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Chapter

Digestate: The Coproduct of
Biofuel Production in a Circular
Economy, and New Results for
Cassava Peeling Residue Digestate
Sammy N. Aso

Abstract

Circular economic paradigm applies residue from one process as input material
for another, fostering sustainable benefits for humanity. Anaerobic digestion (AD)
is an attractive technology for biogas production in a circular economy. Digestate is
the residual organic matter generated as coproduct of biogas. Because digestate is
nutrient rich and largely stabilized, it has varied management options. Digestate is
suitable for direct use as bio-fertilizer and is a good amendment material to improve
soil physical properties. However, the quality, safety, and utility of digestate are
dependent upon the characteristics of feedstock, digester process, pre- and post-
digestion treatments. Digestates emanating from AD of animal manure, energy
crops, food processing residues, and other feedstocks have been reported in
published literature. On the other hand, there is dearth of reports on digestate
emanating from AD process that utilized cassava peeling residue (CPR) as sole
feedstock. This chapter presents relevant information on digestates including
production, feedstock, quality and safety requirements, processing and treatment
technologies, regulatory aspects, applications management options, cost implica-
tions, as well as challenges and opportunities. In addition, new results of nitrogen
(N), phosphorus (P), and potassium (K) compositions of liquid fraction of CPR
digestate are reported.

Keywords: anaerobic digestion, biofuel, biogas, cassava, cassava peeling residue,
CPR, circular economy, digestate, management options, renewability, sustainability

1. Introduction

Linear economic model has been constructed on the premise of production,
use, and disposal of used resources as wastes. However, there are serious limitations
associated with the linear paradigm. These include nonrenewability,
unsustainability, and environmental perturbations characterized by negative
impacts on air, eco-diversity, soil, and water quality and safety. On the other
hand, circular economic model maximizes the 3 (three)Rs of reduce, reuse, and
recycle resources. In particular, circular economy applies residue from one process
as input material for another process. This approach delivers sustainable benefits
for humanity in terms of air, ecology, energy, environment, food, forest, housing,

1



sanitation, soil and water quality, safety and security; as well as improvements in
animal and human health, economic, social, and industrial developments.

On the predicate of biorefinery platform, biotechnological upgrading of biomass
via biological, chemical, physical or some combinations of these would create
bio-based energy, chemicals, and other beneficial metabolites and products within
the domain of circular economic model. In this context, anaerobic digestion (AD) is
an attractive technology as it would utilize organic resources in waste streams to
generate biogas and digestate. However, the quality of digestate is dependent upon
variables such as characteristics of feedstock, digester process, and treatment
options. Digestates emanating from AD of animal manure, energy crops, agricul-
tural residues, organic fraction of municipal solid wastes (OFMSW), and other
feedstocks have been reported in published literature [1–3]. On the other hand,
there is dearth of reports on nutrient properties of digestate generated from AD
processes that utilized cassava peeling residue (CPR) as sole feedstock. This chapter
presents relevant information on digestates in general, and new results of a techni-
cal experiment conducted to secure overview assessment of nitrogen (N), phos-
phorus (P) and potassium (K) compositions of liquid fraction of CPR digestate.

2. Anaerobic digestion (AD)

AD is a biochemical process that decomposes organic matter to generate flam-
mable biogas and residual digestate. The process is achieved with the assistance of a
suite of microorganisms in a near oxygen free environment. Biogas is basically
composed of methane and carbon dioxide in the respective range of 40–75% and
25–40%. Other constituents are hydrogen, nitrogen, oxygen, hydrogen sulfide and
other trace components ranging from 0.1 to 3% [4]. Successful AD operations are
carried out within digester or reactor systems designed to supply nutrients required
for metabolic activities of the microbes, as well as prevent conditions or elements
that may become stressors or present inhibitory effects. AD digester operations and
systems may be classified according to the following [5–7]:

• Optimal temperature regimen: psychrophilic (<20°C), mesophilic (30–38°C),
and thermophilic (48–57°C);

• Total solid (TS) content: wet digestion (TS < 12%), semi-dry digestion (TS
12–20%), and dry digestion (TS ˃ 20%);

• Feeding mode: batch, fed-batch, semi-continuous, and continuous;

• Process stage or step: single-stage (where all AD processes—hydrolysis,
fermentation, acetogenesis, and methanogenesis are executed in one
reactor), and multi-stage (where the processes are separated into two or more
reactors);

• Fluid-dynamic mode: plug flow, completely stirred or mixed, and hybrid; as
well as

• Digester design: anaerobic baffled reactor (ABR), anaerobic filter (AF),
anaerobic dynamic membrane reactor (AnDMBR), anaerobic mixed biofilm
reactor (AMBR), completely or continuous stirred-tank reactor (CSTR),
covered lagoon, expanded granular sludge bed (EGSB), fixed dome, flexible
balloon or tube, floating cover or drum, sequential batch anaerobic composting
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(SEBAC), stirred anaerobic sequencing batch reactor (SASBR), up-flow
anaerobic sludge bed (UASB) or up-flow multistage anaerobic reactor
(UMAR).

Today there are millions of anaerobic digesters (domestic, medium, and large-
scale versions) operating in the world and generating tremendous amount of biogas.
In 2016 for instance, about 60.8 billion m3 of biogas (1.31 EJ) was generated
worldwide; most of it, 84%; in Europe (54%) and Asia (30%) [8]. The technical
status of AD plants varies widely. Advanced state-of-the-art systems are prevalent
in Europe and more low-tech installations in Africa, Asia and South America.
However, irrespective of the level of sophistication, the two fundamental products
of AD are biogas and digestate.

