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Chapter

Simulation-Based Comparative
Analysis of Nonparametric
Control Charts with Runs-Type
Rules
Ioannis S. Triantafyllou

Abstract

In this chapter, we study well-known distribution-free Shewhart-type monitor-
ing schemes based on order statistics. In order to empower the in- and out-of-
control performance of the control charts being under consideration, several runs-
type rules are enhanced. The simulation-based experimentation carried out reveals
that the proposed schemes achieve remarkable efficiency for detecting possible
shifts in the distribution of the underlying process.

Keywords: distribution-free monitoring schemes, average run length, false alarm
rate, Lehmann alternatives, statistical process control, order statistics

1. Introduction

Statistical process control is widely applied to monitor the quality of a
production process, where no matter of how thoroughly it is maintained, a natural
variability always exists. Control charts help the practitioners to identify assignable
causes so that the state of statistical control can be accomplished. Generally speak-
ing, when a cast-off shift in the process takes place, a control chart should detect it
as quickly as possible and produce an out-of-control signal.

Shewhart-type control charts were introduced in the early work of Shewhart [1],
and since then, several modifications have been established and studied in detail.
For a thorough study on statistical process control, the interested reader is referred
to the classical textbooks of Montgomery [2] or Qiu [3]. Most of the monitoring
schemes are distribution-based procedures, even though this assumption is not
always realized in practice. To overcome this obstruction without disrupting the
primary formation of the traditional control charts, several nonparametric (or
distribution-free) monitoring schemes have been proposed in the literature. The
plotted statistics being utilized for constructing such type of control charts are
related to well-known nonparametric testing procedures. Among others, a variety of
distribution-free control charts appeared already in the literature are based on order
statistics; see, e.g., Chakraborti et al. [4], Balakrishnan et al. [5], or Triantafyllou
[6, 7]. For an up-to-date account on nonparametric statistical process control, the
reader is referred to the review chapter of Koutras and Triantafyllou [8], the recent
monograph of Chakraborti and Graham [9], or Qiu [10, 11].
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In the present chapter, we study well-known distribution-free Shewhart-type
monitoring schemes based on order statistics. The general setup of the control
charts being in consideration is presented in Section 2, while their performance
characteristics are investigated based on the algorithm described in Section 3. In
order to enhance the ability of the proposed monitoring schemes for detecting
possible shifts of the process distribution, some well-known runs-type rules are
considered. In Section 4, we carry out extensive simulation-based numerical com-
parisons that reveal that the underlying control charts outperform the existing ones
under several out-of-control scenarios.

2. The setup of well-known nonparametric control charts based on
order statistics

Let us assume that a reference random sample of size m, say X1,X2, … ,Xm, is
drawn independently from an unknown continuous distribution F, namely, when
the process is in-control. The control limits of the distribution-free monitoring
scheme are determined by exploiting specific order statistics of the reference sam-
ple. In the sequel, test samples are drawn independently of each other (and also of
the reference sample) from a continuous distribution G, and the decision whether
the process is still in-control or not rests on suitably chosen test statistics. The
framework for constructing nonparametric control charts based on order statistics
calls for the following step-by-step procedure.

Step 1. Draw a reference sample of size m, namely, X1,X2, … ,Xm, from the
process when it is known to be in-control.

Step 2. Form an interval by choosing appropriately a pair of order statistics from
the reference sample (say, e.g., Xa,Xbð Þ, where 1≤ a< b≤m).

Step 3. Draw independently future (test) samples of size n, namely,
Y1,Y2, … ,Yn, from the underlying process.

Step 4. Pick out l order statistics (0< l≤ n) from each test sample.
Step 5. Determine the number of observations of each test sample, say R that lie

between the limits of the interval Xa,Xbð Þ.
Step 6. Configure the signaling rule by utilizing both the statistics R and the l

ordered test sample observations as monitoring statistics.
The implementation of the above mechanism does not require the assumption of

any specific probability distribution for the underlying process (measurements).
The reference sample (usually of large size) is drawn from the underlying in-control
process, while test (Phase II) samples are picked out from the future process in
order to decide whether the process remains in-control or it has shifted to an out-of-
control state. The proposed monitoring scheme is likely to possess the robustness
feature of standard nonparametric procedures and is, consequently, less likely to be
affected by outliers or the presence of skewed or heavy-tailed distributions for the
underlying populations.

It is straightforward that the proposed framework requires the construction of
more than one control charts, which monitor simultaneously the underlying pro-
cess. In fact, the design parameter l is connected to the number of the control charts
which are needed to be built for trading on the aforementioned mechanism. Indeed,
for each one of the l order statistics from the test sample, a separate two-sided
control chart should be constructed.

