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Chapter

Endomembrane Trafficking in 
Plants
Birsen Cevher-Keskin

Abstract

The functional organization of eukaryotic cells requires the exchange of 
proteins, lipids, and polysaccharides between membrane compartments through 
transport intermediates. Small GTPases largely control membrane traffic, which 
is essential for the survival of all eukaryotes. Transport from one compartment 
of this pathway to another is mediated by vesicular carriers, which are formed by 
the controlled assembly of coat protein complexes (COPs) on donor organelles. 
The activation of small GTPases is essential for vesicle formation from a donor 
membrane. In eukaryotic cells, small GTP-binding proteins comprise the largest 
family of signaling proteins. The ADP-ribosylation factor 1 (ARF1) and secretion-
associated RAS superfamily 1 (SAR1) GTP-binding proteins are involved in the 
formation and budding of vesicles throughout plant endomembrane systems. ARF1 
has been shown to play a critical role in coat protein complex I (COPI)-mediated 
retrograde trafficking in eukaryotic systems, whereas SAR1 GTPases are involved in 
intracellular coat protein complex II (COPII)-mediated protein trafficking from the 
endoplasmic reticulum (ER) to the Golgi apparatus. The dysfunction of the endo-
membrane system can affect signal transduction, plant development, and defense. 
This chapter offers a summary of membrane trafficking system with an emphasis 
on the role of GTPases especially ARF1, SAR1, and RAB, their regulatory proteins, 
and interaction with endomembrane compartments. The vacuolar and endocytic 
trafficking are presented to enhance our understanding of plant development and 
immunity in plants.

Keywords: GTPases, ARF1 (ADP-ribosylation factor 1), SAR1 (secretion-associated 
RAS superfamily 1), COPI (coat protein complex I), COPII (coat protein complex II), 
membrane traffic, clathrin

1. Introduction

Endomembrane trafficking plays a crucial role for maintaining fundamental 
cellular functions (signal transduction, cellular homeostasis, etc.) and in response to 
environmental stimuli. The membrane trafficking pathways start from the endoplas-
mic reticulum (ER) then go through the Golgi apparatus to different destinations 
including vacuoles/lysosomes, endosomes, and the plasma membrane (PM) [1].

In plant cells the membrane trafficking system comprises three major traffick-
ing pathways: the biosynthetic secretory pathway, the endocytic pathway, and the 
vacuolar transport pathway. (i) The biosynthetic secretory pathway transports newly 
synthesized proteins from the endoplasmic reticulum to the plasma membrane 
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and/or the extracellular space. (ii) The endocytic pathway functions in the recycling 
of PM-localized and extracellular factors between the PM and the endosomal 
compartments. (iii) The vacuolar transport pathway drives the transportation of 
newly synthesized protein to the vacuole (Figure 1) [3].

Each trafficking pathway is mediated by the following steps: (i) budding of 
the transport vesicle from the donor membrane, which is mediated by ARF/SAR1 
GTPase (and coat proteins in many cases); (ii) transport and targeting of the trans-
port vesicle; (iii) tethering of the vesicle by tethering proteins under the regulation 
of RAB GTPase and fusion of the transport vesicle to the target membrane medi-
ated by soluble N-ethylmaleimide-sensitive-factor attachment protein receptors 
(SNARE); and (iv) recycling of the transport machinery components to the donor 
membrane (Figure 2).

In eukaryotic cells, small GTP-binding proteins involve the largest family of 
signaling proteins. The activation of small GTP-binding proteins (GTPases) is 
essential for vesicle formation from a donor membrane. Four main subfamilies have 
been identified in plants: (i) ADP-ribosylation factor (ARF)/secretion-associated 
RAS superfamily (SAR), (ii) RAB, (iii) Rho-like proteins in plants (ROP), and 
(iv) RAN [5–7]. Over the evolution of eukaryotic organisms, the conservation of 
GTPases explains their significance in cellular signaling processes [7–9]. Small 
GTPases serve as molecular switches that transduce signals by exchanging between 
the GTP- and GDP-bound conditions. Guanine nucleotide exchange factors (GEFs), 
GDP dissociation inhibitors (GDIs), and GTPase-activating proteins are regulators 
of small GTP-binding proteins.

