.6.9. 
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Figure 4.6.8: Tamaki Designs 
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Table 4.6.9: Designs for Tamaki 

Design Bogus Entropy OS OS1 OS2 OS3 NDC CL Time 
Largest 

Gap 
Avg. 
Gap 

# 
Gaps 

FF(3) 284 0.77 1.01 1.00 1.00 1.01 73 16.08 50490 0.77 0.51 8 
CCD(C) 7 0.79 0.35 0.72 0.69 0.71 47 2.36 5276 0.22 0.18 4 
CCD(I) 6 0.66 0.04 0.38 0.32 0.32 20 5.60 2660 0.00 0.00 0 
CCD(F) 1 0.72 0.10 0.45 0.50 0.43 29 4.03 4262 0.23 0.23 1 

BB 2 0.75 0.11 0.40 0.54 0.50 32 3.31 2526 0.13 0.13 1 
Latin(R) 5 0.71 0.10 0.52 0.39 0.48 32 3.53 2238 0.23 0.19 2 
Latin(L) 1 0.70 0.11 0.47 0.49 0.47 27 4.33 2580 0.16 0.15 2 

Latin(RC) 2 0.72 0.11 0.39 0.52 0.56 32 3.63 2047 0.15 0.15 1 
Latin(LC) 0 0.71 0.12 0.47 0.49 0.54 31 3.81 1827 0.19 0.19 3 
OA(Multi) 2 0.71 0.09 0.43 0.44 0.47 27 4.67 2915 0.00 0.00 0 

OA 12 0.67 0.08 0.48 0.45 0.37 24 6.17 2708 0.16 0.16 1 
Hamm(59) 2 0.73 0.11 0.57 0.45 0.45 36 3.22 2169 0.18 0.18 1 
Hamm(40) 0 0.72 0.13 0.57 0.46 0.50 30 2.67 1658 0.20 0.20 1 
Dopt(40) 1 0.87 0.72 0.90 0.87 0.93 57 1.98 5762 0.38 0.20 15 
Hybrid 2 0.82 0.17 0.62 0.51 0.53 31 1.74 2622 0.22 0.18 6 
SCD 0 0.76 0.43 0.82 0.75 0.70 31 2.26 3315 0.84 0.84 1 

Koshal1 0 0.68 0.03 0.32 0.29 0.29 12 1.50 419 0.00 0.00 0 
Koshal1+ 1 0.69 0.03 0.32 0.29 0.29 23 2.04 920 0.00 0.00 0 
Koshal2 0 0.71 0.04 0.36 0.33 0.33 22 2.73 954 0.00 0.00 0 
U(59) 0 0.71 0.04 0.36 0.33 0.33 22 2.73 954 0.00 0.00 0 
U(40) 2 0.71 0.06 0.40 0.34 0.47 26 3.00 1811 0.00 0.00 0 

U-A(59) 1 0.81 0.26 0.72 0.60 0.60 49 2.39 4111 0.30 0.18 5 
U-A(40) 0 0.81 0.18 0.55 0.50 0.67 38 2.11 3062 0.13 0.13 1 

Hamm-A(59) 0 0.80 0.29 0.64 0.66 0.69 45 2.62 4042 0.55 0.29 5 
Hamm-A(40) 0 0.80 0.18 0.63 0.51 0.56 35 2.29 2427 0.21 0.17 2 

MR5 1 0.79 0.17 0.50 0.57 0.60 34 2.09 2114 0.20 0.19 4 
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(a) Dopt(40) (b) Hamm-A(59) 
Figure 4.6.9: More Tamaki Designs 

For both Viennet3 and Viennet4, the full-factorial design with a limit of 50000 

function evaluations was extremely time-consuming.  Therefore, full-factorials for these 

two problems were run with only 500 function evaluations allowed on each design level.  
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The Viennet3 are shown in Table 4.6.10.  Approximately 80% of the resulting solutions 

found were, in fact, dominated.  In comparison, the CCD(C) only had approximately 42% 

dominated points.  However, the full factorial did the best in terms of spread, and the 

reduction in time from only 500 function evaluations is extremely beneficial.  Objective 1 

proved to be elusive on this problem, with only the circumscribed CCD getting a single 

point near the maximum in that objective (outside of the full factorial), perhaps 

randomly.  Designs with true axials nonetheless generated better extreme points in 

Objective 1.  The CCD(C) and full factorial designs are shown in Figure 4.6.10.   

 
Table 4.6.10: Designs for Viennet3 

Design Bogus Entropy OS OS1 OS2 OS3 NDC CL Time 
Largest 

Gap 
Avg. 
Gap 

# 
Gaps 

FF(3)* 1160 0.66 4.73 1.02 1.08 4.29 22 13.55 2183 7.91 3.18 5 
CCD(C) 49 0.66 4.15 1.00 1.05 3.96 15 4.60 7616 6.49 2.66 3 
CCD(I) 54 0.63 0.88 0.20 0.97 4.50 7 9.14 1005 1.46 1.13 2 
CCD(F) 62 0.63 2.58 0.57 1.07 4.28 15 3.73 8756 2.79 1.48 3 

BB 45 0.66 0.93 0.20 1.06 4.41 15 4.20 8031 1.10 1.03 2 
Latin(R) 49 0.67 0.00 0.03 0.28 0.40 3 23.00 218 0.00 0.00 0 
Latin(L) 43 0.66 0.00 0.03 0.27 0.42 4 18.75 219 0.00 0.00 0 

Latin(RC) 58 0.65 0.00 0.03 0.26 0.39 4 15.00 219 0.00 0.00 0 
Latin(LC) 43 0.66 0.00 0.03 0.32 0.39 4 18.75 219 0.00 0.00 0 
OA(Multi) 65 0.66 0.00 0.03 0.29 0.38 3 21.00 235 0.00 0.00 0 

OA 72 0.67 0.00 0.03 0.26 0.34 3 29.33 304 0.00 0.00 0 
Hamm(59) 47 0.66 0.02 0.04 0.69 0.56 6 11.83 495 0.67 0.67 1 
Hamm(40) 33 0.67 0.80 0.19 1.06 3.95 6 7.83 414 1.46 1.16 2 
Dopt(40) 48 0.71 0.89 0.19 1.07 4.27 16 4.13 8440 0.77 0.57 2 
Hybrid 20 0.70 0.94 0.20 1.06 4.35 13 2.77 4039 0.98 0.87 2 
SCD 27 0.64 1.03 0.23 1.06 4.29 12 3.58 4535 1.53 1.20 2 

Koshal1 6 0.62 0.00 0.02 0.15 0.30 3 4.00 33 0.00 0.00 0 
Koshal1+ 16 0.65 0.00 0.02 0.17 0.31 3 10.67 89 0.00 0.00 0 
Koshal2 28 0.63 0.02 0.04 0.73 0.52 7 4.57 962 1.10 1.10 1 
U(59) 28 0.63 0.02 0.04 0.73 0.52 7 4.57 962 1.10 1.10 1 
U(40) 32 0.67 0.00 0.03 0.28 0.43 4 12.00 146 0.00 0.00 0 

U-A(59) 57 0.71 0.01 0.03 0.37 0.52 4 15.25 222 0.00 0.00 0 
U-A(40) 27 0.70 0.01 0.04 0.41 0.55 5 10.60 150 0.00 0.00 0 

Hamm-A(59) 48 0.70 0.01 0.04 0.37 0.54 5 14.00 215 0.00 0.00 0 
Hamm-A(40) 30 0.70 0.01 0.04 0.41 0.56 4 12.50 150 0.00 0.00 0 

MR5 30 0.66 2.36 0.52 1.05 4.35 12 3.50 5049 2.86 1.60 3 
 



129 

-2
0

2
4

6
8

10

14

15

16

17

18
-0.2

-0.1

0

0.1

0.2

Obj1
Obj2

O
bj

3

 
-2 0

2
4

6 8
10

14

15

16

17

18
-0.2

-0.1

0

0.1

0.2

Obj1
Obj2

O
bj

3

 
(a) CCD(C) (b) Full Factorial 

Figure 4.6.10: Viennet3 Results 

Viennet4 results are shown in Table 4.6.11.  Approximately 70% of the full 

factorial points (with 500 function evaluation limit) were dominated, versus 27% for the 

CCD(C).  The full factorial, CCD(C), Dopt(40), and MR5 designs performed well.  As 

shown in Figure 4.6.11, the full factorial design had a general area where no points were 

found, while the CCD points were more spread out, and the D-optimal design was not 

necessarily clustered in any region.  The uniform and Hammersley designs did not 

perform as well in the three objective problems, but this may be in part because they did 

not include points at the exact extremes of the aspiration and reservation levels, or at the 

exact axials, and therefore, a change in the range over which they are conducted may 

improve their results (and did, as will be shown in Section 4.10).  
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Figure 4.6.11: Viennet4 Results 

In conclusion, the D-optimal, CCD(C), Hammersley, and uniform designs appear 

to be good alternatives to a full-factorial for the initial design.  The CCD(C) is 
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representative, as no CCD type emerged conclusively better than another in all cases.  

However, the D-optimal designs were accidentally run using an entirely different range.  

This modified range, in conjunction with 3 levels, performed extremely well across most 

problems.  This motivates Section 4.10. 
 

Table 4.6.11: Designs for Viennet4 

Design Bogus Entropy OS OS1 OS2 OS3 NDC CL Time 
Largest 

Gap 
Avg. 
Gap 

# 
Gaps 

FF(3)* 1016 0.83 0.86 0.92 1.41 0.67 53 8.34 2263 0.65 0.63 2 
CCD(C) 32 0.80 1.11 0.93 1.69 0.70 28 3.07 3582 0.51 0.50 2 
CCD(I) 30 0.79 0.20 0.39 1.22 0.43 15 5.87 746 1.68 1.68 1 
CCD(F) 39 0.79 0.58 0.89 1.30 0.50 24 3.29 7434 1.01 0.77 2 

BB 22 0.82 0.56 0.86 1.31 0.50 27 3.19 6123 1.57 1.21 2 
Latin(R) 24 0.82 0.07 0.33 0.50 0.43 18 5.22 193 0.00 0.00 0 
Latin(L) 23 0.81 0.07 0.33 0.45 0.50 15 6.33 197 0.00 0.00 0 

Latin(RC) 18 0.83 0.08 0.30 0.60 0.41 21 4.76 197 0.00 0.00 0 
Latin(LC) 22 0.82 0.06 0.33 0.44 0.42 18 5.33 194 0.00 0.00 0 
OA(Multi) 36 0.83 0.06 0.29 0.61 0.37 20 4.60 214 0.00 0.00 0 

OA 43 0.82 0.04 0.27 0.48 0.29 14 8.36 266 0.00 0.00 0 
Hamm(59) 22 0.82 0.23 0.40 1.32 0.43 20 4.80 498 1.20 1.20 1 
Hamm(40) 10 0.83 0.17 0.53 0.70 0.46 17 4.12 432 1.09 1.09 1 
Dopt(40) 37 0.87 1.20 0.97 1.30 0.95 34 2.26 7565 1.17 0.84 3 
Hybrid 13 0.81 0.67 0.87 1.30 0.59 17 2.53 3436 0.95 0.78 2 
SCD 13 0.81 0.59 0.76 1.33 0.58 22 2.59 4348 0.78 0.78 1 

Koshal1 2 0.77 0.02 0.26 0.27 0.27 5 3.20 33 0.62 0.62 1 
Koshal1+ 11 0.80 0.04 0.33 0.35 0.37 14 2.64 81 0.00 0.00 0 
Koshal2 17 0.78 0.44 0.74 1.28 0.47 12 3.58 673 1.48 1.48 1 
U(59) 17 0.78 0.44 0.74 1.28 0.47 12 3.58 673 1.48 1.48 1 
U(40) 14 0.83 0.08 0.31 0.56 0.48 19 3.47 136 0.00 0.00 0 

U-A(59) 24 0.86 0.21 0.46 0.81 0.56 26 3.62 200 0.00 0.00 0 
U-A(40) 8 0.86 0.19 0.42 0.83 0.55 22 3.27 135 0.00 0.00 0 

Hamm-A(59) 13 0.86 0.18 0.48 0.72 0.51 24 4.38 193 0.00 0.00 0 
Hamm-A(40) 12 0.85 0.16 0.45 0.66 0.52 22 3.09 133 0.00 0.00 0 

MR5 15 0.80 0.86 0.90 1.31 0.72 23 2.48 4429 1.84 1.52 2 
 

Up to this point in the analysis, a Hammersley or uniform design, in conjunction 

with axials and/or AR3 type range, appeared to outperform everything else in 

approximating the Pareto front, saving a large amount of time and runs.  In fact, for a 

larger number of objectives, these space-filling designs make SMOMADS tractable, in 

terms of the number of required runs (recall the number of factors is two times the 

number of objectives).  Further, these designs provide uniform points along the Pareto 
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front, which is desirable and would be expected if MADS did not have its random 

element and no noise was present.  Unfortunately, since this is not the case and although 

uniform fronts appear, it cannot necessarily be said that a certain set of levels will give a 

specific point on the Pareto front.  The axials are necessary as they sometimes force the 

algorithm to find the more extreme values.   

4.7. Limiting Function Evaluations 

Clearly, the number of function evaluations within MADS-RS/GPS-RS affects the 

run-time of SMOMADS.  However, the effect of limiting these evaluations may or may 

not result in premature termination at a poor solution, and additional replications may be 

necessary to compensate.  A few initial runs of the DTLZ7, Disk Brake, and Viennet4 

problems were conducted to look at this.  The AR1 type range was used.  The Tamaki 

problem was then run using the CCD/Near Uniform design combination suggested by 

results from Section 4.10 to show the number of function evaluations used during each 

design level when having a limit of 500, to see if all 500 evaluations were being used. 

First, the Viennet4 problem was run using a full factorial design with three levels, 

using both two and four replications, and with a limit of 500 function evaluations.  Of 

course, there is no comparison to a 50000 function evaluation result, as this was 

extremely computationally expensive.  As shown in Table 4.7.1, the additional two 

replications provided no benefit.  In fact, many of the points were redundant.  The graphs 

of these points supported this finding, but are not shown. 
 

Table 4.7.1: Viennet4 Full Factorial 

Reps Bogus Entropy OS OS1 OS2 OS3 NDC CL Time 
Largest 

Gap 
Avg. 
Gap 

# 
Gaps 

2 1016 0.83 0.86 0.92 1.41 0.67 53 8.34 2263 0.65 0.63 2 
4 2221 0.83 0.75 0.91 1.40 0.59 61 11.39 4549 0.61 0.57 2 
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The DTLZ7 problem was run using the 500 function evaluation limit, CCD(C) 

and two and five replications.  In Table 4.7.2, a 50000 evaluation run is in italics.  Figure 

4.7.1 also contains the plots of all three solutions.  Ignoring the obvious outlier in the first 

approximation (an overall spread of 7.78), five replications provided little improvement 

over two (as seen with 50000 evaluations in Section 4.5 and Appendix A), and 

furthermore, 50000 evaluations does not seem to provide much of an advantage over 

using 500, other than reducing the clustering.  Obviously, the improvement in run time 

after limiting evaluations is also beneficial. 

 
Table 4.7.2: DTLZ7 CCD 

Reps Bogus Entropy OS OS1 OS2 NDC CL Time 
Largest 

Gap 
Avg. 
Gap 

# 
Gaps 

2 28 0.90 7.78 1.00 7.76 10 4.4 104 10.00 2.28 5 
5 115 0.92 1.23 1.22 1.00 13 5 263 0.39 0.28 4 
2 37 0.95 1.22 1.01 1.21 12 2.92 2480 0.34 0.25 5 
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(a) 2 Reps (b) 5 Reps (c) 2 Reps, 50,000 Fn Evals 
Figure 4.7.1: DTLZ7 Comparison 

Finally, the Disk Brake problem was run similarly to DTLZ7, with results shown 

in Table 4.7.3.  Again, using a limit of 500 evaluations does not seem to affect the results.  

Here, however, the five replications do provide a slight advantage, as visually depicted in 

Figure 4.7.2. 
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Table 4.7.3: Disk Brake CCD 

Reps Bogus Entropy OS OS1 OS2 NDC CL Time 
Largest 

Gap 
Avg. 
Gap # Gaps 

2 30 0.83 0.13 0.47 0.28 9 4.67 119 1.39 1.39 1 
5 107 0.83 0.14 0.46 0.30 9 8.11 300 0.00 0.00 0 
2 26 0.81 0.17 0.47 0.36 10 4.60 806 1.37 1.37 1 
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(a) 2 Reps (b) 5 Reps (c) 2 Reps, 50,000 Fn Evals 
Figure 4.7.2: Disk Brake Comparison 

Figure 4.7.3 shows a Pareto approximation for the Tamaki problem (b) and the 

corresponding number of function evaluations used for those points (a).  The 

approximation is good, and clearly all 500 evaluations were consistently used for each 

design level (or sub-problem in SMOMADS). 

In conclusion, a limit of 500 function evaluations appears to be worth the savings 

in computational time, and using two replications may be just as advantageous as using 

more. 