The family of distribution-free monitoring schemes presented earlier includes as
special cases some nonparametric control charts, which have been already
established in the literature. For example, the monitoring scheme established by
Balakrishnan et al. [5] calls for the following plotted statistics:
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• A quantile Y j:n of the test sample which is compared with the control limits
Xa,Xbð Þ

• The number of observations from the test sample that lie between the control
limits

It goes without saying that the control chart introduced by Balakrishnan et al. [5]
(Chart 1, hereafter) belongs to the family of monitoring schemes described previ-
ously. In fact, the BTK chart could be seen as a special case of the aforementioned
class of distribution-free control schemes with l ¼ 1. According to Chart 1, the
process is declared to be in-control, if the following conditions hold true

Xa:m ≤Y j:n ≤Xb:m and R≥ r, (1)

where r is a positive integer.
In addition, the monitoring scheme introduced by Triantafyllou [6] (Chart 2,

hereafter) takes into account the location of two order statistics of the test sample
drawn from the process along with the number of its observations between the
control limits. In other words, the aforementioned control chart could be viewed as
a member of the general class of nonparametric monitoring schemes with l ¼ 2.
According to Chart 2, the process is declared to be in-control, if the following
conditions hold true

Xa:m ≤Y j:n ≤Yk:n ≤Xb:m and R≥ r, (2)

where r is a positive integer.
In a slightly different framework, Triantafyllou [7] proposed a distribution-free

control chart based on order statistics (Chart 3, hereafter) by taking advantage of
the position of single ordered observations from both test and reference sample.
More precisely, Chart 3 asks for an order statistic of each test sample (say Y j:n) to be
enveloped by two prespecified observations Xa:m and Xb:m of the reference sample,
while at the same time an ordered observation of the reference sample (say Xi:m) be
enclosed by two predetermined values of the test sample Yc:n,Yd:nð Þ. Chart 3 makes
use of an in-control rule, which embraces the following three conditions:

Condition 1. The statistic Y j:n of the test sample should lie between the obser-
vations Xa:m and Xb:m of the reference sample, namely, Xa:m ≤Y j:n ≤Xb:m.

Condition 2. The interval Yc:n,Yd:nð Þ formulated by two appropriately chosen
order statistics of the test sample should enclose the value Xi:m of the reference
sample, namely, Yc:n ≤Xi:m ≤Yd:n.

Condition 3. The number of observations of the Y-sample that are placed enclosed
by the observations Xa:m and Xb:m should be equal to or more than r, namely, R≥ r.

3. The simulation procedure and some results

In the present section, we describe the step-by-step procedure which has been
followed in order to determine the basic performance characteristics of monitoring
schemes mentioned previously. Two well-known runs-type rules are implemented
in order to improve the performance of the control charts being considered. More
precisely, if we denote by LCL and UCL the lower and the upper control limit of the
underlying monitoring scheme, we apply the following runs rules

• The 2-of-2 rule. Under this scenario, an out-of-control signal is produced from
the control chart, whenever two consecutive plotted points fall all of them
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either on or above the UCL or all of them fall on or below the LCL (see, e.g.,
Klein [12]).

• The 2-of-3 rule. Under this scenario, an out-of-control signal is produced from
the control chart, whenever two out of three consecutive plotted points fall
outside the control limits LCL,UCLð Þ of the corresponding scheme.

We next illustrate the detailed procedure for determining the performance of
Chart 2 enhanced with the 2-of-3 rule. It goes without saying that a similar algo-
rithm has been constructed in order to study the corresponding characteristics of
the remaining control schemes, namely, Chart 1 and Chart 3 enhanced with either
the 2-of-2 or the 2-of-3 runs rule.

Step 1. Generate a reference sample of size m from the in-control distribution F
and k2 test samples of size n from the out-of-control distribution G.

Step 2. Determine the control limits of the monitoring scheme Chart 2, by
selecting appropriately the parameters a, b, r.

Step 3. Calculate the test statistics Y j,Yk,R for each test sample, and examine
whether Chart 2 produces an out-of-control signal or not, namely, whether at least
one of the conditions mentioned in (2) is violated.

Step 4. Define a dummy variable Ti, i ¼ 1, 2, … , k2 for each test sample sepa-
rately. The variable Ti takes on the value 0 when all conditions in (2) are satisfied,
while it takes on the value 1 otherwise.

Step 5. Determine all consecutive (uninterrupted) triplets consisting of Ti
0s ele-

ments, namely, all triplets Ti,Tiþ1,Tiþ2ð Þ, i ¼ 1, … , k2 � 2. Define the dummy variable
Dj, j ¼ 1, 2, … , k2 � 2 for each triplet separately. The variable Dj takes on the value 0
when the triplet consists of at least two 0s, while it takes on the value 1 otherwise.

Step 6. Calculate the alarm rate of the monitoring scheme as AR ¼
Pk2�2

j¼1 Dj=

k2 � 2ð Þ. When F = G, the aforementioned probability indicates the false alarm rate
of the monitoring scheme, while in case of different distributions F, G the AR
corresponds to its out-of-control alarm rate.

