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Chapter

I–Convergence of Arithmetical
Functions
Vladimír Baláž and Tomáš Visnyai

Abstract

Let n> 1 be an integer with its canonical representation, n ¼ pα11 p
α2
2 ⋯pαkk . Put

H nð Þ ¼ max α1, … , αkf g, h nð Þ ¼ min α1, … , αkf g, ω nð Þ ¼ k, Ω nð Þ ¼ α1 þ⋯þ αk,
f nð Þ ¼

Q

d∣nd and f ∗ nð Þ ¼ f nð Þ
n . Many authors deal with the statistical convergence

of these arithmetical functions. For instance, the notion of normal order is defined
by means of statistical convergence. The statistical convergence is equivalent with
Id–convergence, where Id is the ideal of all subsets of positive integers having the
asymptotic density zero. In this part, we will study I–convergence of the well-
known arithmetical functions, where I ¼ I qð Þ

c ¼ A⊆ :

P

a∈Aa
�q
< þ∞

� �
is an

admissible ideal on  such that for q∈ 0, 1ð i we have I qð Þ
c ⊊ Id, thus I qð Þ

c –

convergence is stronger than the statistical convergence (Id–convergence).

Keywords: sequences, I–convergence, arithmetical functions, normal order,
binomial coefficients

1. Introduction

The notion of statistical convergence was introduced independently by Fast and
Schoenberg in [1, 2], and the notion of I–convergence introduced by Kostyrko et al.
in the paper [3] coresponds to the natural generalization of statistical convergence
(see also [4] where I–convergence is defined by means of filter – the dual notion to
ideal). These notions have been developed in several directions in [5–18] and have
been used in various parts of mathematics, in particular in number theory and
ergodic theory, for example [15, 19–28] also in Economic Theory [29, 30] and
Political Science [31]. Many authors deal with average and normal order of the well-
known arithmetical functions (see [20, 21, 23, 24, 26, 28, 32, 33] and the monograph
[34] for basic properties of the well-known arithmetical functions). In what fol-
lows, we shall strengthen these results from the standpoint of I–convergence of
sequences, mainly by I qð Þ

c –convergence and Iu–convergence. On connection with
that we can obtain a good information about behaviour and properties of the well-
known arithmetical functions by investigating I–convergence of these functions
or some sequences connected with these functions. Specifically in [28] by means of
Id–convergence, there is recalled the result that normal order of Ω nð Þ or ω nð Þ
respectively is log log n. We managed to completely determine for which q∈ 0, 1ð i
the sequences Ω nð Þ

log log n and
ω nð Þ

log log n are I
qð Þ
c –convergent. As consequence of our results,

we have that the above sequences are Id–convergent to 1, what is equivalent that
normal order of Ω nð Þ or ω nð Þ respectively is log log n. Further in [26], there is
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proved that the sequence log p � ap nð Þ
log n

� �

is Id–convergent to 0 (see also [21]). We

shall extend this result by means of Iu–convergence of the sequence log p � ap nð Þ
log n

� �

.

So we can get a better view of the structure of the set B εð Þ ¼ n∈ : log p � ap nð Þ
log n < ε

n o

,

ε>0. We also want to investigate the I qð Þ
c –convergence of further arithmetical

functions.

2. Basic notions

Let  be the set of positive integers. Let A⊆. If m, n∈, m≤ n, we denote by
A m, nð Þ the cardinality of the set A∩ m, n½ �. A 1, nð Þ is abbreviated by A nð Þ. We recall
the concept of asymthotic, logarithmic and uniform density of the set A⊆ (see
[35–38]).

Definition 1.1. Let A⊆.

a. Put dn Að Þ ¼ A nð Þ
n ¼ 1

n

Pn
k¼1χA kð Þ, where χA is the characteristic function of the

set A. Then the numbers d Að Þ ¼ lim inf n!∞dn Að Þ and d Að Þ ¼
limsupn!∞dn Að Þ are called the lower and upper asymptotic density of the set A,
respectively. If there exists lim n!∞ dn Að Þ, then d Að Þ ¼ d Að Þ ¼ d Að Þ is said to
be the asymptotic density of A.

b. Put δn Að Þ ¼ 1
sn

Pn
k¼1

χA kð Þ
k , where sn ¼

Pn
k¼1

1
k. Then the numbers δ Að Þ ¼

lim inf n!∞ δn Að Þ and δ Að Þ ¼ lim supn!∞ δn Að Þ are called the lower and
upper logarithmic density of A, respectively. Similarly, if there exists
lim n!∞ δn Að Þ, then δ Að Þ ¼ δ Að Þ ¼ δ Að Þ is said to be the logarithmic density of
A. Since sn ¼ log nþ γ þ O 1

k

� �
for n ! ∞ and γ is the Euler constant, sn can be

replaced by log n in the definition of δn Að Þ.

c. Put αs ¼ min n≥0A nþ 1, nþ sð Þ and αs ¼ max n≥0A nþ 1, nþ sð Þ. The
following limits u Að Þ ¼ lim s!∞

αs
s , u Að Þ ¼ lim s!∞ αs

s exist (see [17, 37,
39, 40]) and they are called lower and upper uniform density of the set A,
respectively. If u Að Þ ¼ u Að Þ, then we denote it by u Að Þ and it is called the
uniform density of A. It is clear that for each A⊆ we have

u Að Þ≤ d Að Þ≤ δ Að Þ≤ δ Að Þ≤ d Að Þ≤ u Að Þ: (1)

Further densities can be found in papers [11, 12].
Let n ¼ pα11 p

α2
2 ⋯pαkk be the canonical representation of the integer n∈. Recall

some arithmetical functions, which belong to our interest.

1.ω nð Þ – the number of distinct prime factors of n ω nð Þ ¼ kð Þ,

2.Ω nð Þ – the number of prime factors of n counted with multiplicities
Ω nð Þ ¼ α1 þ⋯þ αkð Þ,

3.d nð Þ – the number of divisors of n d nð Þ ¼
P

d∣n1
� �

,

4.define h(n) and H(n), put h 1ð Þ ¼ 1, H 1ð Þ ¼ 1 and for n> 1 denote

2
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h nð Þ ¼ min
1≤ j≤ k

α j, H nð Þ ¼ max
1≤ j≤ k

α j,

5. f nð Þ ¼
Q

d∣nd, f
∗ nð Þ ¼ f nð Þ

n , where n ¼ 1, 2, … ,

6.ap nð Þ is defined as follows: ap 1ð Þ ¼ 0 and if n>0, then ap nð Þ is a unique integer
j≥0 satisfying p j∣n, but p jþ1∤n i.e., pap nð Þ∥n,

7.γ nð Þ and τ nð Þ – were introduced in connection with representation of natural
numbers of the form n ¼ ab, where a, b are positive integers. Let

n ¼ ab11 ¼ ab22 ¼ ⋯ ¼ a
bγ nð Þ
γ nð Þ

be all such representations of given natural number n, where ai, bi ∈. Denote by

τ nð Þ ¼ b1 þ b2 þ⋯þ bγ nð Þ, n> 1ð Þ:

It is clear that γ nð Þ≥ 1, because for any n> 1 there exist representation in the
form n1.

