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Chapter

Energy Infrastructure of the
Factory as a Virtual Power Plant:
Smart Energy Management
Eva M. Urbano and Víctor Martínez Viol

Abstract

Smart energy factories are crucial for the development of upcoming energy
markets in which emissions, energy use and network congestions are to be
decreased. The virtual power plant (VPP) can be implemented in an industrial site
with the aim of minimizing costs, emissions and total energy usage. A VPP con-
siders the future situation forecasting and the situation of all energy assets, includ-
ing renewable energy generation units and energy storage systems, to optimize the
total cost of the plant, considering the possibility to trade with the energy market.
For a VPP to be constructed, a proper communication system is essential. The
energy management system (EMS) enables the monitoring, management and con-
trol of the different energy devices and permits the transference of the decisions
made by the VPP to the different energy assets. VPP concept is explained together
with the methods used for forecasting the future situation and the energy flow
inside the facility. To reach its benefits, the optimization of the VPP is assessed.
After that, the communication technologies that enable the VPP implementation
are also introduced, and the advantages/disadvantages regarding their deployment
are stated. With the tools introduced, the VPP can face the challenges of energy
markets efficiently.

Keywords: virtual power plant, smart grid, energy hub, ANFIS, communication
technologies, energy management system

1. Introduction

Industry 4.0 is normally understood as smart factories where automation, digi-
talization, Internet of Things (IoT), cognitive computing and others are used.
However, this does not stand without the use of energy. There is a settled relation-
ship between energy consumption, energy prices and economic growth in different
countries. For industries, the access to reliable and affordable energy is crucial to
create greater economic and social prosperity. In the industry that is emerging
nowadays, the physical processes are studied, modeled and monitored, and physical
systems communicate and cooperate in a real-time scenario in order to optimize the
behavior of the plant. The same can be done with energy. To reach the best effi-
ciency of a manufacturing plant, the energy consumption processes have to be
studied, modeled and monitored; the communication of the energy flows between
equipment has to be known, and future situation prediction and real-time decisions
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have to be taken regarding energy purchasing, energy trading, generation and
consumption.

There are several reasons for why the development of energy-smart factories is
interesting. Policy is making an effort in order to achieve a reduction of greenhouse
gas emissions, an increase in the share of renewable energy and an improvement in
the energy efficiency. As an example, in Europe, the energy usage in the industrial
sector accounts for more than 25% of total energy consumption, process heating
having the most significant use with 66% followed by electricity with 26%. If
energy efficiency measures are developed and incorporated in the industrial sector,
the potential savings can be of more than 20% as shown in [1]. Regarding the
increase in the share of renewable energies, it will be possible with the integration of
smart energy systems. Some renewable energy sources such as solar and wind
power generation are characterized by an intermittent nature. One of the funda-
mental properties of the electric grid is that the supply (generation) and the
demand (consumption) must always be balanced. With the increase in the share of
renewable power sources, the energy may not be generated in the best suited
moment and with the exact amount of power dealing to grid instability and not
assuring a security of supply. By defining, integrating and controlling the energy
flow in order to optimize the consumption of energy hubs (EH) and, from there,
exploit it in virtual power plants (VPP), the industrial sector the electricity usage
can be optimized, allowing a greater efficiency and flexibility, improving the
capacity factor of the installed renewable energy sources. Up to date, the EH
concept has been presented by several studies in the industrial field, and its expan-
sion into a VPP is a new research field in which the focus is the possibility of energy
trading with the grid, as can be seen in [2, 3].

The constant monitoring of the energy flow combined with the integration of
different energy generation sources will require management technologies capable of
recognizing, predicting and acting in a way to guarantee quality, sustainability and
efficiency, including costs, in energy consumption. Therefore, modern energy man-
agement systems should be able to monitor and exploit large volumes of data col-
lected by various types of meters transmitted by digital channels mainly based on the
IoT. The application of artificial intelligence techniques related with machine learning
and big data will require thousands of meters collecting data at high resolution and
high frequency (gigabytes per day), and, in order to assure the reliability and quality
of this data, some aspects must be addressed such as the data model, the integration
of information coming from several inputs or the data security.

The optimization of energy use will produce a direct reduction of costs and
pollutants as the total energy consumption will be less. By increasing the share of
renewable energy sources in the grid, the merit order will change. The merit order
ranks the available energy sources from its operational cost, the cheaper ones being
the first to meet the demand. Solar power generation and wind power generation
are of the cheapest energy generation technologies, so if they are able to provide
power, the operational cost of the last active power plant in order to meet demand
will be less, allowing a more economic purchase of energy.

The path to reach a smart energy grid in the Industry 4.0 has already started.
Development has been observed in the area of energy technologies, improving the
efficiency of isolated systems. However, the overall energy efficiency can be greatly
improved if multi-energy assets are analyzed and utilized in a more unified way.
Energy assets can be interconnected physically in a plant, improving the energy
usage in the plant and creating an EH. There is also the possibility to aggregate
different plants physically or virtually, creating a digital entity of active prosumers
that will be presented to the grid as a unique system that will be able to both
consume and generate electricity.
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This chapter is structured as follows. In Section 2, the VPP concept and tools are
explained. First of all, its definition is exposed. This definition broadens the concept
of EH and its functionality, creating a new entity able to perform an optimization
considering internal and external factors. Secondly, the forecasting tools for
predicting the situation at a stated horizon are presented. These tools include the
forecast of renewable energy sources and demand and energy price from the grid.
Third, the EH concept and method are developed for a general industry. Then, the
optimization of the system is assessed, and resolution methods are proposed for
obtaining high-quality results. In Section 3, some aspects related to the automation
pyramid and the communication requirements of its levels are presented. Then
some of the communication technologies and protocols are briefly introduced. Last
of all, conclusions are drawn in Section 4.

