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Chapter

Static and Dynamic Analysis of
Piezoelectric Laminated
Composite Beams and Plates
Chung Nguyen Thai,Thinh Tran Ich and Thuy Le Xuan

Abstract

In this chapter, the mechanical behavior analysis of piezoelectric laminated
composite beams and plates is influenced subjected to static, dynamic, and aerody-
namic loads. Algorithm for dynamic, stability problem analysis and vibration con-
trol of laminated composite beams and plates with piezoelectric layers is presented.
In addition, numerical calculations, considering the effect of factors on static,
dynamic, and stability response of piezoelectric laminated composite beams and
plates are also clearly presented. The content of this chapter can equip readers with
the knowledge used to calculate the static, dynamic, and vibration control of com-
posite beams, panels made of piezoelectric layers applied in the field different
techniques.

Keywords: beams, plates, static, dynamic, piezoelectric, composite, stiffened

1. Introduction

The content of this chapter is the inheritance and development of the research
results of the authors and other authors by published scientific works on composite
materials, piezoelectric and structural calculation by piezoelectric composite
materials.

2. Electromechanical interaction of piezoelectric materials

2.1 Mechanical-electrical behavior relations

Let us consider a block of elastic material in an environment with an electric
field of zero, the relationship between stress and strain is followed Hooke’s law, and
written as follows [1, 2]:

σf g ¼ c½ � εf g, (1)

where {σ} is the mechanical stress vector, {ε} is the mechanical strain vector, and
[c] is the material stiffness matrix of beam.

Mechanical-electrical relations in piezoelectric materials have an interactive
relationship, strain {ε} will produce eε - polarization, where e is the voltage stress
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factor when there is no mechanical strain. The imposed electric field E produces the
-eE stress in the piezoelectric material according to the reverse voltage effect.
Therefore, we have a mathematical model that describes the mechanical-electrical
interaction relationship in piezoelectric materials as follows [3–6]:

σf g ¼ c½ � εf g � e½ � Ef g, (2)

Df g ¼ e½ �T εf g þ p½ � Ef g, (3)

or Df g ¼ d½ �T σf g þ p½ � Ef g, (4)

where [e] is the piezoelectric stress coefficient matrix, [p] is the dielectric
constant matrix, {E} is the vector of applied electric field (V/m), and {D} is the
vector of electric displacement (C/m2).

For the linear problem and small strain, strain vector in the piezoelectric struc-
tures can be defined as follows:

εf g ¼ s½ � σf g þ d½ � Ef g, (5)

in which [s] is the matrix of compliance coefficients (m2/N), [d] is the matrix of
piezoelectric strain constants (m/V).

In the field of engineering, piezoelectric materials are used by two types.
The first type, the piezoelectric layers or the piezoelectric patches act as
actuators, called the piezoelectric actuators. In this case, the piezoelectric layers
are strained when imposing an electric field on it. The second type, the
piezoelectric layers or piezoelectric patches act as sensors, called piezoelectric
sensors. In this case, the voltage is generated in piezoelectric layers when there is
mechanical strain.

2.2 Piezoelectric actuators and sensors

2.2.1 Piezoelectric actuators

Eq. (5) can be written in the matrix form as follows [4, 6]:

εf g ¼

ε11

ε22

ε33

γ23

γ13

γ12

8

>>>>>>>>>>><

>>>>>>>>>>>:

9

>>>>>>>>>>>=

>>>>>>>>>>>;

¼

s11 s12 s13 s14 s15 s16

s21 s22 s23 s24 s25 s26

s31 s32 s33 s34 s35 s36

s41 s42 s43 s44 s45 s46

s51 s52 s53 s54 s55 s56

s61 s62 s63 s64 s65 s66

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

σ11

σ22

σ33

τ23

τ13

τ12

8

>>>>>>>>>>><

>>>>>>>>>>>:

9

>>>>>>>>>>>=

>>>>>>>>>>>;

þ

d11 d21 d31

d12 d22 d32

d13 d23 d33

d14 d24 d34

d15 d25 d35

d16 d26 d36

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

E1

E2

E3

8

>><

>>:

9

>>=

>>;

,

(6)

Assuming that the device is pulled along the axis 3, and viewing the piezoelectric
material as a transversely isotropic material, which is true for piezoelectric
ceramics, many of the parameters in the above matrices will be either zero, or can
be expressed through each other. In particular, the non-zero compliance coeffi-
cients are s11, s12, s13, s21, s22, s23, s31, s32, s33, s44, s55, s66, in which s12 = s21, s13 = s31,
s23 = s32, s44 = s55, s66 = 2(s11 � s12).
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Finally, Eq. (6) becomes:

εf g ¼

ε11

ε22

ε33

γ23

γ13

γ12

8

>>>>>>>>>>>><

>>>>>>>>>>>>:

9

>>>>>>>>>>>>=

>>>>>>>>>>>>;

¼

s11 s12 s13 0 0 0

s12 s22 s23 0 0 0

s13 s23 s33 0 0 0

0 0 0 s44 0 0

0 0 0 0 s55 0

0 0 0 0 0 s66

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

σ11

σ22

σ33

τ23

τ13

τ12

8

>>>>>>>>>>>><

>>>>>>>>>>>>:

9

>>>>>>>>>>>>=

>>>>>>>>>>>>;

þ

0 0 d31

0 0 d32

0 0 d33

0 d24 0

d15 0 0

0 0 0

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

E1

E2

E3

8

>><

>>:

9

>>=

>>;

,

(7)

where E1, E2, and E3 are electric fields in the 1, 2, and 3 directions, respectively.

