
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322580383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chapter

Optimal Bidding in Wind Farm
Management
Alain Bensoussan and Alexandre Brouste

Abstract

We study the problem of wind farm management, in which the manager com-
mits himself to deliver energy in some future time. He reduces the consequences of
uncertainty by using a storage facility (a battery, for instance). We consider a
simplified model in discrete time, in which the commitment is for the next period.
We solve an optimal control problem to define the optimal bidding decision. Appli-
cation to a real dataset is done, and the optimal size of the battery (or the overnight
costs) for the wind farm is determined. We then describe a continuous time version
involving a delay between the time of decision and the implementation.

Keywords: optimal control, stochastic control, wind farm management,
wind production forecast, storage

1. Introduction

A higher penetration level of the wind energy into electric power systems plays a
part in the reduction of CO2 emissions. In the meantime, traditional operational
management of power systems is transformed by taking into consideration this
fluctuating and intermittent resource. Smart grids and storage systems have been
developed to overcome these challenges.

For wind power plants, storage is a straightforward solution to reduce renewable
variability. It can be used to store electricity in hours of high production and inject
electricity in the grid later on. The performance of the operational management can
be therefore improved by considering simple charge-discharge plans based on
short-term forecasts of the renewable production [1]. For instance, optimal man-
agement of wind farms associated with hydropower pumped storage showing eco-
nomic benefit and increasing the controllability have been studied in [2–4]. Other
examples are the sizing of a distributed battery in order to provide frequency
support for a grid-connected wind farm [5] and the optimal operation of a wind
farm equipped with a storage unit [6, 7].

For the specific case of isolated systems, which is the aim of our paper, it is
necessary to think about distributed energy storage as battery [8], ultra-capacitors
[9], or flywheels [10]. In this setting, the question of economic viability in isolated
islands without additional reserves arises. Here, the storage unit allows wind farms
to respect the scheduled production.

The storage costs will represent a large part of the overnight capital costs and
motivate the different researches on storage. Generally the sizing of the storage
device is reduced to a minimization problem of the fixed and variable costs of the
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storage and its application (see [11, 12], for a complete analysis of the cash flow of
the storage unit).

In this paper, we present a simplified model in discrete time, in which the
commitment is for the next period. We solve an optimal control problem to define
the optimal bidding decision. The mathematical setting of the problem is described
in Section 2. The main result is detailed in Section 3. Application on a real dataset is
described in Section 4. The continuous version of the problem is also described in
Section 5. A conclusion ends the paper.

2. Setting of the problem

2.1 General description

In our problem, the manager has to announce an energy production to be

delivered to the next period. Considering the kth period, we may think that the
announcement is made at the beginning of the period and the delivery at the end of

the period. Of course the real delivery will be split along the kþ 1ð Þth period. This
splitting will be omitted in this stylized model. It is convenient to consider the full

delivery at the end of the kth period which is the beginning of the kþ 1ð Þth period.

So, at the beginning of the kth period (day or hour), the manager commits himself to
deliver vk units of energy (kWh or MWh). To simplify, we discard margins of
tolerance. To decide, he knows the amount of energy stored in the battery, called yk.
The second element concerns the windfarm. The energy produced by the windfarm
is a stochastic process Zk. More precisely, Zk is the energy produced during the

k� 1ð Þth period, which we consider to be available at the beginning of the kth period.
So Zk and all previous values are known. However to fulfill his commitment, the

manager will rely on Zkþ1, the energy produced during the kth period, which we

consider, with our convention, to occur at the end of the kth period, which is the

beginning of the kþ 1ð Þth period. So it is not known by the manager, when he takes
his decision. We model the process Zk as a Markov chain with transition probability
density f k ζjzð Þ: A key issue concerns the choice of this density which is discussed in
the application in Section 4. Precisely, although formally

Prob Zkþ1 ¼ ζjZk ¼ zð Þ ¼ f k ζjzð Þ (1)

In fact, Zk is obtained through the power law, operating on another Markov
chain, the wind speed (see [13, 14] for examples of such Markov chains).