GEFs activate small GTPases, which in turn interact with specific effectors 
to stimulate downstream pathways. GAPs trigger the intrinsic GTPase activity, 
thereby accelerating the inactivation of the GTPases’ regulatory activity. GEFs 
convert the GDP-bound inactive form of the GTPases to the GTP-bound active form 
by stimulating the dissociation of GDP from the GDP-bound form. In the “active” 
state, the GTP-bound GTPases interact with various downstream effector proteins 
that execute diverse cellular functions. GTPases are inactivated through either the 
intrinsic capability of the GTPase to hydrolyze GTP to GDP + Pi or an interaction 
with another protein group, the GTPase-activating proteins (GAPs). These proteins 

Figure 1. 
The membrane trafficking pathways are grouped into three major categories: (i) the biosynthetic secretory 
pathway, (ii) the endocytic pathway, and (iii) the vacuolar transport pathway (modified from Inada and 
Ueda [2]).
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catalyze the hydrolytic activity of GTPases, which then return to the inactive state 
GDP-bound state [6]. The improvement of fluorescent protein-labeled GTPases 
and cargo molecules has enhanced the assignment of subcellular locations for these 
proteins within the endomembrane system.

The traffic between organelles is bi-directional. (i) Starting at the ER and lead-
ing toward the destination organelles (the forward trafficking) is called anterograde 
transport, and (ii) the reverse pathway is called retrograde transport.

2. Membrane trafficking pathways

2.1 The biosynthetic secretory pathway

2.1.1 Anterograde transport (forward trafficking)

2.1.1.1 ER-to-Golgi protein transport

The conventional trafficking pathway starts at the ER; protein synthesis and 
modification occurs and undergoes further modification [10]. Proteins leave the 
ER via COPII carriers to reach the Golgi. ER and Golgi compartments are closely 
associated with each other to ease the movement of cargo between them [11]. This 
ER-to-Golgi transport is termed “anterograde transport” and is mediated by COPII 
proteins, which are highly conserved in eukaryotes [12]. From the ER, synthesized 
proteins are exported to the cis-Golgi and are transported via Golgi stacks where 
protein modifications occur. Modified proteins are sorted into the extracellular 
space or storage and lytic organelles from the Golgi. In plants, proteins can also be 
sorted from the Golgi into the chloroplast [13].

Figure 2. 
The general machinery of membrane trafficking. Each trafficking pathway is mediated by the following steps: 
(i) budding of the transport vesicle from the donor membrane, which is mediated by ARF/SAR1 GTPase (and 
coat proteins in many cases); (ii) transport and targeting of the transport vesicle; (iii) tethering of the vesicle 
by tethering proteins under the regulation of RAB GTPase and fusion of the transport vesicle to the target 
membrane mediated by SNARE proteins; and (iv) recycling of the transport machinery components to the 
donor membrane [2, 4].
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The accumulation of secretory cargo, deformation of the membrane, and 
formation of transport vesicles are mediated by COPII. In mammalian cells and in 
most of the plant cell types, the ER and Golgi are in close proximity, and the COPII 
cycles on and off the ER with a fast turnover rate [14, 15]. COPII coat proteins are 
mostly distributed in the cytosol and concentrate at ERES that appear in association 
with motile Golgi stacks in plant cells. These proteins also accumulate in punctate 
structures that are not associated with the Golgi (Figure 2B).

The recruitment of COPII coat proteins involves SAR1 GTPase and its GDP/
GTP exchange factor, SEC12 [16, 17]. The Arabidopsis genome encodes five genes for 
SAR1, seven genes SEC23, three genes for SEC24, two genes SEC13, and two SEC31 
isoforms [18].