2.2.2 Piezoelectric sensors

The induction charge equation of piezoelectric sensor layers is derived from
Eq. (4) can be written in the matrix form as [4, 6, 7]:

Df g ¼

D1

D2

D3

8

>><

>>:

9

>>=

>>;

¼

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

2

6
6
4

3

7
7
5

σ11

σ22

σ33

τ23

τ13

τ12

8

>>>>>>>>>>>><

>>>>>>>>>>>>:

9

>>>>>>>>>>>>=

>>>>>>>>>>>>;

þ

p11 p12 p13

p21 p22 p23

p31 p32 p33

2

6
6
4

3

7
7
5

E1

E2

E3

8

>><

>>:

9

>>=

>>;

,

(8)

The non-zero piezoelectric strain constants are d31, d32, d15, d24, and d33, in
which d31 = d32, d15 = d24. And the non-zero dielectric coefficients are p11, p22, and
p33, where p11 = p22. Eq. (8) becomes:

Df g ¼

D1

D2

D3

8

>><

>>:

9

>>=

>>;

¼

0 0 0 0 d15 0

0 0 0 d24 0 0

d31 d32 d33 0 0 0

2

6
6
4

3

7
7
5

σ11

σ22

σ33

τ23

τ13

τ12

8

>>>>>>>>>>>><

>>>>>>>>>>>>:

9

>>>>>>>>>>>>=

>>>>>>>>>>>>;

þ

p11 0 0

0 p22 0

0 0 p33

2

6
6
4

3

7
7
5

E1

E2

E3

8

>><

>>:

9

>>=

>>;

,

(9)

where D1, D2, D3, p11, p22, and p33 are the displacement charge, dielectric
constant in the 1, 2, and 3 directions, respectively.

Normally, the voltage is transmitted through the thickness of the
actuator layers.
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3. Static and dynamic analysis of laminated composite beams with
piezoelectric layers

3.1 Displacement and strain

Based on the first-order shear deformation theory (FSDT), the displacement
field at any point of the beam is defined as [1, 2]:

u x, zð Þ ¼ u0 xð Þ þ zθy xð Þ,

w x, zð Þ ¼ w0 xð Þ,
(10)

where u, w denotes the displacements of a point (x, z) in the beam; u0, w0 are
the displacements of a point at the beam neutral axis, and θy is the rotation of the
transverse normal about the y axis. The bending and shear strains associated with
the displacement field in Eq. (10) are defined as:

εf g ¼
εx

γxz

� �

¼

du

dx
du

dz
þ
dw

dx

8

>><

>>:

9

>>=

>>;

¼

du0

dx
þ z

dθz
dx

θy þ
dw0

dx

8

>><

>>:

9

>>=

>>;

¼

d

dx
0 z

d

dx

0
d

dx
1

2

6
6
4

3

7
7
5

u0

w0

θz

8

><

>:

9

>=

>;

,

(11)

in which εx, γxz are the normal strain, and shear strain, respectively.
Using finite element method, we consider 2-node bending elements with 3

degrees of freedom per node (Figure 1).
The displacements of the beam neutral axis are expressed in local coordinate

system in the form:

d0f g ¼

u0

v0

θz

8

><

>:

9

>=

>;

¼

Nu½ � quf g

Nv½ � qvf g

Nθz
� �

qθz
� �

8

><

>:

9

>=

>;

¼ NM
� �

qb
� �

e
, (12)

where {qb}e is the vector of vector of nodal displacements of element, [NM] is the
matrix mechanical shape functions:

qb
� �

e
¼ q1 q2 q3 q4 q5 q6

� �T
, (13)

NM
� �

|fflffl{zfflffl}

3�6

¼

Nu½ � 0 0

0 Nv½ � 0

0 0 Nθz
� �

2

6
4

3

7
5, (14)

in which [Nu], [Nv], [Nθz] are, in this order, the row vectors of longitudinal,
transverse along y, and rotation about z shape functions.

Figure 1.
Two noded beam element.
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Substituting Eq. (12) into Eq. (11), we obtain:

εf g
|{z}

2�1

¼ Bb½ �
|{z}

2�6

qb
� �

e
|fflffl{zfflffl}

6�1

, (15)

where Bb½ � ¼

d

dx
0 z

d

dx

0
d

dx
1

2

6
6
4

3

7
7
5

NM
� �

: (16)

The electric potential is constant over the element surface:

ϕk ¼
Xn

i¼1

Niϕi, (17)

where n is the element node number.
A voltage ϕ is applied across an actuator of layer thickness tp generates an

electric field vector {E}, such that [4, 8–10]:

Ekf g ¼ �∇ϕk ¼ 0 0 Ez
kf g, (18)

in which

Ez
k ¼ �

ϕk

tpk
¼ Bϕ

� �
ϕf g ¼

0 0
1

tp1
0 0 0

0 0 0 0 0
1

tp2

2

6
6
6
4

3

7
7
7
5

T

ϕ1

ϕ2

� �

, (19)

where tpk is the thickness of the k
th piezoelectric layer.

Substituting Eq. (19) into Eq. (18), the electric field vector {E} can also be
defined in terms of nodal variables as:

Ef g ¼ � Bϕ

� �
ϕf ge, (20)

Using Eqs. (15), and (20), the linear piezoelectric constitutive equations coupling
the elastic and electric fields will be completely determined by Eqs. (2) and (3).