3. Digestate

Digestate is the residual organic matter generated as coproduct of biogas pro-
duction. Digestate is suitable for direct use as bio-fertilizer, as raw material for
production of bio-fertilizers, and as amendment material to improve soil physical

S/N Feedstock S/N Feedstock

1 Agro-industrial residues 61 Miscanthus sacchariflorus (Maxim.) Hack silage

2 Animal manure 62 Miscanthus sinesis giganteus Silage

3 Barley straw 63 Molasses

4 Biodegradable plastics 64 Mozzarella Cheese Whey

5 Biodiesel wastewaters 65 Municipal solid waste

6 Biowastes 66 Municipal waste water

7 Blood industry residues 67 Oat silage

8 Buffalo farming wastewater 68 Olive oil mill wastewater

9 Buffalo manure 69 Olive Pomace, olive waste

10 Cacao 70 Orange peel waste

11 Cardboard 71 Organic fraction of municipal solid waste

12 Cattle/cow: manure/slurry 72 Paper

13 Cattle (beef) urine 73 Paper sludge

14 Cereal bran 74 Peach-juice pulp

15 Cereal-WPS 75 Peeled Cassava wash water

16 Cereals 76 Pharmaceutical industry sludge

17 Cheese Whey 77 Phleum pratense L. silage

18 Chicken manure 78 Pig urine

19 Chroococcus sp. (algal biomass) 79 Piggery wastewater

20 Coconut chips 80 Pig/swine effluent; manure; slurry

21 Coffee grounds 81 Plum stones

22 Corn 82 Potato chips production residues

23 Corn cob mix 83 Potato waste

24 Cornmeal 84 Potatoes

3

Digestate: The Coproduct of Biofuel Production in a Circular Economy, and New Results…
DOI: http://dx.doi.org/10.5772/intechopen.91340



S/N Feedstock S/N Feedstock

25 Corn residue 85 Poultry litter/manure/waste

26 Cover crops 86 Primary sludge

27 Crushed cassava juice 87 Pumpkin waste

28 Dairy manure 88 Rabbit manure

29 Distiller’s waste 89 Rape residue

30 Dried blood of slaughterhouse

waste

90 Restaurant food waste

31 Duck slaughterhouse sludge 91 Rice residues

32 Edible oil 92 Rye

33 Energetic crops 93 Sewage sludge

34 Energy maize 94 Sida Hermaphrodita Rusby silage

35 Fennel waste 95 Slaughterhouse waste

36 Fish by-product 96 Sludge from Slaughterhouse wastewater treatment

plant

37 Food industry residues 97 Solid farmyard manure

38 Food waste 98 Sorghum silage

39 Fruits and distillery by-products 99 Source-separated organic household waste

40 Fruit Marc 100 Source-separated municipal solid waste

41 Garden wastes 101 Starch processing wastewater

42 Glycerin 102 Straws (cereal, pea)

43 Grape seeds 103 Sugar beet pulp

44 Grass (clover, Sudan); grass silage 104 Sugar sorghum (S. saccharatum L. Moench.) silage

45 Green waste 105 Sunflower residue, sunflower silage

46 Hemp 106 Tea leaves

47 Household kitchen waste 107 Tetraselmis sp. (algal biomass)

48 Household waste 108 Thin stillage (bioethanol by-product)

49 Human excreta 109 Triticale

50 Human urine 110 Triticale silage

51 Industrial and commercial wastes 111 Turkey manure

52 Jute Caddis 112 Vegetable waste

53 Kitchen waste 113 Vinasse

54 Landscape waste 114 Waste-activated sludge

55 Ley silage 115 Waste potato starch

56 Livestock waste 116 Wastewater

57 Maize stover 117 Wastewater sludge

58 Medicago sativa L. silage 118 Wheat

59 Milk (serum, whey) 119 Yeast production wastewater

60 Millet 120 Zea mays L. (corn, maize) silage

Source: Assembled from scientific literatures in the public domain, most of them cited in this present work.

Table 1.
Feedstocks used in digestate production and studies.
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properties such as bulk density, hydraulic conductivity, and moisture retention
capacity. Digestate is also attributed with improved sustainability and veterinary
safety; reductions in odors, weed seeds, plant pathogens, food chain contamination
risks and greenhouse gas emissions. The three basic types of digestate are: whole
digestate, liquor (liquid fraction) digestate, and fiber (solid fraction) digestate.
Whole digestate is the digestate as obtained leaving the digester at the end of AD
process. It contains less than 15% dry matter. This whole digestate could be sepa-
rated into liquid and solid fractions using appropriate technology and method. The
liquid fraction constitutes up to 90% of the digestate by volume, contains 2–6% dry
matter, particles <1.2 mm in size, and most of the soluble nitrogen and potassium,
while the solid fraction retains most of the digestate phosphorus, and contains dry
matter content ˃ 15% [9, 10].

However, the quality, safety, and utility of digestate are dependent upon vari-
ables such as feedstock characteristics (pH, chemical composition, carbon-nitrogen
ratio (C/N), particle size), digester process (temperature, inoculum, microbial
community, hydraulic retention time (HRT)), as well as pre- and post-digestion
treatments. Feedstock should possess balanced nutrients, including optimal C/N to
satisfy physiological needs of the microorganisms. High or low C/N would disrupt
biogasification and lead to reduced biogas output due to low buffer capacity (high
C/N) or ammonia inhibition (low C/N). Generally, for biogas production, C/N of
20–30 is considered optimal. For food wastes, C/N of around 15 could be appropri-
ate. Digestates within C/N range of 15–20 are regarded as safe for application to
agricultural land without further treatment [11]. When sole feedstock lacks suffi-
cient nutrients for adequate C/N, feedstocks with complimentary nutrients profile
are co-digested to offset the limitations. Table 1 highlights some feedstocks that
have been used in AD operations and digestate studies.

4. Regulations, quality, and safety requirements

Perhaps the most important variable affecting the quality and safety of digestate
is feedstock. Starting with a high-quality feedstock would virtually guarantee a safe
and quality digestate. Source separation can be used to achieve high purity feed-
stock. The biological, chemical, and physical properties of digestate may be
governed by regulations and quality assurance systems. The European Union (EU)
and many European national governments have hygienic, quality and safety stan-
dards for digestate certification that consider feedstock source and other aspects
such as digester process, treatment options, handling and storage requirements. The
essential quality and safety requirements for digestate destined as biofertilizer must
be achieved regardless of the initial raw material. Essential quality and safety
parameters include nutrients content, dry matter and organic dry matter contents,
homogeneity, pH, purity (free of inorganic impurities such as glass, metal, plastic,
and stones), sanitized and safe for soil organisms and the environment with regards
to biological status (pathogenic organisms) and chemical status (organic and inor-
ganic contaminants/pollutants). Furthermore, the digestate should be free of odor,
phytotoxicity and weed seeds; and be satisfactorily stabilized.