3. Ideals

A lot of mathematical disciplines use the term small (large) set from different
point of view. For instance a final set, a set having the measure zero and nowhere
dense set is a small set from point of view of cardinality, measure (probability) and
topology, respectively. The notion of ideal I ⊆ 2X is the unifying principle how to
express that a subset of X 6¼ Ø is small. We say a set A⊆X is a small set if A∈ I .
Recall the notion of an ideal I of subsets of .

Let I ⊆ 2. I is said to be an ideal in , if I is additive (if A,B∈ I then A∪B∈ I)
and hereditary (if A∈ I and B⊂A then B∈ I). An ideal I is said to be non-trivial
ideal if I 6¼ Ø and  ∉ I . A non-trivial ideal I is said to be admissible ideal if it
contains all finite subsets of . The dual notion to the ideal is the notion filter. A
non-empty family of sets F ⊂ 2 is a filter if and only if Ø ∉ F , for each A,B∈F we
have A∩B∈F and for each A∈F and each B⊃Awe have B∈F (for definitions see
e.g. [4, 41, 42]). Let I be a proper ideal in  (i.e.  ∉ I). Then a family of sets
F Ið Þ ¼ B⊆ : there exists A∈ I such that B ¼ nAf g is a filter in , so called
the associated filter with the ideal I .

The following example shows the most commonly used admissible ideals in
different areas of mathematics.

Example 1.2.

a. The class of all finite subsets of  forms an admissible ideal usually denoted
by I f .

b. Let ϱ be a density function on , the set I ϱ ¼ A⊆ : ϱ Að Þ ¼ 0f g is an
admissible ideal. We will use namely the ideals Id, I δ and Iu related to
asymptotic, logarithmic and uniform density, respectively.

c. A wide class of ideals I can be obtained by means of regular non negative

matrixes T ¼ tn,kð Þn,k∈
(see [43]). For A⊂, we put d nð Þ

T Að Þ ¼
P
∞

k¼1tn,kχA kð Þ

3
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for n∈. If lim n!∞ d
nð Þ
T Að Þ ¼ dT Að Þ exists, then dT Að Þ is called T–density of

A (see [3, 44]). Put IdT ¼ A⊂ : dT Að Þ ¼ 0f g. Then IdT is a non-trivial ideal
and IdT contains both Id and I δ ideals as a special case. Indeed Id can be
obtained by choosing tn,k ¼ 1

n for k≤ n, tn,k ¼ 0 for k> n and I δ by choosing

tn,k ¼
1
k

sn
for k≤ n, tn,k ¼ 0 for k> n where sn ¼

Pn
k¼1

1
k for n∈.

For the matrix T ¼ tn,kð Þn,k∈
, where tn,k ¼ φ kð Þ

n for k≤ n, k∣n and tn,k ¼ 0
otherwise we obtain Iφ ideal of Schoenberg (see [2]), where φ is Euler
function.

Another special case of IdT is the following. Take an arbitrary divergent
series

P
∞

n¼1cn, where cn >0 for n∈ and put tn,k ¼ ck
Sn
for k≤ n, where Sn ¼

Pn
i¼1ci, and tn,k ¼ 0 for k> n.

d. Let μ be a finitely additive normed measure on a field S ⊆ 2. Suppose that S
contains all singletons nf g, n∈. Then the family Iμ ¼ A⊆ : μ Að Þ ¼ 0f g is
an admissible ideal. In the case if μ is the Buck measure density (see [13, 45]),
Iμ is an admissible ideal and Iμ ⊊ Id.

e. Suppose that μn : 2 ! 0, 1½ � is a finitely additive normed measure for n∈.
If for A⊆ there exists μ Að Þ ¼ lim n!∞ μn Að Þ, then the set A is said to be
measurable and μ Að Þ is called the measure of A. Obviously μ is a finitely
additive measure on some field S ⊆ 2. The family Iμ ¼ A⊆ : μ Að Þ ¼ 0f g is
a non-trivial ideal. For μn we can take for instance dn, δn or d

nð Þ
T .

f. Let  ¼ ⋃∞

j¼1D j be a decomposition on  (i.e. Dk ∩Dl ¼ Ø for k 6¼ l).

Assume that D j j ¼ 1, 2, …ð Þ are infinite sets (e.g. we can choose D j ¼
2 j�1 � 2s� 1ð Þ : s∈
� �

for j ¼ 1, 2, … ). Denote I the class of all A⊆ such
that A intersects only a finite number of D j. Then I is an admissible ideal.

g. For an q∈ 0, 1ð i the set I qð Þ
c ¼ A⊆ :

P

a∈Aa
�q
< þ∞

� �
is an admissible

ideal (see [23]). The ideal I 1ð Þ
c ¼ A⊆ :

P

a∈Aa
�1
< þ∞

� �
is usually

denoted by I c. It is easy to see, that for any q1, q2 ∈ 0, 1ð Þ, q1 < q2 we have

I f ⊊ I q1ð Þ
c ⊊ I q2ð Þ

c ⊊ I c ⊊ Id ⊊ I δ: (2)

The fact I c ⊊ Id in Eq. (2) follows from the following result. Let A⊆ and
P

a∈A
1
a <∞ then d Að Þ ¼ 0 (see [46]) thus if A∈ I c then A∈ Id. The opposite is not

true, consider the set of primes , for which we have d ð Þ ¼ 0 but
P

p∈

1
p ¼ ∞ thus

∈ Id but  ∉ I c I c 6¼ Idð Þ.
The fact that for any q1, q2 ∈ 0, 1ð i, q1 < q2 we have I q1ð Þ

c ⊊ I q2ð Þ
c in Eq. (2) is clear.