3.2 Finite element equations

Using Hamilton’s principle, we have [11–13]:

ðt2

t1

T e �U e �W eð Þdt ¼ 0, (21)

where Te, Ue are the kinetic and potential energy, respectively and We is the
work done by external forces. They are determined by:

T e ¼
1

2

ð

Ve

ρ _qf gTe qf gedV, (22)
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U e ¼
1

2

ð

Ve

εf gTe σf gedV, (23)

W e ¼

ð

Ve

qf gTe f b
� �

e
dV þ

ð

Se

qf gTe f s
� �

e
dSþ qf gTe f c

� �

e
, (24)

in which f b
� �

e
, f s
� �

e
, f c
� �

e
are the body, surface, and concentrated forces

acting on the element, respectively. Ve and Se are elemental volume and area.
Substituting Eqs. (15), (2), (20), (22), (23), and (24) into Eq. (21), one obtains:

Me
bb

� �
€qf ge þ Ke

bb

� �
qf ge þ Ke

bϕ

h i

ϕf ge ¼ ff ge, (25)

Ke
ϕb

h i

qf ge � Ke
ϕϕ

h i

ϕf ge ¼ Qf ge, (26)

where

Element mass matrix: Me
bb

� �
¼

ð

Ve

ρ NM
� �T

NM
� �

dV, (27)

Element mechanical stiffness matrix: Ke
bb

� �
¼

ð

Se

Bb½ �T H½ � Bb½ �dS, (28)

Element mechanical-electrical coupling stiffness matrix:

Ke
bϕ

h i

¼

ð

Se

Bb½ �T e½ � Bϕ

� �
dS, (29)

Element electrical-mechanical coupling stiffness matrix:

Ke
ϕb

h i

¼ Ke
bϕ

h iT
, (30)

Element piezoelectric permittivity matrix:

Ke
ϕϕ

h i

¼ �

ð

Se

Bϕ

� �T
p½ � Bϕ

� �
dS, (31)

where H½ � ¼
c11 0

0 c22

	 


, e½ � ¼
e11 e12

e21 e22

	 


, p½ � ¼
tp1p11 0

0 tp2p22

	 


, (32)

{ f}e, {Q }e are the applied external load and charge, respectively.

3.2.1 Static analysis

In the case of beams subjected to static loads, zero acceleration, from Eqs. (25)
and (26), we obtain the static equations of the beam as follows:

Ke
bb

� �
qf ge þ Ke

bϕ

h i

ϕf ge ¼ ff ge, (33)
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Ke
ϕb

h i

qf ge � Ke
ϕϕ

h i

ϕf ge ¼ Qf ge, (34)

Assembling the element equations yields general static equation:

Kbb½ � qf g þ Kbϕ

� �
ϕf g ¼ ff g, (35)

Kϕb

� �
qf g � Kϕϕ

� �
ϕf g ¼ Qf g: (36)

where [Kbb], [Kϕϕ] are the overall mechanical stiffness and piezoelectric
permittivity matrices respectively; [Kbϕ] and [Kϕb] are the overall mechanical -
electrical and electrical - mechanical coupling stiffness matrices, respectively, and
{q}, {ϕ} are respectively the overall mechanical displacement, and electric potential
vector.

Substituting Eq. (36) into Eq. (35) yields:

Kbb½ � þ Kbϕ

� �
Kϕϕ

� ��1
Kϕb

� �� �

qf g ¼ ff g þ Kbϕ

� �
Kϕϕ

� ��1
Qf g, (37)

Substituting {q} from Eq. (37) into Eq. (36), we obtain the vector {ϕ}.

3.2.2 Dynamic analysis

From Eqs. (25) and (26), assembling the element equations yields general
dynamic equation of motion:

Mbb½ � €qf g þ Kbb½ � qf g þ Kbϕ

� �
ϕf g ¼ ff g, (38)

Kϕb

� �
qf g � Kϕϕ

� �
ϕf g ¼ Qf g, (39)

Substituting Eq. (39) into Eq. (38), we obtain:

Mbb½ � €qf g þ Kbb½ � þ Kbϕ

� �
Kϕϕ

� ��1
Kϕb

� �� �

qf g ¼ ff g þ Kbϕ

� �
Kϕϕ

� ��1
Qf g, (40)

3.2.3 Free vibration analysis

For free vibrations, from Eq. (40), the governing equation is:

Mbb½ � €qf g þ Kbb½ � þ Kbϕ

� �
Kϕϕ

� ��1
Kϕb

� �� �

qf g ¼ 0f g: (41)

The beam vibrations induce charges and electric potentials in sensor layers.
Therefore, the control system allows current to flow and feeds back to the actuators.
In this case, if we apply no external charge Q to a sensor, from Eq. (39), we will
have:

Kϕϕ

� ��1

s
Kϕb

� �

s
qf gs ¼ ϕf gs: (42)

and Qf gs ¼ Kϕb

� �

s
qf gs is the induced charge due to strain.

The operation of the amplified control loop implies, the actuating voltage is
determined by the following relationship [1, 10, 14]:

ϕf ga ¼ Gd ϕf gs þGv
_ϕ

� �

s
, (43)
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where Gd and Gv are the feedback control gains for displacement and velocity.
Substituting Eq. (43) into Eq. (39), the charge in the actuator due to actuator

strain in response to the beam vibration modified by control system feedback is:

Kϕb

� �

a
qf ga � Kϕϕ

� �

a
Gd ϕf gs þ Gv

_ϕ
� �

s

� �

¼ Qf ga: (44)

Substituting (42) into (44) leads to:

Qf ga ¼ Kϕb

� �

a
qf ga � Gd Kϕϕ

� �

a
Kϕϕ

� ��1

s
Kϕb

� �

s
qf gs � Gv Kϕϕ

� �

a
Kϕϕ

� ��1

s
Kϕb

� �

s
_qf gs:

(45)

Substituting Eq. (45) into (40), we obtain:

Mbb½ � €qf g þ Kbb½ � þ Kbϕ

� �
Kϕϕ

� ��1
Kϕb

� �� �

qf g ¼ ff gþ

þ Kbϕ

� �
Kϕϕ

� ��1
Kϕb

� �

a
qf ga � Gv Kϕϕ

� �

a
Kϕϕ

� ��1

s
Kϕb

� �

s
_qf gs�

�Gd Kϕϕ

� �

a
Kϕϕ

� ��1

s
Kϕb

� �

s
qf gs

0

@

1

A,
(46)

in which {q}s � {q}a � {q} is the beam displacement vector, [Kϕϕ]a =
[Kϕϕ]s = [Kϕϕ] is the piezoelectric permittivity matrix, and [Kϕb]a = [Kϕb]s = [Kϕb] is
the mechanical-electrical coupling stiffness matrix.

