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Chapter

A Brief Tour of Bayesian
Sampling Methods
Michelle Y. Wang and Trevor Park

Abstract

Unlike in the past, the modern Bayesian analyst has many options for approxi-
mating intractable posterior distributions. This chapter briefly summarizes the class
of posterior sampling methods known as Markov chain Monte Carlo, a type of
dependent sampling strategy. Varieties of algorithms exist for constructing chains,
and we review some of them here. Such methods are quite flexible and are now used
routinely, even for relatively complicated statistical models. In addition, extensions
of the algorithms have been developed for various goals. General-purpose software
is currently also available to automate the construction of samplers, freeing the
analyst to focus on model formulation and inference.

Keywords: Markov chain Monte Carlo, Gibbs sampler, slice sampler,
Metropolis-Hastings, Hamiltonian Monte Carlo, cluster sampling, JAGS, Stan

1. Introduction

Modern Bayesian data analysis is enabled by specialized computational tools.
Except in relatively simple models, explicit solutions for quantities relevant to
Bayesian inference are not available. This limitation has sparked the development of
many different approximation methods.

Some approximation methods, such as Laplace approximation [1] and varia-
tional Bayes [2], are based on replacing the Bayesian posterior density with a
computationally convenient approximation. Such methods may have the advantage
of relatively quick computation and scalability, but they leave open the question of
how much the resulting approximate Bayesian inference can be trusted to reflect
the actual Bayesian inference. There is an inherent bias in the approximation that
generally cannot be reduced by applying more intensive computation.

When accuracy is important, simulation-based (stochastic) methods offer an
attractive alternative. The goal of these methods is to produce a simulation sample
(though not necessarily an independent one) from the (joint) posterior distribution.
A simulation sample can be used to approximate almost any quantity relevant to
Bayesian inference, including posterior expectations, variances, quantiles, and mar-
ginal densities. Since the approximations become more exact as more samples are
used, accuracy tends to be limited only by the computational resources available.

Random variates from a general probability distribution that has a known den-
sity may be simulated using many classical methods, such as accept/reject and
importance sampling. However, such methods tend to be efficient only in special
cases and often require analytical insight to improve efficiency. The past three
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decades have seen interest dramatically increase in the category of Markov chain
Monte Carlo (MCMC) methods. Unlike most classical methods, MCMC can often
be efficiently automated, even for moderately complicated models. A variety of
MCMC methods are available, giving the analyst flexibility in implementation.
Moreover, general software is now available that automates most computational
details, allowing the analyst to focus on model formulation and inference.

The purpose of this chapter is to offer an introduction to Bayesian simulation
methods, with emphasis on MCMC. The motivation and popularity of posterior
sampling are illustrated in Section 2. Section 3 describes MCMC and the associated
issues including convergence monitoring, mixing, and thinning. Varieties of spe-
cific sampling methods are provided in Sections 4 and 5, with the general-purpose
software implementing them described in Section 6.

2. Posterior sampling

Bayesian inference requires access to the posterior distribution. Let y denote all
of the data to be modeled, and suppose its sampling distribution is in a parametric
family with density π yjθð Þ, where θ represents the parameter (usually a vector),
including any hyperparameters. If the prior on θ has density π θð Þ then, according to
Bayes’ rule, the posterior distribution has density

π θj yð Þ ¼
π yjθð Þπ θð Þ

π yð Þ
∝θπ yjθð Þπ θð Þ (1)

where the proportionality is in θ (not y). (An improper prior can be used,
provided the posterior is proper.) The normalizing constant π yð Þ is notoriously
difficult to compute, so methods that avoid using it are preferred.

Since π yjθð Þ and π θð Þ are typically specified by the analyst, the (unnormalized)
posterior density is readily available and typically easy to evaluate. Nonetheless,
most quantities used in Bayesian inference (posterior expected values, quantiles,
marginal densities, etc.) are defined by integrals involving the posterior density,
which are usually intractable and are difficult to deterministically approximate
when θ has more than a few components.

This explains the popularity of posterior sampling. Given a sample from the
posterior of sufficient effective size, posterior expected values can be approximated
by sample means, posterior quantiles by sample quantiles, posterior marginal
densities by sample-based density estimates, and so forth. Most posterior inference
is readily accomplished if an efficient method of sampling from the posterior is
available.

