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Chapter

Hybrid Ion Exchangers
Amita Somya

Abstract

Hybrid ion exchangers are of recent origin in the field of ion exchange chemistry. 
They have shown excellent chemical, mechanical and thermal stability conversant to 
both organic and inorganic counterparts. Very recently, new classes of ion exchangers 
have been studied by combining surfactants and inorganic metal phosphates. This 
article highlights the salient features of metal phosphates as ion exchangers, various 
development stages with the modifications, with an emphasis on the recent develop-
ments in the field of analytical chemistry, particularly surfactant-based hybrid fibrous 
and non-fibrous metal phosphates as ion exchangers. Surfactants or surface-active 
agents when present in the matrix of inorganic metal phosphates not only enhance 
their ion-exchange capacity but, also the selective adsorption of metal ions. Therefore, 
these materials are of great importance in industrial and environmental applications.

Keywords: hybrid ion exchangers, stability, surfactants, metal phosphates, inorganic 
metal phosphates

1. Introduction

Analytical chemistry, broadly conceived, underlines and contributes to almost all 
branches of chemistry as an experimental science. It plays an important role in nearly 
all aspects of chemistry, such as, agricultural, clinical, environmental, forensic, 
manufacturing, metallurgical and pharmaceutical chemistry. The goal of a chemical 
analysis is to provide information about the composition of a sample of matter.

The discipline of analytical chemistry consists of qualitative and quantitative 
analyses. The former deals with the identification of elements, ions or compounds 
present in a sample, while the latter deals with the determination of how much of one 
or more constituents is present; whether the sample is solid, liquid, gas or a mix-
ture. Analytical methods are ordinarily classified according to the property that is 
observed in the final measurement process. Some more important of these properties 
as well as the names of the methods based upon these properties are given in Table 1.

Prior to chemical analysis, separations are extremely important in analytical 
chemistry. The aim of an analytical separation is, usually, to eliminate or reduce 
interferences so that quantitative analytical information can be obtained about 
complex mixtures. There is a variety of separation methods that are in common use, 
including precipitation, distillation, solvent extraction, crystallization, dialysis, 
ion-exchange, chromatography, electrophoresis, field flow fractionation etc.

Of all the different types of separation methods, chromatography has the unique 
position of being applicable to all types of problems in all branches of science. This 
technique provides a very efficient method for the identification, separation, determi-
nation and purification of chemical compounds. It has undergone explosive growth in 
the last 30–40 years. The chromatographic technique was first invented by a Russian 
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botanist Mikhil Tswett in 1906, at the University of Warsaw. He coined the term 
‘Chromatography’ from the Greek words ‘Chromatos’ and ‘graphy’ which mean ‘color’ 
and ‘to write’ respectively. The International Union of Pure and Applied Chemists 
(IUPAC) has drafted a recommended definition of chromatography: ’Chromatography 
is a physical method of separation in which the components to be separated are distrib-
uted between two phases, one of which is a stationary phase, while the other is a mobile 
phase’ [1]. Since its discovery, this technique has undergone tremendous modifications 
and nowadays various types of chromatographic techniques have been developed for 
separating almost any kind of given mixture, whether coloured or colourless into its 
constituents and to test the purity of these constituents. The applications of chroma-
tography have extensively been used in the last 50 years, owing not only to the develop-
ment of several new types of chromatographic techniques, but also due to the growing 
needs of the scientists for better methods of separating the complex mixtures or metal 
ions [2]. The different chromatographic methods are summarized in Table 2.

Out of these several chromatographic methods, ion-exchange has gained great 
attention by analysts in practice. The phenomenon of ion-exchange is not of recent 
origin. It has an interesting historical background. Various time spans may be 
identified for the development of ion-exchange technique. Figure 1 summarizes the 
various stages of the development of ion exchangers and sorbents.