We denote by Fk ζjzð Þ the CDF of the transition probability. We also set Fk ζjzð Þ ¼
1� Fk ζjzð Þ:

In the language of stochastic control, the decision vk (control) is measurable with

respect to F k ¼ σ Z1,⋯,Zkð Þ: The storage yk is also adapted to F k
: The evolution of

yk is defined by the equation

ykþ1 ¼ min M, yk þ Zkþ1 � vk
� �� �þ

(2)

Indeed, the available energy at the end of the kth period is yk þ Zkþ1: If this
quantity is smaller than vk, then the manager cannot fulfill his commitment; he
delivers what he has, namely, yk þ Zkþ1; and the storage becomes empty. If the
available energy yk þ Zkþ1 is larger than vk, then the manager delivers his
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commitment vk and tries to store the remainder yk þ Zkþ1 � vk: This is possible
only when this quantity is smaller than M, which represents the maximum
storage of the battery. If yk þ Zkþ1 � vk >M, then he charges up to M, and the
quantity yk þ Zkþ1 � vk �M is lost (given free to the grid). This results in
formula (2). In this equation, we do not consider the constraint to keep a minimum
reserve. We also are considering the battery as a reservoir of kWh, which we can
reduce or increase as done in inventory of goods. Finally, we neglect the losses in
the battery.

2.2 The payoff

We want now to write the payoff to be optimized. During the period k, if the
manager delivers his commitment vk, he receives the normal income pvk: If he fails
and delivers only yk þ Zkþ1 < vk, there is a penalty. In the sequel, we have chosen

the following penalty ϖ yk þ Zkþ1 � vk
� ��

, which is common in inventory theory.

The parameter ϖ can be adjusted, for instance, to compare with the conditions on
the spot market.

In our set up, the pair yk,Zk is a Markov chain. So we have a controlled
Markov chain and the state is two-dimensional. We introduce a discount factor
denoted by α, which is useful if we consider an infinite horizon. We can have
α ¼ 1, otherwise. Initial conditions are given at time n and denoted by x, z. We call
V ¼ vn,⋯vNð Þ the control, where N is the horizon. Finally, we want to maximize the
functional

Jn x, z;Vð Þ ¼
X

N

k¼n

αk�nE p min vk, yk þ Zkþ1

� �

�ϖ yk þ Zkþ1 � vk
� ��� �

(3)

3. Dynamic programming

3.1 Bellman equation

The value function is defined by

Un x, zð Þ ¼ sup
V

Jn x, z;Vð Þ (4)

Writing

min vk, yk þ Zkþ1

� �

¼ vk � yk þ Zkþ1 � vk
� ��

we get also

Jn x, z;Vð Þ ¼
X

N

k¼n

αk�nE pvk � pþϖð Þ yk þ Zkþ1 � vk
� ��� �

(5)

We can then write Bellman equation

Un x, zð Þ ¼ sup
v>0

fpvþ E½� pþϖð Þ xþ Znþ1 � vð Þ�þ

þ αUnþ1 min M, xþ Znþ1 � vð Þð Þþ,Znþ1

� �

∣Zn ¼ z�g

(6)
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It is convenient to make the change of variables v� x ¼ y and obtain

Un x, zð Þ ¼ pxþ sup
xþ y>0

fpyþ E½� pþϖð Þ Znþ1 � yð Þ�þ

þ αUnþ1 min M,Znþ1 � yð Þð Þþ,Znþ1

� �

∣Zn ¼ z�g
(7)

with final equation

UNþ1 xð Þ ¼ 0

We have x∈ 0,M½ � and z>0:

3.2 Main result

We state the following proposition:
Proposition 1. The solution of (7) is of the form

Un x, zð Þ ¼ pxþ Kn zð Þ (8)

