
Toward a Name-Based, Data-Centric Platform for Scientific Data

Lan Wang
University of Memphis
lanwang@memphis.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

I. INTRODUCTION

Large-scale scientific measurements and experiments pro-
duce huge datasets that help advance science and improve
human life [1]. For example, the sensors in our wearables,
hand-held devices, and environments have been producing a
massive amount of data that enables researchers to investigate
a wide range of health and wellness issues. Although network
transmission speed will continue to increase, this increase will
likely lag behind the increase in the data volume. In addition,
the number of data users is rapidly increasing, placing a
high demand on the network for data distribution. In-situ
computation can minimize unnecessary data transfers, but it
requires identifying and utilizing computing resources close
to the data sources for data processing. Moreover, as data
may be processed through many stages at various distributed
computing nodes, data users must be able to verify the integrity
of computation results (i.e., data provenance). Finally, data pri-
vacy is an increasing concern in scientific research, especially
for data involving human health and behavior. Unfortunately,
it has been challenging to build effective solutions to meet the
above efficiency and security requirements.

Several recent efforts have used Named Data Networking
(NDN) [2] to support high volume transfer of climate data
([3], [4]) and high energy physics data [5]. NDN gives each
piece of application data a unique, semantically meaningful
name, and bind the name and data by a cryptographic signature
(and encrypt it as needed). The named, secured data stays
the same in the network, computing devices, and storage,
which provides a strong foundation for supporting distributed
computing, data provenance, and fine-grained access control.

II. FOUNDATION: NAMING AND SECURING DATA
DIRECTLY

Scientific data is often produced and stored at facilities
far away from the data users who may work in different
organizations across the country, or even the globe. Currently
there is no easy way to identify the relevant data in big data
files, so users interested in specific pieces of data typically
have to transfer the entire dataset, which leads to long delay,
unnecessary bandwidth consumption, and server overload.
This problem stems from the lack of appropriate data naming
to facilitate efficient data fetching and processing, let alone
data provenance and integrity checking. NDN addresses these
challenges using hierarchically structured and semantically
meaningful data names that can help with navigating a dataset
and identifying potentially useful data. An NDN name can

represent a collection of one or more data items sharing the
same name prefix. For example, /org/md2k/mOral20 represents
the dataset from an oral health study conducted by MD2K. It
can be further divided into sub name prefixes (e.g., /org/md2k/
mOral20/gyro and /org/md2k/mOral20/accelerometer), each represent-
ing a subset of the dataset (gyro or accelerometer data). These
names can be further extended to identify individual pieces
of data produced by a study participant at a specific time,
e.g., /org/md2k/mOral20/gyro/〈user〉/〈timestamp〉. This means subsets
of the data can be retrieved at any desired granularity.

Moreover, each data producer digitally signs its data to bind
the data name to the data content. As such, data authenticity
can be verified by anyone and each piece of data can be cached
by, and served from any device, making data distribution more
robust, efficient, and scalable. For example, when a user in US
retrieves data from Australia, the data can be cached inside the
US network. When other US users request the same data, the
network can serve them the cached data, rather than fetching
it from Australia again, and each user can verify the data’s
integrity and authenticity using its signature and associated
trust model. Note that NDN uses application-specific trust
models that are more decentralized and robust than the global
certificate infrastructure in use today.

III. DISTRIBUTED COMPUTING OVER NDN

Król et. al. recently proposed “Compute First Network-
ing” [6], an NDN-based distributed computing framework.
They point out that today’s distributed computing platforms
rely on a complex set of centralized schedulers, DNS-
based name translation, stateful load balancers, and heavy-
weight transport protocols. An NDN-based system signifi-
cantly simplifies the solution by employing name-based net-
work forwarding and multi-party data synchronization proto-
cols (Sync) [7]. Utilizing data names in network forwarding
removes the need for name-to-address mapping and handles
load balancing automatically. Unlike TCP/IP transport proto-
cols that focus on point-to-point data delivery, Sync leverages
NDN’s unique and secured binding between name and content
to achieve reliable data delivery among a group of distributed
nodes. For example, if a group of compute nodes are tasked
to detect biomarkers in the mOral20 data, they can form a
sync group with the data producers (sensors) using the name
prefix /org/md2k/mOral20 and compare their set of data names to
retrieve any missing data of interest using the data names. This
approach is a natural fit for the many-to-many communication
pattern that is common in a distributed computing scenario.
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Fig. 1. Distributed Computing of Health Data from Sensors through Pub-Sub
over NDN

