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Abstract. A particle entering a scattering and absorbing medium executes a
random walk through a sequence of scattering events. The particle ultimately
either achieves first-passage, leaving the medium, or it is absorbed. The Kubelka-
Munk model describes a flux of such particles moving perpendicular to the surface
of a plane-parallel medium with a scattering rate and an absorption rate. The
particle path alternates between the positive direction into the medium and
the negative direction back towards the surface. Backscattering events from
the positive to the negative direction occur at local maxima or peaks, while
backscattering from the negative to the positive direction occur at local minima
or valleys. The probability of a particle avoiding absorption as it follows its
path decreases exponentially with the path-length λ. The reflectance of a semi-
infinite slab is therefore the Laplace transform of the distribution of path-length
that ends with a first-passage out of the medium. In the case of a constant
scattering rate the random walk is a Poisson process. We verify our results with
two iterative calculations, one using the properties of iterated convolution with a
symmetric kernel and the other via direct calculation with an exponential step-
length distribution.

We present a novel demonstration, based on fluctuation theory of sums of
random variables, that the first-passage probability as a function of the number
of peaks n in the alternating path is a step-length distribution-free combinatoric
expression involving Catalan numbers. Counting paths with backscattering on the
real half-line results in the same Catalan number coefficients as Dyck paths on the
whole numbers. Including a separate forward-scattering Poisson process results
in a combinatoric expression related to counting Motzkin paths. We therefore
connect walks on the real line to discrete path combinatorics.

Keywords: Random walk, Kubelka-Munk equations, first-passage, Poisson process,
Catalan numbers, Motzkin numbers, fluctuation theory

1. Introduction

The perceived quality of a printed image is affected by three-dimensional light
scattering in paper. The Kubelka-Munk [1] equations are most commonly used to

http://arxiv.org/abs/1906.11131v2
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estimate the effect of the medium on reflectivity. Kubelka and Munk provide a one-
dimensional analytic solution for a model with two fluxes on the positive half-line,
one moving upward into the medium in the positive direction and the other moving
in the negative direction, downward, back toward the interface at the origin. While
their approach is well-suited to analysis of reflectivity of layered media, it lacks the
lateral scattering important to print quality. A light ray entering a three-dimensional
scattering medium executes a random walk through a series of scattering events and
exits at a different point. On a printed image this results in “optical gain” as light that
would enter at a printed point and exit nearby is absorbed by the print. The Yule-
Nielsen [2] model extends Kubelka-Munk to describe optical gain. While its physical
basis is not completely established, the Yule-Nielsen is an improved print-quality
model. The impetus of this work is a more detailed understanding of scattering in one
dimension as a step toward a true physically motivated three-dimensional scattering
model with similar complexity to Kubelka-Munk.

The ubiquitous applications of random walks have inspired a large literature.
The monograph by Rudnick [3] derives statistical properties of random walks and
applies the theory to polymers and statistical mechanical systems. Redner’s book [4]
is devoted to first-passage processes. Depending on the problem, these authors switch
between continuous and lattice models. The book by Spitzer [5], one of the pioneers
in fluctuation theory, primarily addresses walks on a lattice. Philips-Invernizzi and
Cazé [6] provide a structured bibliographic review of the results obtained during the
previous century.

Schwarzschild [7] investigated the temperature distribution within a stellar
atmosphere using radiative equilibrium. Chandrasekhar’s definitive theory for
radiative transfer [8, 9] was developed in the context of plane-parallel layers of stellar
and planetary atmospheres. The solutions of radiation transport equations have a
variety of applications from neutron diffusion, optical tomography [10, 11], spreading
of infra-red and visible light in the atmosphere to the quality of prints on paper.

The simplest solution of the radiative transfer equation is for a one-dimensional
flux traveling perpendicular to a plane-parallel layer of an absorbing and scattering
medium with isotropic radiation intensity over the forward and backward hemispheres.
One-dimensional radiative transfer can be solved by the two-flux approximation
proposed independently by Schuster [12] and Schwarzschild [7] in astronomy. Gate [13]
examined the relation between Kubelka-Munk and the exact solution of the radiative
transport equation. More recently, Sandoval [14] generalized the Kubelka-Munk
theory using radiative transfer theory.

Youngquist, Carr and Davies [15] applied the model in optical coherence
tomography and Haney and van Wijk [16] in geology. Hébert and Becker [17] examine
the relation between continuous and lattice versions of Kubelka-Munk in an effort
to give a more physical interpretation of the two-flux model. Ballestra, Pacelli and
Radi [18] compute the first-passage probability density function using an integral
representation obtained solving a system of convolution equations in the context of
financial mathematics.