Independent sampling from the posterior is seemingly ideal, since relatively few
samples are required to obtain a good approximation in most cases, and the
approximation error is relatively easy to characterize. Unfortunately, methods for
independent sampling have proven difficult to implement in a general way that
efficiently scales with the dimension of θ. For example, rejection sampling (accept/
reject) is efficient only if the posterior is tightly bounded by a known function
proportional to a density that is easy to sample. Finding such a function is generally
difficult, and even adaptive variants struggle in high-dimensional situations.

Currently, the most efficient generally adaptable methods use dependent sam-
pling. Dependent sampling usually incurs a computational cost of acquiring a larger
number of samples to attain a given accuracy, but the flexibility of these methods
and their scalability to higher dimensions offset this disadvantage.
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3. Sampling with Markov chains

MCMC is a type of dependent sampling in which the samples are obtained from
successive states of a discrete-time Markov chain [3]. The Markov chain is designed
to be easy to simulate and intended to (eventually) produce samples that have a
distribution arbitrarily close to the posterior distribution.

Specifically, the Markov chain is designed to have a particular stationary distri-
bution: a distribution on the state space of the chain that is preserved by the
transition kernel. If the chain is started in the stationary distribution, all successive
states will have the stationary distribution. In the most basic case, the state space
will be the range of θ, and the stationary distribution will be the posterior distribu-
tion. A collection of successive states can then be regarded as a (dependent) sample
from the posterior.

Since starting the chain in the stationary distribution is difficult, MCMC relies
on the stationary distribution also being the (unique) limiting distribution: the dis-
tribution to which the states converge (in law) as the time index increases. Condi-
tions under which the chain converges are technical (e.g., [4]) and can be difficult
to verify analytically in complicated models. Thus, though convergence properties
may benefit from following some general guidelines in specifying the MCMC
method, convergence is usually checked empirically.

General convergence monitoring tools and techniques are available to determine
by what time point convergence has been practically achieved, so that accurate
samples can be collected thereafter. See [5] for an overview. Some tools rely on
simulating the chain several times, independently, from different starting points.

Running the chain(s) until declaring convergence is called burn-in, or sometimes
warm up. All values generated during burn-in are discarded, except for the final
state, which becomes the starting point for sampling.

The degree of dependence within a Markov chain determines the number of
samples needed for a given level of approximation. Most MCMCmethods produce
chains with positive dependence, requiring a larger number of samples to be taken
than if independent sampling were used. Chains that are highly dependent exhibit
slowmixing: the decay rate of dependence between the states of the chain at two time
points as the time lag increases. In extreme cases, slow mixing makes MCMC compu-
tationally prohibitive, since an enormous number of samples may be needed to
achieve a reasonable approximation. Methods with fast mixing are typically preferred.

When sampling is highly dependent, using only a regularly spaced subsample of
the generated values may be almost as accurate as using all of the values. Retaining
only the regularly spaced subsample is called thinning. Although it does not reduce
the amount of computation required, it can dramatically reduce the time and space
required for storage of the values.

Characterizing Monte Carlo error in approximations from an MCMC sample is
more difficult than from an independent sample. However, effective methods are
available for most cases. See [6].

4. Constructing Markov chains for sampling

This section briefly summarizes the most practical and frequently used methods
for forming a Markov Chain appropriate for sampling from a posterior distribution.
All of them need only a function proportional to the posterior density of θ, as in
Eq. (1). For brevity, we denote it as

f θð Þ∝θ π yjθð Þπ θð Þ (2)
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where the proportionality is in θ only, and the dependence on y has been
suppressed in the notation.

4.1 Gibbs sampling

Consider a partition of θ into p pieces (which may themselves be vectors):

θ ¼ θ1, … , θKð Þ (3)

The full conditional (or conditional posterior) distribution of θk is its posterior
distribution conditional on all the other pieces θ�k, i.e., the distribution with density

π θkjθ�k, yð Þ (4)

Gibbs sampling, in its purest form, is sequential sampling from the full condi-
tional distributions of θk, k ¼ 1, … ,K, each time conditioning upon the most
recently sampled value for each component of θ�k. Each complete cycle of this
process produces a single sampled value of θ, and these successive values form a
Markov chain whose stationary distribution (if unique) is the posterior distribution
(since each step in the cycle preserves the posterior distribution of θ).