Nichols [8] proposed a publication-subscribe API based on
the NDN Sync primitive and used this pub-sub API to build
a network measurement application. We believe that this pub-
sub API can also be used in distributed computing to match
computation requests and computing nodes. For example, as
health data is collected from sensors on patients, the sensors
can send computation requests (e.g., to detect biomarkers from
the data) and any nearby computing devices can subscribe to
such requests (Figure 1). Similarly, a data aggregator in the
hospital can subscribe to the computed results.

IV. DATA PROVENANCE

Scientific research not only collects raw data from the
environment and experiments, but also generates new data
based on the raw data. As data from various sources goes
through many iterations of aggregation, computation, and
distillation, it becomes increasingly difficult to keep track
of how a certain set of data is produced. In NDN, data is
immutable – any computation on a piece of data produces
a new piece of data which will have a new name. The
application naming scheme can associate the original data
name(s), computing node’s name, and other information
with the new data name. Additional information can be
published as meta data and given a name related to the
primary data’s name. For example, if eating episodes
are inferred from the mOral20 study’s gyroscope and
accelerator data (/org/md2k/mOral20/gyro/〈user〉/〈timestamp〉 and
/org/md2k/mOral20/accelerometer/〈user〉/〈timestamp〉), then the eating
episodes data’s can be named /org/md2k/mOral20/eating/〈user〉
/〈starttimestamp〉-〈endtimestamp〉/〈compute-node〉. The meta data can
be named /org/md2k/mOral20/eating-metadata/〈user〉/〈starttimestamp〉
-〈endtimestamp〉/〈compute-node〉 and contain the list of the
gyroscope and accelerator data names, computation time,
inference algorithm, algorithm parameters, etc.

The application naming scheme, data names and associated
meta data can be used to trace the series of computation and
input data that led to a piece of data. In addition, the data
signing key indicates who produced the data, and NDN can
use trust schemas to automatically verify whether the owner
of the key is authorized to produce the data [9].

V. ACCESS CONTROL

NDN names can facilitate both the specification and au-
tomated enforcement of access control policies. An access

control policy needs to identify who are given access to what
dataset(s) with what restrictions. The data users can be named
based on their organizations, e.g., /edu/memphis/lanwang. Datasets
can be identified using their names (e.g., /org/md2k/mOral20/gyro),
and restrictions can be specified using names of the data
attributes and their ranges. Once the access control policy is
defined, its enforcement is also data-centric without relying
on SSL sessions or firewalls. Every piece of data is encrypted
with a content key (C-KEY) that changes depending on the
data and access granularity, and data access is controlled by
encrypting and publishing the C-KEY for only those users
authorized to access the data. We call this approach Name-
based Access Control (NAC) [10]. The difference between
NAC and traditional access control schemes is two-fold: (a)
NAC ensures that data is encrypted both in transit and in
storage, achieving true end-to-end protection; and (b) it can
be applied to data at every granularity, from an entire data
repository to a single data packet, following the hierarchical
name structure.

VI. SUMMARY

Based on the NDN architecture that features hierarchical
naming structure, data centric security, and name-based data
distribution, the NDN project has generated a rich set of
solutions with open source codebase that supports data navi-
gation and discovery, distributed computing, data provenance,
and access control, all of which are important for data-driven
research. We are interested in collaborating with domain scien-
tists, database researchers, and scientific software developers
to build a name-based data-centric software platform for large-
scale scientific research.
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