Simon and Trachsler [19] give an explicit expression for the reflectance. They
suggest that the scattering problem can be treated as a Markov chain involving
Narayana polynomials. But this Markov chain does not provide a solution of a first-
passage problem that fits the reflectance calculated with the Kubelka-Munk equations.
Then using the compositional optical reflectance and transmittance properties for
multilayer specimens, they determine a generating function and find a solution as
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z1
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z5z2
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Figure 1. The flux enters at step 0 traveling in the positive, or upward, direction.
After several scattering events, the path leaves the medium.

variants of Chebyshev polynomials. This is an alternative interpretation of the
hyperbolic functions of the classical solution of Kubelka-Munk equations.

Monte Carlo simulations of random walks and first-passage process are commonly
used to solve radiation transfer problems. Even in one dimension, Monte Carlo
simulations run into the problem that the mean number of scattering events before
first-passage is infinite. Jacques [20] developed code for scattering in multiple tissue
layers. Doering, Ray and Glasser [21] showed that the transmission time probability
density has a long tail and anomalous moments due to multiple scattering events.
Antal and Redner [22] study the first-passage of a random walk in an interval with
a bounded uniformly distributed step length. They observe non-diffusive effects that
persist when the maximum step-length is small, especially if the starting point is close
to one edge.

Wuttke [23] recursively expands the equations of Darwin [24] and Hamilton [25],
or equivalently, the Kubelka-Munk equations. He identifies Catalan numbers in the
recurrence probability as a function of the number of backscattering events. Wuttke
defines a zigzag walk as an alternating walk where the random character comes from
exponentially distributed step lengths between scattering events. As we demonstrate,
it is not necessary to specify the distribution since his result is independent of the
distribution of step-length distribution.

Scattering with a constant rate is a Poisson process. It can be analyzed by solving
differential equations, as illustrated in section 2. Alternatively, the process can be
treated as a random walk due to a sequence of scattering events with an exponentially
distributed spacing. The first-passage process is a probabilistic process by which a
fluctuating quantity reaches a threshold for the first time.

One of our goals is to describe the Kubelka-Munk solution directly in terms of the
statistics of the number of peaks n and the path-length λ of rays. In one dimension
the number of reflections before first-passage is 2n − 1, so the scattering order, or
number of reflections, is odd.

We explore Kubelka-Munk using a mathematically equivalent one-dimensional
random walk model. Rays entering the medium from above is a more natural
perspective, but to make contact with the random walk language, we use rays entering
upwards from the negative z-axis. The scattering medium is on the positive z-axis.
The incident flux enters the medium moving upwards in the positive direction from
negative z. An example path is illustrated in Fig. 1. Backscattering or reflection
occurs at z1, z2 and z4. The step-lengths between scattering events are drawn from
a random distribution. We include an additional independent Poisson process for
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forward scattering with a rate Sf . The example path undergoes forward scattering at
z3 and z5. Usually forward scattering is not included in one-dimensional scattering
because it does not change the ray propagation. We include it here as a step towards
future analysis of three-dimensional problems. In three dimensions a scattering event
may change the lateral direction, but not the direction perpendicular to the surface.
In this work, forward scattering and backscattering are assumed to be independent
processes. We demonstrate that the recurrence probability given by Catalan numbers
is independent of the step-length distribution. We provide another demonstration of
the independence of step-length distribution using our formulation of the fluctuation
theory introduced by Andersen [26, 27].

2. Traditional solution of the Kubelka-Munk model

This section illustrates the solution of the Kubelka-Munk [1] two-flux model as
reviewed by Myrick, et al [28]. Let us consider a homogenous layer with thickness
d characterized by its absorption coefficient χ and its scattering coefficient S. In this
layer, the incident irradiance I propagates in the positive direction and the reflected
irradiance J propagates in the negative direction. Both I and J are functions of the
depth z in the layer. Depth 0 corresponds to the layer’s boundary receiving the incident
irradiance I0. Depth d indicates the other boundary. We consider, at an arbitrary
depth z, a sub-layer with infinitesimal thickness dz. The effect of the material in a
thin element dz on I and J is to:

• decrease I by I(S + χ)dz (absorption and scattering)

• decrease J by J(S + χ)dz (absorption and scattering)

• increase I by JSdz (scattered light from J reinforces I)

• increase J by ISdz (scattered light from I reinforces J).

