
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

1

Chapter

Software Design for Success
Laura M. Castro

Abstract

Technical books focus most of the times in technical stuff, as one should expect.
However, this creates the illusion that technology is somewhat free of bias, always
neutral, thus fitting everyone. Reality, later on, when the product is already there,
proofs us otherwise. Inclusion and representation are crucial from the design and
modeling stages. Visibility of minorities or underrepresented groups is on the rise,
yet so much of the way is left for us technicians to walk. In this chapter, we will
analyze, from an architectural point of view, which non-functional requirements
are most sensible to this and how to start the conversation about them to maximize
the possibilities for success of our software products.

Keywords: inclusion, visibility, representation, software architecture,
non-functional requirements

1. Introduction

Software is omnipresent. From personal computers and laptops, it has extended
its presence to tablets, smartphones, smart watches, and wristbands. From software
packages delivered on CDs, it has moved to apps and services which run uninter-
ruptedly on remote servers. From our professional workplace, it has conquered our
personal lives, relationships, and leisure activities.

We could see this as proof of the success of the software industry, the technol-
ogy revolution. But is it? What does success represent exactly, in societal terms?
Are we solving people’s problems, or rather are we creating new ones? In order to
make this argument more objective, we need to define success. We can argue that
success of the software industry is proved by its constant innovation. But innova-
tion is not necessarily equal to progress, which should be the key indicator in terms
of societal benefit.

According to Wikipedia, “progress is the movement towards a refined,
improved, or otherwise desired state (...), the idea that advancements in technol-
ogy, science, and social organization can result in an improved human condition”
[1]. Arguably, we seem to be constantly producing advancements in technology, but
it has also become evident that the technology advancements we are producing are
not improving the condition of all humans equally. Mass media is regularly hit by
news where “algorithms” are revealed as biased, showing behaviors which are sex-
ist, racist, LGBTI-phobic, etc. Software leaves minorities out, and apps discriminate
on bases of age or socioeconomic status [2]. Be it in recruiting [3], evaluating risk
for a financial product, assigning probability of crime involvement [4, 5], targeting
adds [3], or classifying our pictures [6], the direct consequence of these errors is
blatant failure.

Introduction to Data Science and Machine Learning

2

Of course, there are many angles to this systemic problem. In this chapter, we
will analyze how we can contribute to progress, ensuring the success of our soft-
ware product, from the perspective of software architecture.

Software architecture is the part of software development which defines the
high-level decomposition of a system into a set of functional components and
describes its responsibilities and interactions. A software architect is thus respon-
sible for selecting those components, defining said interactions, and describing the
constraints that operate over both of them. These decisions are grounded on both
functional and non-functional requirements of the software and will serve as basis
for the design, implementation, and testing stages (no matter which development
cycle is used).

Consequently, one of the most important skills of a software architect is asking
the relevant questions which answers can make the difference between product
success and failure. The said questions need to provide confidence in that both
functional and non-functional requirements are correctly elicited, understood, and
quantified, as a mandatory previous step to allow their correct development and
validation. In particular, failure to properly define non-functional requirements
(also referred to as “system requirements”) is the third cause of software project
failure [7].

In the remainder of this chapter we will go over the definition of non-functional
requirement and provide a taxonomy for practical use. We will identify the non-
functional requirements that are more closely related to software success in terms of
societal progress. We will discuss them and provide insights on how to extract and
test them.

The aim we pursue by doing this is to hand in a handbook of rules, an enhanced
checklist, that would be useful for practitioners and future professionals that want
to specialize in the area of software architecture. We trust the contents that follow
will spark their interest in and concern about really successful software, as well as
be a useful guide in building it. However, by keeping our technical level purposely
abstract, we aim to make this chapter readable for the general public as well, a
general public who, as massive consumer of software products, can also benefit
from awareness about what kind of successful products they can and should be
demanding from the software industry.

2. Software architecture: it’s all about non-functional requirements

Software requirements, as defined by the IEEE [8], are “a condition or capabil-
ity that must be met or possessed by a system or system component to satisfy a
contract, standard, specification, or other formally imposed document.” As we can
see, no explicit mention is made as of the character of the said condition or capabil-
ity. Traditionally, the software industry showed a tendency to focus on functional
requirements, which are defined as combinations of behaviors between inputs and
outputs [9]. Requirement elicitation and other software development and software
life cycle management practices provided support for functional requirements in
terms of formalisms like use cases, user stories, etc. The focus was on what software
had to do, rather on how it was supposed to do it.