Step 7. Define a variable RLh, h ¼ 1, 2, … ,H which counts the number of Dj
0s

elements, till the first appearance of aDj equal to 1. The so-called average run length

of the monitoring scheme is calculated as ARL ¼
PH

h¼1RLh=H. When F = G F 6¼ Gð Þ,
the aforementioned quantity indicates the in-control (out-of-control) average run
length of the monitoring scheme.

All steps 1–7 are repeated k1 times and the performance characteristics of the
proposed Chart 2 enhanced with 2-of-3 runs rule, namely, the false alarm rate (FAR,
hereafter), the out-of-control alarm rate (ARout, hereafter), the in-control average
run length (ARLin, hereafter), and the out-of-control run length (ARLout, hereafter)
are estimated as the mean values of the corresponding k1 results produced by steps 6
and 7, respectively.

In order to ascertain the validity of the proposed simulation procedure described
above, we shall first apply the algorithm without embodying any runs-type rule and
compare the simulation-based outcomes to the corresponding results produced by
the aid of the theoretical approximation appeared in Triantafyllou [6]. The simula-
tion study has been accomplished based on the R software environment and
involves 10.000 replications. Table 1 displays several designs of the monitoring
scheme mentioned as Chart 2 with a nominal level of in-control performance. Since
we consider the same designs as those presented by Triantafyllou [6], the exact
FARs have been taken from his Table 1. As it is easily observed, the simulation-
based results seem to be quite close to the exact values in all cases considered. For
example, let us assume that we draw a reference sample of size m = 60 and test
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samples of size n = 5. In order to achieve a prespecified in-control performance
level, namely, FAR equal to 1%, the remaining parameters are determined as a = 1,
j = 2, k = 4, and r = 1. Under the aforementioned design, Triantafyllou [6] computed
the exact FAR equal to 0.0096, while the simulation-based procedure proposed in
the present chapter gives a corresponding FAR value equal to 0.0116.

A different approach for appraising the ability of a monitoring scheme to detect
a possible shift in the underlying distribution is based on its run length. We next
focus on the waiting time random variable N, which corresponds to the amount of
random test samples up to getting the first out-of-control signal from the monitor-
ing scheme, in order to evaluate its performance. Table 2 displays the exact and the
simulation-based average run length for several designs of Chart 2 that meet a
desired nominal level of in-control performance. The exact values of ARL needed
for building up Table 2, have been picked up from Triantafyllou [6] and more
specifically from Table 2 therein.

As it is readily observed, the simulation-based results seem to be quite close to
the exact values in all cases considered. For example, let us assume that we draw a
reference sample of size m = 400 and test samples of size n = 5. In order to achieve a
prespecified in-control performance level, namely, ARLin equal to 370, the
remaining parameters are determined as a = 5, b = 379, j = 2, k = 3, and r = 2. Under

Reference sample

40 60

n (a, j, k, r) Exact FAR Simulated FAR (a, j, k, r) Exact FAR Simulated FAR

5 (1, 2, 3, 3) 0.0114 0.0119 (1, 2, 4, 1) 0.0096 0.0116

(3, 2, 3, 2) 0.0615 0.0632 (4, 3, 4, 2) 0.0478 0.0507

(4, 3, 4, 2) 0.0999 0.0897 (6, 3, 4, 2) 0.0969 0.1044

11 (2, 4, 8, 4) 0.0116 0.0158 (4, 4, 7, 5) 0.0108 0.0098

(1, 2, 4, 5) 0.0431 0.0551 (7, 4, 7, 4) 0.0518 0.0573

(1, 6, 10, 5) 0.0432 0.0437 (6, 3, 6, 5) 0.1030 0.1084

25 (4, 8, 12, 4) 0.0139 0.0150 (9, 10, 14, 5) 0.0097 0.0100

(5, 14, 17, 5) 0.0137 0.0126 (17, 12, 14, 5) 0.1031 0.1131

(10, 11, 14, 4) 0.0928 0.1049 (15, 11, 15, 4) 0.1037 0.1130

Reference sample

100 200

n (a, j, k, r) Exact FAR Simulated FAR (a, j, k, r) Exact FAR Simulated FAR

5 (3, 3, 4, 3) 0.0119 0.0105 (7, 2, 3, 2) 0.0132 0.0159

(5, 2, 4, 3) 0.0505 0.0566 (10, 2, 4, 2) 0.0479 0.0473

(1, 1, 5, 3) 0.0934 0.1076 (21, 3, 4, 2) 0.1008 0.0937

11 (4, 3, 8, 5) 0.0146 0.0107 (8, 3, 6, 4) 0.0105 0.0103

(7, 3, 7, 6) 0.0460 0.0506 (16, 4, 6, 3) 0.0106 0.0097

(7, 3, 8, 5) 0.0524 0.0603 (26, 4, 6, 3) 0.0498 0.0492

25 (19, 11, 14, 4) 0.0113 0.0122 (39, 11, 14, 4) 0.0093 0.0090

(24, 11, 14, 4) 0.0490 0.0463 (45, 13, 16, 6) 0.0479 0.0445

(19, 14, 17, 5) 0.0504 0.0518 (45, 14, 17, 4) 0.0995 0.0992

Table 1.
Exact and simulation-based FAR for a given design of Chart 2.
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the aforementioned design, Triantafyllou [6] computed the exact ARLin equal to
378.7, while the simulation-based procedure proposed in the present chapter gives a
corresponding ARLin value equal to 379.1.

