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Chapter

Optimal Design of Energy System
Based on the Forecasting Data
with Particle Swarm Optimization
Yamin Yan, Haoran Zhang, Jianqin Zheng and Yongtu Liang

Abstract

Renewable energy source has developed rapidly and attracted considerable
attention. The integration of renewable energy into the energy supply chain
requires precise forecast of the output of energy supply chain, thereby reducing
energy resource waste and greenhouse gas emissions. In this study, a coupled model
system is developed to forecast energy supply chain for the design optimization of
distributed energy system, which can be divided into two parts. In the first part,
long short-term memory (LSTM) and particle swarm optimization algorithm (PSO)
contribute to energy supply chain forecast considering time series, and particle
swarm optimization is used to optimize the parameters of the long short-term
memory model to improve the forecast accuracy. Results show that the mean
absolute error and root mean squared error are 8.7 and 16.3 for the PSO-LSTM
model, respectively. In the second part, the forecast results are used as input of the
distributed energy system to further optimize the design and operation schemes, so
as to achieve the coupling optimization of forecast and design. Finally, a case study
is carried out to verify the effectiveness of the proposed method.

Keywords: coupled model system, forecast, design optimization, renewable
energy system

1. Introduction

With the development of social economy and the acceleration of urbanization
and industrialization, the global energy consumption and greenhouse gas (GHG)
emissions are expected to increase in the next few decades [1, 2]. At present, more
than 80% of the world’s primary energy comes from fossil fuels, and its carbon
emissions are the biggest cause of global greenhouse effect. Therefore, the develop-
ment of low-carbon economy renewable energy technologies is an emerging trend
and goal of the world. In the past decade, renewable energy power generation has
grown at an annual rate of 16%, and China accounted for 45% of global growth [3].
Wind power, one of the most potential renewable energy sources, has entered the
rapid development stage. In 2018, the wind power has a largest share (around 50%)
in the renewable energy power generation and reached 142 TW h [4], and more
than 10% of electricity consumption or 5 GW of electricity will be generated by
solar energy by 2020 [5]. As reported in “Clean Energy Trends” published in March
2011, the global production of biofuels, wind power, and solar energy is expected to
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reach $112.8 billion, $122.9 billion, and $113.6 billion by 2020, with growth rates of
116, 103, and 60%, respectively. Whether from the point of view of energy saving or
environmental protection, renewable energy is certain to play a vital role in power
generation [6, 7]. However, renewable energy has the characteristics of strong
uncertainty and volatility, which not only increase the operation cost of power system
but also reduce the cost-effectiveness of renewable energy resources [8]. Therefore, it
is necessary to establish an accurate and stable prediction model for the renewable
energy power to ensure the energy supply chain, so as to lay the foundation for
optimizing the design and operation strategies of energy system [9, 10].

Many scholars have conducted the research on forecasting and optimizing the
renewable energy supply system. Regarding the energy supply system forecast,
many studies have developed effective forecasting methods for specific energy
sources, which can be divided into three types of models, namely, time series
models, data-driven models, and wavelet-based multiscale models [11]. Generally,
the time series models and data-driven models are widely accepted. For instance, Lu
et al. [12] compared the accuracy of four artificial intelligence methods in forecast-
ing Taiwan’s renewable energy sources based on historical data from 2000 to 2015,
and results showed that only grey forecasting model coupled with heuristic fuzzy
time series method is suitable for small dataset forecast. Long et al. [13] used four
famous data-driven method to forecast daily solar power after dimensionality
reduction of data, and they inferred that different algorithms can outperform others
in different considered scenarios. There are few literatures on the application of the
wavelet-based multiscale models. Reikard [14] proposed a Kalman filter and time-
varying regression for the time series prediction of wave energy. Aasim et al. [15]
proposed a new repeated wavelet transform based ARIMA model for very short-
term wind speed forecasting. Based on data-driven, Li et al. [16] developed a new
deep machine learning algorithm to predict short-term wave energy. In summary,
different forecast models may vary greatly in different scenarios.