On these assumptions we obtain the system of equations:
(

dI

dJ

)

=

(

− (χ+ S) S

−S (χ+ S)

)(

I

J

)

dz, (1)

with solution
(

I(z)
J(z)

)

=

(

1− β 1 + β

1 + β 1− β

)(

Aeκz

Be−κz

)

, (2)

where β =

√

χ (χ+ 2S)
−1

and κ =
√

χ (χ+ 2S).
The coefficients A and B are determined by the boundary conditions at the two

surfaces. After some elementary calculations reflectance R and transmittance T of a
slab of thickness d are given by:

R =
J(0)

I0
=

(

1− β2
) (

eκd − e−κd
)

(1 + β)
2
eκd − (1− β)

2
e−κd

R0 =
Sd

1 + Sd
for χ = 0

T =
I(d)

I0
=

4β

(1 + β)
2
eκd − (1− β)

2
e−κd

T0 =
1

1 + Sd
for χ = 0.

(3)
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The reflectance of a very thick layer (d → ∞) is:

R∞(S, χ) =
S + χ

S
−

√

(

S + χ

S

)2

− 1. (4)

The Kubelka-Munk reflectance plays a major role in elucidating the connection to
combinatorics and random walks.

3. Distribution of path-lengths from the reflectance

The fluxes I and J can be interpreted as ensembles of photons moving in the positive
and negative directions. Each photon path alternates at scattering events between
positive and negative steps with a sequence of step lengths ci ∈ c. Step i has length ci
chosen from a probability distribution ρ (ci) according to a Poisson process with rate
S where

ρ (c) = Φ(c)Se−Sc. (5)

Φ is the Heaviside step function. First, in the absence of absorption, the photon exits
the medium after travelling a distance λ, the path-length. The probability distribution
of λ for the random walk is P (λ;S).

Each photon is absorbed at a rate χ per unit length. Therefore, its path is
weighted according to the Beer-Lambert law [29], [30] by the absorption factor e−χλ.
The reflectance is therefore the Laplace transform of the path-length distribution and
the inverse Laplace transform of R∞ leads to the path distribution:

R∞ (S, χ) = Lλ {P (λ;S)} (χ) =
∞
∫

0

P (λ;S) e−χλdλ (6)

P (λ;S) = L−1
χ {R∞ (S, χ)} (λ) .

We calculate the inverse Laplace transform of the reflectance by first expanding
equation (4) in the scattering order

R∞(S, χ) =

∞
∑

n=1

Cn−1

22n−1

(

S

S + χ

)2n−1

(7)

=
1

2

S

S + χ
C

(

(

1

2

S

S + χ

)2
)

,

where C(x) is the generating function

C (x) =

∞
∑

n=0

Cnx
n =

1−
√
1− 4x

2x
(8)

of the Catalan numbers Cn = (2n)! (n!(n+ 1)!)
−1

. We identify, term-by-term, the
path-length distribution of a random walk model with the inverse Laplace transform
of R∞ (S, χ) using

L−1
χ

(

S

S + χ

)2n−1

=
S2n−1λ2n−2e−Sλ

(2n− 2)!
. (9)
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z

step

Figure 2. A typical Motzkin path with eleven steps

The distribution of λ and n derived from R∞ (S, χ) is

P (λ, n) =
1

λ
Cn−1

(

Sλ

2

)2n−1
e−Sλ

(2n− 2)!
(10)

=
1

λ

(

Sλ

2

)2n−1
e−Sλ

n!(2n− 1)!
. (11)

The random character of an alternating walk comes from the step-length
distribution between scattering events, which is not necessarily an exponential
distribution. We will demonstrate in the paper that certain statistics of alternating
walks is independent of the step-length distribution, i.e., is distribution-free.

With no loss of generality we can include nf forward scattering events at a rate
Sf thus providing a persistent random walk model compatible with Kubelka-Munk.
Therefore the joint probability of the three random variables λ, n and nf is given by

P (λ, n, nf ) =
Cn−1

22n−1

S2n−1S
nf

f λ2n−2+nf

(2n− 2)!nf

e−(S+Sf )λ, (12)

and the joint probability for n and nf is then given by

P (n, nf ) =

∞
∫

0

P (λ, n, nf ) dλ

=
1

22n−1

[nf + 2 (n− 1)]!

nf !n! (n− 1)!

S
nf

f S2n−1

(Sf + S)
nf+2n−1 .