Initially, the ion exchangers were mostly used for water softening, but later on 
they were widely employed in various fields such as syntheses and some prepara-
tive works. The use of ion exchangers provided the new methods for analysts, 
which not only met the requirements of modern laboratories but also led to the 
solution of previously insolvable problems. Thus, the ion-exchange process has 
been established as an analytical tool in laboratories and industries. An interest 

S.N. Technique Property measured Principal areas of 

application

1. Gravimetry Weight of pure analyte 

or compound of known 

stoichiometry

Quantitative for major or 

minor components

2. Titrimetry Volume of standard reagent 

solution reacting with the analyte

Quantitative for major or 

minor components

3. Atomic and molecular 

spectrometry

Wavelength and intensity of 

electromagnetic radiation emitted 

or absorbed by the analyte

Qualitative, quantitative or 

structural for major down to 

trace level components

4. Mass spectrometry Mass of analyte or fragments of it Qualitative or structural for 

major down to trace level 

components isotope ratio

5. Chromatography and 

electrophoresis

Various physico-chemical 

properties of separated analytes

Qualitative and quantitative 

separations of mixtures at 

major to trace levels

6. Thermal analysis Chemical/physical changes in the 

analyte when heated or cooled

Characterization of single 

or mixed major/minor 

components

7. Electro-chemical 

analysis

Electrical properties of the analyte 

in solution

Qualitative and quantitative 

for major to trace level 

components

8. Radiochemical analysis Characteristic ionizing nuclear 

radiation emitted by the analyte

Qualitative and quantitative 

at major to trace levels

Table 1. 
Analytical techniques and principal applications.
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in ion-exchange operations in industries is increasing day by day as their field of 
applications is expanding and today, it is an extremely valuable supplement to other 
procedures such as filtration, distillation and adsorption. All over the world, various 
plants are in operation, accomplishing tasks that range from the recovery of metals 
from industrial wastes to the separation of rare earths, and from catalysis of organic 
reactions to decontamination of water in cooling systems of nuclear reactors.

2. Ion exchangers

Ion exchangers are insoluble solid materials or immiscible liquids (in case of liq-
uid ion exchangers) containing exchangeable ions. These ions can be exchanged for 
a stoichiometrically equivalent amount of other ions of the same sign on contacting 
with an electrolyte solution. Depending upon their ability of exchanging cations, 
anions or both, the ion exchangers may be categorized as ‘cation’, ‘anion’ or ‘ampho-
teric’ ion exchangers, respectively. A cation exchanger comprises a matrix with 
negative charge while an anion exchanger comprises a matrix with positive charge. 
The negative or positive charge on the matrix is compensated by the oppositely 
charged counter ions, which are mobile in nature. A typical ion-exchange reaction 
may be represented as follows:

S.N. Technique Stationary 

phase

Mobile 

phase

Format Principal 

sorption 

mechanism

1. Paper chromatography 

(PC)

Cellulose-

water 

complex

Liquid Planar Partition 

(adsorption, 

ion-exchange, 

exclusion)

2. Thin layer 

chromatography (TLC)

Silica, 

cellulose, 

ion-exchange 

resin, 

controlled 

porosity solid

Liquid Planar Adsorption 

(partition, 

ion-exchange, 

exclusion)

3. Gas-liquid 

chromatography (GLC)

Liquid Gas Column Partition

4. Gas-solid 

chromatography (GSC)

Solid Gas Column Adsorption

5. High-performance liquid 

chromatography (HPLC)

Solid or 

bonded phase

Liquid Column Modified 

partition 

(adsorption)

6. Size-exclusion 

chromatography (SEC)

Controlled 

porosity solid

Liquid Column Exclusion

7. Ion-exchange 

chromatography (IEC)

Ion-exchange 

resin or 

bonded-phase

Liquid Column Ion-exchange

8. Ion chromatography (IC) Ion-exchange 

resin or 

bonded-phase

Liquid Column Ion-exchange

9. Chiral chromatography 

(CC)

Solid chiral 

selector

Liquid Column Selective 

adsorption

Table 2. 
A classification of the principal chromatographic techniques.
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  (1)

where ‘A’ and ‘B’ are the replaceable counter ions, ‘R’ is the structural unit 
(matrix) of the ion exchanger and ‘aq’ stands for the aqueous phase. This process is 
reversible, that is, it can be reversed by suitably changing the concentration of the 
ions in solution.