2. Industry as a virtual power plant

One of the most important characteristics of the electrical grid is the constant
balance between generation and consumption. With the rise of intermittent renew-
able energies, a degree of uncertainty is introduced. The discontinuity of this type
of generation should not affect the fulfillment of the demand at every instant. With
a proper management of energy assets and energy storage systems, renewable
energy sources can be satisfactorily introduced without compromising the stability
of the system. Once the balance between supply and demand is assured, there is
leeway to generate an economic benefit from the energy transferred and stored
inside a facility, such as a VPP. The VPP would be a power prosumer, meeting the
local demand, and profit its own energy assets to trade energy with the external
grid. Nowadays, the smart microgrid and prosumer concepts are being developed
and tested in the tertiary sector, as can be seen in [4, 5]. Although the advancements
are done, the presented ideas need further investigation. The prosumer smart grid
approach can also be implemented in the industry, creating an energy-smart entity
that will deal with the challenges and demands of the coming energy markets and
will produce a profit from the exploitation of its own equipment against the exter-
nal primary energy grids.

2.1 Virtual power plant concept

A VPP is a network of decentralized, medium-scale power-generating units as
well as flexible power consumers and batteries. A VPP can be implemented in an
industrial site, composed by all the controllable energy assets and the renewable
energy generation units in the factory.

The VPP operates its energy assets efficiently taking into account the forecast of
internal and external factors with the aim of maximizing the efficiency of the
system in economic and environmental terms. As an example, internal factors can
comprise coefficient of performance (COP) and efficiencies of energy equipment,
energy storage capacity, energy generation at a given moment, cost of the different
subsystems and reschedulable loads (both electrical and thermal). External factors
may be constituted by electricity, natural gas and waste prices.

In Figure 1 an example of a VPP is shown. It can be appreciated that the
communication with the electrical grid is bidirectional, allowing to buy and sell
electricity depending on the forecasted conditions. The working behavior lays in an
energetic, economic and environmental evaluation that considers the forecasted
input energy price, the forecast of available energy inside the VPP and the fore-
casted demand.
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The benefits of implementing a VPP affect not only the industrial site itself but
also the electrical grid through demand response (DR). The creation of a VPP out of
an industrial facility will lead to:

• Integration of intermittent renewable energy, not only in the VPP but also in
other points of the grid due to the electricity price response of the VPP. Also,
expensive investments to expand the distribution network can be avoided if
the generation is locally available.

• Integration of small electricity producers into the distribution network. The
VPP itself is seen by the grid as a small electricity producer when the electricity
cost is high, and thus there is a need to increase the generation at that moment.

• Optimization of energy use inside the VPP. The demand is analyzed, modeled
and predicted using artificial intelligence method, and the optimal operation
point of energy providers is computed.

• Optimization of the integration of electric vehicles (EV) for vehicle to grid
(V2G) and grid to vehicle (G2V). The storage systems managing the surplus
energy at the VPP can be combined with the EV batteries, which will work
then as a part of the system. In this way not only the energy storage systems are
improved, but also the EV-grid integration is made easier.

• Reduction of emissions. By integrating renewable energy sources and
increasing the efficiency of the energy used, the emissions are directly reduced.

• Exploitation of energy assets. The systems present in a facility are nowadays
not used in all its potential. With the implementation of a VPP, its working
periods will be optimized according to internal and external factors and allowing
an exploitation and efficient use of all energy carriers present in a system.

• Market opening. There are several facilities that will allow the creation of a
VPP. However, their owners and operators are not aware of the possibilities

Figure 1.
Example schematic of a VPP where renewable energy sources (solar and wind) are present together with
cogeneration system, boilers, absorption cooling and energy storage systems.
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and benefits it will produce. The introduction of a VPP in an industrial site will
lead to a market opening that will encourage other similar facilities to take the
same role, and thus the previous benefits will be amplified to the whole
electrical grid.

• Autonomy and strong position of the owner of the facility in front of the
operators of the electricity market that will allow a greater competitiveness
market.

To implement the VPP features, the future energy status of the system should be
continuously computed, which includes demand, generation of renewable sources
and energy prices. This information leads to VPP operation including energy con-
version and storage, which drives the EH, a crucial part of the VPP as it optimizes
the path from energy input to demand. Once the forecast of the future situation and
the model of the EH is obtained, the VPP is formed. The objective of the VPP is to
fulfill local demand while, at the same time, exploiting its own energy assets to be
able to trade electricity with the grid. During the modeling and the optimization of
the VPP, the electricity exchange with the grid, the energy transfer with the energy
storage system, the dispatch factors between the present transformers and the
destination of power from the PV system are computed to assure an optimal oper-
ation from the economical, energetic and environmental points of view.

2.2 Future situation forecasting

Forecasting is the process of making predictions of the future based on past and
present data analyzing the trends that appear. Forecasting can be qualitative or
quantitative. For the application to a VPP, quantitative methods are more suitable,
as they are based on past data to estimate future states and do not lay on subjective
opinions. This approach extracts patterns of the available data and assumes that
these are expected to continue in the future and are applied usually to short- and
medium-term forecasts. There are several models used for forecast, and its suitabil-
ity depends on the nature of the problem that is being studied. Examples of them
are time series, causal and econometric forecasting and artificial intelligence. The
forecast of several variables is needed to optimize the VPP. The demand, generation
from renewable energy sources and electricity price from the grid are used in order
to compute the optimal operation point of the VPP.

2.2.1 Renewable energy

The prediction of the renewable energy that is generated depends directly on the
climatic conditions and the characteristics of the equipment. The prediction of
weather conditions, i.e. sun irradiation and wind speed, can be obtained from the
meteorology databases. Two types of renewable energy systems will be shown in
this section: photovoltaics (PV) and wind power (WP) generation.

On the one hand, for a PV system, the most important factor in estimating its
performance is solar radiation. The uncertainty in solar radiation is the largest
source of error in the computation of the energy provided, as shown in [6]. The
solar radiation depends on the orientation and the inclination of the area studied.
Once this value is obtained, the theoretical energy output can be computed. How-
ever, the result should be corrected by adding a performance ratio that is influenced
by factors such as shadows, dust, dirt, frost, snow, reflectance of the module
surface, conversion efficiency, sunlight spectrum and temperature. As an example,
in Figure 2, extracted from [7], the performance of different chemistries along
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temperature is shown. The value of the performance ratio (η) can be obtained
statistically, and then the output power of the PV system will be:

P ¼ Pnom
G

1000
η (1)

where G is the received solar irradiance inW=m2 and Pnom the peak power in kW.
On the other hand, for the case of wind turbines, there is a direct relationship

between wind speed and energy output [8]. The extra parameter that has to be
considered is air density, which can be computed using temperature and pressure and
obtained from a meteorological database as with the wind speed. The output power
can be computed with the data specified by using the wind turbine power curves
provided by the manufacturer. These curves are obtained by the manufacturer by
means of theoretical and statistical analysis of the performance of the turbine.

