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Abstract

With the rapidly increasing world population and escalating food demand in 
the face of changing weather patterns, it is imperative to improve our understand-
ing of how root functional traits enhance water acquisition and nutrient foraging 
for improved crop yields. Phosphorous (P) is poorly bioavailable element and 
essential for plant growth and development. Natural P reserves are very limited, 
and its availability is greatly influenced by several environmental factors, e.g., due 
to finite natural resources, soil pH, organic matter, and soluble complexes with 
cations (Al, Fe, and Ca); therefore, P limitation is a major factor that adversely 
affects crop production. To ensure an efficient and stable agricultural system, the 
establishment of P efficient crop production is inevitable. Plants have evolved 
different adaptability mechanisms to overcome these nutrient stresses. Low P 
adapted responses in plants are considered as an important trait for developing 
new lines with improved P acquisition, water uptake efficiency, and eventually 
protect roots from physical impedance. Previous studies showed that, modification 
in root architecture is potentially correlated with water, nutrient and phosphorus 
uptake. During P deficit condition, plant root undergoes several phenotypic (root 
hair density, cluster root, and lateral root) and biochemical modifications (citrate, 
malate, and acid phosphates secretion) leading to the solubilization and acquisition 
of unavailable P complexes in soil. This chapter reveals the biochemical, physiolog-
ical, and molecular mechanisms of plant adaptive responses to low P availability. 
Moreover, this chapter proposes how plant competes with various abiotic stresses 
such as P deficiency, drought, and salinity. Screening of plants with superior root 
hair traits would be an important approach toward the development of P efficient 
crop varieties.

Keywords: phosphorous deficiency, plant adaptability mechanisms, P uptake, 
modification in root traits, sustainable crop production

1. Introduction

Phosphorous (P) is an indispensable limiting factor for plant growth and 
development [1]. Agricultural land comprised on low P availability is about 67% to 
sustain a better crop production [2]. P is mostly absorbed by diffusion through root 
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absorption by creating gradients force. Very little (0.05 g−1) of phosphate concen-
tration is soil moved to the roots through capillary water movement. The value of P 
extracted is low by P concentration at the root-soil surface, and wheat roots have to 
grow to come into contact with new soil from which can extract phosphate. Thus, 
the length of root is a major factors of absorbing surface area [3]. Organic P is not 
directly amenable for plant to capture to make it easily accessible for plant uptake, 
conversion of organic P into inorganic Pi (H2PO4

−, PO4
3−, and HPO4

2−) is a prereq-
uisite [4]. Plants have adapted a range of strategies to improve Pi availability such as 
microbial symbiotic association [5], modification in root system architecture (RSA) 
[6], cluster root (CR) formation [7], organic acid exudation [8], H+ secretion, and 
genetic modification [9, 10] (Figure 1). For instance, white lupin (Lupinus albus) 
has developed extreme tolerance to low Pi condition through forming specialized 
dense root structures known as cluster root [10]. Cluster root secretes large number 
of organic acids, protons, and acid phosphatases into the soil, that increases Pi 
availability [19, 20].

Another important strategy for improving Pi availability and uptake under 
P limited region is the exudation of organic compounds and acid phosphatase 
by plant roots into the rhizospheric zone. Cluster roots of white lupin are known 
as exudate organic acid such as citrate, malate, malonate, carboxylate, and acid 
phosphatase into the soil [7, 21, 22]. Several other distantly related plant families 
have the ability to form cluster root, and is commonly found in proteaceae family 
[23]. It is not mandatory that, every genus of plant family produce CR root, like 
some member of other families can form CR (Restionaceae, Moraceae, Myricaceae, 
Elaeagnaceae, Fabaceae, Casuarinaceae, Cyperaceae, Cucurbitaceae, and 
Betulaceae) [24].

Previous studies have shown that the exudation of PAP (purple acid phospha-
tase) may facilitate the use of organic P for plants [25, 26]. Membrane localized high 
affinity transporters (PHT1) also exhibit great contribution in improving P uptake, 
and have been recognized in soybean, rice, and wheat roots [27–30]. Arbuscular 
mycorrhizal fungi (AMF) symbiotic association plays vital role in improving plant 

Figure 1. 
Under P stress condition plant evolved multiple adaptive responses to improve Pi uptake, recycling and 
transportation [11–18].
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ability to acquire inorganic P from rhizosphere [5]. Additionally, AMF symbiotic 
process activates expression of PSI genes (Pi starvation inducible), involving phos-
phate transporters, ATPases, and acid phosphatases, [28, 31, 32], which increases 
the ability of Pi acquisition in plants. Further, studies on identifying the whole 
genetic mechanisms underlying P adaptability mechanisms would provide a better 
understanding in producing modern P efficient agricultural crops, that will not only 
reduce fertilizer cost but also improves plant production.