Proof. For n ¼ N, we have

UN x, zð Þ ¼ pxþ sup
xþ y>0

py� pþϖð ÞE ZNþ1 � yð Þ�jZN ¼ z½ �f g

Consider the function

φNþ1 yð Þ ¼ py� pþϖð ÞE ZNþ1 � yð Þ�jZN ¼ z½ �

then, for y<0, we have φNþ1 yð Þ ¼ py: It is monotone increasing, so the maxi-
mum cannot be reached at a point y<0: It follows that (8) is satisfied at n ¼ N, with

KN zð Þ ¼ sup
y>0

py� pþϖð ÞE ZNþ1 � yð Þ�jZN ¼ z½ �f g (9)

We have, for y>0

φNþ1 yð Þ ¼ py� pþϖð Þ

ð

y

0

y� ζð Þ f ζjzð Þdζ

and φNþ1 yð Þ is concave, since

φ0
Nþ1 yð Þ ¼ p� pþϖð ÞF yjzð Þ

φ}Nþ1 yð Þ ¼ � pþϖð Þ f yjzð Þ<0

and φ0
Nþ1 0ð Þ ¼ p,φ0

Nþ1 þ∞ð Þ ¼ �ϖ: So the maximum is uniquely defined.
Assume now (8) for nþ 1: We insert it in (7) to obtain

Un x, zð Þ ¼ pxþ sup
xþ y>0

fpyþ E½� pþϖð Þ Znþ1 � yð Þ�þ

þαp min M,Znþ1 � yð Þð Þþ∣Zn ¼ z�g þ αE Knþ1 Znþ1ð ÞjZn ¼ z½ �

Consider now the function

φnþ1 yjzð Þ ¼ pyþ E½� pþϖð Þ Znþ1 � yð Þ�þ

þαp min M,Znþ1 � yð Þð Þþ∣Zn ¼ z�
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For y<0, it reduces to

φnþ1 yjzð Þ ¼ pyþ αp MFnþ1 yþMð Þþ
� �

þ

ð

yþMð Þþ

0

ζ � yð Þ f nþ1 ζjzð Þdζ

2

6

4

3

7

5

and

φ0
nþ1 yjzð Þ ¼ p� αpFnþ1 yþMð Þþ

� �

≥ p� αpFnþ1 Mð Þ>0

and thus cannot reach a maximum for y<0: Considering y>0, we have

φnþ1 yjzð Þ ¼ py� pþϖð Þ

ð

y

0

y� ζð Þ f nþ1 ζjzð Þdζþ

þαp MFnþ1 yþMð Þ þ

ð

yþM

y

ζ � yð Þ f nþ1 ζjzð Þdζ

2

6

4

3

7

5

Again, this function is concave and

φ0
nþ1 yjzð Þ ¼ p� p 1� αð Þ þϖð ÞFnþ1 yjzð Þ � αpFnþ1 yþMjzð Þ

φ00
nþ1 yjzð Þ ¼ � p 1� αð Þ þϖð Þ f nþ1 yjzð Þ � αp f nþ1 yþMjzð Þ<0

φ0
nþ1 0jzð Þ ¼ p� αpFnþ1 Mjzð Þ>0

φ0
nþ1 þ∞jzð Þ ¼ �ϖ

and the property (8) is proven with

Kn zð Þ ¼ α

ð

þ∞

0

Knþ1 ζð Þ f nþ1 ζjzð Þdζ þ max
y>0

(

py� pþϖð Þ

ð

y

0

y� ζð Þ f nþ1 ζjzð Þdζþ

þαp MFnþ1 yþMð Þ þ

ð

yþM

y

ζ � yð Þ f nþ1 ζjzð Þdζ

2

6

4

3

7

5

)

(10)