The previous methods are useful for a first assessment of the energy generated by
the renewable sources. However, after the renewable energy sources equipment are
installed and working on an industrial environment, the generation forecast can be
improved by modeling specifically its behavior. A correlation of meteorological data
with PV andWP output should be performed to assure high model accuracy and
obtain the real efficiency and performance of the equipment. According to [9, 10],
artificial neural networks (ANN) and support vector machine (SVM)-based fore-
casting methods are suitable for the modeling and prediction of the behavior of PV
generation systems, while ANN, adaptive neuro-fuzzy inference systems (ANFIS)
and autoregressive moving average (ARMA) perform well for WP generation.

2.2.2 Demand

The demand is the amount of load that the system has and the energy that is
required to be fulfilled. Inside a VPP, this demand can be divided into two types:
manageable and non-manageable. Non-manageable loads are those which run con-
tinuously or that cannot be controlled. Inside a VPP, the owner or end user can

Figure 2.
Performance of PV modules with a solar radiation of 800 W/m2.
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decide which loads are manageable and which are not according to the business
objective criteria. Manageable loads can be further divided into shiftable, inter-
ruptible and heating, ventilation and air conditioning (HVAC) loads. The forecast-
ing of both types of demands follows a different way and will be now assessed.

2.2.2.1 Non-manageable loads

Classically, energy loads can be either electrical or thermal. The behavior of both
types of demand lies in the same principles, so the prediction of them can be done
using the same method. In recent times, the artificial intelligence methods that have
been used for load forecasting (LF) include mainly neural networks, expert systems
and support vector machines. Nowadays, the focus lays in the development of
hybrid methods, combining different forecasting methodologies. For example, in
[11] a LF method based on self-organized map and support vector machine is
developed. The method is tested for prediction of the power consumption of a
whole city. However, its suitability for an industrial site application has not been
proven. In [12] an extreme learning machine with the Levenberg-Marquardt
method is proposed, and in [13] the possibility to use artificial neural network to
create a hybrid method with other techniques such as backpropagation, fuzzy logic,
genetic algorithm and particle swarm optimization is shown. The industry is a
sector where the demand can have an irregular and infrequent behavior depending
on several conditions, and it is constantly under improvement processes. For this
reason, a method that enables periodically auto-adjustment and high accuracy
results is searched. ANFIS aim at mapping input to output for highly nonlinear
processes such as energy management field. ANFIS was first introduced in [14] as a
combination of two soft computing methods: artificial neural network and fuzzy
logic. The ANFIS architecture is an adaptive network that uses supervised learning
on learning algorithm, which has a function similar to the model of Takagi-Sugeno
FIS [15]. This architecture is shown in Figure 3, extracted from [16].

In the first layer, the fuzzification of the inputs takes place. This is done by a
membership function which can be a Gaussian membership function, a generalized
bell membership function or other types of membership function. The parameters
of this layer that define the membership function are called premise parameters. In
the second layer, the fire strength of the rule is calculated. The output is the result of
multiplying the signals coming into the node. In the third layer, a calculation of the
ratio between the ith rule firing strength and the sum of all rules firing strength is

Figure 3.
ANFIS architecture.
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done. The output is named the normalized firing strength. The fourth layer executes
the Takagi-Sugeno fuzzy reasoning method. The parameters that appear here are
the consequent parameters. Finally, in the last layer, the computation of the overall
output as the summation of all incoming signals from previous nodes is done. It can
be seen that the parameters that need to be trained are the premise and consequent
parameters, present in layers 1 and 4. They can be obtained in the learning process
by using the forward path and the backward path. During the forward path, the
premise parameters are specified, while the consequent parameters change using a
recursive least square estimation, and, during the backward path, the consequent
parameters obtained remain fixed, while the error propagates to the first layer
updating the premise parameter in a gradient descent way.

2.2.2.2 Manageable loads

According to [17], manageable loads can be divided into:

• Shiftable: Loads with predefined working cycles and load profiles. These loads
appear between certain time limits which are specified by the end user. In an
industry, these can be formed by noncritical processes with a variant energy
consumption profile which can be rearranged on time depending on the
production goals for the specific time interval.

• Interruptible: These loads are defined by its state, which can be either on or off.
When its state is on the consumption remains constant. An example of a load
of constant consumption is a water heater. The heating of water can be
interrupted and restarted according to the time specification by the end user
and the thermal inertia of the system.

• HVAC: Air conditioning and heating devices. Its consumption depends on
parameters such as ambient conditions and comfort level specified by the end
user.

The consumption of these loads depends on the situation on different factors
regarding the state of the EH, the forecast of renewable energy input, the forecast of
non-manageable demand and the price of energy from the distribution grids. The
consumption of manageable loads is not forecasted but optimized inside a VPP
according to restrictions specified by the end user with the objective of minimizing
a utility function, which will be presented in the energy optimization section.

2.2.3 Energy price from the grid

In a future situation, demand side management (DSM) will be broadly
implemented in the energy grids, specifically in the electrical grid. The price of the
electricity is specified in the wholesale market with an anticipation of 24 h for each
hour of consumption. In a situation where a VPP wants to interact with the market
and obtain benefits from the exploitation of its energy assets, it is important to
predict the price of the electricity in order to be able to optimize its energy carriers
and offer or demand electricity from the grid.