(13)

The combinatorial factor in equation (13) is T (nf + 2n− 2, n− 1) where

T (n, k) =
n!

k! (k + 1)! (n− 2k)!
(14)

is the “Triangular array of Motzkin polynomial coefficients.” A Motzkin path is a
path on an integer plane where each step is one of an up step (1, 1), a level step (1, 0)
or a down step (1,−1). According to the OEIS A055151 [31] T (n, k) is the number
of Motzkin paths of length n with k up steps. The path shown in figure 2 has length
n = 11 with k = 3 up steps.

4. Probability of first-passage by convolution

4.1. Iterations: building an alternating random walk

The previous results are derived from the inverse Laplace transform of the reflectance.
We now want to study the trajectory distribution for a general path including both
backscattering and forward scattering. We assume that forward scattering and
backscattering are independent processes. We start with an alternating walk with
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z

step

Incident flux

zP1
zP2

zP3

z1 z2

E3

Figure 3. The flux enters at step 0 traveling in the positive, or upwards, direction.
After several scattering events, the path can leave the medium. The figure shows
an alternating path with first-passage at step six after the third peak.

only backscattering. The randomness comes only from the step length distribution.
The scattering event locations form an alternating sequence of maxima and minima
(peaks and valleys). First-passage necessarily occurs before a valley where the flux
changes from the negative direction to the positive direction. Therefore, we study first-
passage in the alternating walk by marginalizing over peaks. Finally, we introduce the
forward scattering process. The alternating walk serves as a skeleton of the general
walk and we then dress the skeleton by adding forward scattering.

An alternating random walk, starts at 0 and moves upwards in the positive
direction until it eventually backscatters downwards towards the origin. The walk
continues through a sequence of upwards motion, reflecting at a peak to the negative
direction, and subsequent reflection at a valley back to the positive direction. If a
downwards step does not reverse direction before it reaches the negative half-space,
we say it “left the medium” and the trajectory ends. A trajectory that leaves the
medium after n peaks is subject to (2n− 1) backscattering events and is labeled by
the index n.

Consider now the flux of all possible trajectories starting at z = 0 and beginning
in the positive direction with step length c distributed according to equation (5).

Marginalizing over the first peak height gives the probability distribution P1(z1)
of the height z1 of the first valley. If z1 is negative, the trajectory ends at that point.
P1(z1) serves as a convolution kernel for moving from one valley to the next with the
following properties:

∫

∞

−∞

P1(z1)dz1 = 1 (15)

P1(z1) = P1(−z1).

P1 is symmetric in its argument because the upward and downward steps are drawn
from the same distribution.

The trajectory reflects back towards the origin after the nth peak at height zPn
as shown in figure 3. It reflects next time in the positive direction at the nth valley
at height zn. The difference, zn − zn−1, in height of the valleys is the difference of
the upward and downward step lengths. If zn < 0, then we say the trajectory left
the medium. The probability distribution for the height z2 of the valley at the second
reflection is

P2 (z2) =

∫

∞

0

P1(z1)P1(z2 − z1)dz1 (16)
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∫

∞

−∞

P2(z2)dz2 =

∫

∞

0

P1(z1)dz1 =
1

2
.

This is a convolution of a symmetric function with itself. The symmetry of P1

implies that, independent of the step-length distribution, half the trajectories leave the
medium and half remain in the medium at the first valley. This simple case suggests
that first passage could be independent of the step-length distribution.

The probability distribution for the location of the following valleys n = 3, 4, · · ·
are given by iterative convolutions:

Pn+1 (zn+1) =

∫

∞

0

Pn(zn)P1(zn+1 − zn)dzn. (17)

Only the trajectories that stay in the medium at step n, are transferred to step n+1,
giving:

∫

∞

−∞

Pn+1 (zn+1) dzn+1 =

∫

∞

0

Pn (zn)dzn. (18)

The probability of not escaping the medium after n peaks is
∫

∞

−∞

∫

∞

0

Pn (zn)P1 (zn+1 − zn) dzndzn+1 = P+ (n) (19)

and the probability of first-passage after n peaks is
∫

∞

−∞

∫ 0

−∞

Pn (zn)P1 (zn+1 − zn) dzndzn+1 = P f (n) . (20)

with the property
n
∑

m=1

∫

∞

−∞

∫ 0

−∞

Pm (zm)P1 (zm+1 − zm) dzmdzm+1 + · · · (21)

∫

∞

−∞

∫

∞

0

Pn (zn)P1 (zn+1 − zn) dzndzn+1 = 1,

since the sum of the fractions that leave the medium after each peak plus the
fraction that remain in the medium must add to 1. Solving the iteration defined
by equations (15) to (20) requires an additional property. Extensive Monte Carlo
results with a variety of step-length distributions led us to believe that P+(n) =
(2n − 1)P f (n), independent of the choice of step-length distribution. We solve the
iteration inductively using this property giving results consistent with the Laplace
transform of the reflectance in the previous section:

P+ (n) =
n−1
∏

m=0

1 + 2m

2 + 2m
=

2n− 1

22n−1
C (n− 1) (22)

P f (n) =
1

22n−1
C (n− 1) .