The actual utility of an ion exchanger depends chiefly on its ion-exchange 
characteristics such as ion-exchange capacity, pH-titration, concentration, elution 
and distribution behaviour. The ion-exchange capacity depends on hydrated ionic 
radii and selectivity. The selectivity of any ion exchanger, in turn, is influenced by 
the nature of its functional group and degree of its cross linking. Ion exchangers, 
having groups that are capable of complex formation with some particular ions, 
will adsorb these ions more strongly. As the degree of cross linking increases, the 
exchanger becomes more selective towards ions of different sizes. The elution of 

Figure 1. 
Stages of development of ion exchangers and sorbents.
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H+ ions from a column of ion exchanger depends on the concentration of the eluant 
while an optimum concentration of the eluant, necessary for maximum elution of 
H+ ions, depends on the nature of ionogenic groups present in the exchanger, which 
depends upon the pKa values of the acids used in preparation. The efficiency of an 
ion exchanger depends on the following fundamental exchange reactions:

• Equivalence of exchange.

• Selectivity for one ion relative to another, including the cases in which the 
varying affinities of the ions are modified by the use of complexing and chelat-
ing agents.

• Donnan exclusion—the ability to exclude ions but not, in general, undissoci-
ated substances.

• Screening effect—the inability of very large ions or polymers to be adsorbed to 
an appreciable extent.

• Differences in migration rates of adsorbed substances down a column—pri-
marily a reflection of differences in affinity.

• Ionic mobility restricted to the exchangeable ions and counter ions only.

• Miscellaneous properties—swelling, surface area and other mechanical 
properties.

On the basis of the nature of matrix, an ion exchanger may be ‘organic’ or 
‘inorganic’ in nature.

2.1 Organic ion exchangers

Organic ion exchangers, commonly known as ‘ion-exchange resins’, are well 
known for their uniformity, chemical and mechanical stability and for the easy 
control over their ion-exchange property through synthetic methods. Organic 
resins have wide applications in analytical chemistry because of their high stability 
in the wide range of pH and reproducibility in the results, but their instability under 
the conditions of high temperature and strong radiation led to a major switch for 
the development of inorganic ion-exchange materials. The matrix of inorganic ion 
exchanger is more reactive than that of organic resins and hence, the selectivity 
for the metal ion depends both on adsorption characteristics of the matrix and the 
nature of the ionogenic groups attached to the matrix.

2.2 Inorganic ion exchangers

Inorganic ion exchangers are capable of being stable at elevated temperatures 
and in the presence of strong radiations and, hence, they have wide-ranging 
applications in nuclear researches such as radioisotope separations, nuclear waste 
treatments etc. They are used in the determination and detection of metals in 
pharmaceutical and biological products, analysis of alloys and rocks, as ion selective 
electrodes, as packing materials in ion-exchange chromatography and as catalysts. 
They also find applications in environmental analysis [3]. The widespread impor-
tance of inorganic ion exchangers in practical applications, and scientific interest 
in their nature and properties, has precipitated a wealth of published literature on 
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the subject. Good starting points for further basic information are classic books 
like those of Clearfield [4], Amphlett [5] and Qureshi and Varshney [6]. These 
books have provided a complete picture and thorough insight into this field and 
widespread importance of inorganic ion exchangers. Important advances in this 
field have been reviewed by a number of workers/researchers at various stages 
of its development, such as Fuller [7], Qureshi et al. [8], Vesely and Pekarek [9], 
Clearfield [10, 11], Alberti et al. [12, 13], Alberti and Costantino [13], Marinsky 
[14], Varshney [15–20], Ivanov [21] and Terres-Rojas [22]. Dyer [23–25] has dealt 
with the theories involved zeolite molecular sieves, which have principles underly-
ing the inorganic ion exchangers. Alberti (Itly) and Clearfield (USA) devoted most 
of their studies on the crystalline inorganic ion exchangers.

Inorganic ion exchangers are generally the oxides, hydroxides and insoluble 
acid salts of polyvalent metals, heteropolyacid salts and insoluble metal fer-
rocyanides. These materials are generally produced by combining the oxides of 
elements of III, IV, V and VI groups of the periodic table. A large number of such 
materials have been synthesized by mixing phosphoric, arsenic, molybdic, anti-
monic and vanadic acids with titanium, zirconium, tin, thorium, cerium, iron, 
antimony, chromium, niobium, tantalum, bismuth, nickel, cobalt, etc. However, 
the majority of work has been carried out on zirconium, titanium, tin, niobium 
and tantalum. Out of the above, metal phosphates have been found to have good 
chemical stability, reproducibility in ion-exchange behaviour and selectivity for 
certain metal ions.