In [18], two methods to predict next-day electricity demand and price daily
curve are proposed given past curves: robust functional principal component anal-
ysis and nonparametric models with functional response and covariate. In [19], a
hybrid methodology is proposed, combining autoregressive integrated moving
average (ARIMA) with adaptive dynamic corrector lazy learning algorithm.
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Although these methods were studied, due to the integration of renewable energies
in the electricity market and the changes in the structure of the pricing that it
supposes, during the last years, ANN have been the focus to forecast electricity
prices. ANN models for short-term electricity modeling perform better than time
series models such as ARIMA models, as shown in [20]. It is also verified that the
performance of ANN depends on appropriate input parameters; clustering and data
selection algorithms of k-nearest neighbor algorithm and mutual information
methods were used. The problem of this model is the need to remove trend and
seasonal components. In the electricity market, there are strong seasonal effects and
other nonlinear patterns that harm ANN forecasting performance. In [21] a robust
method to solve the seasonal problem with ANN is proposed and verified. The
method is seasonal autoregressive neural network (SAR-NN) defined as a dynamic
feedforward artificial neural network. In [16] a hybrid approach based on the
combination of particle swarm optimization and ANFIS is proposed and demon-
strated in a case study in Spain. The study shows that soft computing techniques
such as neural networks can be much more efficient computationally and accurate if
correct inputs are considered. To select the most suitable inputs, several methods
can be used, and genetic algorithm (GA) is one of them. The combination of ANFIS
with GA has been proved to solve market price prediction and other economic
parameters, as shown in [22, 23].

2.3 Energy hub model

The energy conversion equipment of the VPP forms the EH. In order to develop
the model and the optimization of the system to create a VPP, the EH should be
modeled. An EH is a multi-carrier energy system consisting of multiple energy
conversion, storage and/or network technologies and characterized by some degree
of control. In Figure 4 an example of a schematic of an EH can be seen. In the
figure, it is possible to appreciate that the EH in this case is composed by the energy
conversion equipment, excluding the storage system. The EH is nowadays under-
stood as the set of energy drivers that allow energy management. However, with the
implementation of the VPP concept, the energy management possibilities are
expanded and can take place in a level above the EH. Thus, although in most cases
energy storage is included inside the EH, when a VPP is implemented, the trading

Figure 4.
Example schematic of an EH.
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relationships are placed outside the EH, so it becomes coherent to also place the
energy storage system outside the EH but inside the VPP.

In this section the formulation of an EH will be established from a generic
perspective. According to [24], the relationship between input power and output
power inside and EH is:
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…
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6

6

4

3

7

7

7
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7

7
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5

(2)

where L represents the demand, P the power input and η the coupling matrix.
It has to be observed that according to the example proposed, the energy coming
from the electrical grid and the energy coming from the battery can be placed both
in the demand and in the generation side.

The determination of the coupling matrix needs to be assessed taking into
account the amount, characteristics and interconnections of the energy equipment.
In the following paragraphs, an outline of relationships depending on different
situations is carried out. These basic rules form the information needed to develop
the model for more complex systems. With these, it will be possible to establish the
coupling matrix that represents the EH and which relates the generation side with
the demand side.

2.3.1 Energy converter with one input and one output

In this case an energy converter β with an input energy Pα has one only output:
Lβ. The power relationship between input and output is represented by:

Lβ ¼ Pαηβα (3)

where ηβα is the performance indicator of the converter, which can be the COP

or the efficiency depending on the equipment considered. The COP can be constant
or can be dependent on different parameters such as temperature or operating
point.

2.3.2 Energy converter in series

This case represents the situation where all the output from one energy
converter goes directly to another energy converter. This is called multistage
energy conversion. The power output at the end of the last energy converted is
computed by multiplying all the COPs in the chain. For the case with two energy
converters:

Lθ ¼ Pαηβαηθβ (4)

2.3.3 Available energy in a converter

The power provided by an energy converter or energy source can be supplied to
several energy converter or demand points. Power can be given to these systems
simultaneously as long as there is energy available in the energy converter or
generator. This can be represented mathematically as:
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X

n

i¼1

Pαi ≤Pα (5)

where:

Pαi ¼ Pαivi (6)

vi being the dispatch factor to the different demands connected to the same source.

2.3.4 Upper and lower production limits

Every energy conversion equipment has a range within which it is possible to
generate or convert electricity. It has to be assured that the energy that passes
through the equipment falls between the specified thresholds. Mathematically it is
expressed as:

lbγ ≤Pαηγα ≤ ubγ (7)

where lbγ and ubγ are the lower and upper limits, respectively.
The basic rules for the proper development of the coupling matrix have been

explained. Their logic can be applied to any system composed by interconnected
energy assets to develop the mathematical model of an EH.

2.4 Energy optimization

The optimization is an essential step for the successful implementation of a VPP.
Once the model of the system has been developed, an evaluation of the state of the
plant at a specified number of time instants has to be carried out to achieve all the
benefits mentioned in this chapter. The optimization will allow to reach the best
efficiency in the use of resources from an economical and environmental perspec-
tive as well as facilitate to the grid the integration of active prosumers, demand side
management (DSM) and renewable energy sources.

An optimization is the selection of the best solution for a specified problem. The
simplest optimization problems deal with the maximization or minimization of a
variable. In mathematics, conventional optimization problems are usually stated in
terms of minimization. A general manner to represent one of these is:

Given : f : A!R

Find : x0 ∈A such that f x0ð Þ≤ f xð Þfor all x∈A

For the purpose here assessed, f can be considered as the energy of the system
that is being considered, the operational and maintenance cost, the environmental
impact or any other aspect related to the exploitation of energy assets. The function
f is the objective function that wants to be minimized. A is a subset of the real space
that is understood as a set of constraints that needs to be achieved or fulfilled. It is
represented as group of equalities and inequalities that the solution should meet to
be valid. In the energy frame, these equations deal with factors such as meeting the
demand and comply with the operational bounds of the system. The domain A of f
is called the search space, and the elements x in A are called candidate solutions. There
are several types of optimization problems and possible solutions depending on the
nature of the situation that is being studied. For a system where several energy
assets are present and a time optimization has to be carried out, multi-period
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mixed-integer problems are the ones that represent the most of its operation, as can
be seen in [25].