Therefore, Eq. (46) becomes:

Mbb½ � €qf g þ Kbb½ � qf g þ Gv Kbϕ

� �
Kϕϕ

� ��1
Kϕϕ

� �
Kϕϕ

� ��1
Kϕb

� �
_qf gþ

þGd Kbϕ

� �
Kϕϕ

� ��1
Kϕϕ

� �
Kϕϕ

� ��1
Kϕb

� �
qf g ¼ ff g:

(47)

In the case of considering the structural damping, the equation of motion of the
beam is:

Mbb½ � €qf g þ CA½ � þ CR½ �ð Þ _qf g þ K ∗ qf g ¼ ff g, (48)

where CA½ � ¼ Gv Kbϕ

� �
Kϕϕ

� ��1
Kϕϕ

� �
Kϕϕ

� ��1
Kϕb

� �
is the active damping matrix,

K ∗½ � ¼ Kbb½ � þGd Kbϕ

� �
Kϕϕ

� ��1
Kϕϕ

� �
Kϕϕ

� ��1
Kϕb

� �� �

is the total of mechanical

stiffness matrix and piezoelectric, CR½ � ¼ αR Mbb½ � þ βR Kbb½ � is the overall structural
damping matrix, αR, and βR are respectively the Rayleigh damping coefficients,
which are generally determined by the first and second natural frequencies (ω1, ω2)
and ratio of damping ξ, {f} is the overall mechanical force vector.

Eq. (48) can be solved by the direct integration Newmark’s method.

3.3 Numerical analysis

An example for free vibration of laminated beam affected by piezoelectric layers
is presented here. The beam is made of four layers symmetrically (0°/90°/90°/0°)
of epoxy-T300/976 graphite material with 2.5 mm thickness per layer, and with
one layer piezo ceramic materials bonded to the top and bottom surfaces, 2.0 mm
thickness per layer as shown in Figure 2 is considered (a = 0.254 m, b = 0.0254 m).
The material properties of the piezo ceramic layers and graphite-epoxy are shown in
Table 1.

The direct integration Newmark’s method is used with parameters αR = 0.5,
βR = 0.25; integral time step Δt = 0.005 s with total time calculated t = 15 s.

8
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Figures 3 and 4 illustrate the vertical displacement w at the free end of the beam
for two cases:

Case 1:With structural damping, and without piezoelectric damping (Gv = 0,
Gd = 0).

Figure 2.
Piezoelectric composite cantilever beam.

Properties PZT G1195 N T300/976

E11 [N/cm2] 0.63 � 106 1.50 � 106

E22 = E33 [N/cm2] 0.63 � 106 0.09 � 106

ν12 = ν13 = ν23 0.3 0.3

G12 = G13 [N/cm2] 0.242 � 106 0.071 � 106

G23 [N/cm2] 0.242 � 106 0.025 � 106

ρ [kg/m3] 7600 1600

d31 = d32 (m/V) 254 � 10�12
—

p11 = p22 (F/m) 15.3 � 10�9
—

p33 (F/m) 15.0 � 10�9
—

Table 1.
Relevant mechanical properties of respective materials.

Figure 3.
Vertical displacement response (Gv = 0, Gd = 0 � Case 1).
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Case 2:With structural damping, with piezoelectric damping (Gv = 0.5,
Gd = 30).

4. Dynamic analysis of laminated piezoelectric composite plates

4.1 The electromechanical behavioral relations in the plate

Consider laminated composite plates with general coordinate system (x, y, z),
in which the x, y plane coincides with the neutral plane of the plate. The top and
bottom surfaces of the plate are bonded to the piezoelectric patches or piezoelectric
layers (actuator and sensor). The plate under the load acting on its neutral plane
has any temporal variation rule (Figure 5).

Hypothesis: The piezoelectric composite plate corresponds with Reissner-
Mindlin theory. The material layers are arranged symmetrically through the neutral
plane of the plate, ideally adhesive with each other.

4.1.1 Strain - displacement relations

Based on the first-order shear deformation theory, the displacement fields at any
point in the plate are [7, 8]:

u x, y, z, tð Þ ¼ u0 x, y, tð Þ þ zθy x, y, tð Þ,

v x, y, z, tð Þ ¼ v0 x, y, tð Þ � zθx x, y, tð Þ,

w x, y, z, tð Þ ¼ w0 x, y, tð Þ,

(49)

where u, v and w are the displacements of a general point (x, y, z) in the
laminate along x, y and z directions, respectively. u0, v0, w0, θx and θy are the
displacements and rotations of a midplane transverse normal about the y-and x-
axes respectively.

Figure 4.
Vertical displacement response (Gv = 0.5, Gd = 30 � Case 2).
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The components of the strain vector corresponding to the displacement field
(49) are defined as:

For the linear strain:

εx ¼
∂u

∂x
¼

∂u0
∂x

þ z
∂θy

∂x
, εy ¼

∂v

∂y
¼

∂v0
∂y

� z
∂θx

∂y
,

γxy ¼
∂u

∂y
þ

∂v

∂x


 �

þ
∂w

∂x
�
∂w

∂y
¼

∂u0
∂y

þ
∂v0
∂x


 �

þ z
∂θy

∂x
�

∂θx

∂y


 �

,

γxz ¼
∂u

∂z
þ
∂w

∂x
¼

∂w0

∂x
þ θy, γyz ¼

∂v

∂z
þ
∂w

∂y
¼

∂w0

∂y
� θx,

(50)

or in the vector form:

εx

εy

γxy

8

>><

>>:

9

>>=

>>;

¼

εox

εoy

γoxy

8

>><

>>:

9

>>=

>>;

þ z

κx

κy

κxy

8

>><

>>:

9

>>=

>>;

¼

∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

u0

v0

( )

þ z

�
∂

∂y
0

0 �
∂

∂x

�
∂

∂y

∂

∂x

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

θx

θy

( )

¼

¼ Dε½ �
u0

v0

( )

þ Dκ½ �
θx

θy

( )

¼ ε0f g þ z κf g ¼ εLb
� �

,

(51)

γxz

γyz

( )

¼

∂

∂x
0 1

∂

∂y
�1 0

2

6
6
4

3

7
7
5

wo

θx

θy

8

><

>:

9

>=

>;

¼ wD
� �

� Is½ �
� �

w0

θx

θy

8

><

>:

9

>=

>;

¼ εsf g: (52)

and for the nonlinear strain:

εx

εy

γxy

8

><

>:

9

>=

>;

¼ εLb
� �

þ εN
� �

¼ εNb
� �

, (53)

γxz

γyz

( )

¼ εsf g, (54)

Figure 5.
Piezoelectric composite plate and coordinate system of the plate (a), and lamina details (b).
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where εN
� �

¼ 1
2

∂w0

∂x
0

0
∂w0

∂y

∂w0

∂y

∂w0

∂x

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

∂

∂x
∂

∂y

8

>><

>>:

9

>>=

>>;

w0 is the non-linear strain vector, εLb

� �
is

the linear strain vector, {εs} is the shear strain vector.

4.1.2 Stress-strain relations

The equation system describing the stress-strain relations and mechanical-
electrical quantities is respectively written as [8, 14]:

σbf g ¼ Q½ � εNb
� �

� e½ � Ef g,

τbf g ¼ Q s½ � εsf g,
(55)

Df g ¼ e½ � εNb
� �

þ p½ � Ef g, (56)

where σbf g ¼ σx σy τxy
� �T

is the plane stress vector, τbf g ¼ τyz τxz
� �T

is
the shear stress vector, [Q] is the ply in-plane stiffness coefficient matrix in the
structural coordinate system, [Qs] is the ply out-of-plane shear stiffness coefficient
matrix in the structural coordinate system. Notice that {τb} is free from piezoelec-
tric effects.

The in-plane force vector at the state pre-buckling:

N0
� �

¼ N0
x N0

y N0
xy

n oT
¼

Xn

k¼1

ðhk

hk�1

σ0x

σ0y

τ0xy

8

><

>:

9

>=

>;

k

dz: (57)

4.1.3 Total potential energy

The total potential energy of the system is given by:

Π ¼
1

2

ð

Vp

εNb
� �T

σbf gdV þ
1

2

ð

Vp

εsf gT τbf gdV �
1

2

ð

Vp

Ef gT Df gdV �W, (58)

where W is the energy of external forces, Vp is the entire domain including
composite and piezoelectric materials.

Introducing [A], [B], [D], [As], and vectors {Np}, {Mp} as [8]:

A½ �, B½ �, D½ �ð Þ ¼

ðh=2

�h=2

1, z, z2
� �

Q½ �dz,

As½ � ¼

ðh=2

�h=2

Q s½ �dz, Np

� �
, Mp

� �� �
¼

ðh=2

�h=2

1, zð Þ e½ � Ef gdz,

(59)

where h is the total laminated thickness and combining with (5), (6) the total
potential energy equation (8) can be written
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Π ¼
1

2

ð

Ω

ε0f gT A½ � ε0f gdΩþ
1

2

ð

Ω

κf gT D½ � κf gdΩþ
1

2

ð

Ω

εsf gT As½ � εsf gdΩþ

þ

ð

Ω

εN
� �T

A½ � ε0f g � Np

� �� �
dΩ�

ð

Ω

ε0f gT Np

� �
dΩ�

ð

Ω

κf gT Mp

� �
dΩ�W,

(60)

where Ω is the plane xy domain of the plate.

4.2 Dynamic stability analysis of laminated composite plate with piezoelectric
layers

4.2.1 Finite element models

Nine-node Lagrangian finite elements are used with the displacement and strain
fields represented by Eqs. (49), (53), and (54). In the developed models, there is
one electric potential degree of freedom for each piezoelectric layer to represent the
piezoelectric behavior and thus the vector of electrical degrees of freedom is [6, 14]:

ϕef g ¼ : : ϕe
j : :

� �T
, j ¼ 1, … ,NPLe, (61)

in which NPLe is the number of piezoelectric layers in a given element.
The vector of degrees of freedom for the element {qe} is:

qef g ¼ qe1
� �

qe2
� �

… qe9
� �

ϕe
� �T

, (62)

where qei
� �

¼ ui vi wi θxi θyi

� �
is the mechanical displacement vector for

node i.

4.2.2 Dynamic equations

The dynamic equations of piezoelectric composite plate can be derived by using
Hamilton’s principle, accordingly, the vibration equation of the membrane (without
damping) with in-plane loads is:

Mss½ � €qss
� �

þ Kss½ � qss
� �

¼ F tð Þf g: (63)

The equation of bending vibrations with out-of-plane loads is:

Mbb½ � 0½ �

0½ � 0½ �

	 

€qbb

� �

€ϕ
� �

( )

þ
CR½ � 0½ �

0½ � 0½ �

	 

_qbb

� �

_ϕ
� �

( )

þ
Kbb½ � þ KG½ � Kbϕ

� �

Kϕb

� �
� Kϕϕ

� �

" #

qbb
� �

ϕf g

� �

¼
Rf g

Q elf g

� �

, (64)

where [Mss], [Kss] are the overall mass, membrane elastic stiffness matrix
respectively, and qss

� �
, _qss
� �

, €qss
� �

are respectively the membrane displacement,

velocity, acceleration vector. [Mbb], [Kbb] and qbb
� �

, _qbb
� �

, €qbb
� �

are the overall
mass, bending elastic stiffness matrix and the bending displacement, velocity,
acceleration vector; [KG] is the overall geometric stiffness matrix; ([KG] is

13

Static and Dynamic Analysis of Piezoelectric Laminated Composite Beams and Plates
DOI: http://dx.doi.org/10.5772/intechopen.89303



a function of external in-plane loads); {F(t)} is the in-plane load vector, {R} is
the normal load vector, {Qel} is the vector containing the nodal charges and
in-balance charges.