2.3 Hybrid ion exchangers

Since organic ion exchangers were found to be unstable at elevated tempera-
tures and under strong radiations, inorganic ion exchangers were taken as alter-
natives for such cases. However, the main drawback of inorganic ion-exchange 
materials has been that they are not very much reproducible in ion-exchange 
behaviour. Further, they are found not to be chemically and mechanically very sta-
ble perhaps due to their inorganic nature. Thus, to overcome these shortcomings, 
an interest was developed to obtain some organic-based inorganic ion exchang-
ers. These exchangers were termed as ‘hybrid ion exchangers’ as they consist of 
both the organic and inorganic counterparts and have the properties not seen in 
purely organic or purely inorganic materials. This new class of ion exchangers has 
been prepared in these laboratories by incorporating a polymeric or monomeric 
organic species into the inorganic ion-exchange matrix [26–30]. The hybrid ion 
exchangers have shown an improvement in a number of ways. One of them is its 
granulometric properties that make it more suitable for the application in column 
operations. The binding with an organic species also introduces better mechanical 
properties in the end product, that is, hybrid ion-exchange materials. Hybrid ion 
exchangers can be prepared as three-dimensional porous materials in which layers 
are cross linked or as layered compounds containing sulphonic acid, carboxylic 
acid or amino groups.

The reactivity of both organic and inorganic precursors is usually quite dif-
ferent and phase separation tends to occur. The properties of hybrid materials do 
not depend only on organic and inorganic components but also on the interface 
between both phases. The general tendency is therefore, to increase interfacial 
interactions by creating an intimate mixing, or interpenetration between organic 
and inorganic networks. Moreover, the formation of chemical bonds between 
organic and inorganic species would prevent phase separation, allowing the synthe-
sis of molecular composites or organic-inorganic copolymers. Hybrid materials can, 
thus, be divided into two classes [31].
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• Class I corresponds to hybrid systems in which weak interactions such as van 
der Waals forces or hydrogen bonds or electrostatic interactions are created 
between organic and inorganic phases. This class involves mainly small organic 
species embedded within an oxide matrix.

• Class II corresponds to hybrid compounds where both organic and inorganic 
components are bonded through strong covalent chemical bonds.

2.4 Hybrid metal phosphates

Hybrid organo-inorganic phosphates open up a land of opportunities in 
materials science and ion-exchange chemistry. These nanocomposites bridge 
high-temperature materials such as glasses and ceramics with very fragile species 
such as organic compounds or biomolecules. In last 10–15 years, some hybrid ion-
exchange materials have been synthesized in the laboratories, such as acrylamide 

S.N. Name of the 

materials

Ion-exchange 

capacity for 

Na+ (meq/

dry g)

Selectivity X-ray nature References

1. Polyacrylonitrile 

thorium(IV) 

phosphate

3.90 Pb(II) Microcrystalline [36]

2. Polystyrene 

cerium(IV) 

phosphate

2.95 Hg(II) Microcrystalline [37]

3. Polystyrene 

thorium(IV) 

phosphate

4.52 Cd(II) Crystalline [38]

4. Acrylonitrile cerium 

(IV) phosphate

2.86 Hg(II) Poorly 

crystalline

[39]

5. Acrylamide 

cerium(IV) 

phosphate

2.60 Hg(II) Crystalline [40]

6. Acrylamide 

thorium(IV) 

phosphate

2.00 Pb(II) Poorly 

crystalline

[41]