The assembly of COPII occurs at distinct sites on ribosome-free transitional 
ER (tER) or ER exit sites (ERESs) [19]. The cytosolic GTPase SAR1 is activated 
by the ER membrane-associated GEF SEC12, and then SAR1 associates with the 
ER lipid bilayer membrane, and after the COPII coat composed of the SEC23-24 
and SEC13-31 heterodimer complexes is recruited [20–22]. The cargo recruit-
ment complex involving SEC23-24 and SAR1 sorts transport and ER resident 
proteins [23, 24]. The COPII coat includes four proteins, assembled as an internal 
receptor/cargo-binding dimer of SEC23 and SEC24 and an outer cage dimer of 
SEC31 and SEC13. SEC16 is important for ER protein export by recognizing the 
COPII assembly region at the ERES [25]. The cargo selection is achieved by the 
SEC23/SEC24-SAR1 complex (pre-budding complex) [26]. This complex recruits 
SEC13-SEC31, which offer the outer layer of the coat and manage membrane 
deformation to constitute COPII vesicles. The SEC16 and SED4 are the other 
additional proteins for the COPII assembly. SEC16 comprises COPII coat com-
ponent domains and has an important role as a scaffold for coat assembly [27]. 
SEC16 is a key organizer of ERESs in yeast and mammalian cells [28, 29]. The 
two encoded from Arabidopsis SEC16 genes resemble the human small isoform, 
and it was shown that they are important for ER export and tER organization in 
HeLa cells [29].

COPII is also involved in the physical deformation of the ER membrane that 
drives the COPII carrier formation [30]. SAR1-mediated GTP hydrolysis leads to 
COPII carrier un-coating and follows the exposure of the carrier membrane to 
fusion with the Golgi membrane [31].

In the GTP-bound conformation, SAR1 protein binds directly to the lipid bilayer 
which it does by an N-terminal amphipathic alpha-helix [32]. In the GDP-bound 
conformation, SAR1 binds membranes with lower affinity [25, 31].

The SED4 is responsible for the rate of ER-to-Golgi transport as an integral 
membrane protein at the ER membrane [32]. The deletion of SED4 causes to reduce 
the transportation rate of ER-to-Golgi in S. cerevisiae wild-type cells [33]. The SED4 
and SEC12 have close homology with the cytoplasmic domain, but no GEF activity 
has been reported in S. cerevisiae [34].

It has been reported that SAR1 reduces the mechanical rigidity of the lipid 
bilayer membrane to which it binds in yeast [35]. Because of the ability of SAR1, it 
was suggested that membrane-bound SAR1-GTP decreases the energetic cost for 
the other COPII coat proteins (Sec13, Sec31, etc.) to generate curvature [35].

In Arabidopsis, three SAR1 homologs have been identified (AtSARA1a, 
AtSARA1b, and AtSARA1c). AtSARA1A and AtSARA1B have a 93% amino acid 
sequence identity [36]. The AtSARA1a expression level correlated with the secre-
tion activity level from ER membranes. The AtSARA1a mRNA upregulation has 
been reported to cause the blockage of ER transport to the cis-Golgi compartment 
[37]. The COPII protein-encoding genes are ubiquitously expressed except SAR1 
(At1g09180) and a SEC31 (At1g18830) isoform by microarray analyses [18]. Tissue 
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specificity was observed for the SEC31 isoform At1g18830, while all other genes 
appear to be ubiquitously expressed in all tissues and developmental stages [18].

SAR1 accumulation was observed to concentrate predominantly in crude ER frac-
tions of Pisum sativum L. seedlings [38]. The COPII protein coat recruitment by SAR1p 
has been intensively studied [39]. In human development and disease, the SEC24 and 
SAR1 isoforms have specificity for the trafficking of selective cargo [40, 41]. In plant 
cells, specific amino acid sequences in the primary proteins affect the selective export 
of membrane cargo [42]. Diacidic sequence induces the accumulation of SEC24A 
to ERESs. The interaction occurs between the K channel KAT1, which contains the 
specific amino acid sequence in the cytosolic tail, and SEC24A [43, 44].

Different export signals in SEC24 proteins might lead to selective accumulation 
of cargo in COPII carriers in mammalian and plant cells. It was suggested that more 
efficient intracellular trafficking is likely achieved by cargo specialization of COPII 
isoforms in multicellular organisms [45]. Figure 3 shows the basic diagram of the 
retrograde and anterograde transport in plant cells [47].

The COPII machinery has significant importance for ER-to-Golgi transport in the 
early secretory pathway in plants [48]. The retention of secretory cargo molecules or 
membrane proteins that cycle between the ER and Golgi apparatus leads to block-
age of the ER export [14, 43, 48]. COPII machinery is involved in biotic and abiotic 
stress responses in plants. It has been shown that functional SEC24A is essential for 
systemic turnip mosaic virus movement by interaction in a signal specific manner 
with the N-terminal domain 6-kDa viral protein 6 K [49]. In high-temperature 
conditions, overexpression of SEC31A has been reported in the IRE1 mutant which 
leads to improvement of the male sterility phenotype in Arabidopsis [50].