However, most of the previous work has been devoted to the forecast of renew-
able energy in a certain region considering the limited range of measuring instru-
ments, and few studies pay attention to the power generation in multiple regions. In
fact, it is impossible to install the measuring instruments in each region from an
economic point of view, thus bringing a great challenge for forecasting renewable
energy in multiple regions. In addition, the forecast of renewable energy is not only
related to the energy intensity but also depends on climate conditions, which have a
strong time series relationship [17]. Meanwhile, the short stochastic characteristics
and the dependence of the observation time series of renewable energy must be
taken into account. Therefore, this paper is the first work to develop a forecast
model based on the data-driven method by collecting the measurement equipment
data and climate conditions in different regions and at different times. Also, the
LSTM model is adopted to capture the dependence of time series forecasting for
renewable energy output, and PSO is used to optimize the parameters of the LSTM
model to improve the forecast accuracy.

Regarding the optimization of renewable energy supply system, many scholars
are devoted to integrating various renewable energy sources and have made a range
of achievements [18–20]. Acevedo-Arenas et al. [21] described the methodology of
hybridizing photovoltaic, wind, and forest biomass energy sources and developed a
model to optimize the design and operation schemes of hybrid renewable energy
system in consideration of economic and environmental impacts. Tajeddin and
Roohi [22] put forward the use of biomass energy to improve the responsibility and
efficiency of wind farms. Sakaguchi and Tabata [23] forecasted the power genera-
tion potential and proportion of biomass, wind power, and PV in Awaji Island
Japan, and results showed that it is possible to achieve self-sufficiency by the sole
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use of renewable energy. Moreover, the renewable energy plants are usually
equipped with the energy storage, which could improve the controllability of the
output [24]. Based on the above research, the hybridization of renewable energy
sources is able to reduce the uncertainty and volatility, thereby promoting the
rational use of renewable energy and increasing environmental benefits.

In this paper, we first focus on the accurate forecast of renewable energy supply
chain, which is divided into three steps. The first step is to develop a forecast model
based on the data-driven method by collecting the measurement equipment data
and climate conditions in different regions and at different times. In the second
step, the LSTM model is adopted to capture the dependence of time series forecast-
ing for renewable energy output. In the third step, PSO is used to optimize the
parameters of the LSTM model to improve the forecast accuracy. After that, the
forecast results are used as input of the distributed energy system to further opti-
mize the design and operation schemes, thereby achieving the coupling optimiza-
tion of forecast and design. Overall, there are four contributions in this paper:

1.LSTM model is established to forecast the output of renewable energy in
multiple regions, considering the correlation of time series and the change of
climate conditions.

2.PSO is adopted to optimize the parameters of LSTMmodel, thereby improving
the forecast accuracy.

3.Based on the forecast results of LSTMmodel, a MILP model is established to
optimize the design and operation schemes of renewable energy supply system.

4.Real multi-region renewable energy plants are used as an example to verify the
effectiveness and practicality of the proposed coupled model system.

The rest of this paper is organized as follows: Section 2 describes the basic
knowledge of LSTM model and PSO algorithm, and the optimization model of
distributed renewable energy supply system is explained. Subsequently, the optimal
results solved by the coupled model system and corresponding discussions are
presented in Section 3. Finally, Section 4 concludes this paper.

2. Problem formulation and solution methodology

2.1 LSTM model coupled with PSO algorithm

Figure 1 shows the framework of the coupled model system. Firstly, long short-
term memory (LSTM) and particle swarm optimization algorithm (PSO) contribute

Figure 1.
The framework of the coupled model system.
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to energy supply chain forecast considering time series, and particle swarm optimi-
zation is used to optimize the parameters of the long short-term memory model to
improve the forecast accuracy. Then, the forecast results of solar power plants and
the known wind power are used as input of the distributed energy system to further
optimize the design and operation schemes, so as to achieve the coupling optimiza-
tion of forecast and design.

2.2 LSTM model coupled with PSO algorithm

2.2.1 LSTM model

As a kind of recurrent neural network, LSTM model combines short-term with
long-term memory through subtle gate control and overcomes the shortcoming of
gradient vanishing. Currently, LSTM model has great applications in time series,
such as machine translation and speech recognition. In this section, the basic LSTM
cell is introduced firstly.

The basic LSTM cell is shown in Figure 2. At time t, the cell state at t�1, the
hidden state at t�1, and the new information are denoted as ct‐1, ht‐1, and xt,
respectively, which are the input of the cell. Forget gate, input gate, and output gate
are used to select information and depended on xt and ht‐1. The output value of each
gate is limited to between 0 and 1 by the activation function, which is the sigmoid
function defined in Eq. (1).