For showing that I q1ð Þ
c 6¼ I q2ð Þ

c it suffices to find a setH ¼ h1 < h2 <⋯< hk <⋯f g⊂

such that
P
∞

k¼1h
�q1
k ¼ þ∞ and

P
∞

k¼1h
�q2
k < þ∞. Put hk ¼ k

1
q1

h i

. Since

h1 < h2 <⋯< hk <⋯ and h
q1
k ≤ k we have

P
∞

k¼1h
�q1
k ≥

P
∞

k¼1k
�1 ¼ þ∞. On the other

side hk > k
1
q1 � 1≥ 1

2 k
1
q1 for k≥ 2, so we obtain

P
∞

k¼1h
�q2
k ≤ 2q2

P
∞

k¼1k
�q2

q1 < þ∞ since
q2
q1
> 1.
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4. I– and I ∗
–convergence

The notion of statistical convergence was introduced in [1, 2] and the notion of
I–convergence introduced in [3] corresponds to the natural generalization of the
notion of statistical convergence.

Let us recall notions of statistical convergence, I– and I ∗ –convergence of
sequence of real numbers (see [3]).

Definition 1.3. We say that a sequence xnð Þ∞n¼1 is statistically convergent to a
number L∈ and we write lim statxn ¼ L, provided that for each ε>0 we have
d A εð Þð Þ ¼ 0, where A εð Þ ¼ n∈ :jxn � Lj≥ εf g.

Definition 1.4.

i. We say that a sequence xnð Þ∞n¼1 is I–convergent to a number L∈ and we
write I � lim xn ¼ L, if for each ε>0 the set A εð Þ ¼ n∈ :jxn � Lj≥ εf g
belongs to the ideal I .

ii. Let I be an admissible ideal on . A sequence xnð Þ∞n¼1 of real numbers is
said to be I ∗

–convergent to L∈, if there is a set H∈ I , such that for M ¼
nH ¼ m1 <m2 <⋯<mk <⋯f g∈F Ið Þ we have lim k!∞ xmk

¼ L, where
the limit is in the usual sense.

In the definition of usual convergence the set A εð Þ is finite, it means that it is
small from point of view of cardinality, A εð Þ∈ I f . Similarly in the definition of
statistical convergence the set A εð Þ has asymptotic density zero, it is small from
point of view of density, A εð Þ∈ Id. The natural generalization of these notions is the
following, let I be an admissible ideal (e.g. anyone from Example 1.2) then for each
ε>0 we ask whether the set A εð Þ belongs in the ideal I . In this way we obtain the
notion of the I–convergence. For the following use, we note that the concept of
I–convergence can be extended for such sequences that are not defined for all n∈,
but only for “almost” all n∈. This means that instead of a sequence xnð Þ∞n¼1
we have xsð Þs∈ S, where s runs over all positive integers belonging to S⊆ and
S∈F Ið Þ.

Remember that I–convergence in  has many properties similar to properties of
the usual convergence. All notions which are used next we considered in real
numbers . The following theorem can be easily proved.

Theorem 1.5 (Theorem 2.1 from [9]).

i. If I � lim xn ¼ L and I � lim yn ¼ K, then I � lim xn � yn
� �

¼ L� K.

ii. If I � lim xn ¼ L and I � lim yn ¼ K, then I � lim xn � yn
� �

¼ L � K.

The following properties are the most familiar axioms of convergence
(see [47]).

(S) Every constant sequence x, x, … , x, …ð Þ converges to x.
(H) The limit of any convergent sequence is uniquely determined.
(F) If a sequence xnð Þ∞n¼1 has the limit L, then each of its subsequences has the

same limit.
(U) If each subsequence of the sequence xnð Þ∞n¼1 has a subsequence which

converges to L, then xnð Þ∞n¼1 converges to L.
A natural question arises which above axioms are satisfied for the concept of

I–convergence.

5
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Theorem 1.6 (see [14] and Proposition 3.1 from [3], where the concept of
I–convergence has been investigated in ametric space)LetI ⊂ 2 be an admissible ideal.

i. I–convergence satisfies (S), (H) and (U).

ii. If I contains an infinite set, then I–convergence does not satisfy (F).

Theorem 1.7 (see [3]) Let I be an admissible ideal in . If I ∗ � lim xn ¼ L then
I � lim xn ¼ L.

The following example shows that the converse of Theorem 1.7 is not true.
Example 1.8. Let I ¼ I be an ideal from Example 1.2 f). Define xnð Þ∞n¼1 as

follows: For n∈D j we put xn ¼ 1
j for j ¼ 1, 2, … . Then obviously I � lim xn ¼ 0.

But we show that I ∗ � lim xn ¼ 0 does not hold.
If H∈ I then directly from the definition of I there exists p∈ such that

H⊆D1 ∪D2 ∪⋯∪Dp. But then Dpþ1 ⊆nH ¼ m1 <m2 <⋯<mk <⋯f g∈F Ið Þ and
so we have xmk

¼ 1
pþ1 for infinitely many indices k∈. Therefore lim k!∞xmk

¼ 0
cannot be true.

In [3] was formulated a necessary and sufficient condition for an admissible
ideal I under which I– and I ∗ –convergence to be equivalent. Recall this condition
(AP) that is similar to the condition (APO) in [7, 35].

Definition 1.9 (see also [40]) An admissible ideal I ⊂ 2 is said to satisfy the
condition (AP) if for every countable family of mutually disjoint sets A1,A2, …f g
belonging to I there exists a countable family of sets B1,B2, …f g such that sym-
metric difference A jΔB j is finite for j∈ and B ¼ ∪∞j¼1B j ∈ I .

Remark. Observe that each B j from the previous Definition belong to I .
Theorem 1.10 (see [14]) From I � lim xn ¼ L the statement I ∗ � lim xn ¼ L

follows if and only if I satisfies the condition (AP).
In [44] it is proved that IdT– and I ∗

dT
–convergence are equivalent in  provided

that T ¼ tn,kð Þn,k∈
from Example 1.2 c) is a non-negative triangular matrix with

Pn
k¼1tn,k ¼ 1 for n∈. From this we get that Id, I δ, Iφ–convergence coinside with

I ∗
d , I ∗

δ , I ∗
φ –convergence, respectively. On the other hand for further ideals from

Example 1.2 e.g. Iu, I and Iμ, respectively, we have that they do not fulfill the
assertion that their I–convergence coincides with I ∗ –convergence. Since these
ideals do not fulfill condition (AP) (see [13, 38, 40]).