2.1.2 Retrograde transport (reverse trafficking)

2.1.2.1 Retrograde transport and COPI

Of the 12 ARF isoforms, ARF1 is targeted to the Golgi and post-Golgi structures 
in plant cells. Arabidopsis ARF1 has been shown to be involved in different traffick-
ing pathways including ER-Golgi traffic, vacuolar trafficking, and endocytosis and/
or recycling [51, 52]. Arfs are divided into three classes and express six isoforms, 
namely, Arf1 to Arf 6 (with Arf2 being absent in human) in the mammalian system.

Figure 3. 
Model of membrane trafficking to the vacuole in plant cells. The vacuolar trafficking pathway involves three 
trafficking routes in Arabidopsis (i) depending on the sequential action of RAB5 and RAB7, (ii) AP-3-
dependent but RAB5- and RAB7- independent pathway, and (iii) RAB5-dependent and AP-3-independent 
route (modified from Ebine et al. [46]).
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ARF1 manages ER-to-Golgi transport and Golgi-derived transport to the plasma 
membrane, depending on the COPI vesicle coat protein components [53, 54]. A 
large number of ARF in plants suggest the possibility for highly regulated vesicle 
trafficking [53]. Similar to other small GTPases, ARF GTPases cycle between an 
active state, when associated with GTP (membrane-bound form), and an inactive 
state when bound to GDP (predominantly cytosolic form).

In its GDP form, ARF1 is present in the cytosol and is recruited to the surface 
of Golgi membranes by a GEF. A SEC7-type GEF stimulates the binding of GTP 
to ARF1. This progression can be inhibited by the fungal metabolite Brefeldin A 
(BFA) in mammalian cells [55]. In the same system, the GDP-bound form of ARF1 
interacts with p24 cytosolic tails [56]. The cytosolic ARF1 activation initiates COPI 
biogenesis. The GTP-bound form of ARF1 interacts with coatomer, which can also 
interact directly with the p24 cytosolic tails. In this manner, the p24 cytosolic tail 
can interact both with ARF1 and coatomer [56]. The conformational change of 
ARF1 occurs by the GTP/GDP exchange that may cause its dissociation from p24 
cytosolic tails [56].

COPI vesicles mediate different transport steps, including ER-to-Golgi inter-
mediate compartment transport, Golgi transport, and/or intra-Golgi transport 
(anterograde transport and/or retrograde transport) [57, 58]. Two types of COPI-
coated vesicles form containing anterograde or retrograde cargo (KDEL receptor), 
and low amounts of Golgi enzymes have been reported to exist at the Golgi appara-
tus level [59]. COPI proteins are involved in transport along the endocytic pathway 
[60]. During the selective transport of vesicles, the coat proteins must distinguish 
between cargo and resident proteins of the donor organelle. Arabidopsis has single 
genes for γ-COP and δ-COP and multiple genes for the other COPI subunits [61]. 
COPI coatomer forms a coat around vesicles budding from the Golgi. Two different 
sizes of COPI (COPIa and COPIb) vesicles have been identified by multiparameter 
electron tomography analysis in Arabidopsis [62]. COPIa coats are retrograde 
transport vesicles, and COPIb vesicles are restricted to medial- and trans-cisternae 
and are involved for retrograde transport within the Golgi stack. The multiple cop-
ies of COPI in plants suggest the presence of different classes of COPI vesicles. The 
protein complex COPI coatomer is composed of seven subunits (α, β, β’, γ, δ, ε, and 
ζ-COP). COPI represents approximately 0.2% of soluble cytosolic protein indicat-
ing their roles as unassembled precursors of COPI vesicles [63].