7. Pectin cerium(IV) 

phosphate

1.78 Hg(II) Amorphous [42]

8. Pectin thorium(IV) 

phosphate

2.15 Pb(II) Amorphous [42]

9. Cellulose acetate 

thorium(IV) 

phosphate

1.70 Pb(II) Amorphous [43]

10. Pyridine cerium(IV) 

phosphate

2.00 Hg(II) Amorphous [44]

11. Pyridine thorium(IV) 

phosphate

2.10 Pb(II) Amorphous [45]

12. n-Butyl acetate 

cerium(IV) 

phosphate

2.25 Hg(II) Amorphous [46]

Table 3. 
Different types of hybrid metal phosphates and their important properties.
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and pyridine-based zirconium and tin phosphates [32–34], acrylonitrile-based 
zirconium phosphate [35]. These materials have shown promising ion-exchange 
characteristics and have been utilized in the separation of metal ions due to their 
selectivity towards different metals ions. Metal phosphates, such as tin(IV) phos-
phate, cerium(IV) phosphate, zirconium(IV) phosphate etc. were found very good 
ion exchangers and intercalating agents too. The whole idea to convert them to 
hybrid ion exchangers has been to enhance the interlayer distances by introducing 
organic species in the metrics of these metal phosphates, resulting in improved ion-
exchange properties. These metal-organic phosphates, or hybrid ion exchangers, 
correspond to metal-organic frameworks where features of organic and inorganic 
counterparts are revealed in terms of ion-exchange capacity, thermal, chemical 
and mechanical stability in addition to metal ion selectivity. However, structures of 
these metal-organic phosphates could not be described as these materials have been 
found amorphous or poorly crystalline. Table 3 summarizes their ion-exchange 
capacities and selectivity towards metal ions.

3. Surfactants

Surfactants constitute the most important group of detergent components. 
‘Surfactant’ is an abbreviation for surface-active agents (shown in Figure 2). Which 
literally means ‘active at the surface’. The surface can be between solid and liquid, 
between air and liquid and between two different immiscible liquids. The unique 
property of surfactants is ‘adsorption’, which occurs at liquid/solid, liquid/liquid and 
at air/liquid interfaces. At air-water interfaces and in water, or similarly strongly 
hydrogen-bonded solvents, they self-associate at concentrations above the critical 
micelle concentration (CMC) to form association colloids, known as ‘micelles’ [47].

Thus, ‘surfactants, surface-active agents [48] or, detergents are amphiphilic, 
organic or organo-metallic compounds which form association colloids or micelles 
in solution’. Amphiphilic substances or amphiphiles are comprised of a hydrophobic 
portion, usually a long alkyl chain, attached to hydrophilic or water solubility-
enhancing functional groups. Actually, surfactant molecule consists of two parts: 
a water-hating (hydrophobic) part and a water-loving (hydrophilic) part. The 
following figure shows the basic structure of a surfactant molecule.

There are three basic concepts that need to be well understood in order to explain 
the majority of observed phenomena; these are solubility, adsorption of a surfactant 
at a surface and the formation of micelles in solution. These three phenomena dif-
ferentiate a surfactant from other chemical entities. It is the abnormal solubility 
characteristics of surfactants which offers the adsorption on surfaces/interfaces and 
formation of micelles. Surfactants reduce surface tensions when dissolved in water or 
water solutions, reduce interfacial tensions between two liquids, or between a liquid 
and a solid [49]. When a surfactant molecule is introduced into water, the water-hating 

Figure 2. 
Structure of Surfactant monomer.
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part tends to escape by attaching itself to any available surface other than water. At the 
same time, the water-loving part tries to remain in water. As a result, surfactants get 
strongly ‘adsorbed’ to many surfaces, such as fabric, soil, glass and where the water 
and air meet (i.e., water/air interface). This tendency of surfactants is useful:

• In the removal of the soils from surfaces.

• In holding soil particles in suspension form and preventing them from rede-
positing onto the surface.

• In reducing surface tension of water and allowing the water to spread out.

The unusual properties of aqueous surfactant solutions can be ascribed to 
the presence of a hydrophilic head group and a hydrophobic chain (or tail) in the 
molecule. The polar or ionic head group usually interacts strongly with an aqueous 
environment, in which case it is solvated via dipole-dipole or ion-dipole interac-
tions. Depending on the chemical structure of the hydrophilic moiety bound to the 
hydrophobic portion, the surfactants may be categorized into following types:

• Anionic surfactants [50]

• Cationic surfactants [51]

• Nonionic surfactants [52]

• Amphoteric surfactants [53]

• Gemini surfactants [54]

