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Chapter

Endothelial Dysfunction and 
Disruption in Pulmonary 
Hypertension
Rajamma Mathew

Abstract

A number of systemic diseases lead to pulmonary hypertension (PH), a serious 
disorder with a high morbidity and mortality rate. Irrespective of the underlying 
disease, endothelial dysfunction or disruption plays a key role in the initiation 
and progression of PH. Endothelial dysfunction and disruption result in impaired 
vascular relaxation response, activation of proliferative pathways leading to medial 
hypertrophy and PH. Endothelial cells (EC) play a crucial role in regulating vascu-
lar tone and maintaining homeostasis. Caveolin-1, a 21-22 kD membrane protein, 
interacts with a number of transducing factors and maintains them in a negative 
conformation. Disruption of EC results in endothelial caveolin-1 loss and reciprocal 
activation of proliferative pathways leading to PH, and the accompanying loss of 
PECAM1 and vascular endothelial cadherin results in barrier dysfunction. These 
changes lead to the irreversibility of PH. Hypoxia-induced PH is not accompanied 
by endothelial disruption or caveolin-1 loss but is associated with caveolin-1 dys-
function and the activation of proliferative pathways. Removal of hypoxic exposure 
results in the reversal of the disease. Thus, EC integrity is an important factor that 
determines irreversibility vs. reversibility of PH. This chapter will discuss normal 
EC function and the differences encountered in PH following EC disruption and EC 
dysfunction.

Keywords: caveolin-1, endothelial cells, membrane integrity, smooth muscle cells, 
pulmonary hypertension

1. Pulmonary hypertension

A number of systemic diseases such as cardiopulmonary, infectious, inflamma-
tory and autoimmune diseases, hematological disorders, drug toxicity and several 
genetic mutations lead to pulmonary hypertension (PH), a devastating disease 
with a high morbidity and mortality rate. Based on clinical diagnosis, PH has been 
classified into five major groups that were updated in 2013 [1]. Group 1, labeled as 
pulmonary arterial hypertension (PAH), includes idiopathic and heritable PAH, 
PAH associated with congenital heart defect (CHD), connective tissue diseases, 
portal hypertension, HIV, schistosomiasis and drug-/toxin-induced PAH. In 
addition, mutation of several genes such as BMPRII (bone morphogenetic protein 
receptor type 2), CAV1 (caveolin-1), ENG (endoglin), SMAD9 (SMAD family 
member 9), ACVRL1 (activin A receptor like type 1) and KCNK3 (potassium two 
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pore domain channel subfamily K member 3) are among the well-documented 
causes of PAH. Pulmonary veno-occlusive disease (PVOD)/pulmonary capillary 
hemangioma and persistent pulmonary hypertension of the newborn (PPHN) are 
included in Group 1 as subcategories 1′ and 1″, respectively. Recently, mutation of 
EIF2AK4 (eukaryotic translation initiation factor 2a kinase 4) has been shown to 
be associated with PVOD and capillary hemangioma [2]. Included in Group 2 are 
PH associated with congenital and acquired left heart diseases; Group 3 comprises 
PH due to lung diseases and/or hypoxia. Group 4 includes chronic thromboembolic 
pulmonary hypertension (CTEPH). PH associated with hematological disorders, 
myeloproliferative diseases, splenectomy and a number of miscellaneous systemic 
and metabolic disorders is included in Group 5. Up until recently, the diagnosis 
of PAH was considered when the mean pulmonary artery pressure (PAP) of 
≥25 mmHg, pulmonary capillary wedge pressure of ≤ 15 mmHg, and a pulmonary 
vascular resistance (PVR) of > 3 Wood units were observed at rest. During the 6th 
World Symposium on PH, the mean PAP of threshold was lowered to >20 mmHg 
and PVR was maintained as >3 Wood units [3]. These changes are based on the 
evaluation of 47 studies from 13 countries, which showed that independent of age 
the normal mean PAP rarely exceeded 20 mmHg [4]. The worldwide prevalence 
of PH is estimated to be 1%, increasing to 10% in patients older than 65 years of 
age. Globally, left heart diseases (Gr 2) and lung diseases (Gr 3) are considered the 
most common causes of PH. About 80% of patients are from developing countries; 
the common causes of PH in these patients are CHD, rheumatic heart disease and 
infection such as HIV and schistosomiasis. These patients tend to be younger than 
65 years [5]. With modern therapy, the survival in patients with idiopathic and 
heritable PAH and PAH associated with anorexigen drugs has improved to 92%, 
75% and 66% at 1, 3 and 5 years, respectively [6]. However, the underlying vascular 
changes remain progressive [7]. There is still a significant delay between the onset 
of symptoms and the final diagnosis. A recent retrospective study revealed a delay 
of 3.9 years between the onset of symptoms and the diagnosis of idiopathic PAH 
[8]. Thus, by the time the diagnosis is made, patients often have significant pulmo-
nary vascular disease, which is a serious challenge to therapy. Interestingly, in an 
animal model of PH, significant disruption of endothelial cells and the activation 
of pro-proliferative pathways have been shown to occur before the onset of PH, 
indicating that the vascular pathology is already present by the time the symptoms 
appear [9].