Quality assurance systems for digestate certification may comprise monitoring
to ensure control; standardization to ensure repeatable performance; characteriza-
tion label to identify product fitness; declaration to describe product constituents;
application guidelines to ensure safe and proper use; and documentation to prove
that the product received required treatments following approved protocols.
Table 2 presents established criteria and characteristics for the production and use
of quality and safe digestates. In the EU, conformity with these criteria is enough to
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Criteria Process/parameter Requirements

Hygiene Pasteurization at 70°C 1 h

Sterilization at 133°C 20 min

Weed seeds and sprouting plant parts ≤2/L

Odor Free of annoying odors

Pathogens E. coli ≤1000 CFU/g fresh matter

Salmonella spp. Absent in 25 g fresh matter

Heavy metals Cadmium (Cd) 0.8–20 mg/kg DM

Chromium (Cr) 75–1000 mg/kg DM

Copper (Cu) 75–1000 mg/kg DM

Lead (Pb) 80–900 mg/kg DM

Mercury (Hg) 0.6–16 mg/kg DM

Nickel (Ni) 30–300 mg/kg DM

Zinc (Zn) 300–4000 mg/kg DM

Organic Polycyclic aromatic hydrocarbons 3–6 mg/kg DM

Pollutants Dioxins and furans 20 ng TE/kg

Chlorinated pesticides 0.5 mg/kg Product

Polychlorinated biphenyls 0.2 mg/kg DM

Absorbable organic halogens 500 mg/kg DM

Linear alkylbenzene sulphonates 1300 mg/kg DM

Nonylphenol and nonylphenolethoxylates 10 mg/kg DM

DEPH: Di (2-ethylhexyl) phthalate 50 mg/kg DM

Inorganic Non-stone impurities >2 mm (glass, metal, plastic, etc.) 0.5% m/m dry matter

Pollutants Stones > 5 mm 8% m/m dry matter

Stability Volatile fatty acids 0.43 g COD/g VS

Residual biogas potential 0.25 l/g VS

Respiration rate 16 mg CO2 g VS�1 day�1

Declarations Name of producer, type of product (whole, liquid, solid),

mass of product, total nitrogen, ammonium nitrogen, total

phosphorus, total potassium, soluble chloride, soluble

sodium, dry matter, volatile solids, pH, bulk density, etc.

Relevant units where applicable

(e.g., kg; kg/m3; mg/(kg DM);

mg/L; %;)

Additives and

chemicals

Lime, iron chloride, iron oxide, bentonite, diatomaceous

earth

Feedstock sources Agriculture (e.g., manure, harvesting by-products, silage,

energy crops); animal by-products (e.g., manure, stomach

intestine, raw milk); food industry (residues from food

industry that contain food grade additives); food related

shops (e.g., potatoes, dairy waste, bread, meat remnants,

flowers, plants); forrest (e.g., bark, wood chips, sludge

from the cellulosic industry); parks, gardens (e.g., leaves,

grass); greenhouses (e.g., tops, peat products); households,

kitchens, restaurants (e.g., fruit and vegetables residues,

food, coffee and tea remainders, egg shells); etc.

Source: [9, 12–16].

Table 2.
Quality and safety validation criteria for digestates.
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ensure that digestate complies with European “End of Waste” criteria; and can be
used without further waste management controls.

5. Treatment technology options

In the context of AD and digestate, we may distinguish between pre- and post-
treatment processes. A pretreatment process refers to a processing operation
applied upstream, before the digestate emerges from the digester. This could range
from size reduction or thermochemical treatment of feedstock substrate; to process
management (such as pH, temperature, and retention time control). On the other
hand, a posttreatment process is that processing operation applied downstream of
digestate harvest. This may also involve size reduction, other unit operations;
composting, and end-product requirements that ensure the digestate sanitation.
Post treatment may generate nutrient concentrates, liquid and solid fraction
digestates conditioned to standardized biofertilizers, and final liquid effluent that
could be discharged into a stream or sewage system. Benefits of posttreatment
include enhanced marketability, reductions in handling, storage and transportation
costs/requirements, and compliance with environmental regulations.

Depending on the starting feedstock and desired end product form of the
digestate, similar technologies could be used for pre and post treatment processing.
Applied technologies and methods may be classified as biological, chemical, or
physical. The methods could also be used in combination. Biological treatment
could be accomplished with the use of microorganisms and catalysts; chemical
treatment with acids, alkalis and oxidants; and physical treatment by mechanical
and thermal means. Physicochemical treatment combines physical and chemical
techniques. Ammonia fiber explosion (AFEX), and supercritical CO2 explosion are
examples. The major classifications of treatment options and associated technolo-
gies are presented in Table 3.

Category/

method

Technology option Example means/aids

Biological Bacteria Clostridium sp. strains LDC-8-c12, 5-8, CO6-72;

Rhodobacter sphaeroides KD131;

Thermosaccharolyticum strain M18

Composting Green waste, vine shoot pruning, wood chips

Enzyme Carbohydrase, laccase, lignin peroxidase

Fungi Ceriporia lacerata, Ceriporiopsis subvermispora

(ATCC 96608), Pleurotus ostreatus

Chemical Acids, organosolvs Inorganic acids (hydrochloric, nitric, phosphoric,

sulfuric); organic acids (fumaric, maleic). May be

used in percolation, plug flow, shrinking-bed, batch,

and countercurrent modes

Alkalis Ammonia, lime

Ammonia recovery Ion exchange; scrubbing, stripping, precipitation

(struvite)

Ionic liquids 1-Butyl-3-methylimidazolium hydrogen sulfate

[bmim]HSO4], 1-ethyl-3-methylimidazolium

acetate (EMIM-OAc), 1-ethyl-3-methylimidazolium

diethyl phosphate, 3-allyl-1-methyl-1H-imidazol3-

ium chloride [Amim][Cl]

Oxidants Hydrogen peroxide, ozone
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6. Applications management options for digestate

In the service of circular economy, there are many applications management
options for digestate. These may include algae cultivation, energy production, bio-
adsorbent production, building materials production, nutrients recovery/produc-
tion, soil creation and other value-added commodities. Perhaps the two most widely
recognized utilities of digestate are as land application for soil amendment and as
biofertilizer.