There are different purposes that lead to the decision of building a VPP, as, for
example, total energy use, energy cost, production scheduling and emissions. All
these factors have to be reflected in the objective function. The most used method
to handle multi-criteria decisions is the weighted global criterion method. This
method allows the interested party to adjust the preferences of the system. The
objective function is obtained as:

f ¼
X

N

j¼1

f transj wj (8)

where f transj is a normalized value of a single objective function and wj the

relative weight assigned to that objective function. f transj is created in order to obtain

the same range for the different objectives contemplated and has to be calculated as:

f transj ¼
f j x; yð Þ � fmin

j

fmax
j � fmin

j

(9)

where fmax
j and fmin

j are maximum and minimum values of the objective func-

tion in question, respectively.
In order to obtain the optimal operation point of the VPP, the optimization

process should be performed in two stages. The first stage deals with the decision of
where to introduce or extract energy from the battery, decision of selling or buying
energy from the electrical grid and the scheduling of manageable loads. The sched-
uling horizon of this optimization is normally one day, as this is the time interval at
which the electricity price from the market is known. The scheduling horizon is
divided into time slots; usually there are 96 time slots per day, one every 15 minutes.
As shown in [17], the objective function in this optimization case is formed by three
terms: energy cost, scheduling preferences and climatic comfort. For the case of the
energy cost, it can be expressed as:

f 11 ¼ B
X

t

PBECBE þ A
X

t

PCBCCB þ 1� Bð Þ
X

t

PSECSE þ 1� Að Þ
X

t

PDBCDB (10)

where A and B are Booleans that designate if the VPP if selling/buying electricity
from the grid and charging/discharging the battery. The other parameters refer to
the following:

• PBE: energy bought from the electrical grid

• CBE: cost of the energy bought from the electrical grid

• PCB: energy inserted in the battery

• CCB: cost for inserting energy in the battery

• PSE: energy sold to the electrical grid

• CSE: cost of energy sold to the electrical grid. It has to be noted that this value is
negative
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• PDB: energy extracted from the battery

• CDB: cost of the energy extracted from the battery

The objective function related to the scheduling is expressed as:

f 12 ¼

P

SL

P

t γ

NSL
(11)

where γ is a scheduling preference parameter and NSL is the number of schedul-
ing loads. Last of all, the objective function for the comfort is:

f 13 ¼ gmax þ

P

SL

P

t gr
RT

(12)

where gmax is the maximum temperature gap allowable, gr is the real tempera-
ture gap, R are the rooms considered and T are the time slots. For this first optimi-
zation stage, the restrictions should contain the fulfillment of non-manageable
loads, the characteristics of manageable load (working cycles, minimum number of
consecutive ON slots, maximum number of consecutive slots OFF, etc.) and power
restriction on the energy input.

Once the energy input and output from the grid, batteries and loads are
obtained, the second stage deals with the optimization of the energy flow inside the
EH. In this case the objective functions are related to maximizing the efficiency and
minimizing the energy cost and the total emissions. The function that represents the
total energy use can be represented as:

f 21 ¼
X

α

X

t

Pα
t (13)

where Pα
t represents the energy generated or converted by α at the time instant t.

It can also represent the energy input to the VPP such as the electricity from the grid
and the natural gas. For the case of the cost of the system, the objective function is:

f 22 ¼
X

α

X

t

Pα
t λ

α (14)

where λα represents the cost of the energy for a converter or energy input α. Last
of all, for considering the emissions of the system:

f 23 ¼
X

α

X

t

Pα
t e

α (15)

where parameter eα represents the emission factor of the energy provided by α.
For this stage, the restrictions should include the fulfillment of the demand and the
power limitation of the different energy converters inside the EH.

3. Communication architecture and data management

As it has been mentioned in the previous section, forecasting techniques based
on data-driven models are widely used when dealing with energy-related variables.
This kind of models usually needs huge amounts of information to properly train or
tune their inner structures, and once the models are generated, the central
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controller must be capable of sending the forecasted schedule decisions to each
system’s local controller. To do so, not only a sensor network has to be deployed in
the facility, but also an efficient data communication system is needed.

Therefore, one of the key elements of the VPP concept is the communication
systems. The existence of reliable, accurate, efficient and safe data exchange is
crucial for a bidirectional, near real-time information flow. In addition, the current
trend in the field is to make use of a service-oriented architecture (SOA), enabling
an easy integration of the plant data in systems that can analyze and optimize not
only the operation of the facility itself but also the global operation of the whole
energy grid. To this extent, the cloud computing platforms such as Amazon Web
Services, Microsoft Azure or Google Cloud.

The cost of implementing a communication system can be high, so it is vital to
select a suitable data communication technology. There are several wired and wire-
less technologies available that can provide the required communication infrastruc-
ture. The selection of one (or more) of these communication technologies will
depend on the quality of service (QoS), data range, reliability, latency, economic
viability, etc. The capabilities offered by these technologies are also strongly related
to the VPP grid structure. Looking it from the prosumer point of view, the main
automation system is the energy management system (EMS) which is responsible
for the management and optimization of the energy assets supervised in the VPP.

3.1 Energy management systems

The term energy management system (EMS) refers to an integrated system that
enables the monitoring, management and control of several devices providing the
necessary support for an effective operation of electrical generation and transmis-
sion facilities.

At a high level, the architecture of an EMS is divided into three layers which are
management, automation and field levels [26] as depicted in Figure 5. The man-
agement (or supervisory) level comprises the human interface with the system by
means of human machine interfaces (HMI) or SCADA-like software systems and
contains most of the system logic and modules related with data analysis. The
automation (or local) level provides the primary control devices connected via
networked controllers and usually operating via BACnet, ZigBee, etc. protocols.
The field (or plant) level represents the physical devices like energy meters, sensors
and actuators installed to the plant equipment. These devices should be connected
to local controllers by means of field-bus communications to allow control
functionalities.

VPP supervision and control systems can be centralized or decentralized [27]. In
the centralized control, all the knowledge about the devices in the VPP and the
energy market is located in the central controller. Although this is a simple solution
in most of the cases, when dealing with a large number of devices, the optimization
of the control strategy can become computationally expensive for the central con-
troller. In a distributed or decentralized control, the complexity is divided vertically
within the VPP. Local controllers supervise and define the control strategy, and a
higher-level controller coordinates their decisions in order to reach a global
optimum state.