3.1 Micelle formation and critical micelle concentration (CMC)

The formation of micelles in aqueous solution is generally viewed as a compro-
mise between the tendency for alkyl chains to avoid energetically unfavourable con-
tacts with water, and the desire for the polar part to maintain contact with aqueous 
environment. In dilute aqueous solution, at concentration generally less than 10−4 M, 
the behaviour of ionic surfactants parallels that of strong electrolytes while the 
behaviour of nonionic surfactants often resembles that of the simple organic mol-
ecules. At higher surfactant concentrations, however, a pronounced deviation from 
‘ideal’ behaviour in dilute solution occurs—this deviation generally being consider-
ably larger than that exhibited by simple strong electrolytes. Thus, the adsorption of 
a surfactant from solution onto a surface depends upon the concentration [53]. Each 
surfactant has a characteristic CMC value. The most obvious evidence of micellar 
growth is probably the dramatic increase in viscosity with increasing concentration, 
which is observed in several surfactant solutions. Micellar growth is favoured by 
decreasing the temperature, adding electrolyte and lengthening the surfactant chain 
length and is, furthermore, very sensitive to the nature of the counter ion.

The physico-chemical properties of surfactants vary significantly below and 
above the CMC value [55]. Below the CMC value, the physico-chemical properties 
of ionic surfactants resemble those of a strong electrolyte. Above the CMC value, 
these properties change dramatically, indicating a highly co-operative association 
process. The general way of obtaining the CMC value of a surfactant micelle is to 
plot an appropriate physico-chemical property versus the surfactant concentration 
and observe the break in the plot [56–58].
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Depending upon the chemical structure of the surfactant, its micelle can be 
cationic, anionic, zwitterionic or nonionic. The electrostatic character of the 
micelles depends in some cases on the pH of the aqueous solution due to proton-
ation equilibria. Zwitterionic surfactants, of course, also can become either cationic 
or anionic, and several types of nonionic surfactants can also form anionic or 
cationic micelles in the appropriate pH range. Micelles are not static species but 
rather exist in a dynamic equilibrium. The micelle may be represented as a globular, 
cylindrical or ellipsoidal cluster [59] of individual surfactant molecules in equilib-
rium with its monomer. The reverse orientation of the hydrophilic and hydrophobic 
part of the surfactant in a hydrocarbon medium leads to the formation of reversed 
micelles [60].

3.2 Surfactant adsorption and surface properties

The effectiveness of surfactant adsorption is mainly determined by surfactant 
concentration, surfactant functional group, alkyl hydrocarbon chain length, envi-
ronment etc. When the surfactant concentration is well below the CMC value, indi-
vidual surfactant molecules tend to adsorb on exposed interfaces to reduce surface 
tension. As the concentration of surfactant approaches the CMC value, surfactant 
molecules form dimers, and multiple molecules aggregate, micelles. Once the CMC 
is reached, any additional surfactant molecules added to the system will be incorpo-
rated into new or existing aggregates. Thus, further increase of surfactant concen-
tration above the CMC value results in bilayer or multilayer formation at interface. 
The adsorption tendency of the surfactants at the surfaces imparts the properties of 
foaming, wetting, emulsification, dispersing of solids and detergency. The adsorp-
tion increases the concentration of surfactant at the surfaces. Surfactant adsorption 
is a consideration in any application where surfactants come in contact with a surface 
or interface. It is from solutions that surfactants then preferentially adsorb to inter-
faces and, because of their amphiphilic nature, preferentially segregate at interfaces. 
There are a number of areas of applications where surfactant adsorption is impor-
tant including ore floatation, improved oil recovery, soil remediation, detergency, 
surfactant-based separation processes and wetting. Surfactant adsorption may occur 
due to electrostatic interactions, van der Waals interaction, hydrogen-bonding and/
or solvation and desolvation of adsorbate and adsorbent species [61].

The hydrophobic forces that drive surfactants to segregate at air-water inter-
faces are essentially the same that drive surfactant adsorption onto solid surfaces. 
However, they can be differing in the chemical forces associated with the solid 
surfaces. Ionic surfactants tend to adsorb onto oppositely charged solid surfaces 
due to electrostatic forces while adsorption of ionic surfactants on a like charged 
substrate, being less understood, can occur via hydrogen-bonding or attractive 
dispersion forces [62], as in the case for nonionic surfactants.