 

(a) # Function Evaluations (b) Pareto Approximation 
Figure 4.7.3: Tamaki 
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4.8. MADS-RS vs. GPS-RS on Linearly Constrained Problems 

As both GPS and MADS can be used on linearly constrained problems (here the 

sub-problems in SMOMADS), a comparison seemed warranted.  A different design was 

chosen for each linearly constrained problem in the test set, and run with a 50000 

function evaluation limit, two replications, 0.5%  noise, and the aspiration and 

reservation ranges presented at the conclusion of Section 4.6.  The results are shown in 

Table 4.8.1, with previous MADS-RS results italicized.  The qualities of the front 

approximations are similar and GPS-RS is either much faster or comparable, except in 

the case of the Dias Γ1 and Dias Γ2 problems.   The approximate Pareto fronts for these 

two problems are shown in Figure 4.8.1 and Figure 4.8.2.  GPS-RS took considerably 

longer on both problems, but also resulted in far fewer dominated points.  As can be seen 

for Hamm(20)/Dias Γ1 in Figure 4.8.1, the GPS-RS result appears to have a worse 

distribution of points on the front.  However, those points in the MADS-RS solutions not 

near the center of the front may be in part due to noise.  Dias Γ2 helps confirm this, as the 

GPS-RS solution shown in Figure 4.8.2 has a better distribution, with those levels that 

previously corresponded to dominated points helping to fill gaps along the front.  On the 

remaining problems, GPS-RS is faster and converges to the same quality of solution as 

MADS-RS.   
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(a) Dias Γ1 MADS-RS Hamm(20) (b) Dias Γ1 GPS-RS Hamm(20) 

Figure 4.8.1: MADS-RS vs. GPS-RS Dias Γ1 
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Table 4.8.1: MADS-RS vs. GPS-RS 

Problem/  
Design Bogus Entropy OS OS1 OS2 OS3 NDC CL Time 

Largest 
Gap 

Avg. 
Gap 

# 
Gaps 

Dias Γ1/ 
Hamm(20) 13 0.92 1.24 1.00 1.24 - 13 2.08 371 0.35 0.21 7 

Dias Γ1/ 
Hamm(20) 3 0.73 1.25 1.00 1.25 - 8 4.63 999 0.73 0.62 2 

Dias Γ2/   
U(36) 48 0.88 0.99 1.00 0.99 - 11 2.18 437 0.34 0.22 5 

Dias Γ2/   
U(36) 8 0.97 0.98 1.00 0.98  16 4 1083 0.17 0.16 2 

DTLZ7/  
CCD(C) 37 0.95 1.22 1.01 1.21 - 12 2.92 2480 0.34 0.25 5 

DTLZ7/ 
CCD(C) 43 0.90 1.01 1.01 1.00  9 3.22 1893 0.64 0.38 5 

Fonseca 
F1/   BB 28 0.86 1.01 1.00 1.00 - 9 2.89 4414 0.66 0.48 3 

Fonseca 
F1/   BB 25 0.83 1.01 1.01 1.00 - 10 2.9 1699 0.49 0.39 4 

Viennet4/  
U(40) 14 0.83 0.08 0.31 0.56 0.48 19 3.47 136 0.00 0.00 0 

Viennet4/ 
U(40) 16 0.82 0.04 0.28 0.48 0.32 13 4.92 198 0.00 0.00 0 
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(a) Dias Γ2 MADS-RS U(36) (b) Dias Γ2 GPS-RS U(36) 

Figure 4.8.2: MADS-RS vs. GPS-RS Dias Γ2 

MADS-RS was still used for the majority of the test runs on these linearly 

constrained problems, excluding the final runs, with the intended caveat that results 

would likely improve with respect to time if using GPS-RS.  This provided some needed 

consistency.  
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4.9. Using Combinations of Component Functions 

The achievement scalarization function uses the minimum of all component 

achievement functions at a point as its response.  In this section, the benefit of using two 

component achievement functions at-a-time for three-objective problems is explored.  

Using a circumscribed CCD, 50000 function evaluations, and two replications, all three 

three-objective problems were tested.  The results follow in Table 4.9.1, where Old refers 

to the original CCD using all component achievement functions, the numbers in 

parentheses refer to the specific component achievement functions, and Total refers to 

three two-component approximations put together. 
 

Table 4.9.1: Three Objective Results 

Problem Bogus Entropy OS OS1 OS2 OS3 NDC CL Time 
Largest 

Gap 
Avg. 
Gap 

# 
Gaps 

Tamaki  
(Old) 7 0.79 0.35 0.72 0.69 0.71 47 2.36 5276 0.22 0.18 4 

Tamaki (12) 22 0.68 0.11 0.46 0.47 0.51 22 4.36 4314 0.34 0.22 4 
Tamaki (23) 26 0.69 0.13 0.50 0.44 0.58 23 4.00 7000 0.44 0.27 4 
Tamaki (13) 27 0.65 0.04 0.44 0.22 0.40 17 5.35 3630 0.00 0.00 0 

Tamaki  
(Total) 75 0.87 0.72 0.91 0.89 0.89 62 4.50 14944 0.38 0.26 10 

Viennet3  
(Old) 49 0.66 4.15 1.00 1.05 3.96 15 4.60 7616 6.49 2.66 3 

Viennet3 (12) 60 0.22 4.46 0.92 1.08 4.51 21 2.76 24693 2.44 1.88 4 
Viennet3 (23) 55 0.69 4.08 0.96 1.07 3.97 15 4.20 7031 7.26 3.04 5 
Viennet3 (13) 85 0.25 0.00 0.01 0.16 0.02 6 5.50 6815 0.00 0.00 0 

Viennet3  
(Total) 200 0.70 4.68 0.96 1.08 4.52 28 5.50 38539 2.44 1.24 5 

Viennet4  
(Old) 32 0.80 1.11 0.93 1.69 0.70 28 3.07 3582 0.51 0.50 2 

Viennet4 (12) 45 0.66 0.29 0.32 0.71 1.27 20 3.65 21081 1.50 1.50 1 
Viennet4 (23) 55 0.76 0.66 0.90 1.28 0.57 17 3.71 24514 0.90 0.90 1 
Viennet4 (13) 54 0.83 0.56 0.89 1.27 0.49 16 4.00 16601 1.50 1.13 3 

Viennet4  
(Total) 154 0.87 2.09 1.03 1.30 1.56 42 4.76 62195 1.50 0.97 3 

 

Table 4.9.1 shows that using two component functions at-a-time focuses in on 

specific regions of the Pareto front, here for the Tamaki problem.  In terms of spread and 

entropy, combining the three pairs of component functions may only provide marginal 

improvement over using all three functions at-a-time.  Figure 4.9.1 shows the 
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corresponding plots for the Tamaki problem.  Each pair of component functions focuses 

on a corresponding region, and excludes the center of the Pareto front.  The best 

approximation to the front is therefore obtained by using all component functions 

simultaneously, allowing generation of the entire front with only one design.  A limit of 

500 function evaluations was also evaluated.  Similar results followed, except that a 

better spread of points resulted in part because MADS-RS was not as accurate (which, in 

this case, was a good thing). 
 
 

  
(a) All (b) 2 at a Time (c) 500 Fn Eval Limit 

Figure 4.9.1: Tamaki 

Approximate Pareto fronts for the Viennet3 problem are shown in Figure 4.9.2.  

In this case, using pairs does provide improvement.  Portions of the Pareto front in 

Objective 1 and Objective 3 that were more difficult to get using all three component 

functions are found.  However, if the three component run was replicated three times 

(same number of runs as using the three two at-a-time designs), a few points in those 

regions would likely be found, due to randomness, and so the advantage of using pairs 

may be less remarkable.  Furthermore, in using 500 function evaluations again, nearly the 

same approximation results. 

Finally, Figure 4.9.3 displays the resulting approximate Pareto fronts for 

Viennet4.  Remarkably, using pairs provides almost no benefit, except for generating the 

extreme values in Objective 3.  Both exclude the center portion of Objective 1 and 

Objective 2 on the Pareto front.  The results shown here for Viennet4 can be more or less 



138 

duplicated simply by selecting a correct range and design, using far fewer runs and all 

component functions.  This was shown in Section 4.6.  Again, looking at 500 function 

evaluations a nearly identical approximation is found. 
 

 
(a) All (b) 2 at a Time (c) 500 Fn Eval Limit 

Figure 4.9.2: Viennet3 

 

   
(a) All (b) 2 at a Time (c) 500 Fn Eval Limit 

Figure 4.9.3: Viennet4 

Figure 4.9.4 shows a computed Pareto front using only the first component for the 

Viennet4 problem; i.e., Pareto solutions with a minimum value in the first objective 

(maximum in the third). 

 
Figure 4.9.4: Viennet4(1) 
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Based  solely on the three three-objective problems in this research, only on 

difficult regions like that in Viennet3 and its first objective is the pair-wise (or less-than-

all) component method advantageous (in generating the Pareto front efficiently).  This 

advantage is based mainly on the ability to generate points in specific regions.  

Otherwise, it is not a benefit because it is preferable to get a good front in fewer runs, and 

less expensive methods are able to fill any gaps that result.  Of course, more objectives 

may increase this advantage.  This method also appears to be useful if trying to estimate 

the utopia quickly, however, a design consisting of an optimization for each level was 

used here to get these regions of the Pareto fronts.  Therefore, it is still faster to perform 

single-objective minimizations. 

4.10. Final Aspiration/Reservation Level Range Analysis 

4.10.1.  Test Approach.  Based on previous runs, further analysis on the aspiration 

and reservation ranges, as well as the effect of limiting function evaluations, was 

justified.  Both CCD and near uniform designs were evaluated, where the near uniform 

design had an equivalent number of points to the CCD (36 for two objectives, 59 for 

three objectives) so as to have a valid comparison.  These designs were chosen because 

they are two of the best ones found in Section 4.6, and because the CCD is a factorial-

based design (like the full-factorial) and the near uniform is a space-filling design 

(similar to Hammersley sequence sampling).  Asterisks in the results tables denote a limit 

of 500 function evaluations; otherwise a limit of 50000 was used.   

New ranges were constructed with the success of the D-Optimal design from 

Section 4.6 in mind and the range it used.  Here, Range 1 uses 0.495 of the difference 

between utopia and nadir components, both added and subtracted from a) the utopia point 

component, for the aspiration range, and b) the nadir point component, for the reservation 

range.  Range 2 uses the utopia and nadir points as the bounds for the aspiration and 

reservation ranges.  Range 3 uses the entire utopia and nadir point range in addition to 
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subtracting 0.495 of the difference between points from the utopia component, for the 

aspiration range, and adding 0.495 of the difference between points, for the reservation 

range.  To further clarify, these ranges are depicted in Figure 4.10.1, where the red points 

are the utopia and nadir points, respectively.  

 

 
 Figure 4.10.1: Aspiration and Reservation Level Ranges 

 

 
Figure 4.10.2: Aspiration and Reservation Levels Intersecting the Front 

One further method could have been to sample over the entire utopia and nadir 

point range, adding the additional two 0.495 pieces in both the aspiration and reservation 

levels, effectively doubling the space in Range 2.  In thinking about the levels visually, 

hypothetically (without noise or any MADS limitations), any point on the Pareto front 

may be found just by using the entire range between utopia and nadir components.  

Recall, given an aspiration and reservation level as shown in Figure 4.10.2, SMOMADS 

finds the point on that ray formed by the aspiration and reservation levels closest to the 
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aspiration level.  In performing Range 3 as done here, each ray still intersects the Pareto 

front even though sometimes the levels are outside the utopia and nadir components.  

However, if the doubled space were used for both aspiration and reservation, there could 

be design levels where both the aspiration and reservation levels were outside the utopia 

and nadir components, meaning that hypothetically the ray would not cross the Pareto 

front.  Of course, in reality, SMOMADS will result in some point for any design level, 

but it should be of no added value.  Furthermore, the CCD2 design is effectively using 

that range when it generates its axial points.   

4.10.2.  Results.  Results are presented by problem for a majority of the test set.  

Only a few problems are not included, as they added little to the findings. 

The Dias Γ1 results are shown in Table 4.10.1.  All ranges and both function 

evaluation limits performed well according to the metrics (noting again that some spreads 

were influenced by obvious dominated points).  This was also validated graphically.  The 

best solution was found by using U3*, which is illustrated in Figure 4.10.3, relative to the 

U1* and U2* runs.  For this problem, the gaps were a good indication of quality. 

 
Table 4.10.1: Dias Γ1 Results 

Metric CCD1 CCD1* CCD2 CCD2* CCD3 CCD3* U1 U1* U2 U2* U3 U3* 
Bogus 38 38 38 41 39 35 20 26 33 35 25 27 

Entropy 0.89 0.82 0.87 0.93 0.90 0.84 0.92 0.89 0.89 0.88 0.87 0.94 
OS 1.33 1.33 8.52 5.31 1.01 4.69 1.02 1.00 1.00 0.98 1.01 1.02 

OS1 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.01 
OS2 1.32 1.31 8.46 5.27 1.00 4.65 1.01 1.00 1.00 0.98 1.01 1.01 
NDC 15 11 18 18 14 16 20 14 16 14 15 19 
CL 2.27 3.09 1.89 1.72 2.36 2.31 2.60 3.29 2.44 2.64 3.13 2.37 

Time 8891 457 4923 358 9015 354 492 371 475 339 742 365 
Largest 

Gap 0.43 0.49 3.76 3.96 0.27 3.65 0.31 0.30 0.21 0.25 0.27 0.17 
Avg. 
Gap 0.24 0.27 1.21 0.78 0.21 0.93 0.21 0.19 0.15 0.19 0.22 0.15 

# Gaps 6 5 7 7 4 5 3 4 5 5 4 2 
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(a) U1* (b) U2* (c) U3*  
Figure 4.10.3: Dias Γ1 Results 

The Dias Γ2 results are shown in Table 4.10.2.  It was evident in the metrics and 

plots (not shown) that Ranges 2 and 3 performed better than Range 1.  Such a result is 

perhaps intuitive but is also interesting, as it did not necessarily show in Dias Γ1.  Again 

the uniform design performed better.   
 

Table 4.10.2: Dias Γ2 Results 
Metric CCD1 CCD1* CCD2 CCD2* CCD3 CCD3* U1 U1* U2 U2* U3 U3* 
Bogus 49 39 49 44 42 44 42 43 45 47 38 34 

Entropy 0.81 0.71 0.94 0.94 0.90 0.80 0.68 0.83 0.88 0.92 0.87 0.91 
OS 1.02 1.33 1.33 5.09 1.03 1.02 1.02 1.02 1.00 1.01 1.02 1.03 
OS1 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.01 1.01 1.01 
OS2 1.01 1.32 1.32 5.04 1.02 1.01 1.01 1.01 0.99 1.00 1.02 1.02 
NDC 9 10 16 17 15 13 7 11 11 12 14 17 
CL 2.56 3.30 1.44 1.65 2.00 2.15 4.29 2.64 2.45 2.08 2.43 2.24 

Time 3314 458 4938 372 9363 361 191 383 174 350 347 367 
Largest 

Gap 0.56 0.56 0.31 3.46 0.32 0.54 0.84 0.53 0.50 0.38 0.28 0.39 
Avg. 
Gap 0.32 0.34 0.25 0.64 0.21 0.40 0.40 0.24 0.29 0.22 0.18 0.22 

# Gaps 4 5 8 8 6 5 3 5 4 5 6 4 
 

The Disk Brake results are shown in Table 4.10.3.  CCD2* is depicted in Figure 

4.10.4.  The near uniform designs attained essentially the same approximations, except 

for the extreme points.  These points occurred in the factorial portion of the CCD.  The 

near uniform design never tests levels precisely at their maximum or minimum values as 

the CCD does.  The second and third ranges performed comparably, but again better than 

Range 1.  Interestingly, limiting the number of function evaluations does not seem to 
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hamper the approximation.  In fact, allowing “worse” solutions may introduce more 

Pareto points in some cases.  Ranges 2 and 3 take more time, but only if the function 

evaluations are not limited to 500. 
 

Table 4.10.3: Disk Brake Results 

Metric CCD1 CCD1* CCD2 CCD2* CCD3 CCD3* U1 U1* U2 U2* U3 U3* 
Bogus 26 26 38 41 38 33 26 22 26 26 25 27 

Entropy 0.81 0.83 0.89 0.89 0.89 0.86 0.81 0.81 0.84 0.85 0.88 0.87 
OS 0.16 0.19 1.01 1.00 0.80 0.61 0.11 0.13 0.18 0.17 0.28 0.20 

OS1 0.56 0.67 1.08 1.07 0.80 0.61 0.41 0.45 0.59 0.57 0.62 0.60 
OS2 0.29 0.29 0.93 0.93 1.00 1.00 0.27 0.28 0.31 0.30 0.45 0.33 
NDC 10 13 13 14 11 14 10 9 10 11 11 11 
CL 4.60 3.54 2.62 2.21 3.09 2.79 4.60 5.56 4.60 4.18 4.27 4.09 

Time 1363 287 4923 292 4911 292 295 283 277 287 546 285 
Largest 

Gap 1.21 0.86 13.68 23.08 22.57 26.48 0.76 0.00 0.52 0.62 6.52 0.00 
Avg. 
Gap 1.21 0.86 8.28 6.99 8.28 14.49 0.76 0.00 0.52 0.62 3.61 0.00 

# Gaps 1 1 4 5 5 2 1 0 1 1 2 0 
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Figure 4.10.4: Disk Brake CCD2* 

DTLZ7 results are shown in Table 4.10.4.  The 50000 evaluation limit took less 

time than the 500 for Range 1 on the uniform design (this occurred on Dias Γ2 as well).  