3.2 Communication requirements

The architecture defined above is organized in three hierarchical levels. Each of
these communication layers has its requirements in terms of bandwidth, latency or
cyber security. For example, at the field level, to have a large bandwidth is not a
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common requirement, but a short latency is mandatory given the near real-time
control performed at this level.

3.2.1 Field level requirements

The total amount of data sent per node per transmission is typically less than a
hundred bytes. That being the case, the communication bandwidth at this level is
well within 100 kbps [28]. The sampling and transmission frequency are commonly
between a range of 5 and 15 min. A simulation carried out in [29] showed that larger
data collection frequencies fail at detecting short-term voltage anomalies. Besides, a
time synchronization service is required to refer all the data gathered in the plant
with respect to the UTC. A general-purpose time synchronization service like the
network time protocol (NTP) is used given that the accuracy required does not
exceed the order of seconds.

Typically, the sensors manage analogical data that is then is handled to an analog
to digital converter (ADC) followed by an interface to a process control computer.
The sensors can also have a digital communication module and contain embedded
digital electronic processing systems. Actuators work in a reverse sense, converting
electrical signals to the appropriate physical variable. However, as they have to
amplify the energy level to produce the change in the real variables, actuators are
high-power devices, while sensors are not.

3.2.2 Automation level requirements

At the automation level, the data from several local controllers is received;
typically, the order of system it aggregates is in the order of tens. Hence, a

Figure 5.
EMS three-level architecture.
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bandwidth of more or less 1 Mbps is enough to fulfill its requirements [28]. The
time synchronization and latency are also limited like in the field level.

The automation level is in charge of several tasks such as the monitoring of the
variables to check the system or component failure, the management of the set
points for the important process variables and the control reconfiguration and
tuning of the control loops.

3.2.3 Management level requirements

The management level shares a large part of the requirements of the automation
level. Typically, in this layer, the main limits for its requirements are represented by
the capabilities of the already existing communication infrastructure.

Here, the information arrives as time series type of data; this data is character-
ized by having a timestamp associated with each value. In the management level,
this data is collected and analyzed to perform some actions like process scheduling
or maintenance management.

3.3 Communication technologies and protocols

When a message is transmitted onto a bus, it has to contain information like the
identifier of the sending device, the message or data to transmit, the destination
device address and some additional information (e.g. for error checking). After
that, when the message reaches the destination device, this one has to know not
only the message codification but also how to handle its reception using procedures
to avoid collisions and prioritization.

These rules about connectivity and communication are defined by the commu-
nication system protocol. These protocols for VPP system must adhere to several
criteria: efficient and reliable communication, interoperability with other systems
and integration into the power system. For easier integration, it is usually desirable
that the VPP system supports the communication protocols already in use by any
other equipment. In addition to standardized protocols, there are many proprietary
protocols like C-Bus or PROFIBUS.

Both wired and wireless technologies have been specified through standards.
The advantages of wired technologies over wireless ones are the higher data trans-
mission rate, security and reliability but at the expense of high installation cost. On
the other hand, wireless technologies have fewer installation costs and can be easily
deployed, but they exhibit low data transmission rates and signal interference
problems. With the advent of ICT and IoT, more and more sensors and meters are
needed to be integrated, monitored and controlled. In this situation, the lower
deployment cost and better scalability of wireless technologies make them better
candidates. In the below sections, some of the widely used communication technol-
ogies for metering and sensory purpose will be covered.

3.3.1 Power line carriers

In terms of wired technologies, PLC is the most widely used technology [30].
Power line carriers (PLCs) consist of introducing a modulated carrier signal over
the existing electricity grid. No additional wiring is required; therefore, PCL can be
considered as a cost-effective and straightforward solution. PLC can be classified
into two major categories: narrowband PLC and broadband PLC.

The operating rate of the narrowband PLC is in a range of 3–500 kHz. It can be
further classified as low data rate and high data rate narrowband PLC. The former is
a single carrier technology with data rate up to 10 kbps and works on the
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recommendations of standards like LonWorks or KNX. The high data rate narrow-
band is a multi-carrier technology with a data rate below 1 Mbps. The broadband
PLC technology has an operating range of 2–250 MHz with a data rate of hundreds
of Mbps.

PLC technologies have been used since a long time ago for electric energy-
related services in industrial automation like remote meter reading and remote load
management. PCLs can be applied in any point of the VPP environment, and its
main advantage is the low running costs, and that can be installed using current
infrastructure. The security issues are solved like in the ZigBee technology, using
the 128-bit AES encryption.

3.3.2 GSM and GPRS

Global System for Mobile Communications (GSM) is known as the world’s most
deployed cellular technology. It operates on the 1800 MHz and 900 MHz bands,
and its data rate is up to 270 kbps. General Packet Radio Service (GPRS) data rate is
much larger than GSM. Its main drawback is the reliability of Short Message Service
(SMS) in case of network congestion.

The main application of GPRS and GSM is in smart metering solutions for
remote billing and power consumption monitoring, usually applied in smart grids
covering from the generation stage to the consumption one, including both the
transmission and distribution.

3.3.3 WiFi

Wireless sensing technology has been gaining popularity in the last years given
the fact that wireless sensors are easy to install and cheaper in price and, among all
the wireless sensing technologies, WiFi is the most popular. Developed under the
IEEE 802.11 standards family, it provides a robust performance even in noisy
channels and supports a wide range of data rates. The local security issues are
tackled by the WPA2 protocol based on the 128 bit AES encryption technique, and
to ensure secure communication through public Internet access, virtual private
networks (VPNs) are typically used [31].

WiFi is the most dominant wireless technology for the high speed it can offer
but is more expensive than other technologies because of its higher consumption
and device price. WiFi is mostly used for building automation, remote control,
meter reading, etc. in the tertiary sector and has been used as a proxy for human
occupancy in some HVAC actuation models.

3.3.4 Ethernet

Ethernet is a low-cost communication method and is widely used for communi-
cation between PLCs and SCADA systems. Ethernet is available like optical fiber,
shielded twisted pairs or coaxial cables. Among these, optical fiber is more secure
and popular due to the absence of electromagnetic interference and electrical cur-
rent. Ethernet uses carrier-sense multiple access with collision detection (CSMA-
CD) methods for sensing data. Ethernet is not suitable for real-time application
because the a priori estimation of the data packet maximum transmission time is
impossible.