The proof is completed. ■

3.3 Optimal feedback

We define by Sn zð Þ the point at which φnþ1 yjzð Þ attains its maximum. It is
positive and uniquely defined. It follows that the optimal feedback in Bellman
equation (6) is v̂n x, zð Þ ¼ xþ Sn zð Þ and Sn zð Þ is the unique solution of

p� p 1� αð Þ þϖð ÞFnþ1 Snjzð Þ � αpFnþ1 Sn þMjzð Þ ¼ 0

p� pþϖð ÞFNþ1 SNjzð Þ ¼ 0
(11)
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The recursion (10) writes

Kn zð Þ ¼ α

ð

þ∞

0

Knþ1 ζð Þ f nþ1 ζjzð Þdζ þ p

ð

Sn zð Þ

0

Fnþ1 ζjzð Þdζ þ αp

ð

Sn zð ÞþM

Sn zð Þ

Fnþ1 ζjzð Þdζ

�ϖ

ð

Sn zð Þ

0

Fnþ1 ζjzð Þdζ

KN zð Þ ¼ p

ð

SN zð Þ

0

FNþ1 ζjzð Þdζ �ϖ

ð

SN zð Þ

0

FNþ1 ζjzð Þdζ

(12)

It is worth emphasizing that the function Kn zð Þ increases withM, as can be
expected. The feedback has an easy interpretation. The bidding is the level of inven-
tory plus a fixed amount depending on the last value of energy produced by the
turbine. It is interesting to note that the quantity Sn zð Þ decreases withM: This is not
so obvious. Clearly, the largerM, the better it is, as captured by the increase of Kn zð Þ:
We can understand why Sn zð Þ decreases withM, as follows:WhenM is large, the risk
of wasting energy by lack of storage is reduced, so it makes sense to focus on the other
risk, to overbid and pay the penalty. Hence it makes sense to reduce the bid.

4. Application

Wedescribe in this section an application on awind farmproject financed by EREN
on a French islandwith national tender process. First we set the energy price

Figure 1.
Histogram of the production over a period of 30 min.
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p ¼ 230 EUR/MWh(Official Journal fromMarch8, 2013) and the discount factorα ¼ 1.
In this first application,N ¼ 48which is the number of periods of 30min in a day.

In the sequel, we have chosen the penalty ϖ yk þ Zkþ1 � vk
� ��

which is common
in inventory theory. The parameter ϖ can be adjusted.

Some analysts would prefer the penalty p
2 yk þ Zkþ1

� �

11vk > ykþZkþ1
. This is rather

strange, because it is fixed, whatever be the level of failure. If the failure is very

Figure 2.
On the left, daily payoff Un x, zð Þ in terms of the size of the storage M for α ¼ 0:9, p ¼ 230, and ϖ ¼ 3

4 p. Here

z ¼ 3 MWh and the initial storage is empty with x ¼ 0 MWh. On the right, part of the decision Sn zð Þ (from the
direct wind production) in terms of the size of the storage M.
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small, the damage is not big, and still the penalty is high. Conversely, if the failure is
big, the damage is big, and still the penalty does not change. Even more surprising,
for a given level of commitment, the bigger the failure, the lower the penalty.

The production over a period of 30 min is presented on Figure 1. It is worth
mentioning that we used directly the data proposed from July 26, 2005 to March 9,
2008 captured by a measurement mast.

For this first application, stationary law is considered as Gaussian. Mean and
variance of the model are similar to those of the empirical distribution in Figure 1.
This model allows to construct closed-form cumulative distribution function Fk.
One-step forecasting error is 24% of the mean and 11% of the nominal power.

But this process does not take into account the stylized facts of the production on a
period of 30 min (positive values below nominal power limit, atom for zero produc-
tion, intraday seasonality, etc.). Consequently, in the optimal control problem, we use
the corresponding truncated Gaussian distribution (between 0 and 7 MWh).

Finally, the penalty is fixed (geometrically) to ϖ ¼ 3
4 p.

With these assumptions, the payoff with respect to the size of the storage is given
in Figure 2 for an empty storage x ¼ 0, and z is the average production as initial
conditions. Some simple economic models penalizing the size of the battery with its
costs would reveal an optimal size of the storage unit between 4 and 6 MWh.