This was likely a product of random number draws and polling directions.  The uniform 

design performed better in general when looking at the plots; however, no range really 

outperformed another.   
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Table 4.10.4: DTLZ7 Results 

Metric CCD1 CCD1* CCD2 CCD2* CCD3 CCD3* U1 U1* U2 U2* U3 U3* 
Bogus 52 41 44 49 46 45 30 28 39 40 37 31 

Entropy 0.89 0.91 0.92 0.94 0.90 0.84 0.91 0.96 0.95 0.96 0.96 0.94 
OS 4.35 1.23 9.46 1.08 5.22 1.00 1.24 1.23 0.96 0.85 1.01 1.22 

OS1 1.23 1.23 1.22 1.08 1.00 1.00 1.23 1.23 0.99 0.91 1.01 1.23 
OS2 3.54 1.00 7.76 1.00 5.23 1.00 1.00 1.00 0.98 0.94 1.00 0.99 
NDC 10 9 13 10 9 8 11 13 8 7 11 12 
CL 2.00 3.44 2.15 2.30 2.89 3.38 3.82 3.38 4.13 4.57 3.18 3.42 

Time 7219 289 4850 250 8349 223 99 209 329 238 687 223 
Largest 

Gap 3.33 0.52 5.94 0.53 6.26 0.49 0.52 0.52 0.34 0.32 0.41 0.50 
Avg. 
Gap 0.94 0.37 1.67 0.38 1.56 0.38 0.37 0.29 0.28 0.27 0.27 0.31 

# Gaps 6 5 7 4 5 4 4 5 4 4 5 5 
  

The Fonseca F1 results are shown in Table 4.10.5.  Range 2 outperformed both of 

the other ranges in both the CCD and the uniform design.  Furthermore, the uniform 

design fared better than the CCD.  It is interesting to note, that, without a limit on 

function evaluations, the relative time for each range varies according to the problem.  

The limited uniform runs of Range 2 and 3, as well as the limited run of Range 2 for the 

CCD are shown in Figure 4.10.5.  Surprisingly, the number of dominated (bogus) points 

is somewhat unaffected by limiting the function evaluations, in general, but this also may 

change as the number of objective functions increases. 

 
Table 4.10.5: Fonseca F1 Results 

Metric CCD1 CCD1* CCD2 CCD2* CCD3 CCD3* U1 U1* U2 U2* U3 U3* 
Bogus 48 50 48 37 58 52 53 53 24 17 38 39 

Entropy 0.74 0.83 0.92 0.94 0.71 0.63 0.89 0.91 0.94 0.94 0.96 0.95 
OS 1.02 1.01 1.01 1.02 1.01 1.01 1.01 1.01 1.00 1.00 1.00 1.01 

OS1 1.01 1.01 1.00 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.01 
OS2 1.01 1.00 1.01 1.01 1.00 1.01 1.00 1.01 1.00 1.00 1.00 1.00 
NDC 9 9 10 13 7 6 6 7 19 15 12 12 
CL 2.67 2.44 2.40 2.69 2.00 3.33 3.17 2.71 2.53 3.67 2.83 2.75 

Time 6918 269 4838 268 6341 349 163 319 1799 257 1790 281 
Largest 

Gap 0.71 0.70 0.57 0.69 1.24 0.94 0.49 0.50 0.31 0.37 0.49 0.49 
Avg. 
Gap 0.52 0.48 0.32 0.35 0.79 0.93 0.41 0.39 0.23 0.27 0.27 0.26 

# Gaps 3 3 6 7 4 2 4 4 3 3 5 5 
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Figure 4.10.5: Fonseca F1 Results 

The Poloni results are shown in Table 4.10.6.  This is the first problem where the 

function evaluation limit results in a drop-off in quality.  For this problem in general, 

when the function evaluations are limited in number, the spreads and entropy decrease, 

while the cluster metric, largest gap, and average gap slightly increase.  However, Figure 

4.10.6 shows that there is truly little difference.  Furthermore, Ranges 2 and 3 again 

generally perform slightly better.  For the uniform designs, Range 3 performed best but 

did not achieve the extreme value in Objective 2.   
 

Table 4.10.6: Poloni Results 

Metric CCD1 CCD1* CCD2 CCD2* CCD3 CCD3* U1 U1* U2 U2* U3 U3* 
Bogus 36 34 48 51 48 46 27 35 25 27 36 31 

Entropy 0.78 0.69 0.62 0.64 0.72 0.64 0.58 0.57 0.70 0.68 0.79 0.75 
OS 1.21 0.96 0.93 0.80 0.61 0.57 0.25 0.31 0.55 0.61 0.66 0.73 

OS1 1.37 1.06 0.99 0.94 0.62 0.65 0.34 0.39 0.64 0.64 0.75 0.87 
OS2 0.88 0.90 0.95 0.85 0.99 0.87 0.72 0.79 0.85 0.96 0.88 0.83 
NDC 10 7 5 5 5 4 4 4 6 6 7 7 
CL 3.60 5.43 4.80 4.20 4.80 6.50 11.25 9.25 7.83 7.50 5.14 5.86 

Time 3681 276 4448 279 9271 269 138 280 127 286 240 279 
Largest 

Gap 19.01 21.23 21.41 21.03 20.31 20.51 17.66 19.63 17.73 17.88 18.54 18.27 
Avg. 
Gap 9.42 12.37 16.14 12.18 14.06 14.81 17.66 19.63 17.73 17.88 11.92 12.88 

# Gaps 3 2 2 2 2 2 1 1 1 1 2 2 
 

The Srinivas results are shown in Table 4.10.7.  The uniform design significantly 

outperformed the CCD, and again Range 2 and Range 3 outperformed Range 1, with 

Range 3 doing the best.  This problem highlights the advantage of a space-filling design.  
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As shown in Figure 4.10.7, the uniform design places points near-uniformly on the Pareto 

front.  Once again, limiting function evaluations does not seem to hurt the approximation. 
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Figure 4.10.6: Poloni CCD 

 
Table 4.10.7: Srinivas Results 

Metric CCD1 CCD1* CCD2 CCD2* CCD3 CCD3* U1 U1* U2 U2* U3 U3* 
Bogus 26 31 36 42 35 32 10 14 11 17 16 16 

Entropy 0.73 0.79 0.74 0.82 0.93 0.89 0.98 0.97 0.99 0.99 0.99 1.00 
OS 0.99 0.99 0.99 1.05 1.10 1.05 0.92 0.92 0.96 0.95 1.14 1.04 

OS1 0.98 1.00 1.01 1.02 1.09 1.04 0.97 0.96 0.98 0.98 1.14 1.06 
OS2 1.00 0.99 0.98 1.03 1.01 1.01 0.95 0.96 0.98 0.97 1.00 0.99 
NDC 4 6 7 7 8 9 15 15 18 16 20 19 
CL 11.50 6.83 5.14 4.29 4.63 4.44 4.13 3.87 3.39 3.44 2.80 2.95 

Time 932 262 2913 263 5962 266 189 262 962 266 2555 262 
Largest 

Gap 122.57 118.10 129.00 114.92 74.16 69.56 35.28 34.95 0.00 0.00 44.35 0.00 
Avg. 
Gap 121.14 107.20 108.81 75.38 70.84 62.39 35.28 34.95 0.00 0.00 44.35 0.00 

# Gaps 2 2 2 3 4 4 1 1 0 0 1 0 
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Figure 4.10.7: Srinivas Results 
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The Tamaki results are shown in Table 4.10.8.  Limiting the number of function 

evaluations did not cause a decrease in quality of the approximation.  Furthermore, Range 

3 performed better than Range 2, and Range 2 better than Range 1.  However, in looking 

at the plots, the uniform design for Range 2 and Range 3 are fairly comparable.  The 

uniform design outperforms or is nearly equivalent to the CCD, as evidenced by the NDC 

metrics and Figure 4.10.8.  Clearly, the AR1 range used for the designs influenced the 

previous findings in reference to Hammersley sequence sampling and uniform designs in 

Section 4.6.  Note that a relatively good approximation was found in only 118 points, 

rather than the thousands that would be required using more replications or a design, such 

as the full factorial. 
 

 Table 4.10.8: Tamaki Results 

Metric CCD1 CCD1* CCD2 CCD2* CCD3 CCD3* U1 U1* U2 U2* U3 U3* 
Bogus 0 10 45 51 30 29 1 10 0 9 1 7 

Entropy 0.79 0.86 0.82 0.85 0.90 0.93 0.79 0.85 0.92 0.90 0.94 0.93 
OS 0.64 0.57 0.96 0.95 0.98 0.98 0.25 0.41 0.68 0.66 0.65 0.64 

OS1 0.84 0.80 0.98 0.95 0.98 1.00 0.63 0.76 0.90 0.80 0.84 0.88 
OS2 0.86 0.87 1.00 1.01 1.00 1.00 0.67 0.78 0.85 0.91 0.91 0.82 
OS3 0.89 0.82 0.99 1.00 1.01 0.98 0.60 0.68 0.88 0.90 0.85 0.88 
NDC 45 55 32 43 50 64 42 53 70 64 68 77 
CL 2.62 1.96 2.28 1.56 1.76 1.39 2.79 2.04 1.69 1.70 1.72 1.44 

Time 5261 425 12151 430 4332 430 2945 433 8095 432 3768 434 
Largest 

Gap 0.49 0.39 0.47 0.54 0.47 0.36 0.14 0.27 0.29 0.24 0.18 0.26 
Avg. 
Gap 0.27 0.20 0.29 0.27 0.24 0.22 0.13 0.20 0.22 0.19 0.14 0.19 

# Gaps 9 7 21 17 16 17 4 5 6 9 6 3 
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Figure 4.10.8: Tamaki Designs 
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The Viennet3 results are shown in Table 4.10.9.  Range 2 and Range 3 again were 

better than Range 1, but relatively comparable with one another.  Furthermore, the CCD 

proved to have some advantage over the uniform design in reaching a certain portion of 

the Pareto front.  In the case of Range 2, limiting the number of function evaluations 

affected the approximation, although increased replications may have forced out some of 

the dominated points, and the same thing did not happen in Range 3.  The CCD2, 

CCD2*, and U2 designs are shown in Figure 4.10.9 to support these findings. 
 

Table 4.10.9: Viennet3 Results 

Metric CCD1 CCD1* CCD2 CCD2* CCD3 CCD3* U1 U1* U2 U2* U3 U3* 
Bogus 50 49 74 74 70 63 35 45 31 44 36 37 

Entropy 0.69 0.70 0.60 0.60 0.66 0.65 0.70 0.68 0.73 0.73 0.74 0.74 
OS 4.27 0.90 4.64 4.81 4.62 4.53 1.93 1.94 2.06 2.01 2.09 2.24 

OS1 1.02 0.20 1.02 1.02 1.02 1.00 0.63 0.56 0.94 0.93 1.02 1.03 
OS2 1.05 1.07 1.07 1.04 1.01 1.00 0.96 1.06 0.79 0.81 0.88 0.91 
OS3 3.97 4.29 4.27 4.52 4.51 4.51 3.20 3.26 2.77 2.64 2.33 2.39 
NDC 16 13 10 19 13 12 8 10 11 9 12 14 
CL 4.25 5.31 4.40 2.32 3.69 4.58 10.38 7.30 7.91 8.22 6.83 5.79 

Time 7937 429 27939 425 4577 427 1059 437 968 422 225 438 
Largest 

Gap 7.89 1.14 7.94 7.99 6.43 6.47 4.69 3.06 7.10 5.55 7.59 6.97 
Avg. 
Gap 3.17 0.88 3.34 3.12 2.56 2.61 2.60 1.69 3.47 3.53 7.59 6.97 

# Gaps 5 2 5 5 3 3 2 3 4 2 1 1 
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Figure 4.10.9: Viennet3 Results 

The Viennet4 results are shown in Table 4.10.10.  The near uniform designs 

performed much better than the CCD designs, with Range 2 and 3 performing better than 

Range 1 again, and themselves being relatively comparable, although Range 3 was 
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metrically superior.  Again, limiting function evaluations showed no significant 

degradation in the approximation.  The U2*, U3*, and CCD2 designs are shown in 

Figure 4.10.10 as examples, since the metrics are not necessarily straightforward here. 
 

Table 4.10.10: Viennet4 Results 

Metric CCD1 CCD1* CCD2 CCD2* CCD3 CCD3* U1 U1* U2 U2* U3 U3* 
Bogus 52 50 59 56 62 67 26 26 21 22 16 23 

Entropy 0.85 0.84 0.78 0.78 0.78 0.79 0.81 0.81 0.86 0.86 0.89 0.89 
OS 0.11 0.20 1.93 1.90 1.15 1.06 0.06 0.06 0.40 0.41 0.72 0.54 

OS1 0.39 0.86 0.98 0.99 0.96 0.79 0.33 0.33 0.68 0.77 0.88 0.85 
OS2 0.48 0.46 1.31 1.29 0.81 1.15 0.47 0.42 0.70 0.62 0.88 0.74 
OS3 0.60 0.50 1.50 1.49 1.47 1.16 0.40 0.47 0.85 0.86 0.94 0.86 
NDC 20 23 25 25 20 20 16 18 31 32 37 33 
CL 3.30 2.96 2.36 2.48 2.80 2.55 5.75 5.11 3.13 3.00 2.76 2.88 

Time 7380 450 26194 453 3758 439 490 455 412 470 154 458 
Largest 

Gap 0.00 2.08 10.69 4.13 10.99 8.40 0.00 0.00 0.00 0.72 0.56 0.00 
Avg. 
Gap 0.00 2.08 6.13 1.80 3.06 3.89 0.00 0.00 0.00 0.72 0.56 0.00 

# Gaps 0 1 3 6 6 3 0 0 0 1 1 0 
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Figure 4.10.10: Viennet4 Results 

In general, limiting the number of function evaluations does not have an 

overwhelmingly negative impact on the Pareto approximations, with regard to quality or 

dominated points.  Furthermore, allowing less precision may, in fact, help get more 

points on the front.  Using the entire region, or more, for both the aspiration and 

reservation levels works far better than any other range technique.  This may seem odd, 

in that aspiration levels are supposed to be “good” values and reservation “bad,” but in 

visualizing the process, as in Figure 4.10.2, it becomes clear (access to the entire range is 
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necessary for both the aspiration and reservation levels).  Furthermore, the analysis 

supports the fact that using even more samples within a uniform design or Hammersley 

sequence sampling will result in even better approximations.   

Except in rare cases, space-filling designs outperform CCDs.  The only advantage 

of the CCD is that it may find the extreme values.  The space-filling designs have been 

shown to outperform full-factorial designs with respect to putting points uniformly along 

the Pareto front in a fewer number of samples.  The spread metrics given here are 

sometimes biased by dominated points, as that check was not yet added.  However, other 

metrics such as the NDC metric (considering the exclusion of dominated points), and 

even the plots themselves, support use of space-filling designs, due to their ability to 

generate more distinct points.   

It is clear the ranges used here outperform those used in Section 4.5.  In general, a 

combination of two replications of CCD2* and two replications of U3* should provide a 

quick, best initial (and perhaps even final) approximation of the Pareto front.  The CCD 

may not even be necessary in some cases.  Additionally, with the time saved by limiting 

function evaluations, more replications could be run, and the number of points in the 

uniform design or Hammersley design could be increased dramatically depending on 

time constraints.  By limiting function evaluations, the full-factorial design becomes a 

viable alternative again, but the space-filling designs achieve equal or better 

approximations in far fewer runs. 

4.11. Quality of Surrogate Types 

One of the first things to evaluate in considering the use of surrogates to fill in the 

Pareto front is what to use as the response and how to do so.  Figure 4.11.1 shows 

example AS function values for the Tamaki problem using Hammersley sequence 

sampling.  It is clear that different areas of the Pareto front are indistinguishable in terms 

of the AS function values.  This is more obvious for single-objective formulations.  
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Furthermore, each AS function and single-objective formulation can have very different 

behavior.  This implies that for each single-objective optimization, of which there will be 

many, a different surrogate would either have to be known beforehand, or a cross-

validation approach has to be used.  The former is highly unlikely, and the latter could be 

more expensive than just fitting surrogates to the objectives themselves.   
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Figure 4.11.1: AS Function Values 

Therefore, actual objective function values should serve as the response, implying 

the need to form a surrogate for each objective.  Soo and Bates [61] give an example of a 

surrogate that can simultaneously fit multiple functions, a univariate spline regression 

with fixed levels.  Unfortunately, it is not applicable here because it is univariate.  

However, surrogates can be fit “simultaneously” by using basis functions, and fitting 

each response with different weights or knots.  The advantage of this as opposed to fitting 

each response independently is not immediately clear, other than some small savings in 

memory and time.  

 4.11.1.  Test Approach.  In this research, both the design variables and the 

aspiration and reservation levels are compared as possible predictor variables.  

Furthermore, coded values of the aspiration and reservation levels are considered for 

those surrogates that use a factor-screening or backward-elimination process (the least 

squares models).  The goal of this analysis was to determine a subset of possible models, 
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and a cross-validation technique, with which to approximate the Pareto front or the 

objectives.  The cross-validation of the subset yields the best surrogate type to use, as 

well as an accompanying measure of quality.  The surrogates were built using the CCD2* 

and U3* approximate Pareto solutions from Section 4.10.   