The main disadvantage of Ethernet is its wired nature and the need of deploying
a new cable network. However, it is robust and does not have running costs. The
most common implementation of Ethernet in today’s industrial automation field is
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to use an Ethernet/IP network, applying the capabilities of traditional Ethernet to
connect different facilities in the same network via the Internet.

3.3.5 Modbus

Introduced by Modicon Corporation, it is widely used due to its simplicity and
reliability. It includes a remote terminal unit (RTU), transmission control protocol
(TCP) and ASCII mode of transmission and supports RS-232, R-422, RS-485 and
Ethernet-based equipment. Because of its simplicity and open-source availability, it
is popular for local communication building and also has become the standard for
industrial SCADA systems.

The security issues are not addressed in Modbus. It does not support authenti-
cation nor encryption; thus, it is less secure and more vulnerable to cyberattacks.

3.3.6 OPC UA

The OPC UA is a machine-to-machine communication protocol for industrial
automation developed by the OPC Foundation. It is the next generation of the
original OPC which is applied in different technologies like building automation or
process control. OPC UA was developed to tackle the emerging needs of industrial
automation.

OPC UA was designed to be fully scalable and enable both the horizontal and
vertical communications across all the layers. In addition, it uses a service-oriented
architecture, and two transport protocols are defined: an optimized TCP for high
performance and a HTTP/HTTPS web service with binary or XML-coded messages.

Table 1 shows a summary of the main characteristics of each of the communi-
cation technologies reviewed.

3.4 Selection of sensing solution

According to [32], the factors that influence the selection of sensing and
metering solutions are the following:

• Accuracy: In Europe, the accuracy of meters is defined by directives such as the
Measuring Instruments Directive (MID). A common feature in this kind of
directives is to classify the meters by their percentage accuracy.

• Ease of deployment: The ease of deployment refers to the different installation
and networking challenges that must be tackled. For example, wireless sensors
have reduced installation costs and provide better flexibility than their wired
counterpart. Other factors to consider are the interoperability, installation in
an accessible location or safety regulations.

• Communication protocol: As it has been seen in the previous section, there is a
wide range of communication technologies each with its advantages and
disadvantages.

• Resolution: The resolution determines the possible level of analysis that can be
performed. As aforementioned the typical data collection rate is within a range
between 5 and 15 minutes.

• Cost: The cost of the equipment is always a driver when deciding the metering
equipment. Both initial costs and operating costs must be considered. Usually,
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the number of sensors is limited to the minimum to provide adequate control
and ensure compliance with regulations.

• Availability: The geographical availability of a particular manufacturer’s sensing
solution. It will affect to the delivery time and provisioning of technical support.

4. Conclusions

In this chapter the concept of VPP has been explained as the solution for the
challenges of upcoming energy markets. The forecasting of future energy situation
regarding demand, energy prices and renewable generation has been assessed,
reaching the conclusion that artificial intelligence methods are best suited for the
stated purpose. The internal energy assets have been modeled by means of an EH.
By adding these factors, the VPP is constructed, and its optimization can be carried
out. The optimal operation point is obtained by considering current and future
energy prices from the market, renewable energy generation, manageable and non-
manageable demands and costs and operation constraints of energy equipment. For
it to be possible, the EMS and the communication technologies of the plant have to
be studied and adapted. The high-level structure and requirements of the EMS have
been explained together with the more common communication technologies and
protocols. Its advantages and drawbacks have been presented and the important
factors for the selection of the sensing technologies described. By incorporating
all the exposed factors in an industrial plant, a VPP can be created which will
satisfactorily help the energy grid to evolve and will also produce a benefit for the
exploitation of its own energy equipment.

Technology Type of

technology

Characteristics

PLC Wired • Low installation costs (no additional wiring is required)

• Cost-effective, widely used solution

• Narrowband PLC: up to 500 MHz with a data rate below 1 Mbps

• Broadband PLC: up to 250 MHz with a data rate of hundreds of

Mbps

GSM/GPRS Wireless • World’s most deployed wireless technology

• Operates on 900 and 1800 MHz bands

• Rate up to 270 kbps

• Low reliability in congested networks

WiFi Wireless • Most popular wireless technology

• Robust even in noisy channels

• Security issues tackled by the WPA2 protocol

Ethernet Wired • Low-cost solution

• Not suitable for real-time sensing

• Needs a new cable network

Modbus Comm. protocol • Simple and reliable

• Open-source

• Standard for SCADA systems

• Vulnerable to cyberattacks

OPC UA Comm. protocol • Robustness

• Scalable and platform independent

• Standard transport and encoding protocols (TCP and HTTP)

Table 1.
Summary of characteristics of the technologies and protocols reviewed.

19

Energy Infrastructure of the Factory as a Virtual Power Plant: Smart Energy Management
DOI: http://dx.doi.org/10.5772/intechopen.88861



Author details

Eva M. Urbano and Víctor Martínez Viol*
MCIA Research Centre, Polytechnic University of Catalonia, Barcelona, Spain

*Address all correspondence to: victor.martinez.viol@upc.edu

©2020TheAuthor(s). Licensee IntechOpen.Distributed under the terms of theCreative
CommonsAttribution -NonCommercial 4.0 License (https://creativecommons.org/
licenses/by-nc/4.0/),which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited. –NC

20

New Trends in the Use of Artificial Intelligence for the Industry 4.0



References

[1] Chan Y, Kantamaneni R. Study on
energy efficiency and energy saving
potential in industry and on possible
policy mechanisms. 2015; 1-461

[2]Davatgaran V, Saniei M,
Mortazavi SS. Optimal bidding strategy
for an energy hub in energy market.
Energy. 2018;148:482-493

[3] Choi S, Min SW. Optimal scheduling
and operation of the ESS for prosumer
market environment in grid-connected
industrial complex. In: 2017 IEEE Ind
Appl Soc Annu Meet IAS 2017 2017.
2017. pp. 1-7