In intracellular transport, cargo transmembrane protein sorting at each step 
depends on the specific interaction of certain signals in their cytoplasmic tails with 
the correct coat proteins [64]. In yeast and mammalian cells, the cytosolic dilysine 
motif is essential for the ER localization of type I membrane proteins [65]. The two 
lysine residues must be in the −3, −4 (KKXX) or − 3, −5 (KXKXX) positions rela-
tive to the carboxy (C) terminus [65]. For ER localization, the lysine residue at the 
−3 position is the most critical residue [66]. In mammals, lysine residue mutations 
within the KKXX motif lead to the expression of reporter proteins at the cell surface 
[65]. In contrast, the same mutation leads to vacuolar transfer in yeast [67]. The 
p24 proteins have been suggested to function in Golgi-to-ER retrograde transport, 
as they contain cargo receptors on their luminal side and coatomer and/or ARF1 
receptors on their cytoplasmic side in mammalian cells [68] COPI is necessary for 
recycling p24 proteins to the ER from the Golgi apparatus [69].

In general p24 proteins are only found in the ER. The binding of p24 proteins to 
COPI is mediated by dilysine motifs at the −3 and − 4 positions of p24 [69]. Up to 
11 different p24 family members proteins have been identified in Arabidopsis. The 
p24 proteins appear to bind COPI with higher affinity than COPII. In the cytosolic 
tail of the Arabidopsis p24 (Atp24), the dilysine motif is important both for binding 
of coatomer subunits and ARF1 [70].
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ARF1 has been shown to localize to Golgi and endosomes and regulate cell 
proliferation, cell elongation, and fertility, whereas ARF6 is associated with 
plasma membrane and important for actin remodeling and receptor endocytosis 
in plant cells [54]. The ARF6 overexpression was shown in breast cancer cells and 
also involved ERK signaling during invasion. On the other hand, the use of ARF1 
protein as a prognostic marker for gastric cancer has been reported [71].

Low expression level of ARF1 (Q71L) mutant in tobacco mesophyll protoplasts 
has been reported to lead to wtp24 accumulation in the Golgi apparatus [69]. These 
studies verify the COPI-recycling mechanism can efficiently function in plants. 
COPI-binding dilysine motif-deficient p24 mutants are transported to the PVC 
and vacuole [69]. It was observed that p25 may function as an anchor for the p24 
proteins in retrograde transport [69].

2.1.2.2 Intra-Golgi transport

Two different models for intra-Golgi transport were suggested: (i) vesicular 
transport and (ii) cisternal progression/maturation.

Between two different models, the direction of COPI vesicles is a critical 
distinguishing factor. (i) The vesicular transport model assumes that anterograde 
cargo is transported between static cisternae by coordinated budding and fusion 
reactions of anterograde-directed COPI vesicles [72]. Retrograde-directed COPI 
vesicles antagonize the continuous loss of material at the trans-Golgi. Therefore, 
two different COPI vesicles are involved for this model, one mediating anterograde 
transport and the other mediating retrograde transport. (ii) In the cisternal progres-
sion/maturation model, Golgi cisternae are stable compartments. In anterograde 
COPII vesicles, secretory cargoes are transported from one cisterna to the next, 
which finally disassemble at the trans-Golgi. Anterograde cargo would not leave the 
lumen, and resident Golgi proteins are maintained in the cisternae [72].

The COPI vesicles contain Golgi enzymes at a concentration that is up to 10 times 
higher than that found in the cisternae in animal cells [73]. The cisternal progres-
sion/maturation model does not clarify the presence of anterograde cargo within 
COPI vesicles or different anterograde cargo transportation rates in animal cells [74].

The “cisternal progression/maturation” model is the most widely accepted 
model for distinct and essential trafficking tasks in the Golgi. The stack of Golgi cis-
ternae involves the historical record of progression from entry at the cis-face to exit 
at the trans-face [75]. The cargo molecules stay within a given cisternae as it passes, 
across a regular of seven locations within the Golgi stack on its way to the trans-face, 
and exit from the Golgi by transport carriers. In the cisternal progression, the newly 
arrived cargo in the Golgi exited with exponential kinetics rather than exhibiting 
a discrete lag or transit time [76]. Conserved oligomeric Golgi (COG) complex 
proteins accelerate the tethering of the vesicles to the target cisternae [77]. Resident 
Golgi proteins are assumed to recycle from older to younger cisternae. In retrograde 
COPI vesicles, transmembrane Golgi proteins may recycle. Peripheral Golgi pro-
teins may recycle by dissociating from a given cisternae and then bind and combine 
to a younger cisternae.