6.1 Biofertilizer and soil amendment

Technological aids used in modern agriculture such as inorganic fertilizers and
antibiotics have negative impacts on soil, water, and air quality and safety, and
therefore pose health risks to humans and the ecosystem. Inorganic fertilizers for
instance have caused environmental and soil quality degradation, eutrophication
and heavy metals pollution. Similarly, field-spreading agricultural land with raw/
untreated manures derived from medicated livestock contributes to dissemination
of veterinary antibiotic residues and antibiotic-resistant pathogens. Lincomycin,
monensin, and sulfamethazine antibiotics were reported to affect soil microbial
community composition and respiration, denitrification and nitrogen transforma-
tions [37]. Applications of digestate for biofertilizer and soil amendment purposes
could ameliorate some of these adverse effects.

Amendment propensity relates to capability to maintain soil fertility and humus
balance. Dairy slurry digestate was found richer in humic substances than raw dairy

Category/

method

Technology option Example means/aids

Physical Mechanical

Dewatering: Centrifuges, gravity tables, presses (belt, filter,

rotary, screw)

Disintegration/maceration

(chipping, grinding, milling,

shredding):

Ball mill, colloid mill, hammer mill, two-roll mill

Extrusion: Band, single screw, twin screw

Homogenization: High pressure homogenizers

Lysis: Lysis-centrifuges

Membrane separation: Electrodialysis, microfiltration, nanofiltration,

pervaporation, reverse osmosis, ultrafiltration

Sonication: Ultrasound/sonoreactors (bath, flat plate, probe,

tube)

Irradiation Electron beam, gamma ray

Thermal Drying/torrefaction, electric heating, evaporation,

hot oil, hot water, hydrothermal, microwave, steam

Physicochemical Expansion/explosion Ammonia fiber expansion/explosion (AFEX), steam

explosion, supercritical carbon dioxide (SC-CO2)

explosion

Source: [10, 15, 17–36].

Table 3.
Major categories of treatment and technology options for AD and digestate processing.
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slurry [38]. Researchers concluded that digestate enhanced soil biological stability,
microbial biomass and enzymatic activities [39].

On the other hand, fertilizer properties relate to provision of nutrients necessary
for good crop performance. Leaves of alfalfa plant fertilized with digestate had
higher contents of N, P, and K in comparison to alfalfa fertilized with mineral
fertilizers [40]. Digestate also produced higher yields of dent corn than the
application of chemical fertilizers [38]; higher yield of potato (Solanum tuberosum)
over the application of compost [41]; and 30% increase in yield over farm yard
manure [42].

6.2 Nutrients recovery

Digestate is applied in recovery of nutrients, production of fertilizers and vola-
tile fatty acids (VFAs). Livestock manure contains about 49 g N/kg TS and 6 g P/kg
TS; energy crops, 17 g N/kg TS and 2.5 g P/kg TS; and agro-wastes, 27 g N/kg TS and
3 g P/kg TS [43]. Much of these nutrients remain in digestate after AD operation.
For example, total N, P, and K values for digestates obtained from wet AD of
agricultural wastes were reported respectively in the ranges 44–120, 8–42, and 28–
95 g/kg DM [44]. These nutrients could be recovered/harvested with the technolo-
gies outlined in Table 3.

VFAs are important input organic acids used extensively in the bioenergy, food,
chemical, cosmetic, pharmaceutical, textile, and other industries. Acetic acid (E
260), propionic acid (E 280) and butyric acid are examples; and are GRAS (gener-
ally regarded as safe) rated by the FDA. Acetic acid is used to defend against
Campylobacter, Escherichia coli, Listeria, Salmonella, and other pathogens in beef,
chicken, pork, turkey, carcasses, skin and hides [45]. Butyric acid is used in the
textile industry to enhance heat and sunlight resistance of fibers. In the food
industry, it is used as additive for flavor formulation and modification [46].
Similarly, propionic acid (E 280) is used as antibacterial and antifungal agent to
decontaminate packaging films and coatings, and to protect meat and meat
products such as sausages, bologna and ham. VFAs have been harvested from
digestates generated from short-term dry AD of swine manure, generated from AD
of food waste, and used in recovery of biological nitrogen and phosphorus from
sewage sludge [47–49].

6.3 Energy production

Digestate can be deployed for energy generation. Recirculating digestate
into the digester maximizes biogas production, at the same time minimizing
methane emissions during digestate storage, transport, and use. Digestate was
pyrolyzed (via the use of Pyroformer, quartz rotary kiln reactor, and thermo-
catalytic reforming reactor) to produce biofuels: pyrolysis oil (biooil) and
pyrolysis gas (syngas). The biooil generated by thermo-catalytic reforming process
at 750°C had a higher heating value of 33.9 MJ/kg, and a total acid number of
4.9 mgKOH/g [50].

Algae have widespread applications and potentials in: biofuels, cosmetics,
biofertilizer, infant formulas, nutritional supplements, livestock feeds,
chemical and allied industries, and biodegradable packaging. Perhaps more
importantly, digestate could be used for the cultivation and production of
microalgae. In the context of biorefinery platform and circular economy,
various compounds produced by microalgae and their applications have been
reported [51, 52].
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6.4 Other applications

Digestates have other utilities and management options. These include applica-
tions in aquaculture, gardening and horticulture, and the production of building
materials and biochar.

6.4.1 Biochar

Biochar (charcoal) is the byproduct of thermal pyrolysis of carbonaceous bio-
mass; and has carbon sink properties. Dairy waste and whole sugar beet digestate
biochar were effective in eliminating heavy metals (Pb2+, Cu2+, Ni2+, and Cd2+)
from aqueous solutions [53].

6.4.2 Gardening and horticulture

Due to its organic origin and physicochemical characteristics, digestate is
useful in gardening and horticulture. It could be applied in soil creation or
remediation, and has found applications in green houses, plant nurseries, and
home gardening [54].

6.4.3 Building materials

A 50% substitution of wood with cattle manure digestate produced particleboard
panels that met ANSI performance requirements [55]. USDA reported that
medium-density fiberboard and wood/plastic composite engineered materials could
be created using digestate solids without compromising mechanical or aesthetic
values [56].

6.4.4 Aquaculture

Digestate is better than raw manure in fertilizing fish ponds. Firstly, digestate is
hygienic because most of the bacteria, parasites and their eggs are destroyed in the
AD process. Thus, pond sanitation is improved; minimizing fish diseases and the
cost of veterinary services. Secondly, the digestate is largely stabilized and therefore
does not consume and compete with fish for dissolved oxygen. Tilapia, Silver carp,
Bighead carp, Silver barb and Mrigal fish species raised in pond fertilized with
digestate matured faster and achieved higher net weight gain than counterparts
raised in pond fertilized with chemical fertilizer or raw manure. By comparison,
while chemical fertilizer increased net yield over raw manure by 27%, digestate
increased net yield by 55% [57].