These results will be confirmed by an analytic calculation of the path distribution
in the case of an exponentially distributed path-length, consistent with Kubelka-
Munk, in section 5. The case for a general path-length distribution is shown by a
combinatorial method in section 6 equations (40) and (41).
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4.2. Dressing the skeleton: connection with combinatorics

The enumeration of lattice paths is a topic in combinatorics, closely related to the
study of random walks in probability theory. The ubiquitous presence of Catalan
numbers in the joint distribution function P (λ, n, nf ;S, Sf) suggests a connection
with combinatorics. One approach to explain this connection is discretization. Since
the statistics of first-passage is independent of the distribution of the path-length, to
discretize the path we just have to integrate over λ. We expect this transition to a
lattice model to reproduce the analytical result obtained in section 6.

The joint probability function is the product of the marginal probability times
the conditional probability:

P (n, nf ;S, Sf) = P (nf |n;S, Sf )P (n;S, Sf ) . (23)

The goal is to create new steps by randomly filling the 2n segments of the skeleton
with nf forward random scattering events and to calculate the resulting distribution.
Ultimately we want to find the related conditional probability P (n|nf ). There are
2n− 1 reflections and ms = 2n+ nf steps.

With our notation we have paths from (2, 0) to 2(n, nf) with the constraint that
n ≥ 1. Therefore the number of paths NC is given by:

NC =

(

2n+ nf − 2
2n− 2

)

. (24)

In terms of the number of scattering event ms the number of paths is

NC(ms, n) =
(ms − 2)!

(2n− 2)!(ms − 2n)!
. (25)

We can now write the conditional probability of ms at constant n with r = S
S+Sf

P (ms|n; r) =
(ms − 2)!

(2n− 2)!(ms − 2n)!
r2n−1(1− r)ms−2n. (26)

This result has been confirmed by extensive Monte Carlo calculations and is also
obtained by recursion in section 5. Then the joint probability of n and nf is given by

P (n, nf ; r) =
[nf + 2 (n− 1)]!

nf !n!(n− 1)!

( r

2

)2n−1

(1− r)
nf

=
(nf + 2 (n− 1))!

22n−1nf ! (n− 1)!(n)!

S2n−1(Sf )
nf

(S + Sf + χ)
nf+2n−1 .

(27)

This is the same as equation (13). This confirms the combinatorial nature (lattice
paths enumeration) of the discrete form of the Kubelka-Munk equation.

5. Analytic calculation of the path distribution

In this section, explicit integration over the path gives the distribution of path-length
and number of scattering events as a function of depth into the medium. We include
forward scattering, reflection and absorption as independent processes acting on an
ensemble of light rays. We show directly the connection to equation (4), as opposed
to the two-step calculation in section 4. We derive information about the distribution
of the number of scattering events and the path-length when the ray ultimately
escapes. The current state of a ray at a scattering event includes the direction, the
total prior path-length λ, the prior number of peaks n and the position z. This will
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serve as a foundation for future exploration of higher dimensions and for the effect
of inhomogeneities in the medium that are important for print quality and medical
imaging.

Consider a statistical ensemble of rays of light moving in a one-dimensional
diffusive medium on the positive axis. Again, the ray starts at the origin moving
upward in the positive direction and after multiple reflections, escapes the media to
the negative axis. A ray traveling through the medium is reflected at a rate of S
reflections per unit length. The Poisson probability density for reflection of a ray after
traveling distance c is given by equation (5). Later we will add forward scattering at
a rate Sf and absorption at a rate χ per unit length as independent Poisson processes
based on the path-length.

The probability density for an upward reflection at a valley at height z with
current path-length λ at the valley after n peaks is Pn (λ, z). The probability density

that the ray escapes with total path-length λ in the scattering medium, after the nth

peak is En (λ). The probability densities for the peaks and valleys are not normalized
because the ray may escape on a previous step.

The initial path-length is 0 and the initial position is the origin. The first step is
into the medium, so the initial escape probability E0 = 0.

P0 (λ, z) = δ (λ) δ (z) (28)

E0 (λ) = 0.