2.2 Vacuolar trafficking

Plants have a complex vacuolar transport system different from that of mamma-
lian systems by assigning evolutionarily conserved machinery to unique trafficking 
pathways. These pathways provide a fundamental basis for plant development at 
the cellular and higher-ordered levels [78]. Plants have evolved unique and complex 
vacuolar trafficking pathways compared with non-plant systems (Figure 3) [46].
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The diverse functions of plant vacuoles are fulfilled through tight regulation 
of trafficking to and from the vacuoles, which involves evolutionarily conserved 
machinery components including Rab GTPases [79]. However, the basic frame-
work of the Rab GTPase action is well conserved in eukaryotic cells [80]. Recent 
comparative genomic studies suggest that each eukaryotic lineage has acquired a 
unique repertoire of Rab GTPases during evolution [81] Autophagy-related and 
Golgi-independent transport from the ER to the vacuole is another example of 
such trafficking pathway [82]. This pathway also involves an exocyst subcomplex, 
although Rab and SNARE molecules associated with this pathway have not been 
identified thus far.

2.2.1 RAB GTPases

RAB GTPases constitute the largest family of small GTPases; 57 members are 
encoded in the Arabidopsis genome [83]. Based on their similarity to animal RAB 
GTPases, RAB GTPases are grouped into eight clades, i.e., RAB1/RABD, RAB2/
RABB, RAB5/RABF, RAB6/RABH, RAB7/ RABG, RAB8/RABE, RAB11/RABA, and 
RAB18/RABC in angiosperms [84]. Plants also harbor a unique set of Rab GTPases 
partly characterized by diversification of the RAB5 group acting in endosomal/
vacuolar trafficking pathways [85]. RAB7 is also proposed to regulate vacuolar traf-
fic in plants [86]. In animal cells, a sequential action of RAB5 and RAB7 mediated 
by the effector complex HOPS [18] and a guanine nucleotide exchange factor for 
RAB7 consisting of SAND1/Mon1 and CCZ1 is responsible for the maturation from 
early to late endosomal compartments (Figure 4) [86].

Future studies on the molecular mechanisms of these plant-specific vacuolar 
trafficking pathways will reveal how plants have used unique vacuolar trafficking 
routes and how plants have developed their unique vacuolar trafficking pathways 
during evolution. The tethering of transport vesicles to the target membranes is 
mediated by the interaction between RAB GTPases and specific sets of tethering 
factors, many of which have been shown to be RAB effectors, which bind to specific 
RABs at the GTP-bound active state in yeast and animal systems [80]. After the 
tethering of transport vesicles by the tethering factors, soluble N-ethylmaleimide-
sensitive-factor attachment protein receptors lead to the membrane fusion [80]. 
Tethering factors comprise long coiled-coil proteins and protein complexes called 

Figure 4. 
RAB and the other proteins in intracellular trafficking (modified from Malaria Parasite Metabolic 
Pathways [47]).
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tethering complexes. Each tethering step is mediated by a specific tethering 
complexes such as COG (functioning in retrograde trafficking within the Golgi), 
HOPS-CORVET (tethering with the lysosome/vacuole), and exocyst (functioning 
in the last step of the secretory pathway). In plants, homologous genes encoding 
these tethering complex proteins are also found, whereas some fibrous coiled-coil 
proteins are not conserved [84].

2.3 The endocytic pathway

Endocytosis in plant cells has an essential role for basic cellular functions and 
communication with the environment. Through the formation of closed membrane 
vesicles (60–120 nm), the uptake of extracellular molecules or the internalization 
of plasma membrane lipids and proteins is achieved [37]. During the life cycle of 
the plant, endosomes have vital importance for different processes including lateral 
organ differentiation, hormone signal transduction, root hair formation, embryo 
patterning, and plant immunity [36, 87–92]. Transportation of various cargo mol-
ecules involved in a broad range of physiological processes from the plasma mem-
brane into the cytoplasm is achieved by this pathway. Figure 5 shows the general 
organization of the endosomal trafficking system in plants [36].

As in animal cells, endocytosis in plant cells is mediated by (i) clathrin-mediated 
(CME) and (ii) clathrin-independent pathways (CIE) [93].