The major causes of PH in children are CHD, PPHN, PH associated with disrup-
tion of normal pulmonary vascular and alveolar development in preterm infants, 
and congenital defects associated with hypoplasia of the lungs [10, 11]. A signifi-
cant number of pediatric patients (>80%) have transient PH. These include resolu-
tion of PPHN and the majority of CHD cases that become free of PAH after the 
surgical correction of the defect [12]. However, preterm birth itself has an increased 
risk of developing PH even after adjusting for known factors such as heart and lung 
diseases, congenital diaphragmatic hernia and chromosomal abnormalities [13]. 
Furthermore, poor outcome has been reported in children with BMPRII mutation 
associated with idiopathic or heritable PAH [14]. Mutation of TBX4 (T-box tran-
scription factor 4 gene) is associated with skeletal, cardiac and neurologic defects. 
It also leads to a form of developmental lung disease that has been shown to be 
associated with severe PH during infancy and childhood [15]. It is worth noting that 
infants over the age of 2 years who had CHD exhibited increased pulmonary artery 
pressure and PVR even after surgical correction of the defect [16]. Pulmonary vas-
cular lesions found in PAH associated with CHD are reported to be similar to what 
is found in idiopathic PAH [17]. However, the plexiform lesions in idiopathic PAH 
have monoclonal cell population, whereas Eisenmenger disease (PAH associated 
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with CHD) displays polyclonal cells [18], indicating a distinct difference between 
two forms of PAH.

Endothelial cells (EC) play a key role in maintaining vascular homeostasis in 
response to various stimuli and regulate vascular tone, permeability, coagulation, 
inflammation through mediators such as nitric oxide (NO), endothelium-derived 
hyperpolarization factor (EDHF), endothelin-1 (ET1), cell adhesion molecules, cyto-
kines and chemokines. Regardless of the underlying disease, endothelial dysfunction/
disruption plays a key role in the pathogenesis of PH. The genetic and environmental 
factors act as an initial trigger leading to endothelial cell injury and impaired regen-
eration resulting in vascular remodeling and loss of small pulmonary arteries [19]. 
Endothelial dysfunction, impaired vascular dilatation, alterations in the expression of 
NO, ET1 and serotonin, increased expression of inflammatory cytokines and chemo-
kines, loss of endothelial caveolin-1 and disordered proteolysis of extracellular matrix 
contribute to the pathogenesis of PAH [20, 21]. Increased expression of chemokines 
such as CX(3)C (fractalkine) and RANTES (CCL5) has been reported in PAH; impor-
tantly, both these chemokines are produced in EC [22, 23]. In sugen + hypoxia model 
(mice), the deletion of CCL5 resulted in reduction in PH via caveolin-1–dependent 
amplification of BMPR2 signaling. It stabilized surface caveolin-1, restored BMPR2 
signaling and enhanced BMPR2 and caveolin-1 interaction [24]. This observation 
further supports the role for inflammation in PH. In addition, perivascular infiltra-
tion with inflammatory cells (T and B cells) is present in plexiform lesions [25, 26]. 
Increased expression of interleukin-1 (IL-1) and IL-6 occurs in human PAH and 
monocrotaline (MCT)-induced PH, and inhibition of IL-6 expression and bioactivity 
as a preventive measure results in the abrogation of MCT-induced PH [27, 28].

In addition to the imbalance of vasoactive mediators and vascular remodeling, 
abnormality in ion channels (Ca2+, K+) and growth factors such as VEGF, EGF, 
TGF beta, MMPs, BMPR2 and Notch1 has been implicated in pathophysiology of 
PAH, leading to vasoconstriction, abnormal remodeling and plexiform lesions [29]. 
Proliferative EC reveals increased expression of angiogenesis and survival-related 
molecules such as VEGF, VEGFR2, Hif-1 α, and 1β and reduced expression of p27/
kip1. Signal transducer and activator of transcription (STAT3) is essential for cell 
proliferation and survival, and antiapoptotic function [30]. In the MCT model of 
PH, the loss of endothelial caveolin-1 was shown to be associated with reciprocal 
activation of STAT3 (PY-STAT3) and increased proliferating cell nuclear antigen 
(PCNA) [31]. Furthermore, EC in plexiform and concentric lesions exhibits 
increased expression of PY-STAT3 [32]. Importantly, the inhibition of STAT3 
prevents neointima formation by inhibiting cell proliferation and promoting the 
apoptosis of neointimal SMC [33]. BMPRII mutations linked to PAH are associated 
with the activation of STAT3. Furthermore, BMPR2 deficiency promotes inflam-
matory response resulting in increased IL-6 levels and PY-STAT3 activation [34]. 
BMPR2, a cell surface receptor, is essential for differentiation and proliferation of 
EC and SMC. Without altering the BMPRII mRNA levels, miR-17/92 modulates 
BMPR2 protein levels. Importantly, IL-6 regulates the expression of miR-17/92 in 
human pulmonary arterial EC via STAT3 signaling. Persistent activation of STAT3 
results in the upregulation of miR-20, which leads to the reduction in the expres-
sion of BMPR2 protein [35]. BMPR2 expression is decreased also in patients with 
heritable and idiopathic PAH, without associated mutation [36]. Importantly, levels 
of SMAD-specific E3 ubiquitin protein ligase 1 (Smurf1), a key negative regula-
tor of BMPPR2, has been shown to be increased in hypoxia and MCT models of 
PH in rats [37]. Increased Smurf1 immunoreactivity has also been reported in EC 
and SMC in the explanted lungs from patients with PAH. Furthermore, Smurf1 
deletion protects mice from sugen + hypoxia-induced PH [38]. Interestingly, 
elafin reverses obliterative changes in pulmonary arteries via elastase inhibition 
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and caveolin-1–dependent amplification of BMPR2. In addition, elafin promotes 
angiogenesis via increasing interaction of BMPR2 and caveolin-1 via mediating 
stabilization of endothelial surface caveolin-1 [39].