It is the definition of software architecture as a critical part of the software
development process [10] which brings attention to non-functional requirements.
Non-functional requirements (sometimes referred to as “quality requirements”)
are defined as criteria to be used to judge the operation of the system, rather than
specific behaviors. It is this system-wide relevance that makes most non-functional
requirements architecturally significant [11], since they impose constraints on the

3

Software Design for Success
DOI: http://dx.doi.org/10.5772/intechopen.86538

design or implementation. Figure 1 shows a common taxonomy of non-functional
requirements.

However, we are still failing to systematically build a software that is a success,
at least in the terms we were discussing in the previous section. Both what things
our systems do and how they do them reveal those omissions, biases, and plain
discrimination we would very much like to eradicate.

From the software architecture perspective, this is because Figure 1 shows a
very narrow view of non-functional requirements. Compare this with Figure 2,
which presents a more exhaustive relation of parameters of interest for any software
application.

In the following subsections, we will traverse the taxonomy in Figure 2 that
extends that of Figure 1 beyond the shadowed area, to provide insights on what
might be missing from our products if we overlook them.

2.1 Revisiting product requirements

The fact that product-focused non-functional requirements have received more
attention than the rest of the extended taxonomy of non-functional requirements
shown in Figure 2 does not mean they cannot and should not be revisited under the
“societal success” mindset. We now see how.

Usability. In software engineering, usability is meant to quantify the quality of user
experience and as such is typically described in terms of effectiveness (i.e., number
of goals that can be achieved using the software) and efficiency (i.e., time required
to complete said goals), alongside with other less objective parameters such as

Figure 1.
Traditional taxonomy of non-functional requirements.

Figure 2.
Extended taxonomy of non-functional requirements.

Introduction to Data Science and Machine Learning

4

satisfaction or perceived elegance. Usability should, however, be measured for differ-
ent types of users, instead of a “regular user” or “normal user,” which is often the case.
The recommendation here is to look beyond our idea of typical user and consider the
widest user base possible, featuring users with different levels of acquaintance with
technology, from different age ranges, and health conditions (including transitory
states such as pregnancy) and identifying with different gender options, with differ-
ent socioeconomic backgrounds, and different sensor, motor, and mental skills.

Performance. Although different meanings can be associated with the term, the
most common one is that of software responsiveness and is usually quantified in terms
of requests or actions per unit of time. There are different and well-known approaches
to controlling performance: from resource demand management (i.e., adjusting the
ratios at which a component or subsystem generates events or polls or the context for
information, explicitly limiting execution time, etc.) and resource arbitration (i.e.,
fixed or dynamic priorities) to its effective management (i.e., exploiting concurrency,
duplicating data, or processes). Performance should, however, also take into account
the consequences of these well-known strategies beyond the improvement or preser-
vation of certain response times. When such response times have a human user at the
other end, all the same we ought to take into account their expectations and percep-
tions of responsiveness. In this case, these can vary widely, providing further chances
for improvement by alleviating the performance demands in some cases, which can
be advantageously used to tend to other user profiles. Additionally, the consequences
of performance degradation should also be contemplated under the light of the people
that would suffer them, since depending on the kind of service we are providing and
to whom, it might be more or less critical to comply.

Resource consumption. Similar to performance, resource consumption (be it
computing power, volatile or nonvolatile storage, network access, bandwidth, etc.)
has two sides to it. Whenever our system or software product needs to preserve
resources and we aim to optimize them, unexpected consequences on the widest
possible use base should be scrutinized. It is more likely that the problem is the
reverse, since it is when we increase the demand for resources (or simply do not
limit them) that we are more likely to implicitly exclude sectors of the population
which might not have access to them. But in the context of excess of energy con-
sumption that surrounds us, to which the prevalence of technology is no foreign
actor (rather the contrary), every system and software should be as energy-aware as
possible. Treating resources as unlimited is never a good idea, and it is not socially
responsible either.

Availability. The most commonly understood definition of availability in the
context of software engineering is the proportion of time a system or application
is in a functioning condition, that is to say, capable of providing to its users the
answer or services it is meant to, within acceptable conditions (i.e., usability,
performance). The definition of this non-functional requirement makes sense
considering that error-free software is virtually nonexistent. When we assume
there will be errors, we need to define to which extent the presence of this errors
can or will affect the normal operation of the system. For some systems, it is okay
to be down for a few minutes, hours, or even days (if it is, e.g., software used in a
factory which is down during the weekend). How flexible we can be about avail-
ability with regard to our software product depends on both the expectations of
the users about it and the consequences of violating those expectations. In some
cases, not being available might mean the users will turn to use our competitors’
product instead (with the risk of not coming back); in others, it might affect their
lives, threaten their security, or putting them on harm’s way. Once more, we need
to consider the broad population when leveraging said expectations and not only
our “normal user.”