For Artificial Neural Networks (ANNs), Radial Basis Functions (RBFs), and 

DACE (Kriging), a 10-fold cross validation was used.  This is done by generating a 

random permutation of the rows of data and dividing the data into 10 sets.  Each set, or 

fold, is used to validate a model fit to the complementary 90% of the entire data.  The 

permutation was re-generated for every model instance evaluated.  This may seem 

counterintuitive, but in doing this, general trends should emerge that are not dependent 

upon the specific permutation.  Root mean squared error (RMSE: the square root of sum-

squared-error divided by the number of points used for the sum-squared-error) was 

recorded cumulatively for the 10 folds along with the maximum squared error over all of 

the 10 folds, for each objective.  

RMSE and maximum squared error were suggested by Srivastava et. al [62] as 

appropriate measures.  Using 10 folds was supported by a bias and variance study by 

Kohavi [38] which stated that variance of k-fold cross-validation is not dependent on k, 

and that 10 is a reasonable minimum number of folds for bias and stability.  Holdout, 

where a model is trained on some portion of data and validated on the remaining data 

once, is not superior in any aspect to k-fold cross-validation.  Boot-strapping, where each 

fold would not be mutually exclusive, could present a large bias.  Furthermore, one study 

included by Kohavi [38] indicated that 10-fold cross-validation provided better model 

selection than leave-one-out cross-validation, the case of k-fold cross validation where k 

is the number of samples (this could not be used in this research anyways, due to its 

excessive time consumption).   
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Cross-validation was used for these surrogates because RBFs and Kriging are 

designed to interpolate (and thus error is near zero), and ANNs use random initial 

weights.  Clearly, for least squares models, sum-squared error is a valid metric, and so no 

cross-validation is required.  For Nadaraya-Watson, a sum-squared-error (literally the 

sum of the squared errors) is also found when minimizing the smoothing parameter and 

thus was used here.  Nadaraya-Watson attempts to interpolate as well, so the numbers for 

this surrogate that follow will be slightly misleading.  However, in the cross-validation 

scheme used as a product of this research, a k-fold approach is taken also with Nadaraya-

Watson.  The mean response at a level is used for those surrogates that interpolate.  For 

RBFs, responses are supposed to be unique to allow for interpolation, but a model can 

still be formed using more than one response at a design level, and so both response types 

are evaluated.     

4.11.2.  OLS/WLS Surrogates.  The various least squares models that were 

presented in Section 3.5 are not included in the main result tables for this section.  In 

general, no combination of settings for these surrogates performed very well using either 

the mean reponse or a reduced reponse set built by accepting +/-10% of the range from 

the mean reponse at a design level.  The foundation of the methods used to form these 

surrogates did, however, prove to be sound, in that using all of the options provided better 

models.  

 There is obviously some explanation as to the poor performance of these models.  

The factor-screening algorithm removed outliers to improve its fit, but few points should 

be outliers.  Further, the presence of noise makes it more difficult for these surrogates to 

fit the data.  Backward elimination of variables in the factor-screening algorithm did 

improve the 2R  metrics (in many cases, to values greater than 0.8 or 0.9 for all) and the 

other methods used seemed to serve their purpose well.  Unfortunately, it was difficult 



154 

for a least squares approach to fit the Pareto front, in part because an approximation to 

the Pareto front is generally more complicated than a polynomial. 

Partitioning the data in the recursive-partitioning model sometimes improved the 

fit, but also at the expense of prediction capability in some partitions.  Although these 

models were formed with minimal data, other surrogate types consistently had better fits 

using the same data.   All of the above statements were true for both the decision 

variable (DV) and aspiration and reservation level (AR) models.  For the factor-

screening models, using coded values had no impact generally, partly because not all 

levels resulted in MADS finding a Pareto optimal point, and thus the properties of the 

design matrix were lost.  Weighted Least Squares (WLS) had only a modest impact 

because there were only two replications, but it did fare better than Ordinary Least 

Squares (OLS).   

For the Dias Γ1 and Dias Γ2 problems, neither the AR nor DV models performed 

well. The DV model had problems in part because there were so many variables.  For the 

Disk Brake problem, only the factor-screening models did remotely well, where WLS 
with Box-Cox yielded 2 0.8adjR > .  For the DTLZ7 problem, only the full factor-

screening model did well.  The best Fonseca problem model, and one of the best overall 

(in terms of correct scaling, shape, prediction, etc.), was the full factor-screening model 

shown in Figure 4.11.2.  However, even this had significant error in prediction, as 

evidenced by predicted solutions that dominate known true Pareto solutions. 
 

 
Figure 4.11.2: Best Fonseca F1 DV Predictions 
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The full factor-screening models performed best for the Poloni problem, with the 
DV model having a final 2 0.99adjR = , relative to the final data (outliers removed).  

Interestingly, on this problem, only the second decision variable was used to fit the 

surrogate.  The AR model was decent as well and is shown in Figure 4.11.3.  Overall, 

the factor-screening algorithm would eliminate decision variables used to fit the model, 

but not AR levels.   

 

 
Figure 4.11.3: Poloni AR Model Predictions 

 Only the full factor-screening model (AR levels) worked well for the Srinivas 

problem, while only a recursive-partitioning without backwards elimination and multi-

collinearity check model worked well for the Tamaki problem ( 2R  metrics all ~0.98).  

This was a little surprising because Tamaki’s objective functions are so simple (although 

there was noise).  No model did very well on the Viennet3 or Viennet4 problem data.  

The maximum squared error on the best model for the Viennet4 problem data was 227 

for Objective 3. 

 Any attempt at screening factors is questionable, as even with step-wise or 

forward regression methods, the results will likely be similar.  Least squares approaches 

did not do well on most problems, and had large error.  However, one good thing that 

came of looking at these surrogates was that the factor-screening algorithm confirmed 

that all AR level columns were required (typically).   
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4.11.3.  Other Surrogate Results.  The results for the remaining surrogate types 

follow, in order of objective, and where for RBFs c denotes some constant times the 

mean distance between sites.  Neural networks were run with a target MSE of 0.001 and 

10000 training epochs.   

Data is presented in tables specifically in order of objective, where Objective 1 is 

the first two columns, Objective 2 the next two, and so on.  This data represents the best 

for that surrogate type.  The surrogates were run in an all-possible-combination manner.  

The number following Poly represents the order, with R meaning reduced (no 

interactions).  A limitation to this analysis is that the mean response is a product of only 

two responses, due to the two replications used in generating the data.  However, results 

should only get better with increased replication.  Not all of the test problems are 

included here, for purposes of brevity, but those shown are representative of the entire 

set.  Any plots shown for a problem used the same prediction points to provide a valid 

comparison. 

The results for the Dias Γ1 problem using AR levels are shown in Table 4.11.1, 

and the results using DV are shown in Table 4.11.2.  MATLAB® RBFs were not 

evaluated for the design variables on the Dias Γ1 problem because thirty variables are 

computationally prohibitive.  Cubic and full quadratic polynomials performed worst (in 

terms of error metrics) for Kriging using AR levels, over all correlation functions.  No 

correlation function performed best over all polynomials.  Furthermore, linear, constant, 

and reduced quadratic polynomials were mixed in how they performed relative to one 

another, although they performed similarly across correlation functions.   

When using design variables to create the Kriging surrogate, the error increased 

dramatically with quadratic and cubic polynomials, likely because of the number of 

design variables, 30, and the degrees of freedom (dof) needed to estimate such large 

polynomials (only 71 dof available). Only constant polynomials were “reasonable” 



157 

however, as linear polynomials and higher had absolute errors of anything from 20 to 
117 10⋅ .  Unfortunately, the constant polynomials often resulted in only a single point.   

   
Table 4.11.1: Dias Γ1 using AR Levels 

Surrogate Type RMSE 
Max Abs 
Sq Error RMSE 

Max Abs 
Sq Error Params 

DACE 
(Kriging) 

0.342 
0.378 
0.341 

0.438 
0.705 
0.700 

0.272 
0.304 
0.347 

0.300 
0.320 
0.518 

Poly2R, Spline 
Poly0, Spherical 

Poly0, Linear 
RBFs 
(Mean 

Response) 

0.344 
0.364 
0.372 

0.846 
0.897 
1.026 

0.404 
0.406 
0.401 

1.38 
1.43 
1.40 

Poly0, Bi-Harmonic, c=1 
Poly1, Bi-Harmonic, c=1 
Poly1, Bi-Harmonic, c=1 

RBFs 
(All Data) 

0.252 
0.274 
0.284 

0.656 
0.862 
0.836 

0.333 
0.317 
0.315 

1.352 
1.378 
1.215 

Poly0, Bi-Harmonic, c=1 
Poly1, Bi-Harmonic, c=1 

Poly2R, Bi-Harmonic, c=1 
N-W 0.284 

0.306 
0.311 

0.352 
0.374 
0.376 

0.321 
0.334 
0.341 

0.681 
0.813 
0.817 

Gaussian 
Triweight 
Triangle 

FFNN 0.367 1.087 0.475 1.942 10 Neurons 
GRNN 0.310 

0.390 
1.001 
0.425 

0.366 
0.338 

1.680 
0.627 

Spread=0.1 
Spread=1 

RBFNN 0.397 
1.174 

1.009 
30.285 

0.367 
1.181 

1.579 
25.001 

Spread=0.1 
Spread=1 

 
Table 4.11.2: Dias Γ1 using Design Vars 

Surrogate Type RMSE 
Max Abs 
Sq Error RMSE 

Max Abs 
Sq Error Params 

DACE 
(Kriging) 

0.390 
0.415 
0.424 

0.347 
0.352 
0.373 

0.421 
0.421 
0.427 

0.648 
0.668 
0.649 

Poly0, Gaussian  
Poly0, Exp 

Poly0, Spline 
RBFs 
(Mean 

Response) 

0.079 
0.082 
0.086 

0.111 
0.119 
0.135 

0.115 
0.115 
0.112 

0.254 
0.269 
0.206 

Poly0, Bi-Harmonic, c=1 
Poly0, Bi-Harmonic, c=1 
Poly0, Bi-Harmonic, c=1 

RBFs 
(All Data) 0.072 

0.026 
0.215 

0.111 
0.040 
1.264 

0.091 
0.305 
2.663 

0.191 
2.870 

328.041 

Poly0, Bi-Harmonic, c=1 
Poly1, Bi-Harmonic, c=1 
Poly1, Thin-Plate Spline, 

c=1 
N-W 0.307 

0.419 
0.417 

0.041 
0.391 
0.376 

0.305 
0.400 
0.401 

0.175 
0.490 
0.518 

Gaussian 
Triweight 
Triangle 

FFNN 0.064 0.051 * * 10 Neurons 
GRNN 0.068 

0.330 
0.224 
0.257 

0.129 
0.335 

0.693 
0.532 

Spread=0.1 
Spread=1 

 

The bi-harmonic models without interactions performed best (in terms of the error 

metrics) for the RBF surrogates, followed by the thin-plate spline and tri-harmonic kernel 
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function models.  Using the design variables, constant and linear polynomials were best, 

with the error rapidly increasing due to ill-conditioning (despite using singular-value 

decomposition) and the 30 design variables.   

In trying to generate prediction points for the design variables, the Dias Γ1 

problem is problematic in that using gridsamp from DACE would require some number 

to the 30th power.  Therefore, something similar to the initial population function from 

the GA of Section 3.1 can be used to generate test points.  Predictions using all data, 

Poly0, bi-harmonic RBF models are shown in Figure 4.11.4.  Although the AR model (a) 

has larger error than the DV model (b), it does map points near to the true Pareto front.  

This particular DV model would likely be chosen in any cross-validation scheme for this 

problem and appears to be accurate. 

 

 
(a) AR Level Predictions (b) DV Predictions 

  Figure 4.11.4: Dias Γ1 RBF Predictions 

Changing c for the Gaussian, multiquadric, and inverse multiquadric kernels was 

also tested using 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, and 2 (the c value in the tables) times 

the average distance (the standard is the average distance).  Any changes provided no 

benefit, and typically did worse.  Note that other kernels are shown in the tables with 

1c =  even though they do not use this parameter.  Using the mean response at each 
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design level provided no real advantage or disadvantage for RBFs.  However, the mean 

response model did not require singular-value decomposition to correct ill-conditioning. 

For Nadaraya-Watson, using all of the data consistently provided a slightly better 

surrogate than using a mean response.  The Gaussian kernel performed best in all 

instances.  Something that must be kept in mind when using this surrogate type is that the 

sum of the kernel evaluations must not be zero; otherwise the denominator of (3.38) is 

zero.  This problem occurred often when generating prediction points for this problem.  

In fact, every kernel but the Gaussian consistently had this problem (although very rarely 

the Gaussian kernel would have a point or two result in a sum of zero), but fortunately the 

Gaussian kernel was almost always the best fit throughout all problems.  To account for 

when the sum of the kernel evaluations is zero, the code was modified to replace the 

function value with NaN (not a number) so that the particular point is ignored and does 

not affect the scaling of a resulting plot.   

 No FFNN model did particularly well.  Varying the number of neurons in the 

layers and changing from AR levels to design variables did not make a large impact, 

although using all of the data did slightly better (in terms of error metrics) than using the 

mean response.  Figure 4.11.5 and Figure 4.11.6 showcase these findings.  The RMSE 

and maximum squared error for the second objective of the design variable data were not 

recorded due to a computer glitch.    
 

 
(a) 5 Neurons (b) 15 Neurons 

Figure 4.11.5: Dias Γ1 FFNN All AR Data, Predictions 
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Figure 4.11.6: Dias Γ1 FFNN 10 Neurons DV, Predictions 

For the GRNN, smaller spreads as small as 0.1 provided better models (but very 

small, such as 0.01, provided a bad model).  Three spreads are depicted in Figure 4.11.7.  

Using the mean response consistently gave a negligibly worse model than using all of the 

data.  This was expected, as neural nets generally perform better with more data.  The 

design variables also did better than the AR levels according to the metrics; however, 

with a 0.1 spread, the GRNN predicted only a few distinct points (over-trained).  It is 

important to note that a best RMSE did not necessarily correlate to a best maximum 

absolute error and that the metrics have obvious limitations as to their interpretation. 

  

 
(a) Spread 0.1 (b) Spread 0.5 (b) Spread 1 

Figure 4.11.7: Dias Γ1 GRNN AR Levels Mean Response, Predictions 

The built-in MATLAB® RBFs were evaluated using spreads of 0.1, 1, and 10.  

Again the smaller spread performed better and using all data to form the model was 

slightly better.  It can be clearly seen from the maximum squared errors in Table 4.11.1 

that the surrogates are of poor quality.  
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The remaining results include the single best model for each surrogate type by 

problem, followed by the findings from the results and any conclusions that could be 

made. 

 The results for Disk Brake are shown in Table 4.11.3 for AR level models, and in 

Table 4.11.4 for DV models.  The constant and linear polynomials typically did best (in 

terms of the error metrics) for Kriging on the AR levels, while for the design variables, 

the reduced quadratic and reduced cubic polynomials typically did best.  The design 

variable models were better than the AR level models, particularly in terms of the 

maximum squared error.  For RBFs, no c outperformed another, with metrics negligibly 

different.  For the RBFs using design variables, the reduced quadratic polynomial models 

did best, with the Gaussian, inverse multi-quadric, and bi-harmonic kernels performing 

well.  For the AR levels, the best models were somewhat mixed, with the inverse multi-

quadric and Gaussian kernels with linear and reduced quadratic polynomials, being best.   
 

Table 4.11.3: Disk Brake AR Levels 

Surrogate Type RMSE 
Max Abs 
Sq Error RMSE 

Max Abs 
Sq Error Params 

DACE 
(Kriging) 0.317 1.879 2.503 69.367 Poly0, Exp 

RBFs 
(Mean 

Response) 
0.449 3.157 0.430 232.786 Poly1, Bi-Harmonic, c=1 

RBFs 
(All Data) 0.345 1.859 5.019 862.684 Poly1, Bi-Harmonic, c=1 

N-W 0.284 0.334 4.957 0.125 Cosinus 
FFNN 0.535 3.604 6.594 428.664 10 Neurons 
GRNN 0.580 5.892 6.193 251.064 Spread=100 

RBFNN 0.742 8.096 9.500 514.310 Spread=0.1 
 

The Nadaraya-Watson results were similar using the mean response data and all 

of the data.  The MATLAB® RBF models did not do well, and neither did any of the 

ANNs.  The FFNN with design variables had a very high squared error in the second 

objective (~1493).  In practice, increasing the number of neurons dramatically increased 
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the run time.  Predictions from two models using the AR levels are shown in Figure 

4.11.8. 
 