2.3.1 Clathrin-mediated pathway

In plants, the major endocytic mechanism depends on the coat protein clathrin. 
This pathway starts at the plasma membrane by clathrin-coated vesicle formation. 
CME is important for different physiological processes involving cell signaling, cell 
adhesion, nutrient uptake, developmental regulation, etc. The pathway starts by 
clathrin-coated vesicle formation at the plasma membrane; in the cytosolic parts 
of different transmembrane cargo molecules, the clathrin coat binds to specific 
binding sites. The recruitment of the pioneer proteins to the plasma membrane is 
ensured by the cargo molecules and enhanced by the initiation of an endocytic path-
way. Clathrin involved in a variety of other processes such as the salt stress response, 
the defense response, cryptogein-induced signaling, and cytokinesis [94–96].  

Figure 5. 
The general organization of the endosomal trafficking system in plants. Current models of retromer 
localization and function place the retromer recycling complex in the TGN, in the MVB, or both [36].
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Many viruses act as endocytic cargoes for the entry into the cell [97]. A large num-
ber of “coat-associated clathrin adaptor proteins” and “scaffold proteins” serve as 
cargo adaptors by interaction with specific cargoes. Short linear sequence motifs or 
covalent modifications such as phosphorylation or ubiquitylation in cargo proteins 
are important for cargo adaptor interactions [98]. Most cargo adaptors also interact 
directly with lipids and with other coat proteins. These complex interactions cause 
the initiation of clathrin coat assembly and its further expansion [99]. Binding of 
the clathrin coat proteins to the cytosolic sites of different transmembrane cargo 
molecules is essential for the cargo recruitment to the region of the plasma mem-
brane that will form the vesicle.

Because of the difficulty of visualizing and manipulating, studies on cargo and 
lipids are very difficult [100]. The most widely studied one is the maintenance of 
polar localization of auxin transporters, namely, the PIN proteins. Polar localization 
of PIN proteins involves three steps: (i) nonpolar secretion, (ii) clathrin-dependent 
endocytosis, and (iii) polar recycling [91]. Dynamic regulation of PIN polarity 
provided with this mechanism is important in response to environmental and 
developmental stimuli [101, 102]. Mutations in Rab5 or clathrin cause endocytosis 
disruption and auxin-related developmental defects [91]. Endocytosis works as a 
negative feedback of the signaling process. After internalization, flagellin-sensitive 
2 (FLS2) is targeted for degradation by ubiquitination which then terminates the 
signal transduction process [103, 104]. The polarly localized Arabidopsis boron 
transporter 1(BOR1), the tomato ethylene-inducing xylanse receptor (LeEIX2), 
and the iron transporter 1 (IRT1) are the other plasma membrane cargoes in plant 
cells [92, 105]. For accurate development and growth regulation, the equilibrium 
of cargo localization in the endomembrane system and the dynamic trafficking 
machinery is essential during the plant life cycle.

2.3.2 Clathrin-independent pathway

Several endocytic pathways that do not use clathrin-coated vesicles are involved 
in a CI pathway that was mediated by caveolae. Some of these pathways are con-
stitutive, whereas others are activated by specific signals or by pathogens [106]. 
Furthermore, their mechanisms and kinetics of endocytic vesicle formation, associ-
ated molecular machinery, and cargo direction are different. Some members of the 
ARF and Rho subfamilies of small GTPases have been suggested to have key roles 
in regulating different pathways of CI endocytosis [107]. CI pathways are grouped 
in terms of those that use a “dynamin-mediated scission mechanism” (dynamin-
dependent) and those that require other processes (dynamin-independent). A sec-
ond characteristic is a contribution of small GTPases in several CI pathways [108].

2.4 The endomembrane system in plant development and plant defense

The dysfunction of the endomembrane system can affect plant development 
and signal transduction [109, 110]. The interaction between the actin cytoskeleton 
and the endomembrane system involves various aspects of plant cell function and 
development [111–113].