Recent studies have shown the involvement of Notch1 signaling in 
PAH. Increased expression of Notch1 has been reported in the lungs of patients with 
IPAH and in rats with sugen + hypoxia-induced PH. Notch1 positively regulates EC 
proliferation by downregulating p21 and negatively regulating apoptosis via Bcl2 
and survivin. In-vitro studies with human pulmonary arterial EC revealed increased 
expression of Notch1 during hypoxia exposure, and Notch1 downregulation 
decreased cell proliferation [40]. Furthermore, Notch1 under hypoxia contributes 
to increased proliferation, migration and survival in cancer cells [41]. Notch1 is 
essential for VEGF-induced proliferation, migration and survival of EC [42]. Thus, 
Notch1 plays a significant role in the pathogenesis of PH. However, Notch1 also 
plays a key role in vascular morphogenesis, EC quiescence, junction stability and 
vascular homeostasis. Reduction in Notch1 activity destabilizes cellular junction 
and triggers EC proliferation and results in the loss of arterial identity and incor-
poration of these cells into veins. Notch1 is sensitive to shear stress and it requires 
VEGFA and VEGFR2 for growth [43, 44]. Interestingly, Notch-mediated inhibition 
of proliferation requires phosphatase-tensin homolog (PTEN), a dual lipid/protein 
phosphatase. PTEN localization is cell cycle dependent, negatively regulates cell 
cycle progression and has a restrictive role on angiogenesis [45]. Recent studies 
have shown significant loss of PTEN concomitant with caveolin-1 dysfunction in 
hypoxia-induced PH [46]. Fibroblasts from idiopathic pulmonary fibrosis lungs 
exhibit low membrane PTEN associated with low membrane caveolin-1 levels, and 
overexpression of caveolin-1 restores membrane PTEN levels. PTEN contains a 
caveolin-1–binding motif and, in part, colocalizes in caveolae [47]. Thus, caveolin-1 
expression determines the membrane PTEN levels through its binding sequence. 
Furthermore, PTEN has also been shown to negatively regulate STAT3 and its acti-
vation, and importantly, membrane localization of PTEN is considered responsible 
for the inactivation of STAT3 [48].

2. Endothelial cell function

EC forms a monolayer in contact with blood flow and mechanical forces and 
underlying SMC. It is a non-thrombogenic and a selective barrier to circulat-
ing macromolecules. Juxtaposition of EC and SMC facilitates cross talk, and EC 
maintains SMC in quiescent state. Myoendothelial gap junction plays an important 
role in Ca2+ exchange between EC and SMC. EC is crucial for delivery of O2 and 
nutrients to underlying organs. EC maintains a balance between vasodilatation and 
vasoconstriction, apoptosis and cell proliferation, participate in immune and meta-
bolic function, and maintain anticoagulant state [21, 49]. In addition, EC converts 
mechanical information into biological responses through mechanotransduction 
processes. EC adapts to mechanical inputs while maintaining crucial vascular bar-
rier function. Failure of EC to adapt to changes has effects on vascular permeability, 
an important cause of vascular diseases [50].

2.1 Caveolae, caveolin-1 and cavin-1

Caveolae, a subset of specialized lipid rafts (50–100 nm), first described in 1950s 
by Palade [51] and Yamada [52], is found on plasma membranes of a variety of cell 
types including EC, SMC, fibroblasts and adipocytes. Caveolae are non-clathrin–
coated plasma membrane vesicles (50–100 nm) enriched in glycosphingolipids, 
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cholesterol, sphingomyelin and lipid-anchored membrane proteins. They form an 
important signaling platform that compartmentalizes and integrates a number of 
signaling molecules and allows cross talk between different signaling pathways, and 
mediates and integrates signaling events at the cell surface. EC contains 5000–10,000 
caveolae per cell [53]. In addition, caveolae act as plasma membrane sensors and 
respond to stress. Caveolae flatten in response to membrane stretch. The flattening is 
a protective mechanism; it buffers the membrane and prevents its rupture [54, 55]. 
Caveolin-1 is a major protein (21–22 kDa) constituent of caveolae that maintains the 
shape of caveolae; EC has the highest levels of caveolin-1 [56]. Caveolin-1 is involved 
in multiple cellular processes such as molecular transport, cell proliferation, adhesion, 
migration and signal transduction. Caveolin-1 has an integral role in endocytosis. 
However, overexpression of caveolin-1 inhibits endocytosis [57, 58]. Caveolin-1 is 
synthesized in endoplasmic reticulum and then transported to Golgi complex. During 
its biosynthesis, it is associated with lipid rafts and become detergent resistant. From 
a structural standpoint, caveolin-1 contains a hairpin loop structure and three palmi-
toylation sites and a scaffolding domain that facilitates interaction with the plasma 
membrane [59, 60]. Caveolin-1 functions through protein-protein interaction and 
regulates and stabilizes several proteins including Src family of kinases, G proteins 
(α-subunits), G protein-coupled receptors, H-Ras, PKC, endothelial NO synthase 
(eNOS), integrins, and growth factor receptors such as VEGFR2, EGFR and PDGFR 
in an inhibitory conformation. Importantly, a 20-amino acid membrane proximal 
region of the cytosolic amino-terminal domain, termed caveolin-scaffolding domain 
(residue 82–101), is sufficient to mediate these interactions [61, 62]. Caveolin-1 also 
functions as a suppressor of cytokine signaling (SOCS), the family of proteins that 
are upregulated by cytokines and that in turn inhibit cytokine signaling via modulat-
ing JAK-STAT pathway [63]. Caveolin-2 is present associated with caveolin-1 in all cell 
types. It requires caveolin-1 for its transport from Golgi body to the plasma mem-
brane. Caveolin-2 is not necessary for caveolae formation or caveolar localization of 
caveolin-1, but the coexpression results in a more efficient formation of caveolae [64]. 
In the absence of caveolin-1, caveolin-2 is degraded, and the decreased expression of 
caveolin-2 promotes increased cell proliferation [65, 66]. Furthermore, caveolin-2 
knockout mice display increased proliferation of endothelial cells, hyper-cellular lung 
parenchyma and cell cycle progression [67].