The following Theorem shows that also for all ideals I qð Þ
c for q∈ 0, 1ð i the

concepts I– and I ∗ –convergence coincide.
Theorem 1.11 (see, [20, 23]) For any q∈ 0, 1ð i the notions I qð Þ

c – and I qð Þ ∗
c –

convergence are equivalent.

Proof. It suffices to prove that for any I qð Þ
c , q∈ 0, 1ð i and any sequence xnð Þ∞n¼1 of

real numbers such that I qð Þ
c � lim xn ¼ L for q∈ 0, 1ð i there exists a set M ¼

m1 <m2 <⋯<mk <⋯f g⊆ such that nM∈ I qð Þ
c and lim k!∞xmk

¼ L.

For any positive integer k let εk ¼ 1
2k
and Ak ¼ n∈ :jxn � Lj≥ 1

2k

n o

.

As I qð Þ
c � lim xn ¼ L, we have Ak ∈ I qð Þ

c , i.e.
X

a∈Ak

a�q
<∞:

Therefore there exists an infinite sequence n1 < n2 <⋯< nk <⋯ of integers such
that for every k ¼ 1, 2, …

6
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X

a> nk

a∈Ak

a�q
<

1
2k

:

Let H ¼ ∪∞k¼1 nk, nkþ1i∩Akð �½ . Then

X

a∈H

a�q ≤
X

a> n1
a∈A1

a�q þ
X

a> n2
a∈A2

a�q þ⋯þ
X

a> nk
a∈Ak

a�q þ⋯

<
1
2
þ 1
22

þ⋯þ 1
2k

þ⋯< þ∞:

Thus H∈ I qð Þ
c . Put M ¼ nH ¼ m1 <m2 <⋯<mk <⋯f g. Now it suffices to

prove that lim k!∞xmk
¼ L. Let ε>0. Choose k0 ∈ such that 1

2k0
< ε. Let mk > nk0 .

Then mk belongs to some interval n j, n jþ1
� �

where j≥ k0 and does not belong to
A j j≥ k0ð Þ. Hence mk belongs to nA j, and then ∣xmk

� L∣< ε for every mk > nk0 ,
thus lim k!∞xmk

¼ L.
Corollary 1.12 Ideals I qð Þ

c for q∈ 0, 1ð i have the property (AP).
It is easy to prove the following lemma.
Lemma 1.13 (see [3]). If I 1 ⊆ I 2 then the statement I 1 � lim xn ¼ L implies

I 2 � lim xn ¼ L.

5. I–convergence of arithmetical functions

We can obtain a good information about behaviour and properties of the well-
known arithmetical functions by investigating I–convergence of these functions or
some sequences connected with these functions. Recall the concept of normal order.

Definition 1.14. The sequence xnð Þ∞n¼1 has the normal order yn
� �

∞

n¼1 if for every
ε>0 and almost all (almost all in the sense of asymptotic density) values n we have
1� εð Þyn < xn < 1þ εð Þyn.

Schinzel and Šalát in [28] pointed out that one of equivalent definitions to have
the normal order is as follows. The sequence xnð Þ∞n¼1 has the normal order yn

� �
∞

n¼1
if and only if Id � lim xn

yn
¼ 1. The results concerning the normal order will be

formulated using the concept of statistical convergence, which coincides with Id–

convergence. For equivalent definitions of the normal order and more examples
concerning this notion see [34, 38, 48].

In the papers [21, 27, 28] and in the monograph [38] there are studied various
kinds of convergence of arithmetical functions which were mentioned at the begin-
ning. The following equalities were proved in the paper [28] by using the concept of
the normal order.

Id � lim
ω nð Þ

log log n
¼ Id � lim

Ω nð Þ
log log n

¼ 1

and

Id � lim
h nð Þ
log n

¼ Id � lim
H nð Þ
log n

¼ 0:

7
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Similarly for the functions f nð Þ and f ∗ nð Þ. In [27] it is proved the following
equality:

Id � lim
log log f nð Þ
log log n

¼ Id � lim
log log f ∗ nð Þ

log log n
¼ 1þ log 2:

Let us recall one more result from [26], there was proved that the sequence

log p � ap nð Þ
log n

� �
∞

n¼2
is Id–convergent to 0. Moreover the sequence log p � ap nð Þ

log n

� �
∞

n¼2

is I qð Þ
c –convergent to 0 for q ¼ 1 and it is not I qð Þ

c –convergent for all q∈ 0, 1ð Þ,
as it was shown in [21]. In [19] it was proved that this sequence is also
Iu–convergent.

The following theorem shows that the assertions using the notion Iu instead of
I qð Þ
c , q∈ 0, 1ð i need to use a different technique for their proofs. First of all we

recall a new kind of convergence so called the uniformly strong p–Cesàro conver-
gence. This convergence is an analog of the notion of strong almost convergence
(see [6]).

Definition 1.15. A sequence xnð Þ∞n¼1 is said to be uniformly strong p–Cesàro

convergent 0< p<∞ð Þ to a number L if lim N!∞ 1
N

PkþN
n¼kþ1 xi � Lj jp ¼ 0 uniformly

in k.
The following Theorem shows a connection between uniformly strong p–Cesàro

convergence and Iu–convergence.
Theorem 1.16 (see [6]). If xnð Þ∞n¼1 is a bounded sequence, then xnð Þ∞n¼1 is Iu–

convergent to L if and only if xnð Þ∞n¼1 is uniformly strong p–Cesàro convergent to L for
some p, 0< p<∞.

The sequence log p � ap nð Þ
log n

� �
∞

n¼2
is Iu–convergent to zero i.e. for arbitrary ε>0

the set A εð Þ ¼ n∈ : log p � ap nð Þ
log n ≥ ε>0

n o

has uniform density equal to zero.

Theorem 1.17 (see [19]). We have Iu � lim log p � ap nð Þ
log n ¼ 0.