5

Software Design for Success
DOI: http://dx.doi.org/10.5772/intechopen.86538

Fault tolerance. Closely related to availability, fault tolerance is the capability of
operating properly in the event of (internal) failure(s). The term usually helps us
to stress that availability is not a black vs. white kind of situation, since the operat-
ing quality (i.e., performance, resource consumption) of a system might decrease
proportionally to the severity of the failure(s). When we design for success with
fault tolerance in mind, we aim to avoid that no undiscovered error in the software
should be able to cause a total breakdown. With regard to societal success, the same
considerations as with general availability apply.

Safety. Of course we never mean for our software to pose a risk to its users nor
actively nor as a consequence of malfunctioning or unavailability, but actively con-
sidering this possibility during the whole development process involves considering
safety as one of its requirements. Formally, however, safety includes not only not
harming (no matter how severely) people but also goods and/or the environment
[12, 13]. In a way, this links back to resource consumption in the energy-awareness
aspect that we mentioned before. We could even argue whether introducing new
technology where it does not bring societal progress, just for the sake of it, is not
safe, since the environmental impact of the volume of technology we consume is
already too high [14, 15]. Better approaches would always involve reusing or repur-
posing already existing technology, which is also less likely to exclude less privileged
groups of population.

Security. Admittedly one of the major challenges in software engineering nowa-
days, we can informally define security as the resistance of a system or application
to unauthorized uses, while operation is still granted for legitimate ones. There
are several aspects of this claim that might be jeopardized if the diversity of the
population is not properly accounted for, the most important of which would be to
wrongly classify a legitimate request for an unauthorized one [16, 17].

2.2 Refocusing organization requirements

In the previous subsection we have gone over the “classical” non-functional
requirements that we have more specifically labeled as product non-functional
requirements. There are two more categories of non-functional requirements to
consider, one of them being those non-functional requirements derived from our
organization. We discuss them next.

Business context. Whether our organization is a startup, fast-growing spin-off,
an enterprise with sustained trajectory, or a business in trouble has a big influence
on the goals, value, and time-to-market elements that define success in traditional
terms. From this lens, a critical look is also needed, in order to detect room for
improvement within. In this case, we think in terms of the people who form our
teams, their profiles, and the roles they play. And, different from what we have seen
in the previous section, we aim not only to reflect societal diversity, but we should
strive to improve it in terms of equality and representation. Diverse teams and
people from unrepresented groups in positions of decision-making and power can
be our most strategic business advantage.

Operational. How and why we organize the internal functioning of our organiza-
tion will have an impact in our products and their quality. Identifying the essential
capabilities (or lack thereof), performance measures, and actions to be taken for
improvement cannot be done without explicitly accounting for diversity and work-
life balance, which in turn are key to workplace satisfaction and commitment. If so,
we risk coding into the so-called “company culture” a set of barriers for employees
that “are not the norm.” But why, if we have agreed there is not one “normal user,”
should we assume there is one “normal employee”? The answer is easy: we should
definitely not.

Introduction to Data Science and Machine Learning

6

Development. Among the different product development methodologies and life
cycles that have been defined in software engineering, there is arguably no silver
bullet. It is more a matter of finding the most suitable match between product
requirements, business needs, and operational structure. When referring to the lit-
erature on software development, this is often remarked as being the case, but then
we straightaway proceed to talk about iterations, sprints, stakeholders, minimum
viable products, etc. without ever relating these concepts to the composition of our
development teams. Software products are made by people and same as shoes or
clothing, hardly ever one size fits all. In other words, the best software development
approach will be that in which all of our diverse (see operational requirements)
development team can be most productive at.

2.3 Advancing external requirements

In this last section of this chapter, we turn to external factors. We do this because
none of us technology makers live in the vacuum, and our actions are subjected to
societal norms and laws and in turn influence how societal norms and laws evolve.
This means we share a double responsibility: on the one hand, diligently complying
with the former, and on the other hand, challenging the status quo when it is neces-
sary and advancing it.