In addition to caveolin-1, caveolae require polymerase 1 and transcript release 
factor (PTRF) also known as cavin-1. It is an essential component of caveolae; it 
regulates membrane curvature by stabilizing caveolin-1 in caveolae. The loss of 
cavin-1 results in the loss of caveolae and the release of caveolin-1 into the plasma 
membrane. Importantly, caveolin-1 is required for cavin-1 recruitment to plasma 
membrane [68, 69]. Loss of caveolin-1 is accompanied by a marked loss of caveo-
lin-2 and partial reduction in cavin-1 expression in the lungs. The re-expression 
of caveolin-1 rescues both caveolin-2 and cavin-1 [70]. In a carotid artery-injury 
model, the local loss of cavin-1 is reported to promote neointima formation. 
Furthermore, in cultured vascular SMC, the overexpression of cavin-1 suppresses 
SMC proliferation and migration, whereas its inhibition promotes cell proliferation 
and migration [71]. Cavin-1 knockout mice display lung pathological changes such 
as remodeled pulmonary vessels, PH and right ventricular hypertrophy. In addition, 
these mice have altered metabolic phenotype with insulin resistance [72, 73].

Recent studies have shown other accessory proteins required in caveolae bio-
genesis. The accessory protein pacsin2 also known as syndapin2 contains F-BAR 
domain associated with generation and maintenance of caveolae. It partially colo-
calizes with caveolin-1 at plasma membrane level. Loss of pacsin2 function results 
in the loss of caveolae and accumulation of caveolin-1 within the plasma membrane. 
Interestingly, overexpression of F-BAR domain can cause loss of caveolae. Another 
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protein EH 15 homology domain 2 (EHD2) is present in caveolae, and it binds to 
pacsin2 that partially colocalizes with caveolin-1. It is a dynamin-related ATPase 
that confines caveolae to cell surface. Furthermore, regulation of EHD2 oligomer-
ization in a membrane-bound state is crucial in order to restrict caveolar dynamics 
in cells [74, 75]. Importantly, caveolar coat controls a large number of signaling 
circuits; a defect in any of these pathways can lead to several systemic diseases such 
as vascular dysfunction, cardiomyopathy, cancer, muscular dystrophy and lipodys-
trophy [76].

The role of caveolin-1 is well established in the pathogenesis of PH. Caveolin-1 
knockout mice are viable but have dysregulated NO synthesis, impaired NO and 
Ca2+ signaling, cell proliferation, increased vascular permeability accompanied by 
cardiomyopathy and PH. Reconstituting endothelial caveolin-1 has been shown to 
recover dysregulated NO synthesis, cardiomyopathy and PH [77, 78]. In addition, 
caveolin-1 knockout mice exhibit low-grade systemic pro-inflammatory status and 
moderately increased IL-6 and TNFα levels [79]. EC-specific CAV1 knockout mice 
and LPS-treated wild-type mice exhibit reduced BMPR2 expression and eNOS 
uncoupling, accompanied by increased TGF-β–promoted TGFβRI-dependent 
SMAD-2/3 phosphorylation. In addition, human lung sections from patients with 
ARDS reveal reduced endothelial caveolin-1 expression, increased TGF-β levels 
and severe pulmonary vascular remodeling. These results further support the view 
that the loss of endothelial caveolin-1 promotes pulmonary vascular remodeling in 
inflamed lungs via oxidative stress-mediated reduction in BMPR2 expression [80]. 
Furthermore, endothelial dysfunction during inflammation leads to endothelium-
mesenchymal transition (End MT). These cells lose endothelial characteristics and 
acquire mesenchymal phenotypes and express mesenchymal specific markers such 
as smooth muscle α-actin, fibroblast-specific protein 1 and Notch1 [81]. In addition, 
caveolin-1 is a determinant of oxidative stress and is a regulator of metabolic switch 
and autophagy [82].