σ xð Þ ¼
1

1þ e�x
(1)

The LSTM cell included four steps as follows. Firstly, the cell decides what
stored information is going to be thrown away from the previous cell state ct‐1.
Based on xt and ht‐1, forget gate f t outputs a value between 0 and 1 for ct‐1. And 1
means that the stored information is completely retained, and 0 means that the
information is completely eliminated. f t is calculated by Eq. (2).

f t ¼ σ Wxf � xt þWhf � ht‐1 þ bf
� �

(2)

Secondly, the cell decides what new information is going to be stored. At first,
tanh function defined in Eq. (3) is to ensure the normalization of the new informa-
tion and converts xt and ht‐1 to the new format between �1 and 1 denoted as in
Eq. (4). Then, the input gate it defined in Eq. (5) outputs a value between 0 and 1 to

Figure 2.
The basic LSTM cell.
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select the new information. After that, these two parts are going to be combined to
update the cell state in the next step.

tanh xð Þ ¼
ex � e�x

ex þ e�x
(3)

ct ¼ tanh Wxc � xt þWhc � ht‐1 þ bcð Þ (4)

it ¼ σ Wxi � xt þWhi � ht‐1 þ bið Þ (5)

Thirdly, it is going to update the cell state based on the previous steps. The old
cell state is multiplied by f t, forgetting the information decided to be forgotten in
step 1. The process information ct decided by tanh function is multiplied by it. Then
these two parts are added to determine the new cell state ct in Eq. (6).

ct ¼ f t ∗ ct‐1 þ it ∗ ct (6)

Finally, the cell decides what is going to be the output. Similar to other gates,
output gate ot outputs a value to decide what parts of the cell state are going to be
output in Eq. (7). Based on ct, the hidden state ht defined in Eq. (8) is multiplied by
ot to decide the important information to be stored. At last, the output of the LSTM
cell is shown in Eq. (9).

ot ¼ σ Wxo � xt þWho � ht‐1 þ boð Þ (7)

ht ¼ ot ∗ tanh ctð Þ (8)

yt ¼ σ Why � ht þ by
� �

(9)

In this work, X is the measurement equipment data and climate conditions, and
y is the output of the renewable energy. Wxf , Wxi, Wxo, and Wxc are the input
weight matrices; Whf , Whi, Who, and Whcare the recurrent weight matrices; and
Why is the hidden output weight matrix. Vectors bf , bi, bo, bc, and by are the
corresponding bias vectors.

2.2.2 PSO algorithm

Proposed in 1995, PSO has a great use in the field of optimization, especially
coupling with machine learning, such as ANN [25]. In this study, PSO is used to
select the optimal parameters for the LSTM model. The process of the algorithm is
described as follows.

Firstly, initializing the particle swarm, including the size of population and the
dimension of each one. In this work, the number of units, learning rate, and time
step are optimized, so the dimension of each individual is 3.

Secondly, evaluating the fitness of each individual. In the process of training the
LSTM model, the training loss is the fitness of each particle.

Thirdly, finding the two “extreme value.” In each iteration, by calculating the
training loss, the individual optimal value and optimal population value are found,
which are used for updating the particles.

Fourthly, updating the velocity and position of each particle. Based on the two
“extreme value,” the particles are updated to form the next generation according to
Eqs. (10) and (11):

vi tþ 1ð Þ ¼ w� vi þ c1 � r1 � pi tð Þ � xi tð Þ
� �

þ c2 � r2 � pg tð Þ � xi tð Þ
� �

(10)
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xi tþ 1ð Þ ¼ xi tð Þ þ vi tþ 1ð Þ (11)

where vi and xi are the velocity and position of particle i, respectively. pi is the
best position for a particle i and pg denotes the best position in the group at the tth
iteration.

Fifthly, reaching convergence condition. With the help of iterations, the best
particle will be found within the maximum iteration. So the suitable parameters of
the LSTM model are determined.

The methodology of LSTM model coupled with PSO algorithm is composed of
three parts. Firstly, the data of measurement equipment data and climate conditions
are collected into the database with preprocessing. Secondly, the data is divided into
two groups, and small part of the data is for the PSO algorithm to train the LSTM
parameters. It contains the process of PSO algorithm mentioned in 3.1.2 section.
Finally, after finding the optimal LSTM model, train the prediction model with the
rest of the data. So far, a prediction model with high accuracy for the output of the
renewable energy is established.