Table 4.11.4: Disk Brake Design Variables 

Surrogate Type RMSE 
Max Abs 
Sq Error RMSE 

Max Abs 
Sq Error Params 

DACE 
(Kriging) 0.163 1.752 0.542 3.997 Poly2R, Spline  

RBFs 
(Mean 

Response) 
0.147 1.411 1.262 59.986 Poly2R, Gaussian, c=0.5 

RBFs 
(All Data) 0.144 1.358 1.298 64.156 Poly2R, Inv Multi-Quadric, 

c=1.25 
N-W 0.179 0.018 2.899 3.778 Gaussian 

FFNN 0.510 6.051 6.653 1483.728 10 Neurons 
GRNN 0.498 5.821 6.817 2164.623 Spread=100 
RFNN 0.660 8.108 9.206 2000.696 Spread=0.1 

  

  
(a) Kriging, Poly0, Exp (b) Nadaraya-Watson Gaussian 

Figure 4.11.8: Disk Brake AR Level Models, Predictions 

 Figure 4.11.9 shows the similarity between inverse multi-quadric RBF models 

generated on the AR level data from Disk Brake, using different values for c.  The three 

models are nearly identical in their predictions.  This result was seen on the other 

problems as well for both DV and AR level models. 
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(a) Mean Response (c=1.5) (b) Mean Response (c=1) (c) All Data (c=0.25) 

Figure 4.11.9: Comparison of c in RBF, Disk Brake Predictions 

The results for Fonseca F1 using AR levels are given in Table 4.11.5, and using 

DV are given in  

Table 4.11.6.  The mean response was slightly better for RBFs, and polynomials 

without interactions did best.  Further, bi-harmonic and thin-plate spline were the top 

kernels, while the c value made little impact (changes in the thousandths for RMSE and 

hundredths or thousandths for maximum squared error).   

 
Table 4.11.5: Fonseca F1 AR Levels 

Surrogate Type RMSE 
Max Abs 
Sq Error RMSE 

Max Abs 
Sq Error Params 

DACE 
(Kriging) 0.294 0.722 0.335 0.433 Poly2R, Gauss 

RBFs 
(Mean 

Response) 
0.279 0.636 0.304 0.454 Poly0, Bi-Harmonic, c=1 

RBFs 
(All Data) 0.220 0.865 0.282 0.691 Poly2, Tri-Harmonic, c=1 

N-W 0.269 0.017 0.337 0.108 Gaussian 
FFNN 0.338 1.021 0.354 1.011 10 Neurons 
GRNN 0.354 0.649 0.425 0.319 Spread=10 

RBFNN 0.559 0.997 0.654 1.006 Spread=0.1 

  

The ANNs seemed to perform well on this problem, but, in reality, only the DV 

neural network did well for the GRNN (although there is randomness in the forming of 

the model).  Predictions made using this GRNN are shown in Figure 4.11.10.  
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Table 4.11.6: FonsecaF1 Decision Vars 

Surrogate Type RMSE 
Max Abs 
Sq Error RMSE 

Max Abs 
Sq Error Params 

DACE 
(Kriging) 0.009 0.003 0.013 0.003 Poly3R, Spherical  

RBFs 
(Mean 

Response) 
0.007 0.001 0.007 0.001 Poly3R, Thin-Plate Spline, 

c=1 

RBFs 
(All Data) 0.008 0.001 0.007 0.001 Poly3R, Thin-Plate Spline, 

c=1 
N-W 0.022 0.008 0.044 0.006 Triangle 

FFNN 0.005 4 ⋅ 10-4 0.052 0.125 10 Neurons 
GRNN 0.022 0.013 0.049 0.048 Spread=0.1 

RBFNN 0.006 7 ⋅ 10-4 0.006 0.001 Spread=1 

  

 
Figure 4.11.10: Fonseca F1 GRNN Model, Predictions 

Poloni results using AR levels are shown in Table 4.11.7, and using DV are 

shown in Table 4.11.8.  Polynomials with cubic terms did best for Kriging using DV, and 

for the AR levels, linear and reduced quadratics did best when using Kriging.  No 

correlation function was dominant.  The DV Kriging model had θ -values in the 

hundreds.  An additional model was formed limiting these parameters to an upper bound 

of 30, but the model showed no improvement. 

Again, the value for c had little impact.  Bi-Harmonic and thin-plate splines with 

cubic polynomials did best on the DV models.  The ANNs on this problem did not 

perform well.   
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Table 4.11.7: Poloni AR Levels 

Surrogate Type RMSE 
Max Abs 
Sq Error RMSE 

Max Abs 
Sq Error Params 

DACE 
(Kriging) 2.559 85.102 4.946 211.550 Poly1, Gauss 

RBFs 
(Mean 

Response) 
2.234 82.011 5.439 341.117 Poly0, Bi-Harmonic, c=1 

RBFs 
(All Data) 1.649 56.671 6.741 407.942 Poly1, Inv Multi-Quadric, 

c=0.75 
N-W 2.212 111.394 0.337 42.343 Epanechnikov 

FFNN 2.696 78.648 5.967 297.830 10 Neurons 
GRNN 2.553 120.116 5.973 373.954 Spread=10 

RBFNN 3.768 145.295 6.541 423.341 Spread=10 
 

Table 4.11.8: Poloni Decision Vars 

Surrogate Type RMSE 
Max Abs 
Sq Error RMSE 

Max Abs 
Sq Error Params 

DACE 
(Kriging) 0.071 0.052 0.059 0.038 Poly3, Exp  

RBFs 
(Mean 

Response) 
0.069 0.058 0.079 0.042 Poly3, Bi-Harmonic, c=1 

RBFs 
(All Data) 0.062 0.051 0.076 0.037 Poly3, Bi-Harmonic, c=1 

N-W 2.310 0.298 0.271 0.196 Tri-weight 
FFNN 0.243 1.184 0.094 0.217 10 Neurons 
GRNN 0.363 3.011 0.191 0.543 Spread=0.1 

RBFNN 0.536 11.086 0.603 20.487 Spread=10 
  

Results for Viennet3 using AR levels are shown in Table 4.11.9, and for using 

DV values are shown in Table 4.11.10.  The Kriging models using quadratic polynomials 

did best on design variables while low order polynomials did best on AR levels.  

Interestingly, the θ -values for the DV model were on the order of thousands.  The mean 

response again did best for the Nadaraya-Watson surrogates.  The ANNs continued to 

perform poorly with the exception of the GRNN.   

In conclusion, several findings could be made across all problems.  The ANNs 

were preferable when training on all the data rather than the mean response, but were still 

not competitive with other surrogate types in either case.  However, the GRNN provided 

a suitable alternative on some problems, although it never provided the best model.     
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Table 4.11.9: Viennet3 AR Levels 

Surrogate 
Type RMSE 

Max Abs 
Sq Error RMSE 

Max Abs 
Sq Error RMSE 

Max Abs 
Sq Error Params 

DACE 
(Kriging) 1.725 56.929 0.385 1.869 0.051 0.064 Poly0, Exp 

RBFs 
(Mean 

Response) 
1.691 59.323 0.677 4.034 0.092 0.086 Poly0, Gaussian, 

c=1 

RBFs 
(All Data) 1.543 59.198 0.603 4.395 0.744 0.087 Poly0, Gaussian, 

c=0.75 
N-W 1.662 57.523 0.481 1.292 0.076 0.053 Gaussian 

FFNN 6.235 2133.564 0.511 1.500 0.164 2.522 10 Neurons 
GRNN 1.494 61.202 0.506 1.496 0.069 0.067 Spread=10 

RBFNN 1.767 68.591 1.070 15.985 0.102 0.064 Spread=0.1 
 

Table 4.11.10: Viennet3 Decision Vars 
Surrogate 

Type RMSE 
Max Abs 
Sq Error RMSE 

Max Abs 
Sq Error RMSE 

Max Abs 
Sq Error Params 

DACE 
(Kriging) 0.254 2.873 0.050 0.089 0.036 0.077 Poly2, Linear 

RBFs 
(Mean 

Response) 
0.256 3.208 0.077 0.373 0.011 0.009 Poly0, Bi-Harmonic, 

c=1 

RBFs 
(All Data) 0.236 3.212 0.078 0.389 0.012 0.011 Poly0, Bi-Harmonic, 

c=1 
N-W 0.370 2.141 0.079 0.045 0.011 1 ⋅ 10-4 Gaussian 

FFNN 0.371 8.046 0.882 46.484 0.035 0.092 10 Neurons 
GRNN 0.404 2.589 0.449 1.193 0.060 0.071 Spread=1 

RBFNN 3.028 677.442 0.577 34.935 0.160 2.492 Spread=10 
 

  Using the mean response for a model was typically better or nearly equivalent to 

forming a model on all data in terms of the error metrics.  For RBFs, varying the c 

parameter did not have a large impact, and so it is likely that using a 1c =  (the mean 

distance between design sites) is adequate.  Furthermore, models using AR levels tended 

to use low order polynomials.  The DV models generally had lower error, but they also 

had an advantage in that there were always more unique design sites (more unique DV 

levels than AR levels when using a mean response).   

With regard to the Nadaraya-Watson surrogates, the uniform kernel always 

generated a model with the most error, while the Gaussian kernel typically generated a 

model with the least error.  If the Gaussian was not best, it was nearly equivalent to the 
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best.  During Kriging, some models with high θ -values performed well.  In the event of 

models with high θ -values, limiting these values to 30 did not necessarily provide any 

improvement in predicting. 

In general, a quality AR surrogate appears to be much harder to achieve than a 

quality DV surrogate.  However, some of the surrogate types are of high enough quality 

with a small number of points, that they may be used in lieu of the true function.  This is 

important in the event of expensive function evaluations.  The RMSE and maximum 

squared error metrics also appear adequate for use in selecting models, but both should be 

used.  The results across all problems suggest that Kriging, RBFs, Nadaraya-Watson 

(with Gaussian kernel), and GRNN are the best set of models to use for the cross-

validation.  The GRNN is included because it is cheap to compute, and for some 

problems provided what appeared to be a quality model.  Although bi-harmonic and thin-

plate spline kernels were typically among the best kernels for the RBF models, this result 

was not definitive. 

4.11.4.  Method for Selecting a Surrogate.  The cross-validation scheme proposed 

as a result of Section 4.11.3 uses a k-fold cross-validation including all RBFs, Kriging 

models, Nadaraya-Watson (gaussian kernel only), and a GRNN with spread equal to the 

mean distance of sample sites.  The average RMSE and maximum squared error for each 

polynomial/kernel combination is ranked within each surrogate type, and the combination 

with the lowest sum of ranks is picked.  By using both RMSE and maximum squared 

error, the rankings take into account that one surrogate may have a better local, or global, 

fit than another.  These polynomial/kernel combinations are then ranked against each 

other, with the lowest sum of ranks picked for each objective.  The data permutations 

used for the folds are consistent among surrogate types, with the knowledge that an 

awkward selection of sample sites (sites very near one another) could result in a poor 

choice.  However, in practice this approach appeared to work well and efficiently, 
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although the DACE surrogates are much more expensive than the others (due to the 

optimization of the θ -values; this was evident during the course of the runs).   

The number of folds is limited by how many data points exist.  Therefore, it may 

not be possible to use 10 folds.  Different random permutations of the data yield different 

folds, which can obviously give different best surrogates, and so it is important to have 

enough data to be able to do more than just a few folds, if possible.  With a large amount 

of data, this will not necessarily be the case.   

4.12. Surrogate Uses 

Section 4.11 developed a set of surrogate types, and a method to select a best 

surrogate from that set, for an objective.  However, depending upon the required level of 

accuracy, there are three ways a surrogate can be used to approximate the Pareto front.   

First, prediction points can be generated and used to fill gaps in the current 

approximation.  To do so, a function, such as gridsamp from DACE or one that resembles 

the initial population generator from the GA in Section 4.3, can be used.  Again, 

considering a gap to only consist of two endpoints, the endpoint values can be used as 

lower and upper bounds from which to sample.  In the case of a mixed variable problem 

and DV, values likely have to be selected from the the discrete values at the endpoints (or 

perhaps including those values inbetween as well).  Second, the surrogates can be used to 

generate a surface that approximates the Pareto front.  Obviously, neither the first or 

second methods guarantee that the resulting approximation is truly Pareto optimal.  The 

third method is to use the surrogates within the context of optimization, where they may 

be used as a search (such as is found in the NOMADm software for the search step of 

GPS or MADS), or where they can replace the simulation entirely, until true function 

values are needed.   

4.12.1.  Using Generated Predictions to Fill Gaps.  The point generation 

approach makes the assumption that variable values are near one another along the Pareto 
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front and that exact solutions are not required.  There exist a few difficulties when using 

generated points and surrogates to fill gaps on the Pareto front.  First, values may be 

generated that are not feasible relative to constraints.  It could conceivably become 

computationally expensive to generate a large number of feasible prediction points.  

Second, if a gap is large, non-Pareto solutions may be predicted.  If the surrogates have 

some level of error, predictions can also be made to areas where the Pareto front should 

be discontinuous.  Finally, the use of the categorical variables is restricted.  If values 

other than those from the endpoints of a gap are allowed, there is a very real risk of 

predicting non-Pareto points or points nowhere near the gap of interest.  Therefore, care 

has to be taken when using surrogates in this manner. 

In the plots for this section, the point generation methods are demonstrated.  Gap 

endpoints are shown in red, Pareto points in dark blue, and predicted points from 

surrogates in respective colors.  In the case of AR levels, the prediction points were 

generated using gridsamp with 625 points for 2 objectives and 729 for 3 objectives.  The 

GA method was used for the DV models.  AR levels are better in a way because 

feasibility is not an issue, and a predicted point should be Pareto optimal.  No feasibility 

or dominance check was included for these plots.  Such a check considers the surrogate 

points against themselves for dominance, returning the surrogates’ best estimate of Pareto 

points.  An example of this is shown in Figure 4.12.1 for the gap with center (0.2, 0.76).   
 

 
Figure 4.12.1: DTLZ7 Dominance Check Result 
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Figure 4.12.2(a) shows a gap in the Dias Γ1 Pareto front. The RBF and DACE 

DV models do well in terms of filling the gap accurately, while the DACE AR model 

gives the correct shape of the missing portion of the front, but error causes the predictions 

to lie away from the true front.  The Nadaraya-Watson DV model predicts points on the 

front, but also overshoots the gap.  Disk Brake is the only mixed variable problem 

evaluated, and is shown in Figure 4.12.2(b).  In this case, using only those discrete 

variable values from the endpoints seems to work well. 

 

(a) Dias Γ1 (b) Disk Brake 
Figure 4.12.2: Prediction Comparisons for Dias Γ1 and Disk Brake 

Figure 4.12.3 shows results for two gaps in the Fonseca F1 Pareto front.  The DV 

models always do well, while the AR models fit the second gap (b) well, but not the first 

(a).  Figure 4.12.4 shows results for the Poloni problem, where the identified gap should 

be a discontinuity in the Pareto front (i.e., a valid gap).  All surrogates except the DV 

Nadaraya-Watson incorrectly place points within the gap, although the Nadaraya-Watson 

AR model comes closest to avoiding doing so.  Interestingly, the DV DACE model used 

all feasible points, and a dominance check would have maintained some of those points.   
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(a) Gap 1 (b) Gap 2 
Figure 4.12.3: Prediction Comparisons for Fonseca F1 

Figure 4.12.5 shows results for the Tamaki and Viennet3 problems.  All models 

provide fairly accurate predictions for the Tamaki gap.  The Viennet3 gap presents a 

larger challenge for the models and only the DV models predict in the correct area of the 

Pareto front.   

 

 
Figure 4.12.4: Prediction Comparisons for Poloni 

Clearly, a dominance check is not a good idea if true Pareto points are included in 

the same set as the surrogate predictions (error could lead surrogate predictions to 

dominate true solutions), however, it appears a check could be used in relation to only the 

surrogate points.  In the case of a feasibility check, Tamaki was the only problem for 
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which infeasible DV values were used when predicting.  In Figure 4.12.6, the first plot 

shows those values predicted using the DV models, and the second plot shows those 

predictions corresponding to the infeasible points.  If only feasible points are used, a valid 

approximation results.   

 

(a) Tamaki (b) Viennet3 
Figure 4.12.5: Prediction Comparisons for Tamaki and Viennet3 

   

Figure 4.12.6: Tamaki Gap 

4.12.2.  Generating a Surface.  Assuming continuity, current Pareto approximate 

solutions, by themselves or with newly generated solutions can be used to form a surface 

for the Pareto front.  Cubic splines can be used over the new predictions (green) and 

Pareto solutions (blue), as shown for the Tamaki problem in Figure 4.12.7.  Depending 

upon the shape of the front, this may not always yield an entirely correct surface.   
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Figure 4.12.7: Tamaki Pareto Front Surface 

4.12.3.  Surrogates within an Optimization Framework.  If surrogates are used to 

fit the objective functions or the single-objective formulation, they may be used to 

perform the optimization without using expensive function evaluations.  Once the 

surrogate’s solution is found, then the real function is checked using that solution.  This 

may work well with a one-objective problem, but there are problems associated with 

doing so in the multi-objective case.   

First, the nMADS (BiMADS) algorithm tries to use all function evaluations to 

find Pareto solutions.  Using this approach with surrogates, each evaluation would have 

to be repeated using the true functions (and then also repeated like R&S to eliminate the 

effect of noise).  This, of course, eliminates its advantage over just using the true 

functions in the first place, that is, unless only the optimal solutions of each single-

objective formulation are checked using the true functions.  In this latter case, some 

efficiency is still lost.   

Additionally, the deterministic dominance check can be a problem, whether 

surrogates are fit to the objectives or to the single-objective formulations.  A resulting 

optimal point or set of near-optimal points of the surrogate can be evaluated by the true 

functions, but in practice surrogate-found points are rarely retained due to slight error in 
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the models, since the feasible space is continuous, and because there is noise present.  

The complications involved when trying to account for this were detailed in Section 3.9. 