2.2 Vascular relaxation

NO, EDHF and prostacyclin (PGI2) induce endothelium-dependent vascular 
relaxation. NO is produced by eNOS via its action on L-arginine and oxygen. NO 
activates guanylate cyclase, which catalyzes the conversion of guanosine triphos-
phate to cyclic guanylate monophosphate. eNOS expressed in endothelial cells and 
cardiac myocytes is targeted to caveolae. It directly binds to caveolin-1 scaffolding 
domain and is held in an inhibitory state. This interaction prevents eNOS activa-
tion leading to inappropriate NO production under basal conditions. The eNOS/
caveolin-1 regulatory cycle is a reversible protein-protein interaction controlled by 
Ca2+/calmodulin and by enzyme palmitoylation. Increase in intracellular Ca2+ with 
calmodulin disrupts the caveolin-1/eNOS complex resulting in eNOS activation and 
NO production leading to vascular relaxation. Calmodulin is a direct allosteric com-
petitor promoting the caveolin-1 and eNOS dissociation. Heat shock protein (HSP) 
90 binds to eNOS in Ca2+/calmodulin-dependent manner and it reduces the inhibi-
tory effects of caveolin scaffolding domain on eNOS, thus promoting eNOS activa-
tion [83–85]. Furthermore, increase in vascular flow and pressure rapidly activates 
caveolar eNOS with its dissociation from caveolin-1 and association with calmodu-
lin [86]. Thus, caveolin-1 and eNOS have a dynamic relationship. Importantly, 
caveolin-1 contained within non-caveolar lipid rafts fails to exert its inhibitory 
effect on eNOS [87]. The loss of endothelial caveolin-1 leads to eNOS uncoupling, 
oxidative stress and endothelial injury [88]. Interestingly, under conditions of 
stress, caveolin-1 increases eNOS trafficking in plasma membrane and primes eNOS 
for flow-mediated activation. Caveolin-1 plays a positive role in shear-induced 
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eNOS activation by targeting eNOS to plasma membrane. Importantly, the coupling 
of flow stimulus to activate eNOS is lost in the absence of caveolin-1 and caveolae. 
Thus, caveolin-1 exerts dual role of post-translational regulation of eNOS activ-
ity [89]. In addition, caveolin-1 plays a critical role in VEGFR2 stimulation and 
downstream mediators of angiogenesis, but higher levels of caveolin-1 repress this 
function. [90]. Interestingly, EC migration, tube formation and angiogenesis are 
impaired both in caveolin-1 and eNOS knockout mice but are fully restored by 
double knockout [91].

The transient receptor potential (TRP) channels are the link between caveolae 
and EDHF. TRP channels facilitating the capacitive Ca2+ entry directly interact with 
caveolin-1 in EC. Ca2+-activated K+ channels play a key role in endothelium-depen-
dent hyperpolarization and vascular tone regulation. Absence of caveolin-1 impairs 
Ca2+ homeostasis in EC and decreases the activity of TPRV4 cation channels that 
participate in NO and EDHF activation. Caveolin-1 is required for EDHF-related 
relaxation, modulating TRPV4 and connexins. Caveolin-1 knockout arteries exhibit 
fewer gap junctions and altered myoendothelial communication. Furthermore, 
caveolin-1 deficiency is associated with impaired EDHF-mediated vascular relax-
ation in response to shear stress and acetylcholine [92–94]. Colocalization of PGI2 
synthase and caveolin-1 regulates angiogenesis [95]. Thus, caveolin-1 interacts with 
relaxing factors to maintain homeostasis.

2.3 Barrier function

Endothelial barrier controls the passage of fluids, nutrients and cells through 
vascular wall. Glycocalyx coats the luminal surface of EC and forms an important 
barrier. It modulates permeability, prevents leukocyte and platelet adhesion to EC, 
serves as an anti-inflammatory, anti-adhesive and anti-coagulant barrier, and allows 
selective permeability. In addition, it mediates mechanotransduction of shear stress. 
Under normal conditions, the apoptosis rate in EC is very low, but the activated EC 
exhibits a reduction in the EC surface layer, the glycocalyx, and an increased rate of 
apoptosis [96, 97]. Disturbed flow has been shown to inhibit glycocalyx expression 
as well as to reduce caveolin-1 expression in systemic arterial EC [98]. Inflammatory 
mediators lead to the disruption of glycocalyx resulting in the weakening of vascu-
lar protection. Integrity of vascular glycocalyx is inversely related to the degree of 
inflammation. Inflammatory mediators lead to the loss of glycocalyx resulting in 
the weakening of vascular protection. Furthermore, destruction of glycocalyx has 
been reported in the MCT model of PH [99].

Ca2+-dependent vascular endothelial cadherin (VE-Cad) and its associated 
catenins control cell-cell adhesion and paracellular barrier function and are 
important for the tight junction complexes. VE-Cad is tissue specific for EC and 
is expressed at the intercellular clefts and mediates cell-cell adhesion, maintains 
barrier function, and contributes to the inhibition of cell growth. Association of 
caveolin-1 and VE-Cad catenin complex is essential for barrier function [100–102]. 
Depletion of caveolin-1 reduces VE-Cad levels and facilitates endothelial cell 
permeability [103]. Furthermore, VE-Cad interacts with various growth receptors, 
regulates endothelial proliferative signaling and mediates contact inhibition of cell 
growth [104, 105]. In adult EC, VE-Cad and VEGFR2 are physically linked. This 
maintains VEGFR2 stable and prevents its endocytosis. VEGF-induced permeability 
is facilitated by decoupling of VE-Cad and VEGFR2 [106]. Loss of VE-Cad and 
PECAM1 has been shown to occur in the MCT-induced PH [31, 107]. PECAM-1 sup-
ports EC integrity and maintains barrier function [108]. Importantly, BMPR2 also 
plays a role in maintaining vascular integrity by dampening inflammatory signals in 
pulmonary vasculature [109].
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3. Endothelial disruption/dysfunction