Proof. The sequence log p � ap nð Þ
log n

� �
∞

n¼2
is bounded. Using Theorem 1.16, it is

sufficient to show that the sequence log p � ap nð Þ
log n

� �
∞

n¼2
is uniformly strong p–Cesàro

convergent to 0 for p ¼ 1. For the reason that all members of log p � ap nð Þ
log n

� �
∞

n¼2
are

positive, we shall prove that lim N!∞ 1
N

PkþN
n¼kþ1

ap nð Þ
log n ¼ 0, uniformly in k. ap nð Þ ¼ α

if pα∥n. Let α0 ¼ logN
log p

h i

. This immediately implies that pα0 ≤N < pα0þ1. Then for

all n∈ k, kþNð � we have ap nð Þ ¼ α< α0 with the possible exception of one
n1 ∈ k, kþNð � for which we could have ap n1ð Þ ¼ α1 > α0. Assume that there
exist two such numbers n1, n2 ∈ k, kþNð � for which ap n1ð Þ ¼ α1 > α0 and ap n2ð Þ ¼
α2 > α0, then n1 ¼ m1p

α1 , n2 ¼ m2p
α2 hence pα0þ1∣n1 � n2. We have pα0þ1

< ∣n1 � n2∣ ≤N, what is a contradiction with pα0þ1
>N. When we omit such an n1

from the sum, the error is less than 1
N

ap n1ð Þ
log n1

≤ 1
N

α1
α1
log p. Using the Hölder’s inequality

we get

1
N

XkþN

n¼kþ1

ap nð Þ
log n

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XkþN

n¼kþ1
ap nð Þ
� �2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XkþN

n¼kþ1

1

log nð Þ2

s

: (3)
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We are going to estimate the first factor of Eq. (3)

1
N

XkþN

n¼kþ1

ap nð Þ
� �2 ffi 1

N

Xα0

α¼0

α2
XkþN

n¼kþ1
ap nð Þ¼α

1 ¼

1
N

Xα0

α¼0

α2
kþN

pα


 �

� k

pα


 �

� kþN

pαþ1


 �

� k

pαþ1


 �� � 

¼

1
N

Xα0

α¼0

α2
N

pα
� N

pαþ1 þO 1ð Þ
� 

¼ 1
N
N 1� 1

p

� 
Xα0

α¼0

α2
1
pα

þO 1ð Þ
N

Xα0

α¼0

α2:

Formula
Pα0

α¼0α
2 ¼ P α0ð Þ, where P xð Þ ¼ x xþ1ð Þ 2xþ1ð Þ

6 and simple estimations give
Pα0

α¼0α
2 1
pα ≤

P
∞

α¼0
α2

pα <∞.
So we get

1
N

XkþN

n¼kþ1

ap nð Þ
� �2 ¼ O 1ð Þ: (4)

Estimate the second factor Eq. (3)

1
N

XkþN

n¼kþ1

1

log nð Þ2
≤

1
N

XNþ1

n¼2

1

log nð Þ2
! 0, since

1

log nð Þ2
! 0: (5)

Let N ! ∞, from Eqs. (4) and (5) we obtain

1
N

XkþN

n¼kþ1

ap nð Þ
log n

≤ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XNþ1

n¼2

1

log nð Þ2

s

! 0,

uniformly in k.
Remark. It is known that Iu ⊊ Id (see e.g. [5, 6]) but the ideals I c and Iu are

not disjoint, and moreover Iu ⊈ I c and I c ⊈ Iu. For example the set of all prime
numbers belongs to Iu but not belongs to I c. On the other hand there exists the set
B ¼ ∪∞k¼1Bk, where Bk ¼ k3 þ 1, k3 þ 2, … , k3 þ k

� �
which not belongs to Iu but it

belongs to I c.
Under the fact that I qð Þ

c ⊊ Id for all q∈ 0, 1ð i and Lemma 1.13 it is useful to
investigate I qð Þ

c –convergence of special sequences described in the introduction.
Under the Lemma 1.13 it is clear that if there exists the I qð Þ

c –limit of some sequence
for any q∈ 0, 1ð i, then it is equal to the Id–limit of the same sequence. There are no
other options.

Consider the sequences h nð Þ
log n

� �
∞

n¼2
and H nð Þ

log n

� �
∞

n¼2
. In [45] it was proved that these

sequences are dense on 0, 1
log 2

� �

and moreover they both are statistically conver-

gent to zero. The same result we have for I qð Þ
c –convergence, but only for the

sequence h nð Þ
log n

� �
∞

n¼2
for all q∈ 0, 1ð i.

Theorem 1.18 (see [20]). We have

I qð Þ
c � lim

h nð Þ
log n

¼ 0, for all q∈ 0, 1ð i:
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Proof. Let k∈ and k≥ 2. It is easy to see that the following equality holds

1þ
X

n∈

h nð Þ≥ k

n�q ¼
Y

p∈

1þ 1
pkq

þ 1
p kþ1ð Þq þ⋯

� 

, (6)

where  denotes the set of all primes.
The right-hand side of the equality Eq. (6) equals

Y

p∈

1þ 1
pkq

� 1
1� 1

pq

 !

¼
Y

p∈

1þ 1
p k�1ð Þq � pq � 1ð Þ

� 

:

Then for q> 1
k, the product on the right-hand side of the previous equality

converges. Thus, the series on the left-hand side of Eq. (6) converges.

Let ε>0. Put A εð Þ ¼ n∈ :
h nð Þ
log n ≥ ε>0

n o

. There exists an n
kð Þ
0 ∈ for all k≥ 2

such that for all n> n
kð Þ
0 and n∈A εð Þ we have h nð Þ≥ ε � log n> k (it is sufficient to

put n kð Þ
0 ¼ e

k
ε

h i

).

From this A εð Þ∩ n
kð Þ
0 þ 1, n kð Þ

0 þ 2, …
n o

⊆ n∈ : h nð Þ≥ kf g for all k≥ 2, k∈.

Therefore
P

n∈A εð Þn
�q
< þ∞ for all k≥ 2 and I qð Þ

c � lim h nð Þ
log n ¼ 0 since the series

Eq. (6) converges for all q> 1
k. If k ! ∞ for sufficient large then I qð Þ

c � lim h nð Þ
log n ¼ 0

for all q∈ 0, 1ð i.
Corollary 1.19. We have

I qð Þ ∗
c � lim

h nð Þ
log n

¼ 0 for all q∈ 0, 1ð i:

For the sequence H nð Þ
log n

� �
∞

n¼2
we get the result of different character.