Essentially, Gibbs sampling reduces the problem of sampling θ to the problem of
conditionally sampling each of its pieces. It relies on each full conditional being easy
to sample. Because the pieces are of lower dimension (perhaps even one-
dimensional), they may be easier to sample by conventional methods. Moreover, it
is often possible to choose a prior distribution such that many of the full condi-
tionals are easy to sample. For example, when conditional priors are chosen from
easily sampled families that are partially conjugate to the sampling model (see, e.g.,
[7]), the Gibbs sampler is easy to construct. Even if a full conditional cannot be
directly sampled, its density is proportional to f θð Þ, since

π θkjθ�k, yð Þ ¼
π θjyð Þ

π θ�kjyð Þ
∝θk f θð Þ (5)

where the proportionality is in θk only (for fixed θ�k). The density of the full
conditional is therefore known (up to a constant scaling), so techniques described in
the following subsections may be used.

Performance of Gibbs sampling can sometimes be improved by modifying the
algorithm. For example, the order in which the pieces are sampled can affect the
mixing rate (e.g., [8]). Also, replacing some of the full conditional distributions
with (partial) posterior marginals results in a partially collapsed Gibbs sampler,
which may have better sampling properties [9], though must be implemented
carefully to preserve the stationary distribution (e.g., [10]).

Even when a Gibbs sampler is easy to implement, its mixing can be arbitrarily
slow. This happens especially when there is a high degree of posterior dependence
among the pieces of θ, such as when some pieces are highly correlated, or when the
posterior density exhibits multiple modes offset “diagonally” from each other. Mixing
may be improved by alternating Gibbs sampler cycles with steps of some other kind
of MCMC, or by special modifications described in the following subsections.

4.2 Auxiliary variables

Gibbs sampling can be facilitated by techniques that involve sampling more than
just the parameter θ. Data augmentation involves adding latent variables, usually as
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intermediaries in a hierarchical structure, that make full conditionals easier to
sample. Parameter expansion involves creating extra dimensions in the parameter
space that do not affect the Bayesian model, but allow a faster-mixing Markov chain
to be constructed.

Data augmentation is natural in models that are defined using random effects.
The random effects simply become latent variables to be sampled with the param-
eters. But it can also be used to add purely artificial latent variables designed to
make full conditionals easy to sample. For example, data modeled with a location-
scale t-distribution lacks any direct partial conjugacy properties. Nonetheless, a t-
distribution can be represented as a scale mixture of normal distributions, with an
inverse gamma distribution for the scale (variance). The scale variables then
become the latent variables. Both the normal and inverse gamma distributions enjoy
partial conjugacy properties that make full conditionals easy to sample. See [7],
Section 12.1, for details.

Parameter expansion involves defining a redundant parameter ρ unrelated to the
model itself and supplying it with an arbitrary prior density. The expanded param-
eterization θ, ρð Þ is then reparameterized in a way specially chosen to improve
Gibbs sampler performance. A basic example can be found in Section 12.1 of [7]. It
is sometimes possible to use an improper prior on ρ. This leads to a Gibbs sampler
that lacks a stationary distribution, but may still be able to produce valid posterior
samples (see [11]).

Parameter expansion is typically used in conjunction with data augmentation,
whence it is known as parameter expansion-data augmentation (PX-DA) [12].

4.3 Slice sampling

One general-purpose method to sample from an arbitrary univariate continuous
density is to first sample uniformly from the bivariate (unit area) region beneath its
graph and then retain only the horizontal coordinate. The uniform sampling could
be performed by a simple two-step Gibbs sampler, alternating between vertical and
horizontal sampling. This general approach is called slice sampling [13]. It can be
interpreted as a special auxiliary variables method, with the vertical coordinate
representing the auxiliary variable.

For a multivariate θ, slice sampling can be performed on one univariate piece at
a time, as in a Gibbs sampler. Specifically, if θk is continuous and univariate, then
the slice sampler first samples v uniformly from interval 0, f θð Þð Þ, then samples θk
uniformly from θk : f θð Þ> vf g. Sampling is simplest when the latter set is an interval
with easily computed endpoints, but adaptive methods are available for when this is
not the case [13].