We next focus on the ability of the distribution-free monitoring scheme defined
in (1), under the assumption that the process has shifted to an out-of-control state.
When the process has shifted from distribution F to G, then the ability of the

scheme to detect the underlying alteration is associated with the function G∘F�1.
For example, under the well-known Lehmann-type alternative (see, e.g., van der
Laan and Chakraborti [13]), the out-of-control distribution function can be
expressed as G ¼ Fγ, where γ >0. Table 3 sheds light on the out-of-control perfor-
mance of Chart 2 by offering the corresponding alarm rate of the proposed scheme
under the Lehmann alternatives with parameter γ ¼ 0:2, 10. Since we consider the
same designs as those presented by Triantafyllou [6], the exact values of ARout have
been copied from his Table 3, while the simulated results have been produced by
following the procedure described earlier.

ARL0 m n (a, b) (j, k, r) Exact ARLin Simulated ARLin

370 200 5 (2, 188) (2, 3, 2) 376.4 369.9

11 (3, 180) (2, 3, 3) 367.7 377.7

25 (14, 178) (6, 9, 14) 369.9 369.2

300 5 (5, 287) (2, 3, 2) 358.9 365.0

11 (19, 285) (4, 7, 4) 372.6 374.8

25 (20, 213) (6, 9, 7) 367.2 373.8

400 5 (5, 379) (2, 3, 2) 378.7 379.1

11 (12, 366) (3, 6, 4) 384.8 378.4

25 (33, 296) (7, 10, 9) 373.0 377.9

500 5 (6, 473) (2, 3, 2) 369.8 372.6

11 (15, 440) (3, 5, 4) 369.1 374.8

25 (32, 362) (6, 9, 6) 369.4 365.1

Table 2.
Exact and simulation-based ARLin for a given design of Chart 2.

Reference sample

40 60

n (a, j, k, r) Exact ARout Simulated ARout (a, j, k, r) Exact ARout Simulated ARout

5 (2, 2, 4, 3) 0.8284

0.5448

0.8209

0.5244

(2, 2, 4, 4) 0.7890

0.3931

0.7783

0.3589

(3, 2, 4, 2) 0.8853

0.7351

0.8758

0.7403

(4, 2, 4, 3) 0.8800

0.7161

0.8805

0.7095

11 (2, 4, 8, 4) 0.8883

0.5357

0.8825

0.5502

(7, 4, 7, 4) 0.9812

0.9076

0.9737

0.9090

(3, 5, 8, 4) 0.8483

0.7556

0.8424

0.7612

(6, 5, 9, 4) 0.9135

0.9678

0.9278

0.9614

25 (9, 11, 14, 4) 0.9983

0.9978

0.9978

0.9978

(12, 12, 14, 4) 0.9938

0.9982

0.9922

0.9970

(10, 11, 14, 4) 0.9991

0.9993

0.9991

0.9994

(9, 10, 14, 5) 0.9971

0.9759

0.9929

0.9763
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Each cell contains theARs attained for γ=0.2 (upper entry) and γ= 10 (lower entry).
Based on the above table, it is evident that the proposed simulation algorithm

seems to come to an agreement with the corresponding exact values of the out-of-
control alarm rate of Chart 2. For example, for a design (a, j, k, r) = (10, 2, 4, 2) with
reference sample size m = 200 and test sample size n = 5, the exact alarm rate for a
shift to Lehmann alternative with parameter γ = 0.2 (10) equals to 86.09%
(66.31%), while the simulation-based alarm rate of Chart 2 is quite close to the exact
one, namely, it equals to 86.61% (64.14%).

4. The proposed control charts enhanced with runs-type rules

In this section, we carry out an extensive numerical experimentation to appraise
the ability of the distribution-free monitoring schemes Chart 1, Chart 2, and Chart 3

Reference sample

100 200

n (a, j, k, r) Exact ARout Simulated ARout (a, j, k, r) Exact ARout Simulated ARout

5 (5, 2, 4, 3) 0.8530

0.6062

0.8513

0.5815

(10, 2, 4, 2) 0.8609

0.6331

0.8661

0.6414

(3, 3, 4, 3) 0.4783

0.3333

0.4854

0.3867

(15, 2, 4, 2) 0.9056

0.8300

0.8908

0.8237

11 (7, 3, 8, 5) 0.9888

0.8133

0.9693

0.8059

(25, 5, 8, 4) 0.9527

0.9936

0.9573

0.9912

(19, 5, 7, 4) 0.9812

0.9982

0.9768

0.9831

(26, 4, 8, 4) 0.9895

0.9953

0.9835

0.9913

25 (19, 11, 14, 4) 0.9982

0.9994

0.9974

0.9962

(39, 11, 14, 4) 0.9989

0.9999

0.9963

0.9963

(24, 11, 14, 4) 0.9996

0.9999

0.9989

0.9989

(45, 13, 16, 6) 0.9942

0.9999

0.9963

0.9962

Each cell contains the AR’s attained for Y = 0.2 (upper entry) and Y = 10 (lower entry).