Theorem 1.20 (see [20]). The sequence H nð Þ
log n

� �
∞

n¼2
is not I qð Þ

c –convergent for every

q∈ 0, 1ð Þ.
Proof. In the paper [21] is proved, that the sequence log p � ap nð Þ

log n

� �
∞

n¼2
is not I qð Þ

c –

convergent for any q∈ 0, 1ð Þ. The sequence ap nð Þ
log n

� �
∞

n¼2
is also not I qð Þ

c –convergent to

zero. The inequality H nð Þ≥ ap nð Þ holds for all n ¼ 1, 2, … and for any prime num-

ber p. Then we have H nð Þ
log n ≥

ap nð Þ
log n for all n ¼ 2, 3, … . This implies that the sequence

H nð Þ
log n

� �
∞

n¼2
is also not I qð Þ

c –convergent to zero for every q∈ 0, 1ð Þ.
Theorem 1.21 (see [20]). For q ¼ 1, we obtain

I c � lim
H nð Þ
log n

¼ 0:

Proof. We will show that

A εð Þ ¼ n∈ :

H nð Þ
log n

≥ ε

� �

∈ I c

for any ε>0.
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Every non-negative integer n can be represented as n ¼ ab2, where a is a square-
free number. Hence H að Þ ¼ 1 and

H nð Þ∈ H b2
� �

,H b2
� �

þ 1
� �

:

If n∈A εð Þ then from H nð Þ≥ ε � log n we have

log ab2
� �

≤
H b2
� �

þ 1
ε

and so log a≤
H b2
� �

þ 1
ε

:

Therefore

A εð Þ⊆B ¼ n∈ : n ¼ ab2, log a≤
H b2
� �

þ 1
ε

, b∈

( )

:

It is enough to prove that
P

n∈Bn
�1
< þ∞. We have

X

n∈B

1
n
¼
X∞

b¼1

1

b2

X

log a≤
H b2ð Þþ1

ε

1
a

:

We use the inequality Sk ¼
Pk

j¼1
1
j ≤ 1þ log k for the harmonic series. Then we

have the following inequality

X

n∈B

1
n
≤
X∞

b¼1

1

b2
H b2
� �

þ 1
ε

þ 1

 !

: (7)

Because the
P 1

b2
¼ π2

6 < þ∞, it is enough to prove that the

X∞

b¼1

H b2
� �

b2
< þ∞: (8)

For any n∈ we have n ¼ pa11 ⋯pakk ≥ 2H nð Þ and from this H nð Þ≤ log n
log 2. Therefore

X∞

b¼1

H b2
� �

b2
≤

2
log 2

X∞

b¼1

log b

b2
< þ∞:

We have shown that the sum in Eq. (8) is finite and therefore the sum in Eq. (7)
is also finite.

Moreover B∈ I c and because A εð Þ⊆B we have A εð Þ∈ I c.

The situation for sequences ω nð Þ
log log n

� �
∞

n¼2
, Ω nð Þ

log log n

� �
∞

n¼2
is following.

Theorem 1.22 (see [20]). The sequences ω nð Þ
log log n

� �
∞

n¼2
and Ω nð Þ

log log n

� �
∞

n¼2
are not

I qð Þ
c –convergent for all q∈ 0, 1ð i.
Proof. We prove this assertion only for ω nð Þ

log log n

� �
∞

n¼2
. The proof for the sequence

Ω nð Þ
log log n

� �
∞

n¼2
is analogous. Let q ¼ 1. On the basis of the Theorem 2.2 of [28] and

Lemma 1.13 we can assume that I c � lim ω nð Þ
log log n ¼ 1. Take ε∈ 0, 1

2

� �
and consider

the set
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A εð Þ ¼ n∈ :

ω nð Þ
log log n

� 1
�
�
�
�

�
�
�
�≥ ε

� �

:

Put n ¼ p, where p is a prime number, then ω pð Þ ¼ 1 and 1
log log p � 1
�
�
�

�
�
�≥ ε holds

for all prime numbers p> p0. Therefore the set Aε contains all prime numbers
greater than p0. For these p we have:

P

p> p0
1
p ¼ þ∞ and so A εð Þ ∉ I c. From this

I c � lim ω nð Þ
log log n 6¼ 1. Under the inclusion I qð Þ

c ⊊ I 1ð Þ
c � I c and according to Lemma

1.13 we have I qð Þ
c � lim ω nð Þ

log log n 6¼ 1 for q∈ 0, 1ð i. This complete the proof.
Further possibility where the results can be strengthened by the way that the

statistical convergence in them is replaced by I qð Þ
c –convergence is the concept of the

famous Pascal’s triangle. The n-th row of the Pascal’s triangle consists of the numbers
n

0

� 

,
n

1

� 

, … ,
n

n� 1

� 

,
n

n

� 

. Their sum equals to 2n ¼ 1þ 1ð Þn ¼Pn
k¼0

n

k

� 

.

Let Γ tð Þ denote the number of times the positive integer t, t> 2 occurs in the Pascal’s

triangle. That is, Γ tð Þ is the number of binomial coefficient
n

k

� 

satisfying
n

k

� 

¼

t. From this point of view Γ is the function which maps the set  in the set ∪ ℵ0f g
Γ 1ð Þ ¼ ℵ0ð Þ. Let us observe that for every t∈, Γ tð Þ≥ 1.

In [32] it is proved that the average and normal order of the function Γ is 2. Since
the normal order is 2, we have

Id � limΓ tð Þ ¼ 2

(see [28]). We are going to show two results which strengthen the result of [32]
and their proofs are outlined in [24].

Theorem 1.23 (see [24]). I c � limΓ tð Þ ¼ 2:

Proof. The values of the function Γ are positive integers for t 6¼ 1. Thus for ε>0
the set Aε ¼ t∈ :jΓ tð Þ � 2j≥ εf g is a subset of the set H ¼ 1f g∪ 2f g∪M, where
M ¼ t∈ : Γ tð Þ> 2f g. Note that Γ 2ð Þ ¼ 1. Therefore is suffices to show that
P

n∈H
1
n < þ∞. Evidently this is equivalent with

X

n∈M

1
n
< þ∞: (9)

We shall prove Eq. (9). Firstly, we write the left-hand site of Eq. (9) in the form

X

n∈M

1
n
¼ M 1ð Þ

1
þM 2ð Þ �M 1ð Þ

2
þ⋯þM kð Þ �M k� 1ð Þ

k
þ⋯

¼ M 1ð Þ
1 � 2 þM 2ð Þ

2 � 3 þ⋯þ M kð Þ
k � kþ 1ð Þ þ⋯:

In [32] it is shown thatM xð Þ ¼ O
ffiffiffi
x

pð Þ. Therefore there exists such c1 >0 that for
every k∈, M kð Þ≤ c1

ffiffiffi

k
p

holds. But then

M kð Þ
k � kþ 1ð Þ ≤

c1

k
3
2

k ¼ 1, 2, …ð Þ:

According these inequalities by comparison test of the convergence of the series
in Eq. (9) follows.
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Now we shall use the concept of I qð Þ
c –convergence.