2.3 The optimization model of energy supply system

2.3.1 Objective function

The objective of this model is to minimize the total annual cost of the energy
supply system, CTOT, defined as the sum of the total fixed cost, capital cost, and
energy consumption cost. It should be noted that the input energy of the energy
supply system is renewable energy sources; thus, the energy consumption cost is
equal to zero:

CTOT ¼ CCac þ CF (12)

where CCac and CF are the total capital cost and fixed cost of the energy supply
system, including the PV panels, wind turbines, and batteries [CNY].

The annual capital cost of technology i is obtained by the capital recovery factor
CRFi, which is defined as Eq. (15):

CCac ¼ CapiCUCiCRFi (13)

CF ¼ BiCFCiCRFi (14)

CRFi ¼
r 1þ rð ÞNi

1þ rð ÞNi � 1
(15)

where Capi is the rated power of technology i [kW, kWh]; Bi is the binary
variable, which is equal to 1 if the technology i is selected for installation [�]; CUCi

represents the unit cost of technology i [CNY/kW for energy generation technology
and CNY/kWh for energy storage technology]; CFCi is the fixed cost of technology i
[CNY]; Ni represents the lifetime of technology i [year]; and r defines the discount
rate [�].

2.3.2 Constraints

In this section, three types of constraints are considered: energy balances,
design, and operation constraints. Regarding the energy balance constraints, the
electricity demand is satisfied by the PV panels and wind turbines. When the
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electric load changes, the batteries are used to effectively adjust the electricity
balance and keep the voltage and frequency constant, and Eqs. (17) and (18) are
required to describe the operation state of batteries. Notably, the batteries are only
able to deal with the daily fluctuations, and Eq. (16) can be applied to any hour
except for the first hour of the day, while Eq. (18) can only be applied to the first
hour of the day:

Q t,PV þ Q t,WT þ Sdist � Scht ¼ Dt (16)

St ¼ St�1nloss þ Scht nch � Sdist =ndis (17)

St ¼ Stþ23nloss þ Scht nch � Sdist =ndis (18)

where Dt is the electric load at time-window t [kWh]; Q t,PV and Q t,WT indicate
the energy output from the PV panels and wind turbines at time-window t [kWh];
Scht and Sdist are the charging and discharging rate of the battery at time-window t
[kWh]; St represents the electricity stored in the battery at time-window t [kWh];
and nloss, nch, and ndis represent the battery’s loss, charging, and discharging
efficiency, respectively, [�].

As for the design and operation constraints, the operating power of technology i
should be less than the rated power, as defined in Eqs. (19) and (20). In addition,
Eq. (21) requires that the installation capacity must be within the maximum limit to
ensure safe and stable operation of technology i:

Q t,i ≤Capi (19)

St ≤Capbattery (20)

0≤Capi ≤BiMaxi (21)

where Maxi is the upper limit of the capacity of technology i [kW, kWh].

2.3.3 Model solving

Based on the computer with 8 GB of RAM memory and solution environment
with 1.6 GHz of CPU, the model was programmed with the software MATLAB R2015
and solved by the business solver GUROBI 8.1.0 to obtain the global optimum.

3. Case study

3.1 The forecast results of LSTM model

Firstly, this part is to predict the solar energy of the solar power plants. In area
A, there are eight solar plants located in different regions. Historical data from
January to May 2017 is used for experiment with a time interval of 30 minutes. The
measurement equipment data including measured temperature and global solar
radiation is from the power system, and the weather conditions are from the
weather bureau. In this study, in order to evaluate the quality of the LSTM model,
the evaluation indexes are root mean squared error (RMSE) and mean absolute
error (MAE). The formulas of these two are defined as follows:

MAE ¼
1
n

X

n

i¼1

∣ pi � ri∣ (22)
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Xn

i¼1
pi � ri
� �2

r

(23)

where n means the total number of the data, pi is the predicted value, and ri is
the real value.

In this part, the data of January is used for training PSO-LSTM. The training sets,
validation sets, and testing sets account for 80, 10, and 10%. And RMSE of the
testing data is used as the fitness value of PSO. The parameters of the LSTM model
are hidden units, learning rate, and time step. The corresponding range is 1–30,
0.0001–0.1, and 1–50 respectively, as shown in Table 1. After executing the
PSO-LSTM, the suitable parameters are optimized and shown in Table 1. The
convergence of RMSE is figured in Figure 3.