Though multivariate versions of slice sampling exist (e.g., [14]), practical
implementations are often univariate and implemented as a single step within a
Gibbs sampler framework, for continuous pieces that would otherwise be difficult
to sample.

4.4 Metropolis-Hastings

A general approach to posterior sampling is to perform a carefully controlled
random walk over the parameter space. The steps are chosen such that the resulting
Markov chain has the posterior as its stationary distribution. This is accomplished
by the Metropolis-Hastings algorithm.

In one popular version, the properties of the algorithm are determined by the
choice of a random walk. The choice is arbitrary, but it is often such that each step is
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easy to simulate and can transition from any point in the parameter space to any
other point. Let T θ0jθð Þ be its transition kernel for a step from θ to θ0. For example, if
θ is chosen according to some continuous distribution with density ~π θð Þ, then taking
one step of the random walk from θ to θ0 will result in θ0 having density

ð

T θ0jθð Þ~π θð Þdθ (6)

(We assume T is time-invariant, although this is not necessary, provided the
time dependence does not depend on the history of the Markov chain.) The density
T �jθð Þ defines the proposal distribution when the current state is θ. Values of this
density (up to a constant factor that does not depend on θ) must be computable.

The transitions of the Markov chain are determined by the following algorithm:

let θold be the current state of the chain. Then

1.Sample proposal θ0 from the proposal distribution at θold.

2.Compute

α ¼
f θ0ð Þ=T θ0jθold

� �

f θold
� �

=T θoldjθ0
� � (7)

3.Set the next state of the chain to be

θnew ¼
θ0 with probabilitymin α, 1ð Þ

θold otherwise

�

(8)

Note the possibility that the next state of the chain will be identical to the
previous state, even if θ is continuous under the posterior. If θ0 actually becomes the
next state of the chain, we say that the proposal is accepted. The long-run fraction of
times the proposal is accepted is the acceptance rate.

General proof that this algorithm produces a Markov chain with the posterior as
its stationary distribution can be found in, for example, [15]. Convergence proper-
ties have been extensively studied [4].

One important special case is the Metropolis algorithm, in which the transition
kernel is symmetric: T θ0jθð Þ ¼ T θjθ0ð Þ. In this case, T cancels from Eq. (7), so there
is no need to compute its values. If parameter θ is continuous on an open subset of a
space of real vectors, a typical example is a multivariate normal proposal distribu-

tion centered at the current value (θold). The covariance matrix is arbitrary and can
be chosen to make the sampling more efficient.

Proposal distributions often admit a choice of scaling that can be tuned to
improve sampling efficiency. Setting the scale too large leads to a low acceptance
rate, hence slow mixing due to many repeated values. Setting the scale too small
leads to a high acceptance rate, but each proposal will be close to the current value,
and hence the mixing will also be slow. In some cases, theoretical results are
available to guide the choice of scale. For example, for the Metropolis algorithm,
research suggests that the optimal acceptance rate is about 0.44 for a one-
dimensional θ and quickly falls to about 0.23 as the dimension of θ increases [16].

In addition, the shape of the proposal distribution can often be tuned. Perhaps
the best shapes are ones that approximate the shape of the posterior distribution,
since then proposals will tend to be in directions in which the posterior is wider.
While the exact shape of the posterior may not be obvious, it may still be possible to
choose a proposal that has a similar covariance structure.
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The scale and shape of the proposal can be tuned in an automated manner, by
making a preliminary run of the algorithm during which features of the proposal are
modified adaptively to improve efficiency. This stage of adaptation occurs prior to
burn-in: The algorithm is not a Markov chain when the proposal distribution is
changed based on the sampling history, so it may not be converging to the posterior.
Once adaptation is declared complete, the proposal distribution is kept fixed for
burn-in and for sampling.

Although it may not be obvious, exact Gibbs sampling can actually be viewed as
a special case of Metropolis-Hastings (e.g., [3]). The α turns out to always equal 1
for this situation, so no tuning is needed. Also, in a Gibbs sampler context, when a
piece of θ cannot be easily simulated using conventional methods, its Gibbs step
may be replaced with an easier step of Metropolis for the full conditional of that
piece.