The first peak integral simply involves satisfying the delta functions. Similarly, the
first valley integral uses the fact that λ is the total path-length. The joint probability
distribution of the height and path-length for the first peak is

PP
1

(

λ, zP
)

=

∫ λ

0

∫

∞

0

P0 (λ
′, z′) δ

(

λ−
(

λ′ + zP − z′
))

ρ
(

zP − z′
)

dλ′dz′ (29)

= δ
(

λ− zP
)

ρ
(

zP
)

.

Integrating over the first peak gives the joint distribution of the path-length λ and
height z1 of the first valley

P1 (λ, z1) =

∫

∞

0

dzP1 δ
(

λ− 2zP1 + z1
)

Se−SzP
1 ρ
(

zP1 − z1
)

(30)

=
1

2
Φ(z1)Φ(λ)Φ(λ − z1)S

2e−Sλ.

The probability that the ray escapes is given by dropping the constraint that z

is positive and integrating over the negative half space:

E1 (λ) =
1

2
Φ (λ)

∫ 0

−∞

S2e−S(λ−z)dz =
1

2
Φ (λ)Se−Sλ. (31)

Integrating over λ gives the expected escape rate of 1
2 after the first peak.

The probability distribution of the nth peak and valley are found by iteratively
calculating the convolution using an upward step with length c′ and a downward step
with length c giving

PP
n

(

λ, zPn
)

=

∫ zP
n

0

Pn−1

(

λ− c′, zPn − c′
)

Se−Sc′dc′ (32)

Pn (λ, zn) =

∫

∞

z

PP
n (λ− c, zn + c)Se−Scdc
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Pn (λ, zn) =

∫

∞

0

∫ c+zn

0

Pn−1 (λ− c′ − c, zn + c− c′)S2e−S(c+c′)dc′dc.

There are constraints on the integrals in iterating from one valley to the next.
The peaks are higher than the preceding and following valleys, i.e., zPn ≥ zn and
zPn ≥ zn−1, as shown in figure 3.

Iterating from the probability distribution at one valley to that at the next valley,
we obtain:

Pn (λ, zn) = S2ne−S(λ)Φ (λ− zn)Fn (λ, zn) . (33)

Here Fn is the total volume of the space of allowed configurations of the 2n− 2 step
path from the origin to a valley at the point z with path-length λ. The same form, an
exponential times the volume of path configurations, will apply in higher dimensions
and more complicated geometries. Monte Carlo methods can be applied to measure
the path configuration volume in these situations.

Fn (λ, z) =
(λ− z)n−1 (λ+ z)n−2 (λ− z + 2nz)n−1

22n−2 (n− 1)! (n)!
. (34)

Integrating over the negative half-space gives the escape probability density as a
function of upward path-length and the total escape probability after the nth peak:

En (λ) =

∫ 0

−∞

Pn

(

λ

2
, z′
)

dz′ = S

(

S
λ

2

)2(n−1)
e−Sλ

(n− 1)! (n)!
. (35)

Integrating over λ gives the escape probability after n peaks in terms of Catalan
numbers. The result is independent of the scattering rate and the formula is identical
to equation (3) with χ = 0:

En =

∫

∞

0

En (λ) dλ =
1

22n−1
Cn−1. (36)

We can add in absorption because we have the distribution of the path-length.
The attenuation simply adds χ to S in the exponent:

Eχ
n (λ) = S(Sλ)

2n−1 e−(S+χ)λ

(n− 1)! (n)!
. (37)

Integrating over the path-length again yields equation (3)

Eχ
n =

∫

∞

0

Eχ
n(λ)dλ =

(

S

S + χ

)2n−1
(2n− 1)!

22n−1 (n− 1)! (n)!

=

(

S

S + χ

)2n−1
Cn−1

22n−1
.

(38)

The joint probability for n and nf is obtained by adding an independent Poisson
process for forward scattering

P (nf , n) =

∫

∞

0

PPois(nf |Sfλ)E
χ
n (λ)dλ

=
(nf + 2 (n− 1))!

22n−1nf ! (n− 1)!(n)!

S2n−1(Sf )
nf

(S + Sf + χ)nf+2n−1 .

(39)

This result is identical to equations (13 and 27).
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6. First-passage events are distribution-free

This section extends the fluctuation theory of Andersen [27] to alternating walks
with independent and identically distributed step-lengths. We prove first-passage is
distribution-free by examining first-passage properties of the finite set of alternating
walks generated from permutations of a set of 2n step-lengths. Surprisingly, the
probability of first-passage at each valley for this set of walks is independent of the
set of step-lengths.