The actin cytoskeleton is involved for the dynamic feature of the ER [114]. 
Microtubules have been reported to also influence the mobility of the ER, but to a 
lesser degree or at a much slower rate [115]. ARF1 plays an essential role in normal 
cell growth, plant development, and cell polarity and is ubiquitously expressed in 
all organs of Arabidopsis [116, 117]. In de-etiolated pea shoots, ARF1 was concen-
trated mainly in the crude Golgi fractions [38]. Antisense RNA studies show that 
ARF also affects cell expansion and cell size in Arabidopsis [118]. BFA-visualized 
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exocytic trafficking defective1 (BEX1) has been reported to require for recycling 
of PIN transporters and auxin-mediated development in Arabidopsis [52]. BEX1 
encodes ARF1A1C which localizes to the TGN/EE and Golgi apparatus. For normal 
venation patterning, polar auxin transport by PIN1 is required [118, 119]. Vascular 
network defective 4 (VAN4) is required for cellular growth and venation develop-
ment [120]. VAN4 encodes a putative TRS120 subunit of the TRAPPII complex 
protein that functions as a Rab-GEF and/or tethering factor [121]. VAN4 is involved 
in polar localization and the recycling of PIN proteins. VAN3/SFC, ARF-GAP, and 
VAN7/GNOM ARF-GEF have been reported to regulate venation pattern by regulat-
ing the activity of the ARF GTPase [122].

Another relation with endomembrane trafficking and plant development 
was revealed by the continuous vascular ring mutants (COV1). Parker et al. have 
reported that the COV1 mutant is involved in ectopic differentiation of vascular 
Arabidopsis cells [123] . Afterward, COV1 has been reported as a TGN-localized 
membrane protein that is required for Golgi morphology and vacuolar protein traf-
ficking and for the development of myrosin cells in leaves [124].

The ubiquitin-proteasome system (UPS) is important for the cytosolic and 
nuclear protein degradation, whereas certain proteins are degraded by autophagic 
degradation. De-ubiquitylating enzymes (DUBs) are essential for endosomal traf-
ficking by affecting the fate of endocytosed cargo [125]. Endosomal sorting com-
plexes required for transport (ESCRT) components are crucial for plant growth and 
development. Mutations of ESCRT or ESCRT-associated proteins in plants lead to 
ubiquitin accumulation, embryonic and seedling lethality, and misregulation of dif-
ferent signaling pathways, which can be associated with endosomal sorting defects 
in Arabidopsis [10, 126]. ESCRT mutations in Arabidopsis cause it to die at different 
developmental stages [127]. Under optimal growth conditions, autophagy seems to 
be unessential for plant life cycle. But a lack of autophagy can be the reason of the 
carcinogenesis and neurodegenerative diseases in the mammalian system [128].

Plants protect themselves with the help of small RNA-dependent immune 
system in response to biotic stress [129]. sRNAs are short regulatory RNAs (20–30 
nucleotides) that silence genes with complementary sequences [130]. Against 
pathogens, several groups of plant sRNAs have important roles in plant defense. 
Plants send sRNAs in extracellular vesicles (exosomes) to the pathogen to silence 
virulence genes [130–132]. Host Arabidopsis cells have been shown to secrete 
exosome-like extracellular vesicles to deliver sRNAs into fungal pathogen Botrytis 
cinerea. These sRNA-containing vesicles accumulate at the infection sites of plant 
and are occupied up by the fungal cells. Transferred host sRNAs cause silencing 
of virulence-related genes critical for pathogenicity. Plant extracellular vesicles, 
mainly exosomes, have been reported to play a crucial role in cross-kingdom sRNA 
trafficking between Arabidopsis and the fungal pathogen B. cinerea [129].

3. Conclusions

The functional organization of eukaryotic cells requires the exchange of pro-
teins, lipids, and polysaccharides between membrane compartments through trans-
port intermediates. Transport from one compartment of this pathway to another is 
mediated by vesicular carriers, which are formed by the controlled assembly of coat 
protein complexes (COPs) on donor organelles. The plant endomembrane system 
is mostly conserved among eukaryotes but shows complex features. The structural 
organization of the endomembrane system is important for correct membrane 
trafficking and plant physiology. The trans-Golgi network (TGN) is a unique 
subcellular structure, which is a sorting center that integrates upstream cargoes 
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from secretory vesicles, the plasma membrane, and other organelles. The TGN 
functions as an early endosome compartment, adding to the complexity of sorting 
mechanisms in plant cells. Protein sorting at the ER-Golgi interface is important for 
the protein defects. However, the specificity and quantity of cargo sorting control 
mechanisms between endosome compartments are not completely clarified. More 
comprehensive studies on endomembrane trafficking will be necessary for the illu-
mination of development, disease responses, hormone signaling (ABA and auxin), 
and plant immune system via sRNAs in exosomes in plant cells.
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