Vascular injury from different conditions such as inflammation, hypoxia, increased 
flow and pressure, and shear stress leads to endothelial dysfunction. Injury can 
lead to disruption of EC and endothelial caveolin-1 loss or endothelial dysfunction 
without EC disruption. Both lead to the activation of proliferative pathways, vascular 
remodeling and PH [96, 110]. Recent studies have shown the loss of myocyte enhancer 
factor 2 (MEF2) in dysfunctional EC from PAH patients. MEF2 regulates a number of 
transcription factors involved in pulmonary vascular homeostasis [111]. Furthermore, 
these dysfunctional ECs exhibit increased production of leptin, and SMCs overexpress 
leptin receptor contributing to SMC proliferation [112]. In addition, pulmonary 
arterial ECs from PAH patients have been shown to produce increased FGF2 leading to 
increased proliferation and survival response by constitutive activation of ERK1/2 and 
decreased apoptosis associated with the activation of Bcl2 and Bcl-xL. It is thought that 
FGF2 in PAH may contribute to abnormal EC phenotype [113]. Furthermore, there is 
evidence that pro-inflammatory cytokine macrophage migration inhibitory factor and 
its receptor CD74 are markedly increased in idiopathic PAH, which may contribute to 
pro-inflammatory phenotype of EC [114].

3.1 EC disruption and pulmonary hypertension

Endothelial disruption accompanied by the loss of endothelial caveolin-1 has been 
reported in several forms of experimental models of PH such as MCT, myocardial 
infarction and sugen + hypoxia [31, 115, 116]. In the MCT model, progressive loss of 
endothelial caveolin-1 and reciprocal activation of proliferative and anti-apoptotic 
pathways such as PY-STAT3 and Bcl-xL occur before the onset of PH. Loss of other 
membrane proteins such as PECAM-1, Tie2 and soluble guanylate cyclase (α and β) 
occurs in tandem with caveolin-1 loss indicating extensive disruption of endothelial 
cell membrane. At 2 weeks, a further loss of endothelial caveolin-1 is accompanied 
by the loss of cytosolic proteins such as HSP90 and IκB-α and increased pulmonary 
artery pressure. However, at this stage, eNOS expression is relatively well preserved. 
In the presence of significant loss of endothelial caveolin-1 and HSP90, eNOS gets 
uncoupled resulting in an increased production of reactive oxygen species (ROS). By 3 
and 4 weeks, there is a significant reduction in eNOS levels, leading to normalization 
of ROS levels [9, 31, 117]. At 4 weeks post-MCT, extensive endothelial caveolin-1 loss 
is accompanied by the loss of von Willebrand factor (vWF) in 29% of the arteries; 
and 23% of arteries exhibit enhanced expression of caveolin-1 in SMC. Enhanced 
expression of caveolin-1 in SMC occurs only in the arteries with extensive endothelial 
caveolin-1 and vWF loss. At this stage, the expression of total caveolin-1 in the lungs 
remains low. In addition, there is a progressive increase in MMP2 expression and 
activation [117]. The rescue of endothelial caveolin-1 as a preventive measure abrogates 
MCT-induced PH, but once the PH is established, the treatment does not alter the 
progression of the disease [118–120]. Exposing MCT-treated rats to hypoxia accelerates 
the disease process, and by 4 weeks, extensive endothelial disruption and endothelial 
caveolin-1 loss are accompanied by enhanced expression of caveolin-1 in SMC in 61% 
of the arteries, near normalization of lung caveolin-1 expression, and neointima forma-
tion. Importantly, neointimal cells exhibit low to no caveolin-1 expression [121, 122]. 
Extensive loss of endothelial caveolin-1, enhanced expression of caveolin-1 in SMC 
and neointima formation are also observed in idiopathic and hereditary PAH, PAH 
associated with CHD and drug toxicity [122–125]. In in-vitro studies, pulmonary arte-
rial SMCs from idiopathic PAH exhibit increased caveolin-1 expression accompanied 
by increased capacitive Ca2+ entry and DNA synthesis, which could be abrogated by 
silencing caveolin-1 [125]. Loss of EC exposes SMC to direct pressure and shear stress, 
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which is likely to result in flattening of caveolae leading to displacement of caveolin-1 
to non-caveolar site on the plasma membrane. Recently, it has been shown that in the 
MCT + hypoxia model, at 4 weeks, the extensive loss of endothelial caveolin-1 as well 
as VE-Cad loss and enhanced expression of caveolin-1 in SMC are accompanied by 
cavin-1 loss, tyrosine phosphorylation of caveolin-1 and neointima formation. Loss 
of VE-Cad is indicative of loss of EC attachment to the junction [126]. Interestingly, 
p-caveolin-1 in cancer has been shown to make cells pro-migratory [127, 128]. As PH 
progresses, SMC phenotype changes from contractile to synthetic, facilitating cell 
migration, and neointima formation resulting in arterial occlusion. Neointima forma-
tion leads to the irreversibility of the disease [129]. In addition, increasing pulmonary 
blood flow either by pneumonectomy or by a shunt procedure (left subclavian and 
pulmonary artery) in rats treated with MCT leads to the development of neointimal 
lesions. Pneumonectomy or shunt alone does not lead to neointima formation [130, 
131]. Furthermore, in children with significant left to right cardiac shunt, reversal of 
pulmonary vascular changes were seen after they underwent pulmonary artery band-
ing to restrict the pulmonary flow. Medial hypertrophy and early intimal changes seem 
reversible, but not during the later stages [132, 133]. These studies demonstrate that EC 
injury and disruption associated with increased flow or pressure play an important role 
in determining the pattern of pulmonary vascular remodeling.