For example, Figure 4.12.8(a) depicts a result using this approach (optimizing the 

surrogate) with nMADS for the Viennet4 problem and the resulting non-dominated 

responses over all function evaluations, evaluated using the true response.  Here, the 

surrogates (fit to the objectives) were of high quality, and the solutions appear to be true 

Pareto solutions in the two shown gaps (yellow points are true responses corresponding 

to surrogate solutions).  However, a deterministic dominance check would remove these 

points due to surrogate error or noise.  In two objectives, there is a chance the surrogates 

will find correct solutions.  Figure 4.12.8(b) shows single-objective formulations solved 

using the surrogates for the Fonseca F1 problem, where the yellow points are the final 

surrogate solutions assessed with the real functions.  The solutions are reasonable and 

would be retained by the dominance check.   
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(a) Non-Dominated Solutions from nMADS (b) Final Solutions Only 

Figure 4.12.8: Optimizing the Surrogate 

Surrogates can also be fit directly to the single-objective formulations, but the 

surrogates have the opportunity to continually become better by approximating the 

objectives.  There are many, many single-objective formulations to be performed and the 



175 

responses corresponding to decision variables will vary according to the reference point 

in use.   

NOMADm has the capability to use surrogates within the search step of GPS and 

MADS algorithms.  Surrogates have not been tested in this manner for the multi-

objective case, though they have been tested on very difficult single-objective problems 

[16].  Further, there is again the problem of having to either know a best model prior to 

each optimization, or using a cross-validation repeatedly.  Therefore, it is more useful to 

replace the objective functions with the surrogates; but again, this is where the dominance 

check becomes an issue.  Further investigation into the use of surrogates for optimization 

is suggested for future research. 

4.13. Other Surrogate Considerations  

There are two other considerations with repect to surrogates that need to be 

mentioned.  First, smoothing could be added to Kriging or RBFs to reduce the effect of 

noise.  In the nMADS approach, this is somewhat unnecessary because mean responses 

are used, and the distribution of points tends to be somewhat uniform.  The plots in 

Figure 4.13.1 show actual Pareto solutions in green (Objective 1) and red (Objective 2), 

for the Fonseca F1 (a) and Srinivas (b) problems versus the decision variables.  The mesh 

and blue points represent predicted values for the surrogates (here RBFs with tri-

harmonic, reduced quadratic).  Although the noise level in the true functions was high, 

the RBFs generated a fairly smooth surface without having to modify the weights. 

The second consideration is solely with respect to the Nadaraya-Watson 

surrogate.  The Nadaraya-Watson surrogate seemed to always be of high quality in 

Section 4.11, however, the metrics were somewhat misleading.   
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Figure 4.13.1: Surrogates on Pareto Front 
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Figure 4.13.2: Fonseca F1 Surrogates 

The plots in Figure 4.13.2 depict three surrogates formed over the same set of 

Pareto solutions, and then used to predict values over the entire range of decision variable 

values.  A subset of the predictions is given in Table 4.13.1.  The Nadaraya-Watson 

surrogate determines the shape of the Pareto front very well.  However, any data points 

added to the surrogate will not be able to deviate too far away from that main shape due 

to the nature of (3.38).  The denominator is just some constant, and the numerator 

prohibits values from deviating far away from function values that created the surrogate 

(the kernel realizations are small).  For example, consider the first few points of Table 

4.13.1.  Although the RBF is very accurate and follows the true objective function value, 

Nadaraya-Watson gives approximately the same, inaccurate, solution.  Consider also the 
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objective space point (1,1) in the RBF plot; no such point exists for Nadaraya-Watson, it 

was mapped to the Pareto front incorrectly. 
 

Table 4.13.1: Fonseca F1 Objective 2 Values 

1x  2x  

True Obj 
Value at 
( 1x , 2x ) N-W 

RBF  
Tri-Harmonic 

Poly3R 

DACE 
Spline 
Poly3R 

-1 -0.8947 0.972399 0.7109 0.9726 0.6869 
-1 -0.7895 0.959332 0.7109 0.9492 0.7004 
-1 -0.6842 0.941371 0.7109 0.9197 0.7078 
-1 -0.5789 0.917332 0.7109 0.8839 0.7119 
-1 -0.4737 0.886027 0.7109 0.8417 0.7065 
-1 -0.3684 0.846264 0.7109 0.7928 0.6913 
-1 -0.2632 0.797228 0.7108 0.7369 0.6731 
-1 -0.1579 0.738346 0.7104 0.6742 0.6384 
-1 -0.0526 0.66977 0.7045 0.6049 0.5891 
-1 0.0526 0.59244 0.6111 0.53 0.5286 
-1 0.1579 0.507929 0.2848 0.4511 0.4567 
-1 0.2632 0.418924 0.1897 0.3703 0.3729 
-1 0.3684 0.328955 0.1686 0.2905 0.2902 
-1 0.4737 0.241939 0.1595 0.2145 0.2121 
-1 0.5789 0.162493 0.1536 0.1463 0.1398 
-1 0.6842 0.094918 0.1392 0.0897 0.083 
-1 0.7895 0.043343 0.0827 0.0464 0.0452 
-1 0.8947 0.011027 0.0216 0.0157 0.017 
-1 1 0 0.0065 -0.005 -0.005 

 

4.14. Using New Utopia/Nadir Points to Fill Gaps 

Another method to fill gaps is to use SMOMADS designs with utopia and nadir 

points based on gap endpoint objective function values.  A few exploratory runs were 

done to see how effective this method could potentially be, given that the design ranges 

were becoming more restrictive to fill gaps, but only 500 function evaluations are still 

allowed.  In the following plots, original Pareto points are in blue, the new utopia and 

nadir points are in red, and the resulting SMOMADS points are in green.  First, a gap in 

the Disk Brake problem was tested using a uniform design with 30 points, two 

replications, and sampled over the entire utopia/nadir range using the original starting 

iterate.  It is clear in Figure 4.14.1 that the gap is filled. 
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Figure 4.14.1: Disk Brake Gap 

To test the effect of the starting iterate, a gap for the Fonseca F1 problem was run, 

using the original starting iterate and a starting iterate corresponding to a gap endpoint, 

but again with a uniform design with 30 runs (two replications) and sampling over Range 

3 from Section 4.10.  It can be seen in Figure 4.14.2 that both methods performed equally 

well.   
 

(a) Gap Starting Iterate (b) Original Starting Iterate 
Figure 4.14.2: Fonseca F1 Gap 

Viennet3 was also evaluated using the original starting iterate, and an iterate 

corresponding to one of the gap endpoints.  As shown in Figure 4.14.3, the performance 

is again similar.  This was important to verify, as the original designs had problems in 

that area of the objective space.  For this problem, 50 design levels (two replications) 

were used. 
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(a) Gap Starting Iterate (b) Original Starting Iterate 
Figure 4.14.3: Viennet3 

It is somewhat safe to conclude that the starting iterate is not necessarily 

important, and that this method is capable of filling in any gaps that are identified, so 

long as the gaps are not excessively small.  In general, for all results throughout this 

research, as the number of replications increase, the results improve but computational 

time increases.  Experimental design results should also follow those from Section 4.6 

and Section 4.10 when used to fill the gaps, in terms of space-filling and range 

development.   

4.15. Single Product Formulations 

Although the single product formulations from Section 3.6 are well developed, it 

must be ensured that the minor modifications made still allow them to be used in the n-

dimensional case (although convergence is proven for more than 2 objectives [13]).  An 

initial Pareto front for the Disk Brake mixed variable problem is given in Figure 

4.15.1(a), with two gaps labeled.  Using the normalized formulation (3.40), with 1c =  

(since no objective is necessarily more important than another), a point near the center of 

the gap is achieved.  This was the goal and required only one replication, starting from 

both gap endpoint iterates.  Also, probably due to noise, the original extreme solution is 

dominated.  A function evaluation limit of 500 was used.  This is high compared to the 
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limit of about 30 used by the BiMADS authors [13], but it must also be considered that 

this is the stochastic case, and so R&S evaluates each point four times.  Therefore, this is 

more like 120 function evaluations.   
 

 
(a) Initital Front (b) Normalized 

Figure 4.15.1: Disk Brake 

Looking at Fonseca F1 in Figure 4.15.2, it is clear that the formulations are 

working as intended.   Using one replication with the normalized formulation provided at 

least some improvement on all gaps.  Then, applying two replications to those resulting 

gaps either completely filled the gaps, or provided more improvement in terms of filling 

the respective gaps. 

 

   
(a) Initial Front (b) Plus 1 Replicate Normalized (c) Plus 2 Replicates Product 

Figure 4.15.2: Fonseca F1 
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In two objectives, nMADS is really just a slight modification of BiMADS (that is, 

everything in the objective formulation is the same except that the endpoints of a gap are 

used as starting iterates).  Therefore, these results were to be expected.  However, perhaps 

the more important test is in three objectives.  The nMADS approach takes advantage of 

the fact that the single-objective formulations from Section 3.6 have convergence results 

when the formulations are generated using more than two original objectives [13].   

Consider the Pareto front shown in Figure 4.15.3, where curvature effect is not 

depicted with a great deal of accuracy.  Assume the two endpoints of a gap (in blue) do 

not satisfy the indifference value in at least one objective (the gap is shown here as the 

grey rectangle, although gaps do not have to be a specific shape).  A reference point is 

constructed using the maximum objective function values from these endpoints (shown in 

purple).  The single-objective formulation solutions will fill or reduce the gap by moving 

away from at least one of the endpoints, and away from the reference point, into the 

Pareto front.  This may result in a path being followed, or just some portion of the gap 

being filled; however, it should be clear that a gap can be filled with respect to multiple 

objectives at once, depending upon the other current Pareto solutions.  nMADS 

constitutes a “simple” way to fill identifiable gaps on the Pareto front.   

 

 
Figure 4.15.3: Gap-Filling in More Than 2 Objs 
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Because both endpoints are used as starting iterates, some improvement will be 

found (if the optimum for the single-objective formulation is near an endpoint, the 

replication using the other endpoint will move towards the original).  Additionally, GPS 

and MADS provide additional improvement due to their poll step and search step, which 

allows function evaluations to deviate from any path.   

Figure 4.15.4 shows Pareto fronts for the Tamaki problem.  The first plot depicts 

the results from a near-uniform design with 60 runs and two replications, and gaps found 

by the gap algorithm (see Figure 3.7.5).  The second plot shows the results from the 

nMADS approach using one replication, with normalized formulation (and 1c = ) on each 

gap, and the gaps not re-identified.  Each gap in (a) has had a point added in its center 

and other points added that reduced the gap. 

Figure 4.15.5(a) shows a gap at the point [-0.06, -0.7, -0.67].  Using one 

replication of the nMADS product formulation (3.41), a few points including the center 

are added to reduce, or fill, the gap.  This is shown in Figure 4.15.5(b).  

 

(a) Initial Front (b) Plus 1 Replicate Normalized 
Figure 4.15.4: Tamaki Example 
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(a) Before nMADS (b) After nMADS 

Figure 4.15.5: Tamaki Specific Gap Using Product Formulation 

Figure 4.15.6(a) shows a gap at the point [-0.9, -.2.3, -2.7], where Objective 3 is 

the z-axis.  Using one replication of the nMADS normalized formulation, a few points are 

added to fill the gap, to include the center of the gap.  This is shown in Figure 4.15.6(b).  

Both formulations seemed to work well on all problems. 
 

 
(a) Before nMADS (b) After nMADS 

Figure 4.15.6: Tamaki Specific Gap Using Normalized Formulation 

Again, using the indifference values as defined in Section 4.4, the gaps in an 

initial approximation (near-uniform with 60 runs, 2 replicates) of the Viennet3 front are 

shown in Figure 4.15.7(a).  The second plot shows the approximation following one 
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replication of nMADS (or really using GPS in the nMADS framework here) with product 

formulation on the gaps.   
  

(a) Initial Front (b) After 1 nMADS Rep 
Figure 4.15.7: Viennet3 Example 

Figure 4.15.8(a) shows an initial front for Viennet4 resulting from a near uniform 

design with 60 runs, replicated twice.  The second plot shows nMADS (again, truly with 

GPS here) easily filling the gaps with only one replication of the normalized 

formulations.  A few points on the right side appear to have unidentified gaps on the right 

side, but in fact, these points satisfy both the gap and indifference criteria.   
 

(a) Initial Front (b) nMADS Normalized  
Figure 4.15.8: Viennet4 
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Both the normalized and product formulations work well on gaps, and the slight 

modifications made to BiMADS appear to generalize the approach to n-dimensions, even 

with noise (the noise level was still set at 1% of the nadir component value).  

Furthermore, nMADS in combination with the gap algorithm works fairly well in 

identifying and filling gaps.  Here, a limit of 500 function evaluations was used for each 

formulation, but this can be restricted even further in some cases.  This will be explored 

in the automated form of nMADS (see Section 4.17). 

4.16. Extreme Points 

An additional problem that needs to be addressed is to find or guarantee the 

extreme solutions of the Pareto front.  These solutions are usually discarded, as they are 

not interesting from a tradeoff standpoint; however, they can be important in generating a 

complete front.  Finding these extreme solutions is typically difficult, as even multi-

objective methods, such as normal-boundary intersection, can fail in this regard [25].   

Furthermore, when the true front is unknown, it can be difficult to verify if the extreme 

solutions have been obtained. 

nMADS is dependent upon the spread of the initial solutions, as nMADS takes a 

gap-filling approach.  Therefore, if the solutions corresponding to the utopia point are 

used as the initial solutions, there must be some level of confidence in the estimation of 

the utopia point.  Problems may exist where there is little confidence in the estimation.   

An example could be Schaffer F3 with an added non-linear constraint.  This may require 

a larger set of LHS samples within the search step than the eight typically used in this 

research, in order to get a good estimation of the utopia point.  In this event, the 

SMOMADS aspiration and reservation level approach allows for an over or under 

estimation of the utopia point, and is able to find extreme solutions.  However, for a large 

number of objectives, sub-designs specifically built to find these solutions may be 

necessary.  Another approach could be to use some subset (larger than just one) of the 
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component functions.  As shown in Section 4.9, this approach finds extreme solutions, 

but could be computationally prohibitive for problems with a large number of objectives.  

Additionally, false reference points for nMADS could be specified outside of current 

estimations (axials), to see if in fact, the extremes have been found.   

4.17. nMADS 

4.17.1. Comparison to SMOMADS.  It is clear from Section 4.15 that single-

product formulations are useful.  Furthermore, they are also generally faster, requiring 

fewer function evaluations than SMOMADS because they take advantage of each 

function evaluation, checking each possible solution for dominance.  For a single gap, 

nMADS can potentially add many points to the Pareto approximation, while SMOMADS 

only uses the final point from a design level.  Therefore, an automated strategy with a 

good initial spread of points is likely to perform better than SMOMADS in terms of 

computational effort.  In fact, this approach can perform better than a heuristic, such as 

NSGA-II from Section 4.3. 

4.17.2. nMADS Algorithm.  The automated nMADS algorithm, as it is termed in 

this research, is presented in Figure 4.17.1.  The algorithm uses the utopia point to find an 

initial set of points, with maximal spread, and iteratively fills gaps in the Pareto front.  

Gaps are weighted according to how many times they, or a very similar gap, have been 

identified, but such that similar gaps will not be identified too many times.  This assumes 

that the single-objective formulations show a reduction in gap size within a few attempts.  

The algorithm concludes when the size of the largest weighted gap is below some 

specified criteria.  Other approaches developed in this research may be used upon its 

conclusion if necessary. 
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INITIALIZATION: 

Let size(g) denote the Euclidean distance between the two endpoints for a gap g.  Let ωK  

be a vector of indifference values for the objectives. 

• Apply the MVMADS-RS/MVPS-RS algorithm from starting point 0x  to solve 

min ( )
x X

if x
∈

 for each objective i=1,…,M. 

• Run gap algorithm (see Figure 3.7.5) to identify a set of gaps G, given some c > 0. 

• Initialize the weights w(g) to size(g) for all gaps g G∈ .  Initialize the weights v(g) to 

1 for all g G∈ . 

MAIN ITERATIONS: Repeat while G ≠ ∅ and { }max ( )w g c ω> ⋅ K . 

1.  For each g G∈  

o If ( )w g c ω< ⋅ K , G=G\g.  Go to 1. 

o Else: 

 Build reference point r by using maximum objective values from the 

endpoints of g. 

 Solve a single-objective formulation using the MVMADS-RS/ MVPS-

RS algorithm from the starting iterates corresponding to the two 

endpoints of g. 

2.  Remove dominated points and run gap algorithm with resulting set of gapsG′ .   

o If any center of g G′ ′∈  is within c ω⋅ K  of any center of g G∈  (according to 

Euclidean distance), set ( ') 2 ( )v g v g= , ( ') ( ') / ( ')w g size g v g= .  

o Else, set ( ') ( ')w g size g=  and  ( ') 1v g = . 

3.  Set G=G′ . 
Figure 4.17.1: nMADS 

The weighting scheme for recurring or similar gaps, ( ') 2 ( )v g v g= , or double, can 

also be ( ') ( ) 1v g v g= + , or add-one.  This is really dependent upon the fidelity and speed 

required, or if the front has large “true” gaps.  This scheme is necessary, however, so that 
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the algorithm does not stagnate on “true” gaps.  If gaps persist at the conclusion of the 

algorithm, nMADS can be run further, or another technique can be used as discussed in 

this research.  All that is required is a notion of indifference in each objective.  This 

should not be too difficult to establish assuming utopia and nadir points are estimated, 

there is some knowledge of the system, or a predetermined percentage of the utopia and 

nadir point range can be selected for implementation (so that when MADS estimates the 

utopia and nadir points, indifference values can be automatically generated). 