[4]Mengelkamp E, Gärttner J, Rock K,
et al. Designing microgrid energy
markets: A case study: The Brooklyn
microgrid. Appl Energy. 2018;210:
870-880

[5] Barzegkar-ntovom GA, Kontis EO,
Kryonidis GC, et al. Performance
assessment of electrical storage on
Prosumers via pilot case studies. In: 2019
1st Int Conf Energy Transit Mediterr
Area (SyNERGY MED). 2019. pp. 1-6

[6]Huld T. Estimating solar radiation
and photovoltaic system performance,
the PVGIS approach. In: AFRETEP 1ST
Reg Work; Kampala. 2011. pp. 1-84

[7] European Commission. Photovoltaic
Geographical Information System
(PVGIS). Available from: http://re.jrc.ec
.europa.eu/pvgis.html [Accessed: 12
March 2019]

[8] Vestas Wind Systems A/S. General
Specification V90–3.0 MW 60 Hz
Variable Speed Turbine General
Specification for V90–3.0 MW. 2004.
pp. 1–31

[9] Chen Q , Folly KA. Wind power
forecasting. IFAC-PapersOnLine. 2018;
51:414-419

[10]Das UK, Tey KS,
Seyedmahmoudian M, et al. Forecasting
of photovoltaic power generation and
model optimization: A review.
Renewable and Sustainable Energy
Reviews. 2018;81:912-928

[11] Shu F, Luonan C. Short-term load
forecasting based on an adaptive hybrid
method. IEEE Transactions on Power
Apparatus and Systems. 2006;21:
392-401

[12] Li S, Wang P, Goel L. A novel
wavelet-based ensemble method for
short-term load forecasting with hybrid
neural networks and feature selection.
IEEE Transactions on Power Apparatus
and Systems. 2016;31:1788-1798

[13] Baliyan A, Gaurav K, Kumar
Mishra S. A review of short term load
forecasting using artificial neural
network models. Procedia Computer
Science. 2015;48:121-125

[14] Jang JR. ANFIS: Adaptive-network-
based fuzzy inference system. 1993;23.
DOI: 10.1109/21.256541. [Epub ahead of
print]

[15] Takagi T, Sugeno M. Derivation of
fuzzy control rules from human
operator’s control actions. IFAC
Proceedings. 1983;16:55-60

[16] Pousinho HMI, Mendes VMF,
Catalão JPS. Short-term electricity
prices forecasting in a competitive
market by a hybrid PSO-ANFIS
approach. International Journal of
Electrical Power & Energy Systems.
2012;39:29-35

[17] Agnetis A, De Pascale G, Detti P,
et al. Load scheduling for household
energy consumption optimization. IEEE
Transactions on Smart Grid. 2013;4:
2364-2373

21

Energy Infrastructure of the Factory as a Virtual Power Plant: Smart Energy Management
DOI: http://dx.doi.org/10.5772/intechopen.88861



[18] Aneiros G, Vilar J, Raña P. Short-
term forecast of daily curves of
electricity demand and price.
International Journal of Electrical Power
& Energy Systems. 2016;80:96-108

[19] Vaccaro A, El-Fouly THM,
Canizares CA, et al. Local learning-
ARIMA adaptive hybrid architecture for
hourly electricity price forecasting. In:
2015 IEEE Eindhoven PowerTech,
PowerTech 2015. 2015. DOI: 10.1109/
PTC.2015.7232253. [Epub ahead of print]

[20] Keles D, Scelle J, Paraschiv F, et al.
Extended forecast methods for day-
ahead electricity spot prices applying
artificial neural networks. Applied
Energy. 2016;162:218-230

[21] Saâdaoui F. A seasonal feedforward
neural network to forecast electricity
prices. Neural Computing &
Applications. 2017;28:835-847

[22] Svalina I, Galzina V, Lujić R, et al.
An adaptive network-based fuzzy
inference system (ANFIS) for the
forecasting: The case of close price
indices. Expert Systems with
Applications. 2013;40:6055-6063

[23]Wei LY. A hybrid model based on
ANFIS and adaptive expectation genetic
algorithm to forecast TAIEX. Economic
Modelling. 2013;33:893-899

[24] Kampouropoulos K, Andrade F,
Sala E, et al. Multiobjective optimization
of multi-carrier energy system using a
combination of ANFIS and genetic
algorithms. IEEE Transactions on Smart
Grid. 2018;9:2276-2283

[25]Kampouropoulos K. Multi-Objective
Optimization of an Energy Hub Using
Artificial Intelligence. Universitat
Politècnica de Catalunya; 2018

[26] Brooks DJ, Coole M, Haskell-
Dowland P, et al. Building Automation
& Control Systems: An Investigation
into Vulnerabilities, Current Practice &

Security Management Best Practice.
Perth; 2017. Available from: https://goo.
gl/RM7ukP

[27] Zia MF, Elbouchikhi E,
Benbouzid M. Microgrids energy
management systems: A critical review
on methods, solutions, and prospects.
Applied Energy. 2018;222:1033-1055

[28] Pasetti M, Rinaldi S, Manerba D. A
virtual power plant architecture for the
demand-side management of smart
prosumers. Applied Sciences. 2018;8:432

[29]Wan Yen S, Morris S, Ezra MAG,
et al. Effect of smart meter data
collection frequency in an early
detection of shorter-duration voltage
anomalies in smart grids. International
Journal of Electrical Power & Energy
Systems. 2019;109:1-8

[30] Erlinghagen S, Lichtensteiger B,
Markard J. Smart meter communication
standards in Europe—A comparison.
Renewable and Sustainable Energy
Reviews. 2015;43:1249-1262

[31] Kolenc M, Nemček P, Gutschi C,
et al. Performance evaluation of a
virtual power plant communication
system providing ancillary services.
Electric Power Systems Research. 2017;
149:46-54

[32] Ahmad MW, Mourshed M,
Mundow D, et al. Building energy
metering and environmental
monitoring—A state-of-the-art review
and directions for future research.
Energy and Buildings. 2016;120:85-102

22

New Trends in the Use of Artificial Intelligence for the Industry 4.0