Consider the sample space An of alternating walks with 2n steps. In this section
we use the capitalized term “Event” in the probabilistic sense. An Event is a subset
of the sample space of An. The indicator function IE of an Event is 1 for a walk that
is an element of the Event and 0 otherwise. The probability of an Event is given by
the average over An of the indicator function IE of the Event. First-passage Events
are the subsets Fm of An that are positive before peak m and first become negative at
step 2m after peak m. It is possible that a walk never becomes negative, so we add the
Event F0 of walks that are positive for the first 2n steps. The set of n+1 first-passage
Events, one at each valley plus one if the walk stays positive, is a partition of the
sample space.

The location of an alternating walk alternates between peaks and valleys as
shown in figure 3. First-passage for an alternating walk with n peaks occurs at a
valley where the step number 2m is even. The positions of the peaks and valleys
are given by repeated convolution with the step-length distribution as illustrated
in sections 4 and 5. The set of 2n step-lengths cn inside the integrand of the
iterated convolution is an element of the set Cn of all sets of 2n lengths. Because
the step-lengths are independent and identically distributed, the joint probability
density in the integrand is symmetric under permutations of the 2n step-lengths cn
in the integrand. The average of the indicator function IE over An can therefore be
evaluated by first averaging over the finite set of walks generated by permutations of
cn. Figure 4 illustrates, for example, four of the 24 walks generated from permutations
of a particular c2. The surprising result, shown below, is that this average over a finite
set of walks is independent of the set cn.

Consider the finite set of walks generated by permutations of cn. Each of the
alternating walks in An (cn) generated by permutations of cn has the same weight in
the integral. We will show that the cardinality of Fm (cn) is independent of the set of
2n step lengths cn almost everywhere, as long as no sub-walk returns exactly to the
origin.

We analyze the changes in Event membership as we modify step-lengths in cn.
The boundary subset Bn of Cn of measure zero, consists of those sets of step-lengths cn
where some sub-walk constructed from cn returns to the origin. For a walk constructed
from a set of lengths not in the boundary set Bn, let δ be the closest approach to the
origin of any non-empty sub-walk. At step 2m > 0 the absolute value of the position
must be at least δ. If δ > 0 then any step-length change with magnitude smaller than
δ will not cause any change in first-passage Event membership. First-passage Event
cardinality is therefore locally constant, and so is constant within connected subsets
of Cn − Bn. The set Cn − Bn is not connected, so we must examine changes in Event
cardinality when crossing a boundary.

Any set of lengths can be reached by changing one length at a time, and so if
cardinality of an Event never changes when crossing the boundary Bn, then the Event
cardinality is constant in Cn−Bn. The sequences of lengths in Bn are the only elements
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z

step

Figure 4. Four examples of the 24 alternating walks generated from permutations
of an example set of four lengths c2 = {1.0, 1.3, 2.0, 2.5}.

of Cn where walks can leave or enter first-passage Events with small changes to a length.
Consider changing a length in a walk wm in Fm with first-passage following the mth
peak. It can move across the boundary set Bn. As it crosses the boundary point the
membership of wm in Fm can change. The set of walks generated from permutations
or an overall sign change of the steps in the sub-walk w∗

m also return to the origin.
The problem is to show cancellation of the changes in Event membership among the
walks in this set as lengths are changed.

The key step in our approach is to consider uniquely defined pairs of walks w∗

and w′∗ from the boundary set. Walk w∗ begins with a positive critical sub-walk w∗

m

as in figure 5(a), but returns precisely to zero at step 2m as illustrated by the dot
at step 8. The paired walk w′∗ in figure 5(b) is identical after step 2m but begins
with the time-reversed sub-walk w′∗

m. The sets of positions of the paired walks are the
same, but they are in the reverse order for the first 2m steps. The step lengths in w′∗

m

are the same as the step lengths in w∗

m, but the first 2m steps occur in the reverse
order and with the opposite sign. All the critical walks generated from c∗n ∈ Bn that
could change the cardinality of Fm can be uniquely paired in this way.

For the first-passage problem, Fm consists of walks that are positive for the first
2m−1 steps and negative on step 2m. The boundary of Fm consists of walks that are
non-negative for the first 2m − 1 steps but return exactly to zero at one of the first
2m steps. Walks that return precisely to the origin on step 2m and are positive before
that step for steps 1, · · · (2m− 1) will enter or leave the Event with a small change in
a length. Similarly, walks that pass zero on step 2m but return precisely to the origin
on step 2j < 2m change membership in Fm with small length changes.