Since the posterior density is analytically available (up to a constant factor), its
local properties may suggest an efficient choice of proposal distribution. For a
continuous posterior, Langevinmethods use the gradient of the log posterior density
at the current point to adaptively choose the proposal distribution (e.g., [16]). This
provides higher optimal acceptance rates and better scaling properties than pure
Metropolis, though at the expense of more computation for each step. While this is
an important improvement, modern practice has evolved even further to use more
global properties of the posterior density, as detailed in the next subsection.

4.5 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC), also called hybrid Monte Carlo, can be
regarded as a special case of Metropolis-Hastings that uses a proposal involving a
special set of auxiliary variables and the path of a carefully devised differential
equation [17]. Computing each proposal is complicated, and perhaps expensive, but
this is often compensated by achieving a high acceptance rate even when the step
size is large. This results in a sequence of samples that are less dependent, and hence
fewer are needed to achieve high approximation accuracy.

HMC can be applied directly to θ if the posterior is continuous and its density is
continuously differentiable. Let p represent a vector of auxiliary variables having
the same size as θ, but independent of θ. Specify for p an easily-sampled continuous
distribution (often multivariate normal) with a continuously differentiable density
proportional to g pð Þ. Define

H θ, pð Þ ¼ � ln f θð Þ � ln g pð Þ (9)

Then apply the Metropolis algorithm to sample θ, pð Þ jointly, with proposals
generated as follows:

1.Directly generate p (independently of θ).

2.Starting from θold, p
� �

, follow the path θ tð Þ, p tð Þð Þ of the differential equation
system defined by

dθk
dt

¼
∂H

∂pk

dpk
dt

¼ �
∂H

∂θk
(10)

for each element θk of θ and corresponding element pk of p, up to a
predetermined point tL.
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3.Let θ tLð Þ, p tLð Þð Þ be the new proposed value.

In the Metropolis acceptance step, we use

α ¼ exp H θold, p
� �

�H θ tLð Þ, p tLð Þð Þ
� �

(11)

Actually, if the path is followed exactly, the acceptance probability will always
be 1, since value of H is constant along any differential equation path [17]. The
Metropolis step is needed only because, in practice, a numerical approximation is
used to solve the differential equation.

To follow the differential equation numerically, we use the leapfrogmethod [17].
This method has a number of advantages over competing methods, including sta-
bility (better preservation of H) and volume preservation, which makes Metropolis
valid (i.e., makes the joint transition kernel defined by this process symmetric).

If θ is not entirely continuous, HMC may still be applicable to the continuous
pieces of θ, for example, when used as part of a Gibbs sampler. Also, if the posterior
density is nonzero only over a certain region, HMC can be adapted for that situa-
tion. For example, it is possible to place lower and upper bounds on the elements of
θ [17].

The differential equation path of an HMC proposal has a tendency to loop back
on itself, making the efficiency sensitive to the length of the path (i.e., the choice of
tL). The no-U-turn sampler (NUTS) [18] is a modification of HMC designed to
avoid this behavior. Essentially, it allows for adaptive choice of the leapfrog algo-
rithm’s step size and number of steps.

In theory, the computational cost of HMC scales better with the dimension of θ
than does the computational cost of ordinary (random-walk) Metropolis methods.
An extensive theoretical comparison can be found in [17].

5. Cluster sampling and variation

The first non-local or cluster sampling for Monte Carlo simulation for large
systems is the Swendsen-Wang (SW) algorithm [19]. It was designed for the Ising
and Potts models and was later generalized to other systems. The main component
was the random cluster model, represented via percolation models of connecting
bonds. Let us start with a spin configuration σf g and generate a percolation config-
uration based on the spin configuration. Next, the old spin configuration is forgot-
ten and a new spin configuration σ0f g is generated according to percolation. The
rule for the process is defined in order for the detailed balance condition to be
satisfied. In this way, the transition leaves the equilibrium probability invariant.

Consider a Potts model with probability distribution

g σð Þ ¼
1

Z
exp K

X

< i, j>

δσi,σ j � 1
� �

 !

(12)

where K is the coupling strength; the spins take on the values 1, 2, … , q, e.g.
σi ¼ 1, 2, … , q; δσi,σ j is the Kronecker delta, which equals one whenever σi ¼ σ j and

zero otherwise; the summation goes through nearest neighbor pairs; and Z is the
partition function.