Theorem 1.24 (see [24]). For every q> 1
2, I

qð Þ
c � limΓ tð Þ ¼ 2 holds and

I qð Þ
c � limΓ tð Þ ¼ 2 does not hold for any q, 0< q≤ 1

2.

Proof. Let 0< q< 1 and letM have the same meaning as in the proof of Theorem
1.23. Let us examine the series

P

n∈M
1
nq. We write it in the form

X

n∈M

1
nq

¼ M 1ð Þ
1q

þM 2ð Þ �M 1ð Þ
2q

þ⋯þM kð Þ �M k� 1ð Þ
kq

þ⋯

¼ M 1ð Þ 1
1q

� 1
2q

� 

þ⋯þM kð Þ 1
kq

� 1
kþ 1ð Þq

� 

þ⋯

¼
X∞

k¼1

M kð Þ 1
kq

� 1
kþ 1ð Þq

� 

:

(10)

In virtue of Lagrange’s mean value theorem we have

kþ 1ð Þq � kq ¼ qz
q�1
k , k< zk < kþ 1 k ¼ 1, 2, …ð Þ:

Therefore the series Eq. (10) can be written in the form

X

k∈M

1
kq

¼
X∞

k¼1

M kð Þqzq�1
k

kq kþ 1ð Þq ¼
X∞

k¼1

qM kð Þ
kq kþ 1ð Þqz1�q

k

: (11)

But z1�q
k > k1�q, kþ 1ð Þq > kq and so

X

n∈M

1
nq

≤ q
X∞

k¼1

M kð Þ
k1þq

:

We have already seen, that M kð Þ≤ c1
ffiffiffi

k
p

, k ¼ 1, 2, …ð Þ (in the proof of Theorem

1.23). Consider that every binomial coefficient t ¼
n

2

� 

, n≥4 occurs in Pascal’s

triangle at least four times as
n

2

� 

,
n

n� 2

� 

,
t

1

� 

,
t

t� 1

� � 

. Therefore every

number of this form belongs to M. Consequently for x>4, x∈ the number M xð Þ

is greater then or equal to the number V xð Þ of all numbers of the form
n

2

� 

, n≥4

not exceeding x. But V xð Þ≥ s� 3, where s is the integer satisfying

s

2

� 

≤ x<
sþ 1

2

� 

:

From this we get

x<
s sþ 1ð Þ

2
, s>

ffiffiffiffiffi

2x
p

� 1:

So we obtain

M xð Þ≥V xð Þ≥ s� 3>
ffiffiffiffiffi

2x
p

� 4,
M xð Þ
ffiffiffi
x

p >

ffiffiffi

2
p

� 4
x
≥

ffiffiffi

2
p

� 1
|fflfflffl{zfflfflffl}

c2

>0:
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Now it is clear that if x≥
4

2

� 

then

c2
ffiffiffi
x

p
≤M xð Þ≤ c1

ffiffiffi
x

p
, c2 ¼

ffiffiffi

2
p

� 1>0: (12)

Therefore by Eq. (11) we get

X

n∈M

1
nq

¼ q
X∞

k¼1

M kð Þ
kq kþ 1ð Þqz1�q

k

:

But zk < kþ 1, hence z1�q
k < kþ 1ð Þ1�q and so

X

n∈M

1
nq

≥ q
X∞

k¼1

M kð Þ
kþ 1ð Þ1þq :

From this owing to Eq. (12) we obtain

X

n∈M

1
nq

≥ q
X∞

k¼1

c2
ffiffiffi

k
p

kþ 1ð Þ1þq
≥ q

c2
2

X∞

k¼1

1

kþ 1ð Þ12þq
¼ þ∞ if 0< q≤

1
2

:

Thus
P

n∈M
1
nq ¼ þ∞, and so

P

n∈Aε

1
nq ¼ þ∞ for every ε>0.

Similar results we can prove for functions f nð Þ and f ∗ nð Þ.
Theorem 1.25 (see [20, 27]). The sequence log log f nð Þ

log log n

� �
∞

n¼2
is not I qð Þ

c –convergent for

all q∈ 0, 1ð i.
Proof. According to Theorem 2.1 of [27] suppose that the

I qð Þ
c � lim

log log f nð Þ
log log n

¼ 1þ log 2,

where q∈ 0, 1ð i. Let ε∈ 0, log 2ð Þ and define the set

A εð Þ ¼ n∈ :

log log f nð Þ
log log n

� 1þ log 2ð Þ
�
�
�
�

�
�
�
�
≥ ε

� �

:

Put n ¼ p, where p is a prime number, then f pð Þ ¼ p and log log p
log log p ¼ 1. Therefore

the set A εð Þ contains all prime numbers. Next we have:

X

n∈A εð Þ
n�q ≥

X∞

j¼1

p j
�q ≥

X∞

j¼1

p j
�1 ¼ þ∞, q∈ 0, 1ð i:

Hence A εð Þ ∉ I qð Þ
c and I qð Þ

c � lim log log f nð Þ
log log n 6¼ 1þ log 2 for all q∈ 0, 1ð i.

Theorem 1.26 (see [20.2]). The sequence log log f ∗ nð Þ
log log n

� �
∞

n¼2
is not I qð Þ

c –convergent for

all q∈ 0, 1ð i.
Proof. According to Theorem 2.2 of [27] again suppose that the

I qð Þ
c � lim

log log f ∗ nð Þ
log log n

¼ 1þ log 2,
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where q∈ 0, 1ð i. The proof is going similar as in the previous Theorem. Put n ¼ pip j,

i 6¼ j, where pi, p j are distinct prime numbers. Then f ∗ nð Þ ¼ f ∗ pip j

� �

¼ f pip jð Þ
pip j

¼
pip j pip jð Þ

pip j
¼ pip j, i 6¼ j. Hence

log log f ∗ pip jð Þ
log log pip j

¼ 1. Let ε∈ 0, log 2ð Þ and define the set

A εð Þ ¼ n∈ :

log log f ∗ nð Þ
log log n

� 1þ log 2ð Þ
�
�
�
�

�
�
�
�
≥ ε

� �

:

This set contains all numbers of the type pip j, i 6¼ j. For q∈ 0, 1ð i we have:

X

n∈A εð Þ
n�q ≥

X∞

j¼1
p j 6¼2

1
2pj

, pi ¼ 2
� �

:

Since the series
P
∞

j¼1
1

2p j
diverges, we have A εð Þ ∉ I qð Þ

c for all q∈ 0, 1ð i. There-

fore I qð Þ
c � lim log log f ∗ nð Þ

log log n 6¼ 1þ log 2 and the proof is complete.
There exists a relationship between functions f nð Þ and d nð Þ (where d nð Þ is the

number of divisors of n). The following equality holds: log f nð Þ ¼ d nð Þ
2 � log n, n> eð Þ

(see [34]). From this we have

log log f nð Þ ¼ log
1
2
þ log d nð Þ þ log log n, n> ee:

Therefore

log log f nð Þ
log log n

¼ 1þ log d nð Þ
log log n

þ log 1
2

log log n
, n> ee:

From Theorem 1.25 we have the following statement.