Table 3.
Exact and simulation-based ARout for a given design of Chart 2.

Chart 1 Chart 1 with 2-of-3 runs rule

ARL0 m n (a, b) j r Exact ARLin ARLout (a, b) j r Exact ARLin ARLout

370 100 5 (2, 96) 2 2 363.7 15.77 (3, 71) 2 2 378.01 11.73

11 (6, 83) 5 5 363.06 6.76 (8, 71) 4 5 364.79 6.59

500 5 (7, 473) 3 3 382.01 10.88 (9, 352) 2 2 380.5 10.27

11 (29, 444) 4 5 373.14 16.71 (17, 303) 4 4 360.9 9.29

500 100 5 (3, 96) 3 3 499.88 14.94 (2, 71) 2 2 497.66 12.69

11 (6, 84) 5 5 485.85 7.79 (4, 70) 3 6 511.12 7.13

500 5 (7, 476) 3 3 503.77 12.62 (8, 352) 2 2 488.61 11.56

11 (28, 454) 4 5 499.79 27.63 (17, 309) 4 4 489.45 5.62

Underlying distributions: Exponential with mean equal to 2 (in-control) and 1 (out-of-control) respectively.

Table 4.
Comparison of the ARLouts with the same ARLin for Chart 1.
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enhanced with runs-type rules for detecting possible shifts of the underlying distri-
bution. The computations have been made by the aid of the simulation procedure
presented in Section 3. Tables 4 and 5 display the improved out-of-control perfor-
mance of Chart 1, when the 2-of-3 runs-type rule is activated. We first compare the
performance of the control charts by using a common ARLin and then evaluating
the respective ARLout for specific shifts. Consider the case of a process with under-
lying in-control exponential distribution with mean equal to 2 and out-of-control
exponential distribution with mean equal to 1. In Table 4, we present the ARLout

values of Chart 1 and the proposed Chart 1 enhanced with 2-of-3 runs-type rule, for
ARLin ¼ 370, 500, m ¼ 100, 500, and n ¼ 5, 11. The remaining design parameters
a, b, j, r, were determined appropriately, so that ARLin takes on a value as close to
the nominal level as possible. It is evident that the proposed monitoring scheme
performs better than the one established by Balakrishnan et al. [5] for all cases
considered. The fact that the ARLouts that exhibit Chart 1 with 2-of-3 runs-type rule

Chart 1 Chart 1 with 2-of-3 runs rule

θ δ ARL ARL

0 1 499.88 517.21

0.25 1 562.33 127.89

0.5 1 386.09 26.63

1 1 61.22 3.83

1.5 1 8.01 1.44

2 1 2.23 1.06

0.25 1.25 49.69 35.07

0.5 1.25 39.96 13.72

1 1.25 14.83 3.85

1.5 1.25 4.76 1.66

2 1.25 2.08 1.14

0.25 1.5 13.91 17.77

0.5 1.5 12.32 9.43

1 1.5 7.07 3.65

1.5 1.5 3.53 1.85

2 1.5 1.98 1.26

0.25 1.75 6.55 10.24

0.5 1.75 6.11 7.64

1 1.75 4.40 3.49

1.5 1.75 2.83 1.92

2 1.75 1.88 1.35

0.25 2 4.04 6.93

0.5 2 3.87 5.49

1 2 3.17 3.09

1.5 2 2.37 2.03

2 2 1.77 1.45

Table 5.
Comparison of the ARLouts with the same ARLin for Chart 1 under normal distribution (θ, δ).
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Chart 2 Chart 2 with 2-of-2 runs rule