Standards. Whether they dictate norms, conventions or requirements for data
format, storage or exchange, or for service provision, interfacing, or requirements,
standards play a fundamental role in software interoperation, especially if they are
internationally recognized and publicly available (i.e., open). As software creators,
we are responsible not only for being aware of which standards affect the areas we
are deploying our software on and/or the activities it provides support to. What is
more, implication of software agents of all sizes, small included, in standardization
processes, is very much needed in a world in which, more often than not, conven-
tions are imposed by big players or agreed upon among few of them behind closed
doors. Paradoxically, non-functional product requirements are not usually enforced
for standards themselves, which have a reputation for lacking usability, for instance.
When referring to executable or interactive elements, standards or standardiza-
tion efforts should always be accompanied by software tests. Implementing tests
for standard specifications is a way of disambiguating them and stress-testing
them. And of course, whenever a standard features or refers to any aspect of what
a persona is, the assumptions that may be underlying need to be contrasted against
the widest definition possible.

Ethical. When we discussed safety, we mentioned that introducing new tech-
nology just for the sake of it could not be considered safe. Hence, nor can it be
considered ethical, we add now. More and more it is the case that CS studies feature
courses that introduce future professionals to the concepts of professional ethics in
the context of technology and software. However, many universities and academic
institutions still do not offer them, and it is not reasonable to assume that every
professional involved in technology and software creation has or will have a uni-
versity background. The lack of a universal ethics, so to speak, is likely to make this
the most subjective and controversial non-functional requirement of all. However,
it is undeniable that we cannot look at software as a mere tool anymore, but rather
a piece of technology that embodies the ethical commitments of those who make it
and those who decide it should be made and used. The ethical aspects surrounding
software products have two aspects to them: (a) whether the development of the
product itself is contextually right or wrong or (b) whether the development of the
product significantly affects the life or balance of power of or between individuals.
Focusing on the latter case, we here advocate once more for a holistic approach to

7

Software Design for Success
DOI: http://dx.doi.org/10.5772/intechopen.86538

what individuals we bear in mind when analyzing the issue. As for the former, there
are two main perspectives: (a) use software in particular, and technology in general,
to eliminate or reduce suffering and maximize well-being and happiness for the
greatest number of people and (b) use software in particular, and technology in
general, to follow society’s universal rules. The first, however, poses a great oppor-
tunity that the second misses: the chance to challenge the status quo and advance
society’s rules themselves, by pursuing the common and greater good. Paraphrasing
a renowned Sci-Fi series, “the need of the many outweigh the need of the few,” but
the need of the few cannot be consistently overlooked: that’s the way minorities
are forever discriminated. Our non-functional ethic requirements need to address
whether our software is right, but also whether it is just and fair.

Financial regulations. The prevalence of technology, when applied to software
that runs as a service, means that we might be providing services to an international
use base before we actually give some thoughts to the financial implications of this
in terms of tax declarations, client rights, anti-monopoly legislation, etc. These are
much specific issues than those of ethical non-functional requirements but still
need us to explicitly identify and decide how to take care of them, from the differ-
ent possibilities that we might have before us.

Security regulations. In line with the financial non-functional requirements,
user-privacy and user-data preservation laws might affect our software products
regardless of whether we operate beyond the scope of a single country or not.
Furthermore, cybersecurity and privacy awareness is on the rise, so the context
and actual rules we might need to oblige to or enforce are subjected to far greater
dynamism that those of financial nature. This needs to be considered in terms of
maintenance and product life.

3. Conclusion

Technology is not neutral. A biased development team, organization, societal
context, etc. will most likely produce biased software. Biased technology perpetu-
ates damaging stereotypes, hinders the empowerment of minorities and under-
represented groups, and ultimately delays innovation and progress. This can hardly
be considered successful [18]. So far, the most effective ways of fighting biases in
technology that we know are (a) being aware of said biases, in all their shapes and
forms, and (b) striving to have as much diverse development teams and organiza-
tions. However, future possibilities may include the perspective of automated
testing of fairness [19].

From the perspective of software architecture, one of the critical stages in
software development, we can work toward the construction of less biased software
by carefully analyzing the non-functional requirements that are relevant to our
product. By first extending the traditional taxonomy of non-functional require-
ments (much focused on product requirements alone) and then (re)visiting it one
by one, we have shed some light on how a software architect can contribute in this
very important endeavor. We have provided a sort of exhaustive but high-level
checklist that (a) practitioners and future professionals can use when analyzing
and designing their systems and applications and (b) users can use to empower
themselves in claiming that the whole software industry evolves to a higher level of
responsibility toward not only innovation but progress.