6.4.5 Bio-adsorbents and bedding

Digestates have been applied as bio-adsorbents to scavenge heavy metals from
contaminated soils and water [58], and as chicken litter [54], and other livestock
bedding. [56, 59].

7. Cost implications

The big picture cost elements relevant to AD systems include land acquisition,
site preparation/development, plant and machinery (including digester/reactor, pre
and post treatment technologies), personnel, feedstock, environmental impact,
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other operating costs (electricity, logistics, regulations), and revenue from products
(biogas and digestate). In the case of digestate, feedstock, treatment processes, and
the logistics of storage, transport, handling and field application bear crucial con-
cerns. Cost-effective digestate production process is presaged by efficient feedstock
collection and sorting operations. A cost benefit analysis of municipal solid waste
management system in Yangon, Myanmar, identified weak organizational structure
and ineffective collection methods in the existing system that operated with just
32% waste collection efficiency. An alternative system with increased waste collec-
tion efficiency was then proposed. The new system required labor and vehicular
productivity; using vehicles with container-hoist handling mechanism. The new
system reduced operating and other costs associated with the old system by up to
42% [60]. It is noteworthy that consumer and public environmental behavior and
cooperation on waste management could be modified by pecuniary and
nonpecuniary information. In Surabaya city, Indonesia, researchers found that in
the reference case in which the no information treatment was applied, mean WTP
(willingness to pay) for marginal improvements in a waste collection and disposal
program was estimated to be US$ 14.65. The researchers reported that pecuniary
information increased WTP by 20.5%, whereas non-pecuniary information had a
negative but statistically insignificant effect on WTP [61].

A situation where 50% of whole unprocessed digestate was applied on agricul-
tural land near the generating biogas plant and the other 50% transported to a
location 20 km away was studied. Cost for digestate utilization near the biogas plant
was € 3.34 (US$ 3.73)/t, and that at a location 20 km away was € 5.47 (US$ 6.10)/t
[62]. This study highlights the impact that location or site of digestate utilization
could have on cost. Such distance related cost also applies to feedstock substrate.
Generally, the farther the distance, the higher the cost.

Researchers performed specific cost analysis for six scenarios that involved
direct land application of digestate as reference, and various treatment technology
options that included screw press and decanter centrifuge separation, belt drying,
evaporation concentration, purification by ultrafiltration and reverse osmosis, and
nutrients recovery by ammonia stripping and precipitation. Result indicated that
net specific costs ranged from € 1.94 (US$ 2.16)/m3 of digestate for the reference
scenario, to € 5.45 (US$ 6.08)/m3 for stripping, to € 6.80 (US$ 7.58)/m3 for belt
dryer [62]. Similarly, the costs of AD were found to vary up to € 109 (US$ 122)/t of
digestate from € 35 (US$ 39)/t for basic storage of digestate for aerobic condition-
ing, to € 70 (US$ 78)/t for digestate ready for direct land application, to € 79 (US$
88)/t for on farm co-digestion [63].

Case studies were conducted for separation systems in three regions (Aachen,
Borken, and Siegen) of Germany. The researchers determined that investment and
variable costs were respectively € 23,000 (US$ 25,536) and € 0.47 (US$ 0.52)/m3 for
screw press; € 27,000 (US$ 29,977) and € 0.48 (US$ 0.53)/m3 for screening drum
press; and € 163,000 (US$ 180,970) and € 1.46 (US$ 1.62)/m3 for decanter centri-
fuge. Further analysis revealed the unit cost of digestate disposal for screening drum
press varied from € 4.1 (US$ 4.6)/m3 in Aachen to € 4.8 (US$ 5.3)/m3 in Borken,
and Siegen [64].

The following were reported about AD in the UK. Least cost post treatment
technology for digestate derived from a 10% solids content food waste was biolog-
ical oxidation at £13.18 (US$ 16.97)/t of feedstock. At 20% solids content, least cost
option was direct application of whole digestate to agricultural land at £8.76 (US$
11.28)/t. The cost of treating 4000 t of slurry with a mechanical screen separator
was £0.44 (US$ 0.57)/t per year, and treatment with decanting centrifuge cost £2.21
(US$ 2.85)/t per year. Furthermore, about £3.5M (US$ 4.5 M) would be required to
construct a 1 (one) MWe AD plant utilizing farm wastes as feedstock [65–67].
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In the continent of Africa, cost of establishing a 4 m3 anaerobic digester was
found to range from US$ 555 in Uganda to US$ 698 in Cameroun to US$ 979 in
Rwanda [68]; while that of founding a family size floating drum plant was esti-
mated at US$ 1667 [69].

Techno-economic analyses were performed for post treatment technologies used
to recover nutrients from the digestates of five full scale farm AD systems. Results
showed membrane technology had specific cost of € 6.97 (US$ 7.72)/m3 of treated
digestate. Drying was estimated at € 5.81 (US$ 6.44)/m3, while stripping operated at
€ 5.44 (US$ 6.03)/m3 [70]. In addition, the process economics of membrane-based
nutrients extraction and fractionation from dairy manure digestate indicated cost of
solid-liquid separation unit to be US$ 11,000; the microfiltration extraction unit
cost US$ 30,000; the nanofiltration fractionation unit was priced at US$ 60,000;
and the daily cost of operation (chemicals, energy and water) was approximately
US$ 24 [71].

Finally, digestates are used as quilt for cattle bedding and poultry litter due to
significant cost offsets to livestock farms. The cost of solid digestate as animal
bedding (US$ 55 per dry ton) is cheaper than the cost of alternative wood-based
replacement materials such as wood chips at US$ 65 per dry ton or sawdust and
shavings at US$ 124 to US$ 248 per tonne [55, 59].

8. Challenges and opportunities

Digestates have good fertilizer qualities: nutrients, safety and other properties
required for soil amendment and plants production. However, relative to mineral
fertilizers, digestates are not well known in many countries. Therefore, their
potential as mineral fertilizer alternative/substitute is limited. Perhaps, standard-
ized quality assurance and control protocols, regulations, certifications, legal and
other institutional management systems organized internationally could help dem-
onstrate digestates’ benefits, quality and safety, and thereby engender confidence in
their utilization as sustainable fertilizer and soil amendment products. Reconciling
and bringing such issues and their benefits to existence present challenges and
opportunities. Presented in Table 4 are some of these challenges and opportunities
of the waste, AD and digestate system.