FAR m n (a, b) (j, k) r Exact

FAR

ARout (a, b) (j, k) r Exact

FAR

ARout

0.01 50 11 (3, 45) (4, 6) 4 0.0103 0.4575

0.9239

(14, 35) (4, 6) 1 0.0125 0.5527

0.9463

25 (4, 45) (7, 9) 7 0.0131 0.7756

0.9977

(11, 40) (7, 9) 1 0.0110 0.9194

0.9989

100 11 (4, 92) (3, 5) 3 0.0126 0.5832

0.9661

(23, 75) (3, 5) 1 0.0124 0.6771

0.9782

25 (6, 65) (6, 8) 4 0.0092 0.8181

0.9992

(20, 90) (6, 8) 1

0.0135

0.9563

0.9992

500 11 (19, 405) (3, 5) 4 0.0099 0.5976

0.9736

(122, 350) (3, 5) 1 0.0130 0.7278

0.9846

25 (61, 420) (8, 10) 5 0.0092 0.9023

0.9998

(130, 430) (8, 10) 1 0.0089 0.9551

0.9998

1000 11 (80, 894) (4, 6) 5 0.0101 0.6106

0.9715

(300, 550) (4, 6) 1 0.0110 0.6234

0.9715

25 (125, 810) (8, 10) 8 0.0098 0.9125

0.9998

(27, 800) (8, 10) 1 0.0094 0.9644

0.9999

0.005 50 11 (2, 45) (4, 6) 4 0.0054 0.3250

0.8627

(2, 45) (4, 6) 4 0.0056 0.4229

0.9990

25 (4, 44) (8, 10) 8 0.0049 0.6577

0.9935

(4, 44) (8, 10) 8 0.0057 0.8633

0.9979

100 11 (2, 83) (3, 5) 3 0.0046 0.7508

0.9983

(2, 83) (3, 5) 3 0.0055 0.7620

0.9983

25 (5, 88) (6, 8) 4 0.0044 0.7508

0.9983

(5, 88) (6, 8) 4 0.0054 0.9169

0.9989

500 11 (15, 420) (3, 5) 4 0.0050 0.5234

0.9618

(15, 420) (3, 5) 4 0.0054 0.6611

0.9799

25 (54, 380) (8, 10) 5 0.0046 0.8624

0.9997

(54, 380) (8, 10) 5 0.0056 0.9288

0.9997

1000 11 (66, 900) (4, 6) 4 0.0049 0.5357

0.9594

(66, 900) (4, 6) 4 0.0047 0.5667

0.9596

25 (87, 830) (7, 9) 7 0.0050 0.8832

0.9998

(87, 830) (7, 9) 7 0.0058 0.9646

0.9998

0.0027 50 11 (2, 49) (4, 6) 4 0.0026 0.3249

0.8627

(2, 49) (4, 6) 4 0.0026 0.4352

0.9081

25 (6, 44) (10, 11) 15 0.0036 0.6179

0.9908

(6, 44) (10,

11)

15 0.0031 0.7553

0.9947

100 11 (2, 94) (3, 5) 3 0.0028 0.3722

0.9040

(2, 94) (3, 5) 3 0.0025 0.5758

0.9670

25 (4, 67) (6, 8) 4 0.0025 0.6595

0.9960

(4, 67) (6, 8) 4 0.0029 0.8722

0.9987

500 11 (12, 440) (3, 5) 4 0.0025 0.4559

0.9479

(12, 440) (3, 5) 4 0.0031 0.6099

0.9724

25 (49, 445) (8, 10) 5 0.0026 0.8250

0.9995

(49, 445) (8, 10) 5 0.0033 0.9318

0.9995

1000 11 (55, 900) (4, 6) 4 0.0027 0.4673

0.9452

(55, 900) (4, 6) 4 0.0033 0.4673

0.9529

25 (77, 800) (7, 9) 7 0.0027 0.8435

0.9997

(77, 800) (7, 9) 7 0.0032 0.9356

0.9997

Table 6.
Comparison of the ARouts with the same FAR for Chart 2.
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are smaller than the respective ones of Chart 1 indicates its efficacy to detect faster
the shift of the process from the in-control distribution.

Underlying distributions: exponential with mean equal to 2 (in-control) and 1
(out-of-control), respectively.

It goes without saying that the nonparametric control charts are robust in the
sense that their in-control behavior remains the same for all continuous distribu-
tions. However, it is of some interest to check over their out-of-control performance
for different underlying distributions. We next study the performance of the
proposed Chart 1 enhanced with the 2-of-3 runs-type rule under normal distribu-
tion (θ, δ).

More specifically, the in-control reference sample is drawn from the standard
normal distribution, while several combinations of parameters θ, δ have been
examined. Table 5 reveals that the proposed Chart 1 with 2-of-3 runs-type rule is
superior compared to the existing Chart 1 for almost all shifts of the location
parameter θ and the scale parameter δ considered.

We next study the out-of-control performance of Chart 2 presented in Section 2.
In Table 6, three different FAR levels and several values of the parameters m, n
have been considered. For each choice, the AR values under two specific Lehmann
alternatives corresponding to γ ¼ 0:4 and γ ¼ 0:2 are computed via simulation for
both Chart 2 and Chart 2 enhanced with 2-of-2 runs-type rule.

Table 6 clearly indicates that, under a common FAR, the proposed Chart 2 with
the 2-of-2 runs-type rule performs better than Chart 2, with respect to AR values, in
all cases considered. For example, calling for a reference sample of size m ¼ 500,
test samples of size n ¼ 11, and nominal FAR ¼ 0:0027, the proposed Chart 2 with
the 2-of-2 runs-type rule achieves alarm rate of 0.6099 (0.9724) for γ ¼ 0:4
(γ ¼ 0:2), while the respective alarm rate for Chart 2 is 0.4559 (0.9479).