The element coefficient matrices are:

Ke
G

� �
¼ Ke

Gx

� �
þ Ke

Gy

h i

þ Ke
Gxy

h i

, (65)

where

Ke
Gx

� �
¼

ð

Ae

N0
x N0

x

� �
N0

x

� �T
dAe,

Ke
Gy

h i

¼

ð

Ae

N0
y N0

y

h i

N0
y

h iT
dAe,

Ke
Gxy

h i

¼

ð

Ae

N0
xy N0

x

� �
N0

y

h iT
dAe,

(66)

in which N0
x

� �
¼

∂

∂x
N x, yð Þ½ �, N0

y

h i

¼
∂

∂y
N x, yð Þ½ �, (67)

∂w

∂x
¼

∂N

∂x

	 


qebb
� �

¼ N0
x

� �
qebb

� �
,
∂w

∂y
¼

∂N

∂y

	 


qebb
� �

¼ N0
y

h i

qebb
� �

(68)

KG½ � ¼
X

ne

Ke
G

� �
(69)

4.2.3 Dynamic stability analysis

When the plate is subjected to in-plane loads only ({R} = {0}), the in-plane
stresses can lead to buckling, from Eqs. (63) and (64) the governing differential
equations of motion of the damped system may be written as:

Mss½ � €qss
� �

þ Kss½ � qss
� �

¼ F tð Þf g,

Mbb½ � €qbb
� �

þ CR½ � _qbb
� �

þ Kbb½ � þ KG½ �ð Þ qbb
� �

þ Kbϕ

� �
ϕf g ¼ 0f g,

Kϕb

� �
qbb

� �
� Kϕϕ

� �
ϕf g ¼ Qelf g:

(70)

Eq. (70) is rewritten as:

Mss½ � €qss
� �

þ Kss½ � qss
� �

¼ F tð Þf g,

Mbb½ � €qbb
� �

þ CA½ � þ CR½ �ð Þ _qbb
� �

þ K ∗½ � þ KG½ �ð Þ qbb
� �

¼ 0f g:
(71)

The overall geometric stiffness matrix [KG] is defined as follows:

• In the case of only tensile or compression plates (w = 0): Solving Eq. (71) helps
us to present unknown displacement vector {qss}, and then stress vector:

σssf g ¼ As½ � Bs½ � qss
� �

, (72)

where [As] and [Bs] are the stiffness coefficient matrix and strain-displacement
matrix of the plane problem.

• In the case of bending plate (w 6¼ 0), the stress vector is:

σsbf g ¼ σssf g þ σbbf g,

σbbf g ¼ Ab½ � Bb½ � qbb
� �

,
(73)
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where [Ab] and [Bs] are the stiffness coefficient matrix and strain-displacement
matrix of the plane bending problem.

Stability criteria [14]:

• In the case of plate subjected to periodic in-plane loads and without damping,
the elastic stability problems become simple only by solving the linear
equations to determine the eigenvalues.

• In case of the plate under any in-plane dynamic load and with damping,
the elastic stability problems become very complex. This iterative
method can be proved effectively and the following dynamic stability criteria
are used:

◦ Plate is considered to be stable if the maximum bending deflection is three times
smaller than the plate’s thickness: Eq. (71) has the solution (wi)max satisfying
the condition 0≤ wij jmax < 3h, where wi is the deflection of the plate at node
number i.

◦ Plate is called to be in critical status if the maximum bending deflection of the
plate is three times equal to the plate’s thickness. Eq. (71) has the solution
(wi)max satisfying the condition wij jmax ¼ 3h.

◦ Plate is called to be at buckling if the maximum deflection of the plate is three
times larger than the plate’s thickness: Eq. (71) has the solution (wi)max

satisfying the condition wij jmax>3h.

The identification of critical forces is carried out by the iterative method.

4.2.4 Iterative algorithm

Step 1. Defining the matrices, the external load vector and errors of load
iterations.

Step 2. Solving Eq. (71) to present unknown displacement vector, {qss} and the
stress vector is defined by (72), updating the geometric stiffness matrix [KG].

Step 3. Solving Eq. (71) to present unknown bending displacement vector {qbb},
and then testing stability conditions.

� If for all wij j ¼ 0: increase load, recalculate from step 2;
� If at least one value wij j 6¼ 0:
+ In case: 0< wij jmax < 3h: Define stress vector by Eq. (73), update the geometric

stiffness matrix [KG]. Increase load, recalculate from step 2;

+ In case: 0≤
wij jmax�3hj j
wij jmax

≤ εD: Critical load p = pcr. End.

4.2.5 Numerical analysis

Stability analysis of piezoelectric composite plate with dimensions a � b � h,
where a = 0.25 m, b = 0.30 m, h = 0.002 m. Piezoelectric composite plate is
composed of three layers, in which two layers of piezoelectric PZT-5A at its top and
bottom are considered, each layer thickness hp = 0.00075 m; the middle layer
material is Graphite/Epoxy material, with thickness h1 = 0.0005 m. The material
properties for graphite/epoxy and PZT-5A are shown in Section 5.1 above. One
short edge of the plate is clamped, the other three edges are free. The in-plane half-
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sine load is evenly distributed on the short edge of the plate: p(t) = p0sin(2πft),
where p0 is the amplitude of load, f = 1/T = 1/0.01 = 100 Hz (0 ≤ t ≤ T/2 = 0.005 s)
is the excitation frequency, voltage applied V = 50 V. The iterative error of the load
εD = 0.02% is chosen.