Corollary 1.27. The sequence log d nð Þ
log log n

� �
∞

n¼2
is not I qð Þ

c –convergent for all q∈ 0, 1ð i.
The following results concerning the functions γ nð Þ and τ nð Þ.
In [33, Theorem 3, 5] there are proofs of the following results:

X∞

n¼2

γ nð Þ � 1
n

¼ 1,
X∞

n¼2

τ nð Þ � 1
n

¼ 1þ π2

6
:

In connection with these results we have investigated the convergence of series
for any α∈ 0, 1ð Þ,

X∞

n¼2

γ nð Þ � 1
nα

,
X∞

n¼2

τ nð Þ � 1
nα

,

that we need for I qð Þ
c –convergence of functions γ nð Þ and τ nð Þ. The following

results are outlined in [21].
Theorem 1.28. The series

X∞

n¼2

γ nð Þ � 1
nα

diverges for 0< α≤ 1
2 and converges for α> 1

2.
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Proof.

a. Let 0< α≤ 1
2. Put K ¼ k2 : k∈, k> 1

� �
. A simple estimation gives

X∞

n¼2

γ nð Þ � 1
nα

≥
X

n∈K

γ nð Þ � 1
nα

:

Clearly γ nð Þ≥ 2 for n∈K. Therefore

X∞

n¼2

γ nð Þ � 1
nα

≥
X

n∈K

1
nα

¼
X∞

k¼2

1

k2α
≥
X∞

k¼2

1
k
¼ þ∞: (13)

b. Let α> 1
2. We will use the formula

X∞

n¼2

γ nð Þ � 1
nα

¼
X∞

k¼2

X∞

s¼2

1
kαs

¼
X∞

k¼2

1
kα kα � 1ð Þ : (14)

For a sufficiently large number k k> k0ð Þ we have kα

kα�1 < 2. We can estimate the
series on the right-hand side of Eq. (14) with

X∞

k¼2

1
kα kα � 1ð Þ <

Xk0

k¼2

1
kα kα � 1ð Þ þ 2

X

k> k0

1

k2α
:

Since 2α> 1 we get

X∞

n¼2

γ nð Þ � 1
nα

< þ∞:

Corollary 1.29. The sequence γ nð Þ is
i. I c–convergent to 1,

ii. I qð Þ
c –divergent for q∈ 0, 1

2

� �
and I qð Þ

c –convergent to 1 for q∈ 1
2 , 1
� �

.

Proof.

i. Let ε>0. The set of numbers n∈, n> 1 :jγ nð Þ � 1j≥ εf g is a subset of
H ¼ n ¼ ts : n∈, t> 1, s> 1f g and

P

a∈H
1
a < þ∞. From the definition of

I c–convergence Cor. 1.29 i. (Cor. is the abbreviation for Corollary) follows.

ii. Let ε>0 and denoteAε ¼ n∈ :jγ nð Þ � 1j≥ εf g. When 0< q≤ 1
2 then for the

numbers n∈K, K ¼ k2 : k∈N, k> 1
� �

considering Eq. (13) for q ¼ α holds

X

n∈Aε

1
nα

≥
X

n∈K

1
nα

≥ þ∞:

Therefore γ nð Þ is I qð Þ
c –divergent. If 1

2 < q< 1, q ¼ α then Aε ⊂H and

X∞

n¼2

1
nα

≤
X∞

k¼2

X∞

s¼2

1
kαs

:

The convergence of the series on the right-hand side we proved previously in
Theorem 1.28. Therefore γ nð Þ is I qð Þ

c –convergent to 1 if q∈ 1
2 , 1
� �

.
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Remark. We have lim stat γ nð Þ ¼ 1.
Theorem 1.30 The series

X∞

n¼2

τ nð Þ � 1
nα

diverges for 0< α≤ 1
2 and converges for α> 1

2.
Proof. Let 0< α< 1. We write the given series in the form

X∞

n¼2

τ nð Þ � 1
nα

¼
X∞

k¼2

X∞

s¼2

s

kαs
, (15)

We shall try to use a similar method to Mycielski’s proof of the convergence of
P
∞

n¼2
τ nð Þ�1
nα to explain the equality Eq. (15). Since s

kαs ¼ � k
α
d
dt

1
tαs

� �

t¼k
and

P
∞

s¼2
1
tαs ¼

1
tα tα�1ð Þ the right-hand side of Eq. (15) is equal to

X∞

s¼2

2kα � 1

kα kα � 1ð Þ2
¼
X∞

s¼2

ak

For the k-th term of
P

ak we have

ak ¼
2� 1

kα

1� 1
kα

� �2 �
1

k2α
:

Denote by bk ¼ 1
k2α

and consider that lim k!∞
ak
bk
¼ 2. Hence the series

P
∞

s¼2ak
converges (diverges) if and only if the series

P
∞

s¼2bk converges (diverges). SinceP
bk is convergent (divergent) for any α> 1

2 0< α≤ 1
2

� �
so does the series

P
ak and

therefore the series
P τ nð Þ�1

nα .
Corollary 1.31. The sequence τ nð Þ is

i. I c–convergent to 1,

ii. I qð Þ
c –divergent for q∈ 0, 1

2

� �
and I qð Þ

c –convergent to 1 for q∈ 1
2 , 1
� �

.

Proof. Similar to the proof of Corollary 1.29.
Remark. We have lim stat τ nð Þ ¼ 1.

6. Conclusions

It turns out that the study of I–convergence of arithmetical functions or some
sequences related to these arithmetical functions for different kinds of ideals I (see
[18]) gives a deeper insight into the behaviour and properties of these arithmetical
functions.

On the other hand Algebraic number theory has many deep applications in
cryptology. Many basic algorithms, which are widely used, have its security due to
ANT. The theory of arithmetic functions has many connections to the classical
ciphers, and to the general theory as well.
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