Tables 7 and 8 shed more light on the out-of-control performance of the pro-
posed Chart 2 enhanced with appropriate runs-type rules. More specifically, the
schemes being under consideration are designed such as a nominal in-control ARL
performance is attained. From the numerical comparisons carried out, it is straight-
forward that Chart 2 with 2-of-2 rule becomes substantially more efficient than
Chart 2. Under Lehmann alternative with parameter γ = 0.5, the proposed chart
exhibits smaller out-of-control ARL than Chart 2, and therefore it seems more
capable in detecting possible shift of the process distribution.

Chart 2 Chart 2 with 2-of-2 runs rule

ARL0 m n (a, b) (j, k) r Exact

ARLin

ARLout (a, b) (j, k) r Exact

ARLin

ARLout

100 100 5 (4, 99) (2, 3) 2 115.1 4.7 (10, 80) (3, 5) 1 116.1 4.6

11 (5, 78) (3, 4) 3 88.9 2.8 (10, 83) (2,

4)

1 83.2 2.7

500 5 (15, 470) (2, 3) 2 109.8 5.2 (50, 435) (2, 3) 1 101.7 4.9

11 (20, 410) (4, 6) 4 119.7 6.8 (50,

400)

(2, 3) 1 122.5 2.2

200 100 5 (3, 98) (2, 3) 2 185.3 6.7 (10, 85) (2, 5) 1 204.8 1.5

11 (4, 80) (3, 4) 3 187.7 3.5 (8, 95) (2, 3) 1 221 3.3

500 5 (10, 482) (2, 3) 2 208.9 7.2 (15, 435) (3, 5) 1 188.4 5.4

11 (18, 420) (4, 6) 4 191.1 7.5 (50, 420) (2, 3) 1 234.8 2.2

Table 7.
Comparison of the ARLouts with the same ARLin for Chart 2.
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In addition, Table 8 depicts the out-of-control ARL performance of Chart 2
under normal distribution. More precisely, several shifts of both location and scale
parameter have been considered, and Chart 2 with 2-of-3 rule detects the underly-
ing shift sooner than Chart 2 does in almost all cases examined.

Finally, Tables 9 and 10 present simulation-based comparisons of the nonpara-
metric monitoring scheme Chart 3 with 2-of-2 runs rule versus Chart 3 established by
Triantafyllou [7]. For delivering the numerical results displayed in Tables 9 and 10,
the Lehmann alternatives have been considered as the out-of-control distribution.

Each cell contains theARs attained for γ=0.5 (upper entry) and γ=0.2 (lower entry).

5. Conclusions

In the present chapter, we investigate the in- and out-of-control performance of
distribution-free control charts based on order statistics. Several runs-type rules are

θ δ Chart 2 Chart 2 with 2-of-3 runs rule

0 1 446.6 502.1

0.25 1 163.9 127.9

0.5 1 51.64 26.6

1 1 7.4 3.8

1.5 1 2.1 1.4

2 1 1.2 1.1

0.25 1.25 35.7 35.1

0.5 1.25 17.9 13.7

1 1.25 5.0 3.9

1.5 1.25 2.1 1.7

2 1.25 1.3 1.1

0.25 1.5 15.0 17.7

0.5 1.5 9.8 9.4

1 1.5 4.1 3.6

1.5 1.5 2.1 1.8

2 1.5 1.4 1.3

0.25 1.75 8.5 10.6

0.5 1.75 6.5 7.6

1 1.75 3.5 3.4

1.5 1.75 2.1 1.9

2 1.75 1.5 1.3

0.25 2 5.7 6.9

0.5 2 4.8 5.4

1 2 3.1 3.1

1.5 2 2.0 2.0

2 2 1.5 1.4

Table 8.
Comparison of the ARLouts with the same ARLin for Chart 2 under normal distribution (θ, δ).
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employed in order to enhance the ability of the aforementioned nonparametric
monitoring schemes to detect possible shifts in distribution process. The AR and the
ARL behavior of the underlying control charts is studied under several out-of-
control situations, such as the so-called Lehmann alternatives and the exponential
or the normal distribution model. The numerical experimentation carried out
depicts the melioration of the proposed schemes with the runs-type rules. It is of
some research interest to branch out the incorporation of such runs rules (or even
more complicated) to additional nonparametric control charts based on well-known
test statistics.