2. Phosphorous concentration in soil

Most of the soils have a large reservoirs of total phosphorus, while available P is 
at low level [33], and it is further reported that soil total P is about 100 times higher 
than available P to crops plants. Phosphorous is a key determinant factor in regulat-
ing plant cell metabolism, and is a major constituent of nucleic acid, phospholipid, 
ATP and NADPH. It is not amenable for plant to uptake like other growth nutrient 
due to its high reactivity [34]. Freely available Pi can form complexes with Al and 
Fe under acidic and with Mg and Ca under alkaline/neutral soil, rendering the Pi 
inaccessible for plant to uptake [35]. Furthermore, phytic acid bounds with 60–80% 
of agricultural Pi and restricts its availability, that requires mineralization of Pi 
before assimilated by plant root [36]. This problem of Pi starvation can be solved by 
applying phosphate fertilizer [37]. But due to the limited availability of phosphate 
resources it is not a permanent solution to rely on it for future agricultural produc-
tion, however, it becomes a major threating bulletin towards future agriculture 
system [38]. However, a deep understanding of plant adaptability and respond 
mechanism to low P condition would help in establishing modern strategy for 
efficient utilization of Pi by plants.

The whole agriculture system relies on the use of fertilizer to increase yield, 
and maintaining plant growth. Some ecological and economical drawbacks have 
provoked the interest to explore alternative approaches to fulfill the demand of 
global food supply [10, 39–41]. To determine the mechanism that facilitates plant 
growth on poor nutrient soil, scientists are learning from those plants that are 
extremely tolerance to nutrient deficiency condition, such as cluster root forming 
plant species.

2.1 Uptake vs. utilization efficiency of phosphorus

Phosphorus utilization (grain yield per unit P in the plant) is dependent on the 
plants P requirement. The P utilization efficiency can improve due to the increase 
in harvest index, P harvest index, and low P concentration in grain. Moreover, the 
strategy for reducing P content in grain has some limits. Therefore, in a P deficits 
soils, excessively low values of P concentration in grain affects seed vigor [42, 43]. 
To improve P utilization efficiency that selection of wheat genotypes is important, 
which removes small amount of P from soil due to their low P concentration in 
grains contributes in soil sustainability [44].

2.2 P-solubilizing microbes improves plant growth

The availability of soluble P uptake by plant is due to PS microbes, and the 
release of important nutrients can also improve growth and development of plants 
[45]. Therefore, due to symbiotic and asymbiotic the change in the concentration 
of phytohormones, e.g., indole acetic acid also gave the positive results about the 
increase in growth and development of plants [46, 47]. This mechanism is active 
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at different growth stages; however, PS microbes have the ability for synthesizing 
plant growth promoting nutrients at different climatic conditions [48].

3. Plant low P adaptability mechanisms

Naturally, plants have evolved several different mechanisms to cope with 
nutrient limiting (Pi stress) conditions, either by acquiring more phosphate from 
soil or by maintain Pi homeostasis within plant body. These adaptive mechanisms 
could be appearing as biochemical, physiological, or molecular responses to low P 
conditions.

3.1 Biochemical

In a Pi stress condition, the plant roots undergo a range of phosphate stress 
responses, involving modification in root system architecture (RSA), increasing/
inducing expression of Pi transporters, secretion of large amount of organic acid and 
acid phosphatases. Root exudates are below ground substances released by the plant 
root which plays multiple role in plant defense and nutrient uptake such as attrac-
tants, stimulator, signaling molecules, and also as an inhibitor against toxic pathogen. 
Root exudates are continuing source of fixed carbon to carry out plant’s photosyn-
thetic activity. Major differences in the root exudation type, exudation levels, and 
root architecture system distinctly varies from plant species to species. It is specu-
lated that, nutrient influx and efflux by plant root is heterogeneous among time and 
space [49]. Mucilage exuded by the roots, with its high water holding capacity [50], 
may increase water holding capacity of the rhizosphere (area around plant root).

Mucilage has positive effects on root water and nutrient uptake, it has the 
potential to increase the capability of young root segments to capture water from 
soils, particularly under drought condition. Such characteristics potentially help 
plants to use soil resources and survive drought spells [51]. However, the role of 
root exudates and the rhizosphere on nutrient uptake and drought tolerance has not 
yet been demonstrated and remains largely hypothetical. Plant roots exude several 
compounds such as phenolic, amino acids, sugars, and organic acids [52]. Major 
organic acids e.g. citrate, malate, and oxalate are implicating in regulating nutrient 
acquisition, and stimulating toxic metal detoxification mechanisms [53–55].