Issues Challenges and opportunities

8.1. Concept of waste Challenge: the conventional or customary status of looking at

waste as a problem presents significant challenge.

Opportunity: seeing waste as potential resource would help

change perception and attitude, possibly stimulating salient

management options. Opportunities may emerge in the areas of

prevention, recovery, collection, sorting, reducing, reusing, and

recycling. For developing countries these have implications for

environmental hygiene and sanitation.

8.2. Biowaste Challenge: because biodegradable waste could be a source of

heavy metals and polluting organic compounds, it presents

challenges to life generally, and to the environment.

Opportunity: these challenges create opportunities to develop

management options (e.g., biological treatments) to protect life,

environment, and to benefit agriculture and ecosystem. Biowaste

is reported to have potential to tackle climate change in the areas

of nitrous oxide (NO2) emissions mitigation, and sequestration

capacity of agricultural soils [72].
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Issues Challenges and opportunities

8.3. E-waste Challenge: problems and dangers of e-waste, heavy industry

products and components; including electrical and electronic

equipment, waste batteries, engine blocks, paint, etc.

Opportunity: guidance/support for the informal (non or loosely

regulated) establishments, to call attention to dangers and health

risks that may be associated with used or discarded electronic

devices/items (acids, other chemicals, radioactive materials,

etc.).

8.4. Mineral waste Challenge: mining of solid minerals do present health and

environmental challenges.

Opportunity: chances to implement safeguards for hazardous

minerals and to divert safe wastes to beneficial applications.

Examples are uses as substitute for backfill material in open pit

mining, landfill, or as grit in construction materials. Production

of concrete and brick for structural work (bridges, dams, launch

pads, highways) are possibilities.

8.5. Source of feedstock Challenge: the source of digestate feedstock and its treatment

could present barriers. PAS 110 in the UK does not approve

certification for digestate generated from mechanically

biologically treated waste. Such digestates require proof of

biodegradability test to be considered suitable for recycling; like

land spreading. There is also the issue of digestate originating

from co-digestion of industrial waste and household waste. In the

Netherlands, the desire in AD electricity regime to maximize

biogas production by mixing manure with other organic material

conflicts with AD biofertilizer rules for spreading digestate from

co-digested manure on farm land.

Opportunity: some of these challenges are consumer-induced

barriers and lack quantitative elements. Opportunities might lie

in the sociocultural realm, such as modifying social and cultural

attitudes and behaviors towards waste and its inherent

heterogeneity.

8.6. Unrecovered organic matter Challenge: AD is more adapted to easily putrescible

carbohydrates (starch, sugar). Recalcitrant lignocellulosic

components (lignin, etc.) remain undigested. Efficiency of

organic matter conversion was quite low as ˃97% of lignin in

maize stover was found undigested [73]. AD could thus lead to

unrecovered organic matter still present in digestate

Opportunity: prospects for advanced and innovative

pretreatment technologies to fractionate, recover, purify and

convert lignin or other recalcitrant organics to more digestible

biopolymers. Alkaline treatment, gamma irradiation, membrane

technologies, organosolv, steam explosion, wet oxidation, etc.

may come to the rescue (Table 3).

8.7. Informal and low status Challenge: AD and digestate are perceived to be in domain of

informal waste management system and service; and therefore,

relegated as only appropriate for the rural populace.

Opportunity: integration of formal and informal systems.

Training to abate misconceptions, lack of awareness, and raise

public profile of digestate. These may purge image of biogas and

digestate as products that are derived from wastes, and hence

belong to poor/rural settings.

8.8. Legal barriers Challenge: lack of binding global (and for developing countries,

own country) coherent rules, laws, directives, regulations and

policy frameworks.

Opportunity: the formulation of these guidelines and laws on

waste governance system. Implementing appropriate

technologies and business models for waste management.
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Issues Challenges and opportunities

8.9. Data and waste reporting

system

Challenge: lack of reliable data on waste management systems,

design features, standard operating procedures (SOPs), etc. could

limit exchange of ideas and retard progress.

Opportunity: waste management value chain information is vital.

Quantity, type, economic sector, source, and composition data

could guide prioritization of strategies and enable trends forecast

that deliver better outcomes. Global exchange of briefs would

catalyze spread of best practices.

8.10. Standardization Challenge: although digestate products have similar

characteristics as commercial chemical fertilizers, they are not

classified in any way, are poorly developed in most countries, and

there is no overall guidance [20, 62, 70]. These barriers restrict

utilization and trade.

Opportunity: these challenges create opportunities to establish

frameworks that enable digestate utilization through

standardization, fair comparison, commerce development, and

international trade.

8.11. Marketing Challenge: regional nutrient availability, agricultural structure,

season, feedstock and degree of upgrading have been reported to

challenge and impact digestate prices and marketing [54].

Opportunity: upgraded products offer increased marketability

due to their denser nutrients. Marketing to nutrient deficient

regions, non-agricultural sectors and purposes represent

prospects. Manufacturers of organic soils, particle- and fiber-

boards, landscapers, and private customers all represent credible

market outlets.

8.12. Cost barrier Challenge: initial investment fund is a major issue. Cost of

establishing a 4 m3 AD digester in the continent of Africa ranges

from US$ 555 to US$ 979 [68]; and the price for a family size

floating drum reactor was reported at US$ 1667 [69]. In Sri

Lanka, a family unit digester generating 6–10 m3 of biogas per

day cost Rs. 17,000 (US$ 5459); and described as difficult

proposition for low-income families [74]. In the UK, a 1 MWe AD

plant utilizing farm wastes as feedstock cost about £3.5M (US$

4.5 M) to construct [67]. Also, costs associated with animal

breeding and maintenance (veterinary care, feed, water, etc.)

escalate operating costs, and constrain availability of manure for

feedstock.

Opportunity: easing cost barriers would require support with

appropriate and necessary interventions (policies, credit

facilities, subsidy schemes, preventive maintenance that promote

solutions, prolong facilities productive lifespan, and minimize

operating costs). Furthermore, transparency on proposals and

bidding for new plants and projects could build confidence in the

process.