A SW Monte Carlo move is based on the following two steps: the first step
transforms a Potts configuration to a bond configuration, and the second trans-
forms back from bond to a new Potts configuration.
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1.If σi ¼ σ j, a bond nij ¼ 1 is created stochastically between neighbor sites i and j

with a probability of 1� eð Þ�K . Otherwise, no bond will be present and the
bond variable is set to nij ¼ 0.

2.Clusters are identified as sets of sites connected by bonds (otherwise isolated
sites). If there is a connected path of bonds joining two sites, they are said to be
in the same cluster. A new Potts value is assigned to each cluster, chosen with
equal probability among 1 to q. The new Potts variable σ0 is determined as the
value of the cluster it belongs to.

With this approach, every state can be reached from any other state in one move
with a non-zero probability. The two steps leave the probability distribution invari-
ant and the method generates an equilibrium distribution Eq. (12).

One variation of the SW method is generalizing it to arbitrary sampling proba-
bilities defined on graph partitions, which is achieved through considering it as a
Metropolis-Hastings algorithm and computing the acceptance probability of the
proposed Monte Carlo move [20]. The new inference algorithm begins by calculat-
ing graph edge weights using local image features and then is followed by two
iterative steps: Cluster Graph: cutting the edges probability using their weights, to
form connected components; Relabel Graph: selecting one connected component,
and simultaneously flipping the partition of all its vertices in a probabilistic way.
Accordingly, instead of flipping a single vertex as in Gibbs sampler, the split,
merge, and re-grouping of a chunk of the graph are realized with this strategy.

The generalized cluster sampling implements ergodic and reversible Markov chain
jumps on graph partitions. It is applicable to arbitrary posterior probabilities or energy
functions in the space of graphs. Examples in image analysis (e.g., image segmenta-
tion) demonstrate that the cluster Monte Carlo is more efficient than the classical
Gibbs sampler and performs better than the graph cuts and belief propagation.

6. Software implementation

In the statistics community, the first development of practical general-purpose
software for MCMC was the BUGS (Bayesian inference using Gibbs sampling)
project, starting in 1989. The original implementation, designed for the Windows
operating system, was WinBUGS, which included a graphical interface. When
development of WinBUGS ended, the OpenBUGS project was created as a succes-
sor. This software uses a special model specification language, the “BUGS lan-
guage,” that is remarkably flexible. Usually, the analyst only needs to specify the
model in the BUGS language and then leave the construction of appropriate sam-
plers to the software. The basic structure is a Gibbs sampler, but the pieces may be
sampled using specialized methods.

Inspired by BUGS, a parallel effort called JAGS (Just another Gibbs sampler) was
developed. Like BUGS, it is based on Gibbs sampling and, in principle, requires the
analyst to specify only a model (written in a variant of the BUGS language), leaving
the construction of samplers to an automated engine. It tends to be faster than
OpenBUGS, is more actively developed, and features better integration with the R
language. It also incorporates efficient slice samplers in some of its steps. JAGS is
entirely open-source and has versions for many operating systems.

PyMC’s development was an effort to generalize the process of building
Metropolis-Hastings samplers, making MCMC more accessible to non-statisticians.
It is now a Python package helping users define stochastic models and construct
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Bayesian posterior samples. A large number of problems are suitable for PyMC due
to its flexibility and extensibility. Key features include ability to fit Bayesian statis-
tical models via MCMC and other algorithms; a large set of well-documented sta-
tistical distributions; a module for modeling Gaussian processes; sampling loops can
be manipulated manually, etc.

A more recently introduced tool (since 2012) is the language Stan, which
remains under active development (as of this writing). Stan allows model specifi-
cation, but in an inherently more flexible way than BUGS or its variants. Software
for compiling Stan includes the option for MCMC using HMC and NUTS. It there-
fore tends to produce more nearly independent samples than software based on
Gibbs sampling. (There are also options for inference not based on sampling, such
as variational methods.) The Stan software integrates with R, Python, MATLAB,
Julia, and Stata.

7. Conclusion

This chapter has merely touched upon the important concepts and methods of
modern MCMC. Routine-use software automating the construction of samplers is
also introduced. There are many good references that provide more detailed theo-
retical or practical treatment and further extensions, based on which future
research can be developed.
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