5. Continuous time version

In the last section, we present a continuous version of the aforementioned
problem. This new problem exhibits interesting questions in control theory when
there is a delay between the decision and the application of the decision.

5.1 A continuous time model

We model the wind speed by a diffusion

dz ¼ g zð Þdtþ σ zð Þdw

z 0ð Þ ¼ z
(13)

where w tð Þ is a standard one-dimensional Wiener process, built on a probability
space Ω,A,P, and we denote by F t the filtration generated by the Wiener process.
This is the unique source of uncertainty in the model. We suppose that the model
has a positive solution.

The energy produced per unit of time at time t is φ z tð Þð Þ where the function φ is

the power law. So the energy produced on an interval of time 0, tð Þ is
Ð t
0φ z sð Þð Þds:

We assume that the manager bids for a delivery program with a fixed delay h: In
other words, if he decides a level v tð Þ per unit of time at time t, the delivery will be

at tþ h: On the interval of time 0, tð Þ the delivery is
Ð t
hv s� hð Þds, provided t> h,

otherwise it is 0:

Define

η tð Þ ¼ xþ

ð

t

0

φ z sð Þð Þds�

ð

t

h

v s� hð Þds, t> h

η tð Þ ¼ xþ

ð

t

0

φ z sð Þð Þds, t≤ h

(14)
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which represents the excess of production of energy over the delivery on the
interval 0, tð Þ: The initial value x represents the initial amount of energy in the
storage unit. We have 0≤ x≤M: We should have similarly 0≤ η tð Þ≤M, ∀t: Indeed
one cannot deliver more than one produces, and the storage of the excess produc-
tion is limited by M: This constraint is more complex to handle than in the discrete
time case. To simplify we shall treat the constraints with penalties and not impose
them. In particular, for coherence, we remove the condition 0≤ x≤M, which is a
purely mathematical extension. The control is the process v :ð Þ, which is adapted to
the filtration F t and just positive. We then define the payoff. The payoff will
include the penalty terms and the profit from selling the energy. We assume that
the manager can sell his production up to his commitment at a fixed price per unit
of time and unit of energy p: We note that η tð Þ<0 captures the situation in which
the manager delivers less than his commitment, and there is a penalty for it. The
payoff is now written as

Jxz v :ð Þð Þ ¼ pE

ð

þ∞

h

exp � αs min φ z sð Þð Þ, v s� hð Þð Þds

�ϖE

ð

þ∞

0

exp � αsη� sð Þds� πE

ð

þ∞

0

exp � αs η sð Þ �Mð Þþds

(15)

5.2 Rewriting the payoff functional

Because of the delay, we cannot consider the pair z tð Þ, η tð Þ as the state of a
dynamic system and apply dynamic programming. In fact, we shall see that it is
possible to rewrite the payoff (15) in terms of the pair z tð Þ, x tð Þ with

x tð Þ ¼ xþ

ð

t

0

φ z sð Þð Þds�

ð

t

0

v sð Þds (16)

and the standard reasoning of dynamic programming will become applicable.
The first transformation concerns the term

I ¼ E

ð

þ∞

h

exp � αs min φ z sð Þð Þ, v s� hð Þð Þds

We have

I ¼ exp � αhE

ð

þ∞

0

exp � αs min φ z sþ hð Þð Þ, v sð Þð Þds

¼ exp � αhE

ð

þ∞

0

exp � αsE min φ z sþ hð Þð Þ, v sð Þð ÞjF s½ �ds

and we need to compute E min φ z sþ hð Þð Þ, v sð Þð ÞjF s½ �. We remember that v sð Þ is
F s measurable and that z sð Þ is a stationary Markov process. Let us introduce the
transition probability density m η, s;zð Þ representing
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m η, s;zð Þ ¼ Prob z sð Þ ¼ ηjz 0ð Þ ¼ z½ �

The function m η, s;zð Þ is the solution of Fokker-Planck equation

∂m

∂s
�

1

2

∂
2

∂η2
σ2 ηð Þm
� �

þ
∂

∂η
g ηð Þmð Þ ¼ 0

m η, 0;zð Þ ¼ δ η� zð Þ

(17)

Then by stationarity of the Markov process z sð Þ, we can write

E min φ z sþ hð Þð Þ, v sð Þð ÞjF s½ � ¼

ð

R
min φ ξð Þ, v sð Þð Þm ξ, s;z sð Þð Þdξ (18)

Therefore

I ¼ exp � αhE

ð

þ∞

0

exp � αs

ð

R
min φ ξð Þ, v sð Þð Þm ξ, s;z sð Þð Þdξ (19)

The next transformation concerns

II ¼ E

ð

þ∞

0

exp � αsη� sð Þds

II ¼ E

ð

h

0

exp � αsη� sð Þdsþ E

ð

þ∞

h

exp � αsη� sð Þds

¼ II1 þ II2:

(20)

The first integral does not depend on the control and is 0, when x≥0, as it will
be the case in practice. The second integral is written as

II2:

¼ exp � αhE

ð

þ∞

0

exp � αsη� sþ hð Þds

We note that

η sþ hð Þ ¼ x sð Þ þ

ð

sþh

s

φ z τð Þð Þdτ

Recalling the definition of x sð Þ, see (16). We then can write

Eη� sþ hð Þ ¼ EE η� sþ hð ÞjF s½ � ¼

¼ Eθ x sð Þ, z sð Þ;hð Þ

with

θ x, z;sð Þ ¼ E xþ

ð

s

0

φ z τð Þð Þdτ

0

@

1

A

�

(21)
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The argument x is a real number and z 0ð Þ ¼ z. So

II2 ¼ exp � αhE

ð

þ∞

0

exp � αsEθ x sð Þ, z sð Þ;hð Þds

We can also write

II1 ¼

ð

h

0

exp � αsθ x, z;sð Þds

so we have

II ¼

ð

þ∞

0

exp � αsθ x, z;sð Þdsþ exp � αhE

ð

þ∞

0

exp � αsEθ x sð Þ, z sð Þ;hð Þds (22)

We can give a similar formula for the second penalty term

III ¼ E

ð

þ∞

0

exp � αs η sð Þ �Mð Þþds (23)

We introduce the function

χ x, z;sð Þ ¼ E xþ

ð

s

0

φ z τð Þð Þdτ �M

0

@

1

A

þ

(24)

and we can write

III ¼

ð

h

0

exp � αsχ x, z;sð Þdsþ exp � αhE

ð

þ∞

0

exp � αsEχ x sð Þ, z sð Þ;hð Þds (25)

Combining results, we obtain the formula

Jxz v :ð Þð Þ ¼ �ϖ

ð

h

0

exp � αsθ x, z;sð Þds� π

ð

h

0

exp � αsθ x, z;sð Þdsþ

þ exp � αhE

ð

þ∞

0

exp � αs p

ð

R

min ðφ ξð Þ, v sð ÞÞmðξ, s;z sð ÞÞdξ�

�

�ðϖθðx sð Þ, z sð Þ;hÞ þ πχðx sð Þ, z sð Þ;hÞÞ

�

(26)

or

Jxz v :ð Þð Þ ¼ ρh x, zð Þ þ exp � αhE

ð

þ∞

0

exp � αs lh x sð Þ, z sð Þ, v sð Þð Þds (27)
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with

lh x, z, vð Þ ¼ p

ð

R
min φ ξð Þ, vð Þm ξ, s;zð Þdξ�

� ϖθ x, z;hð Þ þ πχ x, z;hð Þð Þ

(28)

The stochastic control problem becomes

dx

dt
¼ φ z tð Þð Þ � v tð Þ

dz ¼ g zð Þdtþ σ zð Þdw, x 0ð Þ ¼ x, z 0ð Þ ¼ z

sup
v :ð Þ

E

ð

þ∞

0

exp � αs lh x sð Þ, z sð Þ, v sð Þð Þds

(29)

which is a standard stochastic control problem. To avoid singularities, we
impose a bound on the control v tð Þ: So we impose

0≤ v tð Þ≤φ z tð Þð Þ þ v a:s: (30)

in which v is a fixed constant.