Consider two cases: with damping (ξ = 0.05, Gv = 0.5, Gd = 15) and without
damping (ξ = 0.0, Gv = 0.0, Gd = 15). The response of vertical displacement at the
plate centroid over the plate thickness for the two cases is shown in Figure 6.

The results show that the critical load of the plate with damping is larger than
that without damping. In the two cases above, the critical load rises by 6.8%.

Analyze the stability of the plate with damping when a voltage of �200, �150,
�100, �50, 0, 50, 100, 150 and 200 V is applied to the actuator layer of the
piezoelectric composite plate.

Figure 6.
Vertical displacement response at the plate centroid over the plate thickness.

Figure 7.
Vertical displacement response at the plate centroid over the plate thickness.
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Figure 7 shows the time history of the vertical displacement at the plate centroid
over the plate thickness when a voltage of 0, 50, 100, 150 and 200 V is applied. The
relation between critical load and voltages is shown in Figure 8.

The results show that the voltage applied to the piezoelectric layers affects the
stability of the plate. As the voltage increases, the critical load of the plate also
increases.

When the amplitude of the load changes from 0.25pcr to 1.5pcr (where pcr is the
amplitude of the critical load), a voltage of 50 V is applied to the actuator layer of
the plate.

The results show the time history response of the vertical displacement at the
plate centroid over the plate thickness as seen in Figure 9.

Figure 8.
Critical load-voltage relation.

Figure 9.
Time history of the vertical displacement at the plate centroid over the plate thickness when p0 = 0.25pcr, 0.5pcr,
0.75pcr, 1.0pcr, 1.25pcr, and 1.5pcr.
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4.3 Dynamic analysis of piezoelectric stiffened composite plates subjected to
airflow

Consider isoparametric piezoelectric laminated stiffened plate with the general
coordinate system (x, y, z), in which the x, y plane coincides with the neutral plane
of the plate. The top surface and lower surface of the plate are bonded to the
piezoelectric patches (actuator and sensor). The plate subjected to the airflow load
acting (Figure 10).

The dynamic equations of a finite smart composite plate are written as follows:

M½ �e €uf ge þ CA½ �e _uf ge þ K ln
bb

� �

e
þ Knl

bb

� �

e
þ KA½ �e

� �

uf ge ¼ ff gme , (74)

where Kln
bb

� �

e
¼

Ð

Ve

Bln
b

� �T
Q½ � Bln

b

� �
dV, and Knl

bb

� �

e
¼

Ð

Ve

Bnl
b

� �T
Q½ � Bnl

b

� �
dV are the

element linear mechanical stiffness and nonlinear mechanical stiffness respectively,
ff gme is element external mechanical force vector.

4.3.1 Formulation of Stiffener:

4.3.1.1 Formulation of x-Stiffener

Uxs x, zð Þ ¼ u0 xð Þ þ zθxs xð Þ,

Wxs x, zð Þ ¼ wxs xð Þ:
(75)

where x-axis is taken along the stiffener centerline and the z-axis is its upward
normal. The plate and stiffener element shown in Figure 11.

If we consider that the x-stiffener is attached to the lower side of the plate,
conditions of displacement compatibility along their line of connection can be
written as:

up
�
�
z¼�tp=2

¼ uxsjz¼txs=2
, θxp

�
�
z¼�tp=2

¼ θxsjz¼txs=2
,wp

�
�
z¼�tp=2

¼ wxsjz¼txs=2
, (76)

where tp is the plate thickness and txs is the x-stiffener depth.
The element stiffness and mass matrices are defined as follows [2, 15]:

Kxs½ �e ¼

ð

le

Bxs½ �T Dxs½ � Bxs½ �dx, (77)

Figure 10.
Smart stiffened plate subjected to airflow. (a) Smart stiffened plate and coordinate system and (b) Lamina details.
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Mxs½ �e ¼

ð

Ae

P Nu0½ �T Nu0½ � þ Nw½ �T Nw½ �
� �

þ Iy Nθx½ �T Nθx½ �
� �h i

dA, (78)

with [Bxs] is the strain-displacement relations matrix, [Dxs] is the stress-strain
relations matrix and le is the element length, Nu0½ �, Nw½ � and Nθx½ � are the shape
function matrices relating the primary variables u0, w, x, in terms of nodal

unknowns, Iy is the areamoment of inertia related to the y-axis and P ¼
Pn

k¼1

Ðhk

hk�1

ρkdz,

with ρk is density of kth layer.

4.3.1.2 Formulation of y-Stiffener

The same as for x-stiffener, the element stiffness and mass matrices of the y-
stiffener are defined as follows:

Kys

� �

e
¼

ð

le

Bys

� �T
Dys

� �
Bys

� �
dy, (79)

Mys

� �

e
¼

ð

Ae

P Nu0½ �T Nu0½ � þ Nw½ �T Nw½ �
� �

þ Ix Nθy

h iT
Nθy

h i
 �	 


dA, (80)

4.3.2 Modeling the effect of aerodynamic pressure and motion equations of the smart
composite plate-stiffeners element

Based on the first order theory, the aerodynamic pressure lh and momentmθ, can
be described as [15–17]:

lw ¼
1

2
ρa U cos αð Þ2B kH ∗

1

_w

U cos α
þ kH ∗

2

B _θ

U cos α
þ k2H ∗

3 θ

	 


þ
1

2
Cpρa U sin αð Þ2,

mθ ¼
1

2
ρa U cos αð Þ2B2 kA ∗

1

_w

U cos α
þ kA ∗

2

B _θ

U cos α
þ k2A ∗

3 θ

	 


,

(81)

where k ¼ bω=U is defined as the reduced frequency, ω is the circular frequency
of oscillation of the airfoil, U is the wind velocity, B is the half-chord length of the
airfoil or half-width of the plate, ρa is the air density and α is the angle of attack.