For clarification, Figure 4.17.2 shows exactly what nMADS is doing.  The first 

iteration uses the solutions corresponding to the utopia point to identify and fill gaps in 

the next iteration.  nMADS is then able to fill in more of the Pareto front and identify 

more missing areas.  The gaps are filled by essentially moving along some path between 

the endpoints, where that path meets the Pareto front.  Therefore, gaps that do not satisfy 

many objective indifference values could require multiple nMADS paths to be filled.  

However, noise and the poll and search steps in MADS and GPS also help to possibly get 

points not on a path, aiding in filling in the gap.  The algorithm does not re-check for 

gaps until a set of gaps have been processed by the algorithm.  The intent of this is to 

save time on large problems (because the gap algorithm and dominance check can 

become expensive with a very large dataset). 

 

-1.5
-1

-0.5
0

-1
-0.5

0
0.5

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Objective 1

Objective Space

Objective 2

O
bj

ec
tiv

e 
3

 
-1.5

-1
-0.5

0
0.5

-1.5
-1

-0.5
0

0.5
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

-0.87,-0.2,-0.39
-0.8,-0.26,-0.45

-0.63,-0.06,-0.75

-0.69,-0.57,-0.12

-0.19,-0.08,-0.97-0.1,-0.11,-0.97

-0.13,-0.98,-0.04

-0.11,-0.82,-0.5

Objective 1

-0.3,-0.9,-0.25

-0.13,-0.57,-0.79
-0.2,-0.6,-0.73

-0.47,-0.82,-0.2

-0.5,-0.75,-0.06

-0.57,-0.77,-0.2
-0.57,-0.74,-0.33

-0.63,-0.69,-0.12

Objective Space (Gap Centers in Text)

-0.51,-0.33,-0.76

-0.79,-0.5,-0.19

-0.55,-0.16,-0.78-0.64,-0.2,-0.73

Objective 2

O
bj

ec
tiv

e 
3

 
(a) First Iteration (b) Second Iteration 

Figure 4.17.2: NMADS Iterations 
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nMADS results follow for all test problems, as well as two additional problems 

with four objectives and eight objectives.  The automated algorithm is used first, 

followed by a single nMADS application on any remaining gaps.   

4.18.3. Results.  For these runs, nMADS was conducted using a 0.5c =  in the gap 

algorithm, a noise level set to +/-0.5% of the nadir point components, and two 

replications with a limit of 500 function evaluations used to find the utopia point.  Recall 

that the limit on the number of function evaluations has to be somewhat high because 

ranking and selection is used (4 replications of each point), and too low a limit prevents 

MVPS-RS/ MVMADS-RS from evaluating enough points.  To fill gaps, a limit of 150 

function evaluations was used, unless noted otherwise.  To reduce computational time 

and the effect of noise, the nMADS-RS algorithm uses the mean found by ranking and 

selection (in this case, the mean of 4 evaluations).  The reader should keep in mind that 

results are varied, but those shown here were representative of many runs.   

Walston’s [70] results are shown next to the nMADS results as a point of 

comparison.  A summary of the nMADS results and settings is shown in Table 4.17.1.  

An asterisk denotes GPS-RS was used (although for generality the approach is still 

termed nMADS), the Formulation letter denotes the type of single-objective formulation 

used (N: normalized, P: product), and FEvals denotes the number of total function 

evaluations used, where SMOMADS is an estimate based on the number of design levels 

used.  CPU time is included for nMADS, for a 3GHz, 3GM RAM machine on the AFIT 

network, to show the effiency of the algorithm. 

The nMADS approximation (using GPS-RS here) for Viennet4 is shown in Figure 

4.17.3.  The estimated utopia and nadir points are shown in red.  Once the automated 

nMADS algorithm finished, a value of 0.25c =  was used to identify four remaining gaps 

that were clear visually, and normalized formulations were used to fill those gaps, as well 

as three new gaps in a second additional iteration.   
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Table 4.17.1: nMADS Results 

Problem Formulation
Weighting 

Scheme 
nMADS 
FEvals 

SMOMADS 
FEvals (≤ ) 

CPU 
Time (s) 

Viennet4         N* Add-1 8037 2104500 47 
Viennet3         N* Add-1 7852 2048000 52 
Tamaki         N Add-1 35306 72500 266 
Poloni         N Double 3998 5136000 26 

Dias Γ1         N* Double 27548 348500 95 
Dias Γ2         N* Double 27348 312500 151 

Fonseca F1         P* Add-1 5668 5018000 37 
Schaffer F3         N* Double 3153 5625000 22 

Srinivas         N Add-1 2278 348500 13 
DTLZ7         N* Double 5708 18000 41 

Disk Brake         N Add-1 9708 54000 45 
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(a) Walston (b) nMADS 

Figure 4.17.3: Viennet4 

The Viennet3 nMADS approximation is shown in Figure 4.17.4.  In some cases 

on this problem, a gap near the high in Objective 3 is only very gradually filled.  On this 

particular run it was filled quickly.  Again, the reader should keep in mind, for three 

objectives, approximately 3000 of the evaluations were used to find the utopia point (3 

objectives, two replications, 500 function evaluations limit). 
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Figure 4.17.4: Viennet3 

The Tamaki nMADS approximation is shown in Figure 4.17.5.  Here, a limit of 

250 evaluations was used for the gaps.  This higher limit seemed to save evaluations in 

the long run on this problem.  Two applications of nMADS were required after the 

automated algorithm.  nMADS resulted in a near-perfect spread and distribution of 

solutions, while previous results had many portions missing (Recall, the plot in Figure 

4.17.5(a) was shown as maximizations, and the same is true of Figure 4.17.6(a)). 
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Figure 4.17.5: Tamaki 

The nMADS approximation for the Poloni problem is shown in Figure 4.17.6.  

Approximately 2000 of these evaluations were used to estimate the utopia point (2 
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objectives, 2 replications, 500 function evaluations).  All gaps were filled by the 

automated algorithm.   
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Figure 4.17.6: Poloni 

The Dias Γ1 nMADS approximation is shown in Figure 4.17.7.  Here a 2000 

function evaluation limit was used for each gap because there are 30 decision variables, 

and 500 evaluations are not enough to search appropriately.  This large number of 

evaluations was also the reason for using the double weighting scheme.  Clearly the nadir 

point was over-estimated due to noise, but the algorithm was indifferent to that fact.  

There is an interesting additional observation with respect to this problem.  Considering 

the uniform design with AR levels and 36 samples replicated twice, and assuming a 

similar estimation of the utopia point being performed, SMOMADS would require 38000 

function evaluations.  Performance of nMADS may be variable due to noise, such that in 

a very large number of variables the SMOMADS approach, although still likely not as 

good as nMADS, becomes more reasonable. 

The Dias Γ2 nMADS approximation is shown in Figure 4.17.8.  Again, a 2000 

function evaluation limit was used for each gap.  All gaps were filled by the automated 

algorithm.  In a few runs, a very high estimate for the second objective nadir component 
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was found (~6).  This caused the algorithm to try and fill a gap that was really not 

present.   
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Figure 4.17.7: Dias Γ1 
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Figure 4.17.8: Dias Γ2 

The Fonseca F1 nMADS approximation is shown in Figure 4.17.9.  A limit of 150 

function evaluations was used to fill gaps.  Walston’s plot, as shown in Figure 4.17.9(a), 

may be incomplete.  In Walston’s work [70], there were many, many data points and the 

portions that appear to be missing may have simply not loaded due to insufficient 

computing resources.  All but three gaps were filled by the automated algorithm for this 

problem.  Running this problem five times, a standard deviation of approximately 900 

function evaluations occurred.  This difference occurs due to noise in the objectives. 
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Figure 4.17.9: Fonseca F1 

The Schaffer F3 nMADS approximation is shown in Figure 4.17.10.  The double 

weighting scheme was used due to a known gap.   All gaps but one, excluding the valid 

gap, were filled by the automated algorithm.   
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Figure 4.17.10: Schaffer F3 
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Figure 4.17.11: Srinivas 
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The Pareto approximation for Srinivas is shown in Figure 4.17.11.  All gaps were 

filled by the automated algorithm.  The indifference values, (25,26), are clearly satisfied 

and so a front with more points would require finer indifference values. 

The DTLZ7 nMADS approximation is shown in Figure 4.17.12.  All gaps, not 

including the true, were filled by the automated algorithm.  Those points high in 

Objective 2 in Figure 4.17.12(b) are not dominated, rather they are ever so slightly less in 

Objective 1.  Not shown in Figure 4.17.12(b) is a point very high in Objective 1 that was 

generated due to noise.  These high noise points often occurred.  However, on many runs 

of this problem, the DV values with which these points occurred were also unique, 

meaning that any kind of check to eliminate such points using objective function value or 

DV values could falsely remove points in the general case.   

 

 
-0.2 0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

1.5
Objective Space

Objective 1

O
bj

ec
tiv

e 
2

 
(a) Walston (b) nMADS 

Figure 4.17.12: DTLZ7 

The Disk Brake approximation is shown in Figure 4.17.13.  A limit of 250 

function evaluations was used to fill gaps, taking into account that this is a mixed variable 

problem.  9,708 function evaluations were used versus 108 SMOMADS test points 

(54,000) from Walston’s work.  All but one gap was filled by the automated algorithm.  

This gap was near the high in Objective 1, and probably could have been filled faster by 

allowing more function evaluations.  It took several tries to completely fill this gap, 
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although improvement was always achieved.  Note the better spread in the nMADS 

solution than Walston’s previous work [70]. 
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(a) Walston (b) nMADS 

Figure 4.17.13: Disk Brake 

4.18.4. More Than 3 Objectives.  Also tested here are a four-objective problem 

and eight-objective problem from [20].  Such large problems are likely impractical using 

SMOMADS.  The eight-objective problem is shown in Equation 4.1.  The four objective 

problem is the same but without the final four objectives.  Indifference values and noise 

are shown in Table 4.17.2.  These were based on utopia and nadir points from [20]. 
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subject to                           

4 4 0x y+ − ≤  

1 0x− − ≤  
2 0x y− − ≤  

4 , 4x y− ≤ ≤  

 
Table 4.17.2: 4 and 8 Objective Problem 

 Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Obj 6 Obj 7 Obj 8 
Indifference  0.42 0.14 1 0.44 0.73 2.4 0.58 0.74 

Noise 0.08 0.12 0.25 0.34 0.09 1.05 0.09 0.06 
 

On the four-objective problem, GPS-RS, the double weighting scheme, and 

normalized formulation were used.  A limit of 120 function evaluations was used to fill 

gaps.  Initially, approximately 11286 function evaluations were used by the automated 

nMADS algorithm, but 9 gaps remained according to the gap algorithm.  Filling in the 

front until no gaps remained, a total of 15246 evaluations (including the 11286) were 

used.  This number is higher than previous problems because of the increase in the 

number of objectives.  Computational time was 201 seconds for the initial approximation 

and 347 seconds total.  The n-dimensional visualizations from Figure 4.17.14 show that if 

any gaps do remain, they are relatively small.  In looking at the objectives three at a time, 

as in Figure 4.17.14(d), no obvious gaps were noted. 

The eight objective problem was run using GPS-RS, a limit of 120 function 

evaluations, the double weighting scheme, 0.5c = , and both normalized and product 

formulations.  Both nMADS approximations, shown as Figure 4.17.15(b) and Figure 

4.17.16(b) are clearly better than the published [20], deterministic solution found by a 

genetic algorithm, shown as Figure 4.17.15(a) (1902 Pareto points found versus 625 

published [20]).   
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Figure 4.17.14: 4 Objective Problem 

The product formulation was run using five replications to find the utopia point 

and used a total of 25726 function evaluations (the five utopia replications contributed 

significantly).  Only two iterations were required to complete the front after the 

automated algorithm.  The normalized formulation used only two replications to find the 

utopia point and finished in 498 seconds total. Using three iterations of formulations after 

the automated algorithm, a total of 14342 function evaluations were used.  Again, no 

gaps had to be identified visually, and the other visualizations confirmed the 

completeness of the front.  Four visualizations are shown in Figure 4.17.16 and Figure 

4.17.17. 
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Figure 4.17.16: 8 Objective Problem (Normalized) 
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(a) Parallel Coordinates (b) Objectives 4,5,6 
Figure 4.17.17: 8 Objective Problem (Normalized) 

 

 4.18.4.  Increased Noise.  To test the performance of nMADS in an instance of 

increased noise, Tamaki was chosen because of its apparent difficulty during the course 

of the analysis. 

Using +/-5% noise (5 times the noise value from Table 4.4.2), five replications to 

find the utopia point, and the same parameters as previously used on Tamaki, the initial 

approximation finished in 26112 function evaluations and in 169 seconds.  

Approximately 7500 of these were used to find the utopia point.  Two replications would 

likely have been sufficient.  The approximation, which is shown in Figure 4.17.18, is of 

relatively high quality.  It appears, based upon this and results from Section 4.5, that 

SMOMADS and nMADS, and the dominance check, will not cause serious problems 

until the noise level is 10% or higher.     
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Figure 4.17.18: Tamaki 

 

4.18. Final SMOMADS Algorithm 

The algorithm shown in Figure 4.18.1 is presented as pseudo-code and includes a 

majority of the concepts covered in this thesis.  Not all concepts actually need to be 

implemented.  The sub-algorithms were previously shown in their complete mathematical 

detail, either in Chapter II, Chapter III, or previously in Chapter IV. 

This version of SMOMADS allows estimation of the entire Pareto front, and in a 

more efficient manner.  The nMADS algorithm can, in fact, be run as a sub-algorithm of 

SMOMADS to fill gaps after an initial aspiration and reservation level design completes. 
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1. Choose some number of LHS samples for the search step, and a limit for the 

number of function evaluations, for MVMADS-RS or MVPS-RS. 

2. Estimate the utopia point and/or the nadir point using MVMADS-RS or MVPS-

RS as appropriate.  For confidence purposes, also estimate the nadir point using 

the GA.  If the true points are known, simply input the utopia and nadir points. 

3. Create an initial sequence of designs and ranges over which to sample aspiration 

and reservation levels, and choose indifference values. 

4. The following is to be done iteratively: 

a. Calculate metrics and visualizations.   

b. Find gaps using the gap algorithm or n-dimensional visualization. 

i. If there are no gaps found, no identifiable gaps in the 

visualizations, the entropy is approximately greater than or equal to 

0.95, and the spread metrics are near 1, the approximation is 

finished. 

ii. Else, for each gap, choose one: 

1. Run a sub-design using aspiration and reservation levels. 

2.  Use a surrogate, selected by k-fold cross-validation to fill 

the gap or to form a surface. 

3. Use nMADS as a sub-algorithm to fill gaps. 

iii. In the case of 1) or 3), choose some number of LHS samples and a 

limit for the number of function evaluations for MVMADS-RS or 

MVPS-RS. 
Figure 4.18.1: SMOMADS 

Many conclusions can be drawn from the Chapter IV results.  Furthermore, these 

conclusions provide more broad observations.  These conclusions and observations are 

presented in Chapter V, as are recommendations for future research. 
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V. Conclusions & Recommendations 

Due to the depth of this research, and the length of this document, it may not have 

been all that straightforward to the reader how the results and analysis come together.  

General conclusions follow.  After the conlusions, recommendations for future research 

are presented. 

 

5.1. Conclusions 
 

5.1.1.  Utopia/Nadir Points.  Finding the utopia and nadir points is not trivial.  Using 

points from published results is not necessarily a good approach if those results come 

from heuristics like genetic algorithms.  When solving for the utopia point using 

MVMADS-RS or MVPS-RS, those solutions that constitute the components of the utopia 

also correspond to the nadir point, albeit not the same components.  This is clear because 

no point can dominate a component of the utopia.  Therefore, there is no need to estimate 

the nadir point outright.  Finally, the approaches taken in this research appear to be 

generally adequate when approximating these points, although with large noise levels, 

estimation could become difficult.  Finding the utopia point can be expensive in terms of 

function evaluations. 

 

5.1.2.  MVMADS-RS/MVPS-RS.  The algorithms presented in this research that use 

MVMADS-RS and MVPS-RS should be generally insensitive to the original starting 

iterate, and there was some indication that MVPS-RS is preferable for linearly 

constrained multi-objective problems.  The number of LHS sites used within MVPS-RS 

or MVMADS-RS in the search step might have an impact on the success of the 

approximation, although using eight was typically fine on the problems tested here. 
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It was shown that a noise level of +/-5% of the nadir point should be acceptable 

when trying to approximate the Pareto front.  However, +/-10% is probably too high to 

get the appropriate shape of some fronts with the current implementation of a dominance 

check.  Increasing the noise also significantly increases computational time.  Limiting the 

function evaluations was highly useful in reducing computational time, and did not 

adversely affect the Pareto front approximation.  However, for some problems, most runs 

used close to the limit of 500 function evaluations.  Therefore, the effect of reducing this 

limit further is unclear. 

 

5.1.3.  SMOMADS.  For an initial Pareto front approximation, certain designs and 

aspiration/reservation level ranges were shown to be more useful than others.  