There is an evidence, indicating direct role of organic acid in mobilizing phospho-
rous for plant uptake and detoxification of Al3+, Fe, and Mn2+ [56, 57]. It is noteworthy 
to mention that, from total P fraction exist in soil only Pi (inorganic P) and is directly 
available to capture by plant root [58]. A number of plant species respond to low P con-
dition by secreting large amount of organic acids such as Lupinus albus, Glycine max, 
Zea mays, Triticum aestivum, Cajanus cajan, Phaseolus vulgaris; Cassia tora, Hordeum 
vulgare and Solanum tuberosum [55, 59–65]. For example, Lupinus albus cluster root 
forming plant were shown to secrete citric acid, and proposed that citrate greatly 
improved Pi acquisition by forming ferric-hydroxy-phosphate compound diffused 
to the root and release Pi in to the rhizosphere [59]. Similarly, Cajanus cajan exudates 
malonic and piscidic acid that solubilized fixed P to directly available Pi form [63, 66].

3.2 Physiological

Plants survive in heterogeneous environment, are exposed to various abiotic 
factors such as; high temperature, salinity, drought, and nutrient deficiency etc. 
Phosphorous deficient soil is one of the major abiotic factors compromising plant 
growth status, particularly by reducing crop yield. Drought is a major stress on 



5

Understanding the Adaptive Mechanisms of Plant in Low Phosphorous Soil
DOI: http://dx.doi.org/10.5772/intechopen.91873

plants that partially limit nutrient availability, acquisition and remobilization [67]. 
Under low P availability plants adapted various physiological responses such as 
anthocyanin accumulation [68, 69], inhibition of primary root elongation, massive 
production of lateral and cluster root development [68]. Root tip serves as entry 
point for P sensing, modification in root system potentially contribute to nutrient 
uptake for maintaining plant survival under P starvation [70–72]. It is suggested 
that well developed root architecture is an important adaptive strategy for plants 
to acquire more Pi from soil. It has been revealed that, Phaseolus vulgaris genotype 
having highly branched root architecture showed efficient P acquisition ability [73].

Root hairs are also quite important for the uptake of poorly mobile growth factor 
such as P by improving soil exploration. It was reported that, under P deficient 
condition root hairs regulates almost 63% of the total P uptake [17]. Therefore, 
different plant species or genotypes with different root hairs/length may exhibit 
different P uptake efficiency [74]. Cluster root excretes large number of citrate, 
malonate, and phosphatases, that help in solubilization of fixed P to available form 
that is easily accessible for plant to capture [75]. Many studies elaborated that root 
hairs exhibit primary role in P acquisition under low P soil [17, 68]. It is concluded 
that root hairs showed strong correlation in phosphorus acquisition [76].

3.3 Molecular

Generally, plants employ a range of molecular mechanisms to confer resistance 
against multiple abiotic and biotic stresses that influence nutrient availability, 
uptake, and recycling. The ability of plant to sense and transduce signals is regu-
lated by multiple genes or transcription factor. A growing body of evidence from 
mammals and yeast proposes that role of chromatic structure governs by metabolic 
signals [77], while the identification of molecular players involved in crosstalk of 
signal transduction pathways remains largely unknown [78]. Understanding the 
molecular mechanism behind belowground root traits would help to identify genetic 
markers to improve abiotic/biotic stress tolerance and environmental variability. 
Plants exposed to P starvation conditions evolved different adapted responses con-
trolled by phosphorous starvation and root development related genes. For example, 
AtPHR1 and OsPTF1 genes are considered to be central regulator for P starvation 
responses [79, 80], upregulation of these genes may improve P availability, which is 
important for plant root growth, and development. This is indirect evidence that, 
root hairs and length are major key determinant and positively correlates with nutri-
ent uptake.

A clear understanding of molecular mechanism of root system architecture 
(RSA) is necessary to improve nutrient acquisition, and plant productivity. OsFH1 
plays critical role in root hair development and elongation [80, 81]. Phosphorous is 
an essential macronutrient for plant survival, due to its limited reservoirs the estab-
lishment of phosphorous efficient crops is needed. Pup1 phosphorous deficiency 
tolerance locus has been identified in rice (Kasalath variety). Pup1 is protein kinase 
gene later named as phosphorous starvation tolerance-1 (PSTOL1) (Table 1) [28]. 
The overexpression of PSTOL1 gene in rice which naturally lacks PSTOL1 showed 
greatly increased grain yield in P deficient soil. It also triggered root growth initia-
tion, and resulting the nutrients and P uptake ability from soil. Thereby, PSTOL1 
confer tolerance to drought and P deficient soil [82].