Introduction to Data Science and Machine Learning

8

Author details

Laura M. Castro
Universidade da Coruña, A Coruña, Spain

*Address all correspondence to: lcastro@udc.es

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

9

Software Design for Success
DOI: http://dx.doi.org/10.5772/intechopen.86538

References

[1] Progress [Internet]. En.wikipedia.
org. 2019. Available from: https://
en.wikipedia.org/wiki/Progress
[Accessed: 12 April 2019]

[2] Amazon scraps secret AI
recruiting tool that showed bias
against women [Internet]. U.S.
2019. Available from: https://www.
reuters.com/article/us-amazon-
com-jobs-automation-insight/
amazon-scraps-secret-ai-recruiting-
tool-that-showed-bias-against-
women-idUSKCN1MK08G [Accessed:
12 April 2019]

[3] UK government probes algorithm
bias in crime, recruitment, and finance
[Internet]. Uk.finance.yahoo.com. 2019.
Available from: https://uk.finance.
yahoo.com/news/uk-government-
probes-algorithm-bias-crime-
recruitment-finance-000153694.html
[Accessed: 12 April 2019]

[4] Google Photos labeled black people
‘gorillas’ [Internet]. Eu.usatoday.
com. 2019. Available from: https://
eu.usatoday.com/story/tech/2015/07/01/
google-apologizes-after-photos-identify-
black-people-as-gorillas/29567465/
[Accessed: 12 April 2019]

[5] Simonite T. Study Suggests Google’s
Ad-Targeting System May Discriminate
[Internet]. MIT Technology Review.
2019. Available from: https://www.
technologyreview.com/s/539021/probing-
the-dark-side-of-googles-ad-targeting-
system/ [Accessed: 12 April 2019]

[6] 5 Apps That Have Rampant
Discrimination Built In [Internet].
Cracked.com. 2019. Available from:
https://www.cracked.com/blog/5-apps-
that-have-rampant-discrimination-
built-in/ [Accessed: 12 April 2019]

[7] Why Software Fails [Internet]. IEEE
Spectrum: Technology, Engineering,
and Science News. 2019. Available from:

https://spectrum.ieee.org/computing/
software/why-software-fails [Accessed:
12 April 2019]

[8] IEEE 610.12-1990 IEEE Standard
Glossary of Software Engineering
Terminology [Internet]. Standards.
ieee.org. 2019. Available from: https://
standards.ieee.org/standard/610_12-1990.
html [Accessed: 12 April 2019]

[9] Fulton R, Vandermolen R.
Airborne Electronic Hardware Design
Assurance. Oakville, Ontario (Canada):
CRC Press; 2017

[10] Perry D, Wolf A. Foundations for
the study of software architecture. ACM
SIGSOFT Software Engineering Notes.
1992;17(4):40-52

[11] Chen L, Ali Babar M, Nuseibeh B.
Characterizing architecturally
significant requirements. IEEE
Software. 2013;30(2):38-45

[12] “FAQ—Edition 2.0: E) Key
concepts”. IEC 61508—Functional
Safety. International Electrotechnical
Commission

[13] Sommerville I. Software
Engineering. Boston, Massachusetts
(USA): Pearson Education; 2015

[14] Horbach J, Rammer C, Rennings
K. Determinants of eco-innovations by
type of environmental impact—The
role of regulatory push/pull, technology
push and market pull. Ecological
Economics. 2012;78:112-122

[15] Dietz T, Rosa E. Rethinking the
environmental impacts of population.
Affluence and Technology. Human
Ecology Review. 1994;1(2):277-300

[16] HP Face-Tracking Webcams Don't
Recognize Black People [Internet].
Gizmodo.com. 2019. Available from:
https://gizmodo.com/hp-face-
tracking-webcams-dont-recognize-

Introduction to Data Science and Machine Learning

10

black-people-5431190 [Accessed: 12
April 2019]

[17] Bowles N. ‘I think my blackness is
interfering’: Does facial recognition
show racial bias? [Internet]. The
Guardian. 2019. Available from:
https://www.theguardian.com/
technology/2016/apr/08/facial-
recognition-technology-racial-bias-
police [Accessed: 12 April 2019]

[18] Ralph P, Kelly P. The dimensions
of software engineering success. In:
Proceedings of the 36th International
Conference on Software Engineering
(ICSE); 2014; 2014

[19] Galhotra S, Brun Y, Meliou A.
Fairness testing: testing software for
discrimination. In: Proceedings of the
2017 11th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE)
2017; 2017