Apoptosis of EC in PAH is followed by proliferation of antiapoptotic EC. This 
concept has been confirmed in in-vitro studies. Sugen (VEGFR antagonist) causes 
initial apoptosis, and the surviving cells become hyperproliferative [134]. Importantly, 
increased levels of circulating EC (CEC) have been reported in PAH, and 50% of these 
cells expressed CD36, a marker of microvascular origin, and 25% exhibited E selectin, 
a marker of EC activation [135]. In children with CHD and PAH, the increased levels 
of CEC are reported to be associated with worse prognosis. Pulmonary ECs exhibited 
high expression of antiapoptotic protein Bcl-2 in cases of irreversible PAH but not in 
cases of reversible PAH, or in controls. Interestingly, intimal proliferation was observed 
only in irreversible PAH cases, but not in the reversible PAH [136, 137]. In addition, 
increased vWF levels in patients with PAH were reported to be associated with worse 
survival [138]. Interestingly, increased CEC levels were observed in PAH, but not in 
CTEPH [139]. These studies strongly support the view that the disruption and loss of 
EC are associated with severe PAH and poor prognosis.

Endothelial mesenchymal transition (EndMT) is a process by which ECs exhibit 
phenotype alteration. These cells lose endothelial characteristics and acquire the 
properties of myofibroblasts or mesenchymal cells. They exhibit loss of PECAM-1 
and VE-Cad, in addition to caveolin-1, and express smooth muscle α-actin, fibro-
blast-specific protein 1 and Notch1. PECAM-1 and VE-Cad support EC integrity 
and junctional stability and maintain barrier function. Thus, their loss leads to 
the loss of barrier function and junction stability. These transformed ECs also 
acquire pro-inflammatory phenotype and are primed for proliferation, migration 
and tissue generation [81, 140]. Neointimal cells exhibit low levels of caveolin-1, 
but normal eNOS expression in the experimental model of PH and also in human 
PAH [96, 122], and sustained NO production has been shown to degrade caveolin-1 
[141]. Importantly, caveolin-1 deficiency has been shown to induce spontaneous 
EndMT in pulmonary EC [142]. EndMT plays an important role in vascular remod-
eling, and it is also linked to the loss of BMPR2 in PH [143–145]. Furthermore, 
TGFβ1 plays a significant role in EndMT [146]. In addition, endothelial caveolin-1 
depletion leads to eNOS uncoupling and oxidative stress that switches from BMPR2 
signaling to TGFβR1 and thus may promote EndMT [80]. Plexogenic lesions con-
tain increased VEGFA and VEGFR expression indicating misguided angiogenesis 
involving cells of EC origin. EC dysfunction in PAH model is shown to act through 
DNA methylation, histone protein modification and non-coding RNA [19]. Thus, 
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the initial apoptosis followed by the proliferation of dysfunctional and antiapop-
totic EC leads to deregulation of a number of pathways resulting in neointima and 
plexiform lesion formation and irreversible PAH.

3.2 EC dysfunction without EC disruption and pulmonary hypertension

Exposure to acute hypoxia results in pulmonary arterial contraction and 
elevated pulmonary artery pressure, while sustained hypoxia leads to pulmonary 
vascular remodeling [147]. Hypoxia impairs endothelium-dependent relaxation 
response [148, 149]. In the MCT model of PH, the progressive loss of endothelial 
caveolin-1 is accompanied by a significant reduction in the expression of HSP90 
(2 weeks post-MCT) and eNOS (3 weeks post-MCT) [9]. However, hypoxia does 
not alter the protein expression of caveolin-1, eNOS or HSP90 in the lungs. During 
hypoxia, caveolin-1 and eNOS have been shown to form a tight complex in vivo and 
in vitro, resulting in their dysfunction [110, 150]. Normally, in response to Ca2+ 
agonists, eNOS dissociates from caveolin-1 and binds to HSP90. Ca2+ activated 
calmodulin further aids in recruitment of HSP90, thus facilitating the release of 
eNOS from caveolin-1 [151]. However, hypoxia disrupts eNOS/HSP90 binding 
[152]. Furthermore, normally functioning caveolin-1 is required for the plasma 
membrane localization of TRPC4 and endothelial Ca2+ entry [153], and introduc-
tion of caveolin-1 scaffolding domain restores Ca2+ entry during chronic hypoxia 
[154]. Thus, the hypoxia-induced caveolin-1 and eNOS complex formation may 
in part be responsible for the deregulation of Ca2+ entry and disruption of HSP90/
eNOS binding leading to impaired vascular relaxation. Statins have been shown to 
disrupt hypoxia-induced abnormal coupling of eNOS and caveolin-1, thus restor-
ing eNOS function and attenuating hypoxia-induced PH [155]. Recent studies of 
hypoxia-induced PH in rats and cows showed no disruption of EC or any altera-
tions in the expression of caveolin-1, VE-Cad or vWF [46, 126]. Not surprisingly, 
there was no enhanced expression of caveolin-1 in SMC as seen in the MCT model. 
However, there was evidence of caveolin-1 dysfunction, such as the activation of 
proliferative pathways such as PY-STAT3, β-catenin and pERK1/2, and a loss of 
PTEN. PTEN contains a Cav-1–binding motif and, in part, colocalizes in caveolae. 
Caveolin-1 determines the membrane PTEN levels through its binding sequence. 
The loss of PTEN during hypoxia further confirms caveolin-1 dysfunction [46].