Specifically, design ranges should cover all Pareto objective function values that are 

desired, for both aspiration and reservation levels.  Near-uniform and Hammersley 

sequence sampling designs not only provide an alternative to a full-factorial design, but 

also provide better approximations than using a full-factorial, with a large reduction in 

runs.  CCDs showed the most promise in getting extreme solutions, but only because the 

space-filling designs do not include design levels at axial points or at the bounds of the 

range.   

The nadir point and utopia point estimation play a large role only if the 

estimations are poor.  If the estimations are approximate, the algorithms should be 

indifferent.  There is no apparent advantage to using more than two replications of any 

design, unless surrogates are used.  In this case, more data should result in better 

surrogates.  Finally, using subsets of the component functions can generate extreme 

solutions, but selecting designs intelligently prevents the need to use the subsets, which 

can greatly increase the number of required runs.  On problems with a large number of 
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decision variables, SMOMADS may be a reasonable altenative, provided there is not a 

large number of objectives. 

 

5.3.4.  Surrogates.  Surrogates can be a quick approach for finding remaining portions of 

the Pareto front after an initial approximation and the k-fold cross validation approach is 

performed.  However, optimizing the surrogates in MADS requires more research from 

the perspective of the dominance check.  Although the deterministic dominance check 

seems suitable when using optimizations performed entirely on true functions, it is less 

suitable in the case of surrogate data.  Since surrogates have inherent error, optimizing 

these models is not guaranteed to lead to an exact Pareto solution.  This implies a 

tolerance or some subjective, or probabilistic, measure to determine when a resulting 

solution is “close enough.”     

The point generation method for surrogates does work well, however.  Because 

the error of the models is low, generating a large number of points, inexpensively running 

them through the surrogates, and checking for dominance probably results in an accurate 

approximation.  The only problem with this approach is that true gaps can be filled and 

solutions are not guaranteed to be Pareto optimal.  Surrogate points from a single-

objective formulation optimization should not be checked for dominance, however, 

because a formulation with noise could generate, for example, a cubic surface, that would 

eliminate the true optimal (recall the product formulation, which uses the maximum of 

zero and the negative squared difference of the reference component and objective 

function; noise can incorrectly generate zero values).   

Decision variable surrogates have less error (even with fewer runs) than aspiration 

and reservation levels.  However, aspiration and reservation level surrogates do improve 

with more data, and provide an advantage in that instead of fitting the true objective 

functions, they should fit the Pareto front.  There is no apparent advantage to using coded 
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values versus natural values for the predictors, and ordinary/weighted least-squares based 

surrogates appear to be of little value.  Kriging and RBFs were most promising.  

For the c parameter in RBFs, the mean distance between sites seemed to be the 

best value (there was no evidence to the contrary).  Additionally, forcing a limit of 

30θ <
K

 in Kriging was of no value.  Typically, those Kriging models that had large θ s 

were either good models, or models such that enforcing the limit provided no advantage.  

Due to the success of other surrogate types in approximating the objective functions 

and/or Pareto front, there appears to be little value in pursuing a MARS surrogate.  

However, MARS could become more advantageous in the case of high noise levels. 

   

5.3.5.  Termination Criteria.  The quality metrics presented are not necessarily the best 

choice to use as termination criteria.  HD and AC are extremely expensive to compute 

once a moderate number of points are in the Pareto approximation.  The spread metrics 

are a good way to determine if extreme solutions are achieved, but do not contain any 

information about the rest of the front.  NDC and CL can be used to compare 

approximations but reveal nothing of the completeness.  Furthermore, entropy runs into 

problems on discontinuous fronts, as the metric assumes that the entire projected space 

contains Pareto solutions.  However, if the front is continuous and will fill the projected 

space (e.g., Tamaki will, Viennet3 will not), and the estimates of the utopia and nadir 

point are good, then the metrics can be used in combination to determine a suitable 

termination criteria. 

Alternatively, a notion of indifference values was used as the basis for an 

algorithm that iteratively attempts to find gaps in the n-dimensional objective space.  

nMADS then fills those gaps or helps to verify that the gap is a true gap, either 

standalone or as a sub-algorithm to SMOMADS.   Further, the n-dimensional 

visualization can be used to identify any gaps that may go undetected by the gap 
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algorithm.  In practice, these gaps may not be identifiable using the n-dimensional 

visualizations if they are relatively small compared to the objective space, but large gaps 

in the Pareto front can be avoided.   

 

5.3.6.  Single Objective Formulation and nMADS.  The expansion of BiMADS to 

nMADS worked extremely well across all test problems.  Neither single-objective 

formulation proved better than another.  The nMADS algorithm from Figure 4.17.1 

proved efficient and robust in solving up to eight objectives and shows promise as a 

useful algorithm in practice. 

 

5.3.7.  General Conclusions.  In general, as the number of objectives and points increase, 

algorithms slow noticeably.  This is likely unavoidable, although some areas of 

improvement in efficiency exist.  However, on the problems in this research, efficiency 

was not necessarily a problem.  For deterministic problems, the nMADS algorithm would 

effectively halve the number of evaluations and CPU times (or better) shown here for 

stochastic problems. 

 

5.2. Recommendations for Future Research 
 

Some areas still need to be investigated with repect to the SMOMADS and 

nMADS algorithms.  Further, computational efficiency could be improved, both in 

coding and in reducing the number of function evaluations. 

 

5.2.1.  Algorithm Efficiency.  There are areas of the algorithms that could be improved so 

as to decrease CPU time and the number of function evaluations.  The dominance check 

begins to become expensive with thousands of data points.  R&S should be tested with 
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fewer than four replications per point.  nMADS should be tested using only one gap 

endpoint starting iterate, although both are likely necessary.     

Estimating the utopia point effectively using fewer function evaluations would be 

of great value.  This estimation constituted a large portion of the nMADS function 

evaluations.  Further, perhaps not all gaps have to be assessed in a given iteration during 

nMADS.  However, the gap algorithm and dominance check should not be run after each 

gap assessment either (in an effort to reduce the number of gaps), unless the time to do so 

is less than the time to complete an iteration of nMADS.      

 

5.2.2.  Mixed Variable Nadir Point GA.  The nadir point GA had trouble on the Disk 

Brake problem.  This could be in part because the extreme solution in one objective is 

hard to achieve.  However, it is also because the crossovers and mutations evaluated in 

this research were clearly not sufficient.  Although MADS and GPS provide suitable 

alternatives (perhaps making the GA unnecessary), this area could be improved.  One 

possibility is to use a nearest-neighbor approach like that found in MV-MADS/MVPS, or 

to ensure all discrete values are in the intial population. 

 

5.2.3.  The Gap Algorithm.  The gap algorithm presented in Section 3.7 has its 

limitations, as were discussed.  Some improvements were proposed that may be too time-

consuming to be of value.  In future research, an algorithm that can identify gaps in n-

dimensional space, likely based on indifference values, in an efficient and complete 

manner, would be of great value and could greatly increase the effectiveness of nMADS.  

In a blackbox context, indifference values are not as easy to determine aside from: 1) 

using a predetermined percentage of the utopia and nadir points (which would be used 

once the utopia and nadir points are estimated to create the indifference values); 2) 

assuming some knowledge of the system; or 3) Estimating the utopia and nadir point 
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prior to the mutli-objective optimization.  An algorithm not based on indifference values 

would be useful as well. 

 

5.2.4.  NMADS Efficiency.  An initial weighting scheme and strategy were created for 

nMADS.  In future research, this scheme and the algorithm in general may be made more 

effective by selecting the gaps to fill in some other manner, perhaps in part by further 

limiting the number of times a recurring gap is selected.   

 

5.2.5.  Surrogates.  Small amounts of error in multiple objectives sometimes prevent the 

optimizations from being able to perform well in a nMADS approach with surrogates.  

That is, the resulting points when evaluated by the true objective function are dominated.  

Specifically, the dominance check would require a method to accept reasonable 

dominated solutions into the true Pareto set, which is currently not done.  A tolerance 

value could be based on the error estimates provided by cross-validation, but it is not 

clear how to account for noise that could potentially be very difficult to estimate and how 

to prevent the algorithm from accepting a bad solution in the general case.  It may very 

well be that the decision-maker would have to accept some number of non-Pareto 

solutions. 

 

5.2.6.  Noise.  In her recommendations for future research, Walston [70] discussed using 

a probability scheme to determine if a point is dominated, based on one present in 

MOCBA.  From the present research, this may only be necessary if there are high levels 

of noise.  It would be worthwhile to investigate using such a scheme, versus the current 

dominance check. 
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5.2.7.  SMOMADS.  Using all function evaluations from SMOMADS, like the nMADS 

algorithm, should be evaluated.  This may or may not be useful.   

 

5.2.8.  MVMADS-RS.  Convergence results for the stochastic, multi-objective, nonlinearly 

constrained case have not yet been rigorously proven and depend on Conjecture 3.3.10. 

from Walston [70].  A rigorous analysis of this conjecture is recommended. 
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 Appendix A.  Initial Analysis 

A.1. Initial SMOMADS Runs 

A.1.1.  Test Approach.  The runs done for this research were evolutionary.  This was 

the first true set of batch runs, with the intent of determining how many replications 

might be required of a design, what design space to use on the aspiration and reservation 

levels, what impact different magnitudes of noise may have, and how sensitive the levels 

may be to using the true nadir point versus an overestimation (assuming the ranges are 

based off of utopia and nadir points).   

Unfortunately, there were many issues with these runs for various reasons, to 

include finding the noise error and a rounding error within the entropy metric.  Therefore, 

the most useful information to come from these runs was with repect to the number of 

replications of a design.  Results follow in tables for a representative subset of the 

problems, again so that the length of this document would be reasonable.   

These runs were conducted using a CCD and a uniform design with 20 samples.  

Times shown here include the time required to calculate metrics, although that time was 

minimal (as it was also recorded).  Additionally, the metrics and gap information can be 

misleading if taken at face value, as there is no guarantee the front found contained 

extreme values.  However, it can be noted that if there is a good estimation of the utopia 

and nadir points, the spread metrics in conjunction with the entropy metric and NDC are 

a good measure of the front.   

A DOE approach was taken with the full set of data to test factors for significance 

using items in the first column of the table as a response.  Significant factors, using an 

alpha of 0.05, are highlighted in gray.  Unless otherwise mentioned, gray factors were 

significant in the coded and natural space.  The data in the tables are averages of the runs 

that completed.  The ranges, nadir point estimation, and noise often tested as significant.  
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However, again, these results are not shown due to duplication elsewhere in this thesis 

and because of the debugging issues in these particular runs. 

 “True” nadir points and utopia points for these runs were taken from Walston 

[70].  It is also necessary to mention that the entropy values in this section used a σ of 

1/6.  Gaps are presented in terms of Euclidean distance and time is in seconds.  HD and 

AC are not presented due to their computational time for large numbers of points.  AR 

refers to the design space used to create the aspiration and reservation levels where AR1 

used [ ,0.99 ( , )]g g b
i i if mean f f× , [1.01 ( , ), ]g b b

i i imean f f f×  (the mean was set to 510−  here 

in the case of zero so that two levels could not be identical and result in an error inside 
the component achievement functions), AR2 used , 3g g g b

i i i if f f f⎡ ⎤+ −⎣ ⎦ , 

3,b g b b
i i i if f f f⎡ ⎤− −⎣ ⎦ , and AR3 used ( ) ( )2 5, 2 5g g b g g b

i i i i i if f f f f f⎡ ⎤− ⋅ − + ⋅ −⎣ ⎦ , 

( ) ( )2 5, 2 5b g b b g b
i i i i i if f f f f f⎡ ⎤− ⋅ − + ⋅ −⎣ ⎦ .  N refers to noise, where NI refers to 

adding I times 1% of the “true” nadir component as noise.  NRI refers to using I 

replicates of the design.  ND1 refers to using the “true” nadir point and ND2 refers to 

using the over-approximation.  

A.1.2.  Results. 
Dias Γ1 & Disk Brake 

 Dias Γ1 Disk Brake 
Measure NR2 NR3 NR4 NR5 NR2 NR3 NR4 NR5 

Bogus Pts 30.2 49 71 96.25 32.67 53.67 79.67 111.33 
Entropy 0.96 0.97 0.97 0.97 0.95 0.95 0.95 0.95 

OS 0.97 0.96 0.96 0.96 0.16 0.16 0.16 0.17 
OS1 1.01 1.01 1.01 1.01 0.42 0.41 0.43 0.44 
OS2 0.95 0.95 0.95 0.95 0.37 0.38 0.38 0.39 
NDC 14.6 17.8 17.75 20.75 8.33 8.67 9.33 9.33 
CL 2.92 3.35 4.23 4.13 4.78 6.24 6.93 7.41 

Time 2942 4280 5168 6246 638 773 1032 1276 
Largest Gap 0.31 0.26 0.33 0.20 1.05 0 0 0 

Avg Gap 0.22 0.21 0.20 0.15 1.05 0 0 0 
# Gaps 3.6 2.8 4.25 3.5 1 0 0 0 

  

For Dias Γ1, the number of replicates provided a statistically significant 

difference in overall spread for Objective 1 (raw data was not rounded to two decimal 
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places).  However, practically, this difference was minimal.  Note that spread is greater 

than 1 due to noise.  Also, increasing the replicates provided more distinct points, but also 

increased clustering and time (obviously).  In coded space, NDC was not significantly 

different.  Although not shown, the interaction of AR range and number of replicates was 

significant positively, but was not as large as either AR type or the number of replicates 

as main effects. 

For Disk Brake, increasing replications provides a statistically, but not practically, 

significant increase in OS.  Additionally, this increase in spread also causes an increase in 

clustering and time.  Of course, zero gaps only means that there are no gaps within the 

bounds of the points found.  For clustering, noise and number of replicates had a 

significant negative interaction.  This was also true for NDC and time.   
 

DTLZ7 & Fonseca F1 
 DTLZ7 Fonseca F1 

Measure NR2 NR3 NR4 NR5 NR2 NR3 NR4 NR5 
Bogus Pts 30.67 59 83.33 105.67 36.08 57.92 82 105.08 
Entropy 0.99 0.99 0.99 0.99 0.92 0.94 0.95 0.96 

OS 0.73 0.72 0.72 0.73 0.99 1.00 1.00 1.00 
OS1 0.98 0.96 0.97 0.98 1.00 1.00 1.00 1.00 
OS2 0.74 0.75 0.75 0.75 1.00 1.00 1.00 1.00 
NDC 11.33 12.67 12.67 12.33 7.08 7.67 8.58 9.08 
CL 3.68 3.89 4.97 6.03 3.27 3.63 3.98 4.43 

Time 75 114 151 191 228 343 467 566 
Largest Gap 0.37 0.33 0.31 0.29 0.71 0.61 0.58 0.55 

Avg Gap 0.26 0.25 0.24 0.22 0.27 0.31 0.33 0.42 
# Gaps 4.33 4 3.67 3.67 3.58 4.58 4.42 4.5 

  

On DTLZ7, clustering increased with more replicates and the number and size of 

gaps did not decrease practically.  For average gap size, there was a small, significant, 

negative interaction between noise and number of replicates.  The plots for low noise 

with two and five replicates follow.  The additional replications provided no marked 

benefit.  The same was true at any level of noise and between levels of noise. 

Increasing replicates for Fonseca F1 provided more distinct points and a reduction 

in gap size, but did not improve spread or entropy, or even the number of gaps 
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(statistically speaking).  In the case of average gap size, the interaction between AR type 

and number of replicates was significant, but small.   
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(a) 2 Replicates (b) 5 Replicates 

DTLZ7 Pareto Fronts 

  
Poloni & Srinivas 

 Poloni Srinivas 
Measure NR2 NR3 NR4 NR5 NR2 NR3 NR4 NR5 

Bogus Pts 32.04 54.21 74.38 97.04 17.33 31.08 45.83 62.79 
Entropy 0.93 0.94 0.94 0.94 0.98 0.98 0.98 0.98 

OS 0.09 0.11 0.11 0.12 0.35 0.36 0.36 0.35 
OS1 0.24 0.24 0.25 0.27 0.52 0.52 0.53 0.52 
OS2 0.34 0.43 0.44 0.41 0.59 0.59 0.59 0.59 
NDC 4.29 4.75 4.88 5.08 10.25 10.17 11.00 10.92 
CL 6.03 6.49 7.95 8.79 3.90 5.40 6.18 7.27 

Time 234 340 456 567 358 570 780 952 
Largest Gap 13.64 17.62 17.63 16.39 67.70 68.27 65.52 62.05 

Avg Gap 11.83 16.11 16.78 14.81 57.95 58.82 58.72 55.02 
# Gaps 1 1.17 1.08 1.13 1.75 1.5 1.46 1.58 

 

  For Poloni, increasing the number of replicates provides no real advantage.  On 

Srinivas, increasing the number of replicates beyond two did not clearly provide benefit.  

For NDC, only the nadir point and number of replicates were significant in coded 

variables.  For time, AR type and number of replicates had a large, positive, significant 

interaction.   

Using any more than two replicates seems to provide no true advantage, although it is 

true that in brute forcing a large number of design levels through SMOMADS, there is 



215 

some probability that points will be found on the front that would not have been with 

fewer runs.  Future runs took this into account so as to save time and computer resources.  

Additionally, future runs did not take the “every possible combination” approach.  All of 

the forementioned runs were completed on the Intel machines.  There were more runs 

conducted between those just presented and those presented in Chapter IV, however, they 

had to be excluded for purposes of brevity. 
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