After determining the suitable LSTM model, the prediction model for solar
energy is established. Data from February to mid-May is used to train this predic-
tive model, and other data is used to test its accuracy. After the data is tested, the
MAE and RMSE are 8.7 and 16.3, respectively. In order to illustrate the superiority
of PSO-LSTM, the prediction results of basic LSTM and artificial neural network
(ANN) are compared. And the predicted results and real value of the last 6 days of
May are shown in Figure 4.

3.2 The optimal results of the renewable energy system

From the aforementioned analysis, the prediction model for solar energy is
accurate. With the input of the measurement equipment data and weather condi-
tions, the output of the solar energy can be predicted precisely. The hourly output
forecast curve of the solar power plant and the known wind power energy and the
electricity demand are shown in Figure 5. The technical and cost information of

Neural units Learning rate Time step

Range 1–30 0.0001–0.1 1–50

Result 20 0.01 5

Table 1.
The parameters of the LSTM network.

Figure 3.
RMSE of the PSO-LSTM.
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technologies are summarized in Table 2 [26–28], and the loss, charging, and
discharging efficiency of battery are set as 99.9, 90, and 90%, respectively [29]. The
discount rate is assumed to be 8% to annualize the total investment cost.

By solving the MILP model, the optimal results of the renewable energy system
can be obtained. The annual total cost is equal to 109.91 million. Specifically, the

Figure 4.
The predicted results and the real value.

Figure 5.
Forecast of solar power plant and wind farm and electricity demand.

Technology Size range

(MW, MWh)

Efficiency Capital cost

(CNY/kW, CNY/kWh)

Fixed cost

(CNY)

Lifetime

(a)

PV panels 0–500 17% 1500 34,500 20

Wind
turbine

0–500 35% 3500 17,900 25

Battery — — 85 11,600 20

Table 2.
The technical and cost information of technologies.
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total capacities of PV panels, wind turbines, and batteries are 140, 270, and 185
MWh. Obviously, the PV panels are selected due to the low investment cost, and
the capacities reach the optimal to match with the limited solar power. The wind
turbines are installed to work when the solar power is equal to 0. The batteries are
installed to store the energy generated by the energy generation technologies to
reduce the investment cost.

4. Conclusion

In this work, LSTM model is established to forecast the output of renewable
energy in multiple regions, considering the correlation of time series and the change
of climate conditions. Then, PSO algorithm is applied to optimize the parameters of
the LSTM model. Results show that PSO-LSTM model is highly accurate with small
error. Based on the forecast results, a MILP model is established to obtain the
configuration of the renewable energy system with minimal total annual cost.

In future work, other intelligent algorithms, such as differential evolution, the
simulated annealing algorithm, and ant colony optimization, can also be applied to
select suitable parameters for long short-term memory. Besides, it is also important
to study solar and wind energy access to power systems.
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Appendices and nomenclature

Sets and indices

i∈ I all technologies: PV panels, wind turbine, and battery
t∈T number of time windows

Continuous parameters

CCac total capital cost [CNY]
CF total fixed cost [CNY]
CFCi fixed cost of technology i [CNY]
CUCi unit cost of technology i [CNY/kW, CNY/kWh]
CRFi capital recovery factor of technology i [-]
ct the cell state at time t
ct the new candidate information at time t
Dt electric load at time-window t [kWh]
f t the forget gate at time t
ht the hidden state at time t
it the input gate at time t
Maxi the upper limit of the capacity of technology i [kW,

kWh]
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nloss the loss efficiency of the battery [-]
nch the charging efficiency of the battery [-]
ndis the discharging efficiency of the battery [-]
Ni lifetime of technology i [year]
ot the output gate at time t
Q t,i energy output from the technology i, at time-window t

[kWh]
xt the input information at time t

Positive variables

Bi if the technology i is selected for installation, Bi ¼ 1;
otherwise, Bi ¼ 0

Capi rated power of technology i [kW, kWh]
Scht charging rate of the battery at time-window t [kWh]

Sdist
discharging rate of the battery at time-window t
[kWh]

St electricity stored in the battery at time-window t
[kWh]
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