People living at high altitude develop PH and right ventricular hypertrophy as an 
adaptive mechanism. Upon return to sea level, PH reverts to normal slowly [156]. 
These observations suggest that the absence of physical disruption of EC observed 
in the hypoxia model may be the reason why hypoxia-induced PH is reversible. 
Although hypoxia plays a role, inflammation and endothelial dysfunction are impor-
tant factors that determine the development of PH in chronic obstructive pulmonary 
disease (COPD). The outflow obstruction in COPD results from inflammatory pro-
cesses affecting airways, lung parenchyma and pulmonary vasculature. PH in COPD 
can develop independently of underlying parenchymal destruction and loss of lung 
vessels [157, 158]. Endothelial dysfunction has been observed in mild cases of COPD, 
and the loss of endothelium-dependent relaxation in the pulmonary vasculature 
correlates with the severity of the disease [159]. Importantly, the loss of endothelial 
caveolin-1 accompanied by enhanced expression of caveolin-1 in SMC is reported in 
COPD associated with PH. COPD without PH had preserved endothelial caveolin-1 
[160]. In addition, severe pulmonary arterial lesions such as plexiform and angio-
matoid lesions have been documented in explanted lungs after transplantation in 
COPD associated with severe PH. These lesions were similar to what are seen in IPAH 
[161]. In infants with respiratory distress syndrome, despite significantly elevated 
pulmonary artery pressure and significant medial thickening, pulmonary arteries 
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exhibit well-preserved endothelial caveolin-1, without any evidence of EC disrup-
tion or enhanced expression of Cav-1 in SMC. In contrast, loss of endothelial Cav-1 
and disruption/loss of EC coupled with enhanced expression of Cav-1 in SMC were 
observed in infants with bronchopulmonary dysplasia and associated inflammation 
[123]. These results indicate that irrespective of the underlying disease, EC disrup-
tion leads to the loss of endothelial caveolin-1 and subsequent enhanced expression 
of Cav-1 in SMC, followed by neointima formation and irreversible PH. Thus, the EC 
disruption puts the patients at a higher risk of developing irreversible PH.

4. Conclusions

Under normal conditions, ECs play a key role in maintaining SMCs in quiescent 
state and vascular homeostasis. Caveolin-1, a major protein constituent of caveolae 
on the cell membrane, regulates multiple cellular processes including inflammation, 
molecular transport, cell proliferation, adhesion, migration and signal transduc-
tion. Caveolin-1 interacts with protein molecules that are in or are recruited to 
caveolae and maintains them in inhibitory confirmation. Endothelial caveolin-1 loss 
and caveolin-1 dysfunction lead to PH.

4.1 EC disruption and caveolin-1 loss

Injury such as inflammation, increased pulmonary blood flow associated with 
increased pressure, drugs and toxins can cause endothelial disruption, which is 
usually progressive. Endothelial disruption leads to the progressive loss of endo-
thelial membrane proteins including caveolin-1, PECAM-1 and VE-Cad. These 
alterations lead to deregulation of multiple pathways. As depicted in Figure 1, (a) 
the loss of caveolin-1 is accompanied by reciprocal activation of proliferative and 
antiapoptotic pathways leading to SMC hypertrophy and proliferation. (b) Further 
loss of EC exposes SMCs to direct pressure resulting in enhanced expression of 
caveolin-1 in SMCs. Tyrosine phosphorylated caveolin-1 could alter the phenotype 
and facilitate cell migration leading to neointima formation. (c) Loss of PECAM-1 
and VE-Cad results in the loss of barrier function and junction stability. These 
alterations lead to EndMT. These cells lose endothelial properties and acquire 
pro-inflammatory phenotype and are primed for proliferation, migration and tissue 
generation and participate in neointima formation, thus leading to irreversible PH.

Figure 1. 
This figure depicts the pathway leading from endothelial cell disruption to irreversible PH. Cav-1 = caveolin-1, 
EC = endothelial cells, EndMT = endothelial mesenchymal transformation, PECAM-1 = platelet endothelial 
cell adhesion molecule 1, pCav-1 = tyrosine phosphorylated caveolin-1, PH = pulmonary hypertension, 
SMC = smooth muscle cells.
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4.2 EC and caveolin-1 dysfunction

Hypoxia exposure to EC leads to a tight complex formation between caveolin-1 
and eNOS, resulting in the dysfunction of both factors (Figure 2). Importantly, 
there is no EC disruption or the loss of caveolin-1 or any other membrane proteins. 
Since there is no loss of EC, medial layer is not exposed to shear stress and pressure. 
Not surprisingly, there is no enhanced expression of caveolin-1 in SMCs. However, 
caveolin-1 and eNOS dysfunction lead to SMC proliferation, medial hypertro-
phy and loss of endothelial-dependent vascular relaxation. Removal of hypoxia 
results in the disruption of caveolin-1/eNOS tight complex leading to reversal 
of PH. Slowly, the pulmonary artery pressure and medial hypertrophy return to 
normal as seen in experimental animals and in people returning to sea level from 
high altitude. Hypoxia-induced PH is reversible. However, associated inflamma-
tion/shear stress in hypoxia-induced PH, resulting in EC disruption, would lead to 
irreversible PH.

In conclusion, EC integrity and caveolin-1 function are important factors that 
determine reversible vs. irreversible PH.
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