Figure 11.
Modeling of plate and stiffener element.
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The functions A ∗

i Kð Þ,H ∗

i Kð Þare defined as follows:

H ∗

1 Kð Þ ¼ �
π

k
F kð Þ,H ∗

2 Kð Þ ¼ �
π

4k
1þ F kð Þ þ

2G kð Þ

k

	 


,

H ∗

3 Kð Þ ¼ �
π

2k2
F kð Þ �

kG kð Þ

2

	 


,A ∗

1 Kð Þ ¼
π

4k
F kð Þ,

A ∗

2 Kð Þ ¼ �
π

16k
1� F kð Þ �

2G kð Þ

k

	 


,A ∗

3 Kð Þ ¼
π

8k2
k2

8
þ F kð Þ �

kG kð Þ

2

" #

,

(82)

where F(k) and G(k) are defined as:

F kð Þ ¼
0:500502k3 þ 0:512607k2 þ 0:2104kþ 0:021573

k3 þ 1:035378k2 þ 0:251293kþ 0:021508
,

G kð Þ ¼ �
0:000146k3 þ 0:122397k2 þ 0:327214kþ 0:001995

k3 þ 2:481481k2 þ 0:93453kþ 0:089318
:

(83)

Using finite element method, aerodynamic force vector can be described as:

ff gaire ¼ � Kair
� �

e
uf ge � Cair

� �

e
_uf ge þ ff gne , (84)

with Kair
� �

e
, Cair
� �

e
and ff gne are the aerodynamic stiffness, damping matrices

and lift force vector, respectively

Kair
e

� �
¼ ρa U cos αð Þ2Bk2

ð

Ae

H ∗

3 kð Þ Nw½ �T Nθx½ � þ BA ∗

3 kð Þ
∂Nθy

∂x

	 
T

Nθx½ �

" #

dA, (85)

Cair
e

� �
¼ ρa Ucosαð ÞBk

Ð

Ae

H ∗

1 kð Þ Nw½ �T Nw½ � þ BH ∗

2 kð Þ Nw½ �T Nθx½ �dA
� �

þ
Ð

Ae

BA ∗

1 kð Þ
∂Nθy

∂x

h iT
Nw½ � þ B2A ∗

2 kð Þ
∂Nθy

∂x

h iT
Nθx½ �dA


 �

2

6
6
6
4

3

7
7
7
5
,

(86)

ff gne ¼ Cpρa U sin αð Þ2
ð

Ae

Nw½ �TdA, (87)

where Ae is the element area, [Nw], [Nθ] are the shape functions.
From Eqs. (74) and (84), the governing equations of motion of the smart

composite plate-stiffeners element subjected to an aerodynamic force without
damping can be derived as:

M ∗½ �e €uf ge þ CA½ �e _uf ge þ K ∗½ �e þ KA½ �e þ Kair
� �

e

� �

uf ge ¼ f ∗f g
m
e , (88)

where M ∗½ �e ¼ M½ �e þ Mxs½ �e þ Mys

� �

e
, K ∗½ �e ¼ Kln

bb

� �

e
þ Knl

bb

� �

e
þ Kxs½ �e þ Kys

� �

e
,

f ∗f g
m
e ¼ ff gme þ ff gne .

4.3.3 Governing differential equations for total system

Finally, the elemental equations of motion are assembled to obtain the open-loop
global equation of motion of the overall stiffened composite plate with the PZT
patches as follows:
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M ∗½ � €uf g þ CR½ � þ CA½ �ð Þ _uf g þ K ∗½ � þ KA½ � þ Kair
� �� �

uf g ¼ f ∗f g
m
, (89)

where CR½ � ¼ αR Mbb½ � þ βR Kln
bb

� �
þ Knl

bb

� �� �
.

The solution of nonlinear Eq. (89) is carried out by using Newmark direct and
Newton-Raphson iteration method.

4.3.4 Numerical applications

A rectangle cantilever laminated composite plate is assumed to be [0°/90°]s with
total thickness 4 mm, length of 600 mm and width of 400 mm with three stiffeners
along each direction x and y. The geometrical dimension of the stiffener is 5 mm
of high and 10 mm of width. The plate and stiffeners are made of graphite/epoxy
with mechanical properties: E11 = 181 GPa, E22 = E33 = 10.3 GPa, E12 = 7.17 GPa,
ν12 = 0.35, ν23 = ν32 = 0.38, ρ = 1600 kg�m�3. Material properties for piezoelectric
layer made of PZT-5A are: d31 = d32 = �171 � 10�12 m/V, d33 = 374 � 10�12 m/V,
d15 = d24 = �584 � 10�12 m/V, G12 = 7.17 GPa, G23 = 2.87 GPa, G32 = 7.17 GPa,
νPZT = 0.3, ρPZT = 7600 kg�m�3 and thickness tPZT = 0.15876 mm, ξ = 0.05, Gv = 0.5,
Gd = 15. The effects of the excitation frequency and location of the actuators are
presented through a parametric study to examine the vibration shape of the com-
posite plate activated by the surface bonded piezoelectric actuators. The iterative

Figure 12.
History of the plate at a critical airflow velocity Ucr = 30.5 m/s. (a) Displacement response and
(b) Piezoelectric voltage response.
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error of the load εD = 0.02% is chosen. The piezoelectric stiffened composite plate
is subjected to the airflow in the positive x direction as shown in Figure 10a.

Dynamic response of the piezoelectric stiffened composite plate is shown
in Figure 12.
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