Suppose a walk from the boundary of Fm begins with such a 2j-step sub-walk w∗

j

which is positive for k < 2j and returns to 0 at step 2j. Consider changing a length
ck ∈ w∗

j through the critical value c∗k. A small decrease in a length that is a downward
step in w∗

j will cause the walk to leave Fj and join Fm as shown in figure 5(c) while
increasing the same step-length will cause the walk to be in Fj . Similarly, a small
decrease in a length that is an upward step in w∗

j will cause the walk to be in Fj as
shown in figure 5(d) while increasing the same step will cause the walk leave Fj and
join Fm. Alternatively, if the walk touches zero at step m then increasing a downward
length will cause it to be in Fm while the paired walk will leave Fm.

Figure 5(a) and (b) illustrates paired critical walks that touch the origin at step
eight. When the step illustrated by the double red line is shortened, the trajectory
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(a)
n

z

(b)
n

z

(c)
n

z

(d)
n

z

Figure 5. Example of pairing critical walks for the Event “First-passage on step
8.” Critical walk (a) is paired with critical walk (b) with the sub-walk for the first
eight steps reversed. When the sixth step length is shortened, (c) shows walk (a)
leaving the Event and (d) shows walk (b) joining the Event.

in (c) leaves the Event of passage at step eight and z8 > 0 as indicated by red dot
above the axis. The paired walk in (d) enters the Event as the dot moves below the
line indicating z8 < 0.

If a step of length c∗k in sub-walk w∗

j has, say, a negative sign, then it is in w′∗

j

with a positive sign. When c∗k is changed to a lower value then walk w′ is in Fm and w

is not. Similarly, when ck is changed to a higher value, then walk w is in Fm and w′ is
not. Thus as ck is changed and the set of lengths crosses Bn one of each pair of walks
leaves the Event Fm and the other joins the Event. Although the pair of walks switch
which one is in Event Fm, the total contribution of the two walks to the cardinality of
the Event is the same. The cardinality of Fm is therefore unchanged by crossing Bn.
Examining the complete set of pairs of walks with time-reversed sub-walks thus shows
that the cardinality of first-passage Events, and thus the probability of first-passage
at step 2m is independent of the set of n real lengths, except for the boundary set Bn

of measure 0 in Cn. Now averaging this invariant probability over all sets of lengths
in Cn gives the result that the distribution of first-passage step for alternating walks
is step-length distribution-free.

The sub-walk must have even length for alternating walks so that walks beginning
with w and w′ are both alternating walks in our sample space. First-passage always
occurs on an even number step for alternating walks, so that is not a problem here.
In other types of Events on An the requirement that the sub-walks must have even
length is important. The argument for first-passage statistics for symmetric walks
carries through the same as for alternating walks with the exception that the location
of the first-passage, and the length of the relevant sub-walks, need not be even.

To calculate first-passage probabilities for an alternating walk, any set of lengths
suffices. Make a convenient choice like any subset of integer powers of 2 where each
length is larger than the sum of all smaller lengths. First-passage of an alternating
walk occurs only in a valley, i.e., on even numbered steps m = 2mp. Given a set of
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2n lengths selected from integer powers of 2, we show below that fraction of walks
generated from these lengths with first-passage at step n is

P f
n =

Cn

22n−1
(40)

and the fraction that remains nonnegative is

P+
n = (2n− 1)

Cn−1

22n−1
. (41)

The calculation will proceed by induction on n. The theorem is true for n = 1
because the probability of first passage in the first valley is 1

2 , as is the probability
that the walk stays positive. Either the first step upward is larger or smaller than the
second step.

Suppose the theorem is true for all mp ≤ n. Consider alternating walks generated
from a set c2(n+1) of 2(n + 1) lengths selected from integer powers of 2. Divide the
alternating walks generated into a complete set of disjoint subsets where all walks in
a subset have the same last two steps. For each of these subsets, the first 2n steps are
all the permutation of the same set of lengths. By induction, the fraction of these in
F2mp

for mp ≤ n is given by the theorem. Similarly, the fraction that stay positive
until the last step is given by the theorem.

First passage can occur after the peak n+ 1 only if the walk stayed positive for
the first n valleys and step 2n is the largest element of the set. The probability of this
is

P
f
n+1 =

P+
n

2n+ 2
. (42)

The walk will stay positive only if it is positive for the first n valleys and it does not
have a first passage at valley n+ 1, so

P+
n+1 = p+n − P

f
n+1

in agreement with equation (41). The theorem is true for n + 1, and so is proved
by induction. This combinatorial approach finally proves the assertion we postulated
based on the results of Monte Carlo simulations.
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