8.13. Urban and rural dichotomy Challenge: differences between metropolitan, urban, sub-urban,

and rural areas can compromise AD projects. Segregation by

infrastructure and income for example could affect waste

collection and limit access to feedstock.

Opportunity: prospects for rural development with public

utilities, services, and infrastructure (roads, power, water, etc.)

These would facilitate logistics for waste collection, AD

processes, and digestate handling/evacuation.

8.14. Contamination of agricultural

land

Challenge: most of the digestate produced in AD is used for soil

amendment and as biofertilizer. There are risks of spreading

animal pathogens, heavy metals, and other pollutants on soils due

to the presence of these hazards in animal by-products used in

AD. Sulfadiazine and oxytetracycline are antibiotics found in
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Issues Challenges and opportunities

manure of medicated animals that affect soil quality. Twenty five

percent of 70 digestate and compost samples assessed in

Switzerland contained polycyclic aromatic hydrocarbons (PAHs)

concentrations beyond the regulated threshold value of

4000 μg/kgdw [75].

Opportunity: digestate is a sustainable fertilizer and soil

improver; thus, necessary to assure its safety. The potential to

contaminate soils with pollutants from digestate application

beacons vigilance and chances to develop technical and

monitoring strategies that sequester and purge the digestates of

polluting hazards before their use.

8.15. Air pollution Challenge: digestate has potential to emit substances and gasses

that contaminate the air and influence global warming [11].

Challenges also exist due to lack of practical tools to monitor

primary air pollutants [76].

Opportunity: advanced methods of digestate management and

reutilization to minimize emissions of air pollutants (ammonia:

NH3, nitrous oxide: NO2) and greenhouse gases (methane: CH4,

nitrogen dioxide: N2O). Strategies may include processing

(composting, curing, dewatering); alternative applications (in

construction, aquaculture, regeneration activities); and storage.

Development of software tools that enable quantitative

monitoring of emissions from digestate soil applications on a

routine basis is another prospect area.

8.16. Bad odors Challenge: compared to raw manure slurry, digestate has fewer

bad odors. However, this may not be true when compared to

chemical fertilizer. There have been complaints of nuisance odors

associated with land-spreading of digestate [77], and at landfills

and composting plants [78].

Opportunity: this problem could be due to spreading practice

and/or the spreading of unstable digestates. Application of good

timing and spreading techniques (trailing-shoes, injection), and

use of stabilized digestates (sufficient HRT, aerobic composting)

would minimize odor issues.

8.17. Bad legacies Challenge: there are challenges associated with bad reputation of

AD systems and biogas plants around the world. A study in 2006

found that 60% of 600–700 domestic biogas plants in Ethiopia

was not functioning [79]. During the 7 years period from 2009,

more than 3600 biogas plants were installed in the Tigray region

of Ethiopia; and a 2017 study reported that 58.1% of the

installations was not operational [80]. The 21 biogas plants

installed by Pakistan council for appropriate technology (PCAT)

in the 1970s were reported to have failed to perform [81]. In

1986, a survey of the status of 25 biogas plants in Kenya found

36% to be alive, functional and maintained. Another 36% was

described as dead, not functional, and not maintained.

Unfinished projects accounted for 8%; while remaining plants

were reported in disrepair, with varied patterns of being alive,

dead, not functional, and not maintained [82]. The regional

bioenergy program of the Latin American energy organization

(OLADE), catalogs biogas technology projects in Latin American

countries. Experience began in 1953 and by 1986 at least 22

countries including Bolivia, Colombia, Costa Rica, Dominican

Republic, Ecuador, Grenada, Guatemala, Guyana, Haiti,

Honduras, Nicaragua, Jamaica, and Peru had projects at varying

levels of implementation. Out of the 3950 biodigesters

inventoried, 60% was found operable and 40% was either shut

down or functioning irregularly or completely abandoned [83].

Though China rebounded and emerged as a major reference on
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household digesters, about 50% of biogas tanks installed from

1958 into the 1970s were abandoned in the 1980s. By 1988 the

seven million rural digesters existing in 1980 dropped to 4.7

million [84]. In 1986, a survey of biogas plants in Sri Lanka

indicated that 61% was functional. By 1996 only 28.5% of

completely surveyed 365 biogas systems was reported functional.

At this point 16 units had been abandoned and the success rate

for biogas systems implementation was reported as 32.9% [74]. In

the Netherlands, for a period of over 30 years beginning in the

1970s, many AD projects using biomass were considerably

delayed, suspended, abandoned and out rightly never realized.

[85, 86]. These failures and circumstances taken together

portrayed negative images and bad legacies for biogas plants.

Opportunity: reasons adduced for failures included economic,

social, technical, and policy components such as high investment

and maintenance costs, urbanization and socio-cultural

constraints, poor dissemination strategy, complicated permit

regulations, shortage of feedstocks, lack of or inadequate

training, poor digester design, etc. These reasons provide

opportunities to create circumstances, provisions and tools that

would promote and sustain biogas systems. Some examples are

mobilization of local and external funds, more business-friendly

policies and rules, appropriate and sustainable technologies,

technical training, warranties for plant performance. Also, public

dissemination of information and follow-up on successful

programs could help.

8.18. Low diffusion rate Challenge: in Latin America, the number of rural biogas plants

installed yearly from mid-1985 to 1992 was less than 15% of that

installed from 1982 to mid-1985. Challenges included technology

adoption, technical manpower and materials of construction.

However, non-technical reasons for biogas adoption failures

accounted for up to 69%, 50% and 25%, respectively, in Cote

d’Ivoire (Ivory Coast), Costa Rica and Tanzania [84]. Unstable

institutional environment, lack of network and lobby activities,

lack of initiatives between academia, research institutes, private

sector entrepreneurs and stakeholders were cited nontechnical

reasons. For the Netherlands, apart from technological problems;

limited economic feasibility, fragmented support from the

government, decreases in energy prices, and lack of financial

support which made return on investment uncertain contributed

to inadequate AD diffusion.

Opportunity: cooperation between academia, government,

industry and other stakeholders (farmers, energy sector,

municipalities). Cooperative efforts that landed mutually

beneficial outcomes should be highlighted, applauded and

replicated. Well planned long-term, clear and supportive

arrangements would facilitate continuity. Government policy

that guide search for solutions, market formation and resources

mobilization. Ease of technology adoption would also require

reliable and sustainable infrastructure (technical assistance,

manpower, cohesive farming approach with biogas and digestate,

integration and dissemination of societal and cultural values and

norms).

