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In 2003, a large international team of scientists made headlines by reporting the completion of the human genome 
project – a project taking some 13 years at an estimated cost of around $3 billion. Since then, rapid advances in 
sequencing technology and bioinformatics have made it possible for any small lab to sequence and analyze a whole 
human genome, or for that matter the genome of any species on earth, in mere days and at a cost of around $1000.   

The breakthrough technology was “short read” sequencing developed by Illumina Inc. This approach, as its name 
suggests, is based on the random sheering of genomic DNA into short fragments (~300-500 base pairs) that are then 
sequenced from one or both ends to generate short, ~100-150 nucleotides read lengths. The millions of short reads 
are then bioinformatically assembled into large contigs. The short read lengths and the depth of coverage of the DNA 
by short reads contributes to the accuracy of the sequencing, that is, the ability to distinguish technical artifact and 
sequencing errors. Assembly of overlapping reads into contigs can be done de novo or, as more commonly achieved, 
by mapping to a reference genome if available. The accuracy of short read sequencing underpins its power in detecting 
single nucleotide variants and very small insertions/deletions that are commonly found to underlie disease 
phenotypes. However, a major limitation of short read sequencing is the difficulty in detecting larger structural 
genomic variants. Now, a third generation sequencing technology has emerged that generates ultra-long reads up to 
100 kilobase pairs in length, thus being able to span and sequence complex and repetitive regions of the genome and 
detect large structural variants that may also be pathogenic. Variations on these technologies have also been 
developed to enable RNA sequencing and mapping of chromatin marks, in some cases even at the single cell level, 
providing insights into the spatio-temporal expression and regulation of genes on a genome-scale. 

This genomics revolution, however, brought with it the challenges of handling, storing, transferring, and analyzing 
huge amounts of sequencing data: raw data generated from sequencing instruments can range from 50-100 GB/sample 
depending on the technology used and genome coverage required. The subsequent analyses of such large datasets 
impose additional burdens, typically doubling data storage needs and requiring significant computing power for 
processing (Fig. 1). For example, a de novo assembly from long read sequencing of a single 3 GB genome can take 
up to 3600 hr of CPU time using 870 GB of RAM (https://github.com/fenderglass/Flye).   

 

 

 

 

 

 

 

 

The analysis of large-scale data like those in cancer studies, population-scale datasets, etc. have thousands of samples 
and involve comparisons within and between different groups in the search for the variants causing or contributing 
to a disease or phenotype. Moreover, the ever-expanding public databases like NCBI and SwissProt that have 
sequences and information on genomes, genes and proteins of all the organisms, databases like Pan Cancer Analysis 
of Whole Genomes Project, 1000 and 10000 genome projects for humans and other organisms, etc. have outpaced 
the ability of researchers to store, process and analyze the information contained in them. With the success of artificial 
intelligence (AI) and machine learning in data-driven decision making, new techniques and scalable software systems 
are needed to automatically gain insights from massive genomic datasets. 
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Some of the genome centers, national universities and research institutes have the necessary infrastructure and 
powerful computational resources and large, expensive computing clusters to manage and process, in reasonable 
time, the vast amount of genomic data generated every day. However, when it comes to local, regional and small 
universities and institutes, the cost and limitations of handling genomic data deter researchers from taking up a 
genomic study even if it is affordable and feasible in the present scenario.  

For example, in our current set up, we need to keep switching between a regular desktop with 64 GB RAM/2 TB 
storage, which is quite slow but has sufficient space to store temporary files generated while running a genomics 
software, and a cloud experiment with 256 GB RAM/288 GB storage that finishes some jobs quickly but most do not 
finish due to the limitation of storage space. A substantial amount of storage space is dedicated to the basic 
bioinformatics and genomics software. The processing and analysis of genomics data from families with cleft lip and 
palate (CLP) is computationally intensive, challenging and inefficient with our current setup. Each raw short read 
sequencing file (~50-100 GB in size) needs up to 600 GB of temporary storage to enable mapping on the reference 
genome, creating a mapped read file of 150-300 GB. The subsequent steps for variant detection and comparison 
occupy up to 200 GB of storage. Thus, the genomic data generated for just a single family needs to be transferred to 
a local machine/server at each step so as to clear up the space for subsequent analysis, which has occupied 20 TB of 
server space so far. One short-term solution is to use a hyperconverged cluster infrastructure (HCI), which is the next-
generation architecture for data centers. In an HCI, each node typically has a few hundred TBs of flash memory 
storage and tens of TBs of RAM along with gigabit networking. Thus, data movement can be drastically reduced 
compared to a traditional compute cluster leading to faster computations on massive genomic datasets. 

There are some shared resources available like public, private or hybrid servers and clouds (Mashl et al., 2017) that 
may be used, but still these are beyond reach for most researchers due to budgetary constraints or lack of access, basic 
infrastructure, resources and knowledge of cloud computing, server administration, networking, security, and other 
development operations (Yakneen et al., 2020). There is a critical need for developing novel, accessible, efficient and 
cost-effective ways to improve computational capabilities and reduce the database size, processing time and storage 
footprint of genomic data in order to make sequencing a regular part of science and medicine. New techniques and 
genomic software are required to enable accessibility, efficient compression, rapid sorting and multi-dimensional 
indexing of genomic data and to eliminate the need for decompressing and downloading datasets from public or 
private servers or databases. In clinical setup, precision medicine can be achieved only if there is the feasibility of 
generating, storing and processing the huge amount of data from each and every patient using an analysis system that 
can be accessed through a regular desktop (Stein et al., 2015). The use of cloud–based computing clusters and 
software could be a solution for big data analysis, if it is made more accessible and economical for all. A large scale 
integrated grid project, pooling computational resources across the globe or even countries and states, may have great 
potential for addressing these issues and would be a huge step towards overcoming the major hurdles in genomic 
studies for individual researchers, regional universities and institutes. Therefore, we suggest NSF and NIH to invest 
in experimental testbeds for enabling academic research in genomics and precision medicine as these areas are 
challenged by massive datasets. 
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