The number of industrial applications of surfactants is huge, and represents 
the subject of several book series. However, in analytical chemistry, surfactants 
have been recognized as being very useful in improving analytical technology, for 
example, in chromatography [63] and luminescence spectroscopy [64]. The use of 
surfactants in chromatography, particularly in ion-exchange, is of our interest. It is 
well known that surfactants are composed of two parts—hydrophobic and hydro-
philic, which are oppositely charged, and the surfactants also act as ion exchangers. 
When their solutions are kept in contact with solid material, they are adsorbed 
on the solid surface with their hydrophilic part remaining in the solutions due to 
their surface-active property and they make that surface ‘active’. It is clear from the 
above discussion that they play an important role in the adsorption behaviour of the 
molecules.
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3.3 Surfactant-based hybrid ion exchangers

The widespread utility of surfactants in practical applications and scientific 
interest regarding their nature and properties have precipitated a wealthy literature 
[65, 66] on the subject. One of the predominant reasons for the ubiquitous applica-
tions of surfactants has been their remarkable ability to influence the properties 
of the surfaces and interfaces. Surfactants are widely used in various industrial 
applications [67–70] such as petroleum, pharmaceuticals, agro-chemicals, process-
ing of foods, paints, coatings, adhesives, lubricants, in photographic films, personal 
care and laundry products.

Varshney et al. [71, 72] used surfactants as media in the adsorption studies of 
some alkaline earths and heavy metal ions on inorganic and hybrid ion exchangers 
and observed that the presence of surfactants in aqueous media increases the adsorp-
tion of metal ions on the surface on ion-exchange materials. Hence, exceptional 
high adsorption of the said metal ions has opened the doors in the field of material 
science. It was thought worthwhile to incorporate the surfactants in the matrix of 
inorganic ion exchangers to see how they could change the characteristics of the ion 
exchangers. Very recently, some hybrid fibrous and non-fibrous metal phosphates 
have been synthesized by combining surfactants and inorganic ion exchangers 
(metal phosphates) [73–81] by the researchers. Surfactants based ion exchangers also 
correspond to metal organic frameworks as surfactants being an organic counterpart 
introduced in the inorganic metal phosphates by the bonding in between the layers of 
metal phosphates. At this level too, structure could not been explained, reason being 
the amorphous and poorly crystalline nature of these materials.

Somya et al. [73–75] have probably first used surfactants in the synthesis some 
novel hybrid fibrous and non-fibrous metal phosphates by introducing surfactants 
(anionic, cationic and nonionic) in the matrix of inorganic metal phosphates. They 
have explored the ion-exchange studies such as ion-exchange, pH-titration, concen-
tration, elution and thermal behaviour in addition to adsorption studies for some 
alkaline earths and heavy metal ions. Those materials were found to be selective for 
certain metal ions and, on that basis, some binary separations have been performed 
in the laboratory providing their potential role in environmental and analytical 
chemistry. The introduction of surfactants in the matrix of inorganic ion exchang-
ers has been characterized by some physico-chemical studies like, IR, X-ray diffrac-
tion, elemental, SEM and TGA/DTA/DTG studies.

Later on, Iqbal [78–81] have synthesized the same class of hybrid metal phos-
phates by combining sodium dodecyl benzene sulphonate and sodium bis (2-ethyl-
hexyl) sulphosuccinate in the matrix of cerium (IV) and tin (IV) phosphates. They 
have explored some ion-exchange studies in addition to physico-chemical charac-
terization like IR, XRD, SEM, TGA/DTA/DTG, elemental studies and differential 
pulse polarography. These materials have shown selective adsorption for certain 
metal ions. Hence, binary separations have been done by using columns of the 
synthesized materials. Most of the surfactant based metal phosphates were found 
amorphous or poorly crystalline.

4. Conclusion

As per the studies done, so far, it is clearly indicated that surfactants have played 
a key role in synthesis of new class of hybrid metal phosphates as ion-exchange 
materials. They have enhanced not only the ion-exchange capacities of the inor-
ganic metal phosphates when present in their matrix but also the adsorption of 
metal ions. These metal-organic hybrid materials have shown selectivity towards 
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certain metals. Hence, these materials open a door with ample opportunities for the 
researchers in the field of analytical and environmental science where they can be 
used in water pollution control.
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