8.19. Inhibition of microalgae Challenge: it has been shown that the green alga (Raphidocelis

subcapitata) is sensitive to digestate, with ecotoxicity index; EC50

of 0.77% [87]. Similarly, Scenedesmus bijuga; and oil-rich Chlorella

sp., including C. minutissima and C. sorokiniana were found

sensitive to digestate. Also, the dark color of liquid digestate of

algal biomass inhibited the growth of Chroococcus sp. Therefore,

cultivation of algae for value added products recovery could be
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9. Cassava peeling residue (CPR) digestate

N, P, and K are critical macro nutrients for crops production. N is considered the
limiting nutrient in growth and yield [89]. P is required for energy transfer, signal
transduction, photosynthesis, and macromolecular respiration [90]. K is responsible
for metabolism of cell division, enzymatic reactions of amide formation, and amino
acid activation during proteins biosynthesis and substrate phosphorylation [91]. To
be a credible mineral fertilizer substitute, digestate must have the capacity to
deliver the necessities and requirements of N, P, and K.

Table 1 presented a broad gamut of materials used in biogas and digestate
creation. The table covered energy crops, agricultural byproducts, food processing
residues, livestock effluents, organic fraction of municipal solid wastes, and phar-
maceutical industry sludge. However, cassava peeling residue (CPR) was not

Issues Challenges and opportunities

minimized in the presence of digestate.

Opportunity: because algae are exploited for biofuels, and various

other useful biotechnological metabolites production by

valorization of digestate, the inhibitory effect of digestate on

algae cultivation is of practical interest. Therefore, digestate

pretreatment or at least its dilution before use [88], would aid

good algal productivity.

8.20. Nomadic and free-range

culture

Challenge: many developing nations have nomadic animal

husbandry architecture and free-range culture. These make the

gathering of animal manure as feedstock for digesters a major

challenge. In Pakistan, for example, livestock farmers from time

to time relocate to weather conditions more benign to their

livestock. However, current digester designs used by rural

populations such as the fixed dome and floating drum are

sedentary and cannot be readily moved by the farmers with their

livestock.

Opportunity: perhaps this challenge creates opportunity for a

mobile biogas system such as the portable biogas plant reported

in the year 2016 [81].

8.21. Disparity between developed

and developing countries

Challenge: the economic, political and technological mismatches

and divides between industrialized and industrially developing

countries are challenging local, regional and international waste

management systems. Environmental and health dangers do not

know or respect boundaries (local, regional, or international) by

land, sea, air or space. Planet earth is perhaps at the cusp of the

axiomatic global village and economy. Sooner than later,

pollution and instability at one corner of the earth would

reverberate and affect other parts (Plastics in the oceans? Heavy

metals in food, aquatic and terrestrial biota? Ebola in America?

Flood events in Zimbabwe, Mozambique, Puerto Rico and U.S.

Virgin Islands? Wildfires in Australia, Brazil, Portugal and USA?

Coronavirus (COVID–19) in Japan, Singapore, and USA?).

Opportunity: cooperation and support are needed to enable

developing nations to leapfrog and shorten the learning curve and

development timescales. Developing nations need guidance and

assistance to cope with technological demands and challenges,

and eschew reinventing the wheel. Waste management offers an

opportunity for cooperation among nations for the betterment of

humanity and planet earth.

Table 4.
Challenges and opportunities of the waste, AD and digestate system.
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represented in the table. There is a published report on ammonium, potassium, total
nitrogen, and total phosphorus contents of digestate generated from co-digestion of
human urine, cow dung, and cassava effluent (a mixture of peeled cassava wash
water and crushed cassava juice) [92]. CPR is a solid substrate abundantly gener-
ated during production of cassava root-based food systems such as gari and starch
[93]. The present author is not aware of any report on nutrients value of digestate
generated from the AD of CPR as sole feedstock. Therefore, a technical experiment
was conducted to secure an overview assessment of N, P, and K compositions of
liquid fraction of CPR digestate.

Some results of the research work on CPR as sole substrate for AD were reported
earlier. These included proximate properties (e.g., moisture content, total solids,
volatile solids), digester performance characteristics (methane content of biogas,
pH, discharge effluent COD), feedstock materials, sampling procedures, analyses
[94]. Presented in Table 5 are results of nutrient values of liquid fraction of CPR
digestate. Table 5 results appear to be within the range of some published nutrients
values for liquid digestates derived from other feedstocks such as algal biomass
(Chroococcus sp.) [88], starch processing wastewater [95], source separated house-
hold waste [96], as well as liquid and solid manure slurries [97].

10. Conclusions

Cassava (Manihot esculenta Crantz) is perhaps third largest source of food
energy for humans. Cassava supports the nutrition and subsistence of up to one
billion persons in over 100 countries. Also, cassava is gluten free and could thus
assuage medical complications for individuals with celiac disease. Cassava root
processing byproduct such as CPR has organic matter content with applications in
biogas and digestate production. This is a welcome development in views of
biorefinery platform and the emergent circular economy. CPR digestate may be
applied directly for agronomic uses or treated to generate products with varied
applications and utilities. Treatment technologies may be biological, chemical,
physical, or some combinations. Global benefits would include carbon sequestra-
tion, energy recovery, resource sustainability and recycling, waste reduction, prof-
itability of AD process, biogas facilities, and agricultural systems in general. End
effects of climate change mitigation, enhanced energy and food security, environ-
mental and ecological protection, and sustainable development are good news for
humanity and planet earth. These outcomes should motivate and provide con-
sumers, farmers, regulators, managers, and other stakeholders in the emergent
circular economy with insights to integrate and apply quality, safety, marketing,
handling, storage, transportation, compliance with environmental regulations, and
cost considerations and requirements strategies for digestate; into a renewable and
sustainable energy production and waste management system.

S/N Nutrient Value [mg/L]

1 Ammonia nitrogen 561

2 Ortho-phosphorus 20

3 Potassium 1066

4 Total Kjeldahl nitrogen 573

5 Total phosphorus 31

Table 5.
Nutrients values of liquid fraction of cassava peeling residue (CPR) digestate.
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