Collectively it is suggested that, all root development/elongation related genes 
play critical role in increasing P acquisition and bioavailability. However, to under-
stand candidate genes involved in development of root would enable farmers and 
breeders to screen out cultivars with better adapted root system through marker 
assisted selection tool.
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4. “Omics” approaches contribute to Pi adaptation mechanism

The prime objective for future crop production is the development of well 
adapted lines to Pi starvation condition. Identification of key genes are upregulated 
under Pi deficient soil could be a useful tool for understanding plant development 
responses, and use as marker selection for crop improvement, and reported in 
various plant species transcriptomic and metabolomics approaches had identi-
fied bunch of genes and metabolites involved in regulating plant developmental 
responses and cluster root formation, and provides deep insight in identifying Pi 
acquisition pathway and network [90, 91]. Genetic engineering has great potential 

Figure 2. 
Omics approaches can reveal molecular basis of plant developmental adaptation to poor nutrient soil.

No. Genes/transcription 

factors

Plants Function Reference

1. OsPTF1 Oryzae sativa Contribute to P availability [79]

2. OsPSTOL1 Oryzae sativa Confer tolerance to drought and 
increased crop yield

[82]

3. OsFH1 Oryzae sativa Improves root hairs growth and 
elongation

[81]

4. DRO1 Oryzae sativa Develop deeper root system [83]

5. OsEXPA17 Oryzae sativa Involved in root elongation [84]

6. OsSNDP1 Oryzae sativa Promotes root hair elongation [85]

7. OsSAPK10 Oryzae sativa Increases root hair length [86]

8. AtPHR1 Arabidopsis 

thaliana

Contribute to P availability, 
important role in regulating PSRs

[79, 80]

9. PHO1 and AVP1 Arabidopsis 

thaliana

Improved resistance to drought, 
and maintain Pi homeostasis, plant 
productivity

[87, 88]

10. AVP1 Solanum 

lycopersicum

Increased Pi transport and root/
shoot dry weight, resistant to P 
deficient soil

[89]

Table 1. 
The phosphorous starvation induced genes and transporters involved in promoting plant growth and 
development.



7

Understanding the Adaptive Mechanisms of Plant in Low Phosphorous Soil
DOI: http://dx.doi.org/10.5772/intechopen.91873

to revolutionize functional analysis of gene (Figure 2), particularly in those plants 
which have developed stable transformation method.

5. Generation of phosphorous efficient crops

Molecular engineering is a useful approach for breeding and production of 
transgenic, efficient P uptake plants. It has been shown in rice and Arabidopsis 
studies that, overexpression of PSTOL1 in rice increases P uptake efficiency under 
low P availability condition [82], and overexpression of AVP1 also improves P 
uptake in Arabidopsis and several other plant species [92], suggesting that molecu-
lar approaches can significantly improves P uptake efficiency.

Overexpression strategy has also been reported to change exudation rate of acid 
phosphatase and H+ secretion in tomato root, that promotes the solubilization of 
soil fixed P to Pi form [93]. Contrastingly, knockout approaches can also be used for 
altering Pi homeostasis, for example, OsPHT1.8 and OsPHF1 reduces P uptake and 
translocation [94, 95].

6. Concluding remarks

P deficiency is an important limiting factor in terms of plant nutrition and 
growth in cultivated soils. Although the exogenous application of chemical P fertil-
izer is extensively exploited to fulfill crop nutrition demands. The overuse of chemi-
cal fertilizer is not a permanent solution due to finite P reserves and imposes serious 
threats to environment safety. The excessive use of P fertilizer adversely affects soil 
biota (microbes, earthworms) and its physical or mechanical properties, eventually 
reduces crop productivity. As a consequence, soil compactness serves as a major con-
straint that restricts root growth and elongation. Despite of reduction in root length, 
root hairs endure as a unique trait for enhancing P acquisition ability under highly 
compacted low P soil. An efficient uptake of nutrients is a cornerstone towards crop 
improvement and productivity. Improved phosphorous use efficiency will be arising 
as a demanding approach in the future to achieve higher crop productivity. Root hairs 
and density significantly contribute to improve P availability under diverse soil con-
straints. In future, a clear understanding of molecular mechanism underlying root 
system architecture (RSA) is necessary to improve nutrient acquisition, and plant 
yield. More studies in a wide range of plants at the genetic level would provide breed-
ers with molecular markers useful for improving nutrient uptake in plants growing 
in soils having heterogeneous P levels. The recurring theme is that potential impor-
tance of P efficient crops in improving agricultural yield under limited resources is 
still poorly identified. Such studies will provide important clues for potential targets 
that can be utilized to engineer biofertilizers which can increase phosphorus use 
efficiency by changes root trait modification in poor nutrient availability soil.
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