5.3 Dynamic programming

Let us define the value function

Φ x, zð Þ ¼ sup
v :ð Þj 0≤ v tð Þ≤φ z tð Þð Þþvf g

E

ð

þ∞

0

exp � αs lh x sð Þ, z sð Þ, v sð Þð Þds (31)

Then it is easy to write the Bellman equation for the value function, namely,

αΦ ¼ φ zð Þ
∂Φ

∂x
þ g zð Þ

∂Φ

∂z
þ

1

2
σ2 zð Þ

∂
2
Φ

∂z2
þ

þ sup
0≤ v≤φ zð Þþv

lh x, z, vð Þ � v
∂Φ

∂x

� 	

(32)

A priori x∈R and z≥0 (we may assume that σ 0ð Þ ¼ 0Þ: We can add
growth conditions to get a problem which is well posed. The optimal
feedback v̂h x, zð Þ is obtained by taking the sup in the bracket, with respect to the
argument v:.

5.4 The case h ¼ 0

The case h ¼ 0 has a trivial solution. We note that

l0 x, z, vð Þ ¼ pmin φ zð Þ, vð Þ �ϖx� � π x�Mð Þþ (33)
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The optimal feedback is then

v̂0 x, zð Þ ¼

0 if x<0

φ zð Þ if 0≤ x≤M

φ zð Þ þ v if x>M






















(34)

so (32) becomes

αΦ ¼ ϖxþ φ zð Þ
∂Φ

∂x
þ g zð Þ

∂Φ

∂z
þ

1

2
σ2 zð Þ

∂
2
Φ

∂z2
, if x<0 (35)

αΦ ¼ pφ zð Þ þ g zð Þ
∂Φ

∂z
þ

1

2
σ2 zð Þ

∂
2
Φ

∂z2
, if 0< x<M (36)

αΦ ¼ pφ zð Þ � π x�Mð Þ � v
∂Φ

∂x
þ g zð Þ

∂Φ

∂z
þ

1

2
σ2 zð Þ

∂
2
Φ

∂z2
, if x>M (37)

The solution for 0< x<M does not depend on x and has an easy probabilistic
interpretation

Φ x, zð Þ ¼ Φ zð Þ ¼ pE

ð

þ∞

0

exp � αsφ z sð Þð Þds, (38)

For x<0 or x>M, we have to solve parabolic problems, considering x as a time,
backward and forward. We define the values Φ 0, zð Þ and Φ M, zð Þ by Φ zð Þ defined
by (38).

5.5 Analytical problems for θ and χ

The functions θ x, z, sð Þ and χ x, z, sð Þ are solutions of the parabolic PDE

�
∂θ

∂s
þ φ zð Þ

∂θ

∂x
þ g zð Þ

∂θ

∂z
þ

1

2
σ2 zð Þ

∂
2θ

∂z2
¼ 0

θ x, z, 0ð Þ ¼ x�
(39)

�
∂χ

∂s
þ φ zð Þ

∂χ

∂x
þ g zð Þ

∂χ

∂z
þ

1

2
σ2 zð Þ

∂
2χ

∂z2
¼ 0

χ x, z, 0ð Þ ¼ x�Mð Þþ
(40)

This allows to compute θ x, z, hð Þ and χ x, z, hð Þ.

6. Conclusions

The problem of the optimal delivery forwind energy in some future timewith a
storage facility (a battery for instance) is considered.We solve an optimal control
problem to define the optimal bidding decision in a simple discrete stochastic problem
and apply it to real data.Optimal size of thebattery and the overnight costs are discussed.
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