Chart 3 Chart 3 with 2-of-2 runs rule

FAR m n (a, b) (i, c, j, d) r Exact

FAR

ARout (a, b) (i, c, j, d) r Exact

FAR

ARout

0.01 100 11 (6, 93) (7, 2, 4, 7) 4 0.0104 0.5363

0.9537

(15, 75) (7, 2, 4, 7) 1 0.0086 0.7064

0.9825

25 (5, 86) (6, 2, 6, 12) 10 0.0102 0.8181

0.9992

(10, 79) (6, 2, 6, 12) 1 0.0108 0.9103

0.9992

500 11 (31, 484) (33, 2, 4, 7) 6 0.0108 0.5335

0.9583

(80, 300) (33, 2, 4, 7) 1 0.0088 0.7326

0.9876

25 (30, 450) (49, 2, 7, 9) 8 0.0101 0.9122

0.9999

(75, 300) (49, 2, 7, 9) 1 0.0089 0.9585

0.9999

1000 11 (60, 967) (65, 2, 4, 7) 6 0.0099 0.5311

0.9584

(155, 690) (65, 2, 4, 7) 1 0.0096 0.7161

0.9873

25 (30, 960) (99, 2, 7, 9) 8 0.0098 0.9181

0.9999

(165, 600) (99, 2, 7, 9) 1 0.0129 0.9778

0.9999

0.005 100 11 (4, 93) (5, 2, 4, 7) 4 0.0051 0.4134

0.9198

(14, 75) (5, 2, 4, 7) 1 0.0054 0.6312

0.9787

25 (4, 88) (5, 2, 6, 12) 10 0.0051 0.7508

0.9983

(10, 81) (5, 2, 6, 12) 1 0.0051 0.9227

0.9989

500 11 (26, 478) (31, 2, 4, 7) 5 0.0052 0.5094

0.9536

(70, 300) (31, 2, 4, 7) 1 0.0049 0.6653

0.9827

25 (30, 450) (43, 2, 7, 9) 8 0.0052 0.8755

0.9998

(70, 314) (43, 2, 7, 9) 1 0.0046 0.9485

0.9998

1000 11 (60, 985) (65, 2, 4, 7) 6 0.0050 0.5299

0.9583

(150, 700) (65, 2, 4, 7) 1 0.0047 0.7051

0.9870

25 (30, 960) (87, 2, 7, 9) 8 0.0050 0.8832

0.9998

(150, 600) (87, 2, 7, 9) 1 0.0056 0.9645

0.9998

0.0027 100 11 (3, 94) (4, 2, 4, 7) 4 0.0029 0.3410

0.8905

(11, 75) (4, 2, 4, 7) 1 0.0032 0.5283

0.9660

25 (5, 86) (6, 2, 7, 9) 7 0.0025 0.6951

0.9971

(9, 80) (6, 2, 6, 9) 1 0.0024 0.8803

0.9988

500 11 (24, 480) (28, 2, 4, 7) 4 0.0028 0.4715

0.9453

(70, 345) (28, 2, 4, 7) 1 0.0024 0.6624

0.9834

25 (30, 450) (38, 2, 7, 9) 8 0.0027 0.8338

0.9996

(70, 320) (38, 2, 7, 4) 1 0.0030 0.9497

0.9996

1000 11 (53, 990) (55, 2, 4, 7) 6 0.0027 0.4673

0.9452

(135, 705) (65, 2, 4, 7) 1 0.0023 0.6445

0.9823

25 (30, 960) (78, 2, 7, 9) 8 0.0028 0.8479

0.9997

(145, 600) (78, 2, 7, 9) 1 0.0029 0.9587

0.9997

Table 9.
Comparison of the ARouts with the same FAR for Chart 3.
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Chart 3 Chart 3 with 2-of-2 runs rule

ARL0 m n (a, b) (i, c, j, d) r Exact

ARLin

ARLout (a, b) (i, c, j, d) r Exact

ARLin

ARLout

100 50 10 (1, 45) (2, 1, 2, 4) 4 101.06 2.3

1.02

(3,

40)

(2, 1, 2, 4) 1 111.4 2.3

1.02

100 5 (3, 100) (4, 1, 2, 4) 3 123.51 4.73

1.22

(13,

78)

(4, 1, 2, 4) 1 102.4 4.72

1.14

100 10 (2, 89) (3, 1, 2, 4) 3 101.82 2.31

1.02

(12,

81)

(5, 5, 3, 5) 1 114.0 2.28

1.02

200 50 10 (1, 48) (3, 1, 2, 4) 3 213.49 2.30

1.02

(3,

45)

(2, 1, 2, 4) 1 187.5 2.23

1.02

100 5 (1, 100) (3, 1, 2, 4) 2 244.88 6.59

1.29

(10,

80)

(3, 1, 2, 4) 1 230.9 5.62

1.24

100 10 (4, 94) (5, 5, 3, 5) 4 222.69 3.20

1.04

(10,

82)

(5, 5, 3, 5) 1 192.2 3.10

1.04

Each cell contains the AR’s attained for Y = 0.5 (upper entry) and Y = 0.2 (lower entry).

Table 10.
Comparison of the ARLouts with the same ARLin for Chart 3.
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