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Introduction:  Human neuroscience researchers have become increasingly interested in collecting large data sets 
due to the complex and multi-faceted phenotypic presentation of many disorders. Paramount to successful modern brain 
research is the ability to synthesize complementary data modalities to paint a circumspect picture of how disorders affect 
individuals holistically. Such data sets, therefore, include human neuroimaging, full-genome sequencing, microbiome, as 
well as multivariate phenomic assessments.  As computing power availability and efficiency improves, so too does the 
quality and robustness of research utilizing such next-generation hardware and software. Research on Autism Spectrum 
Disorder (ASD) is a particularly salient use-case; indeed, ASD research is among the most exemplary cases of revelatory 
multimodal data sets (Hull et al 2017). 

The Autism Centers of Excellence (ACE) Network at UVA:  The initial research question the ACE network examined 
revolved around the vast diagnostic discrepancy between boys and girls with ASD. Boys are more than four times more 
likely to be diagnosed with ASD than girls (Fombonne 2009), and most research to this point has yielded little evidence 
indicating why this sex difference exists. Some have posited this could be a result of the female protective effect (Lei et al 
2019), or the notion that a greater genetic mutational load is required for the ASD phenotype to manifest in girls than in 
boys (Chen et al 2017). In order to better understand the disorder, the UVA network initially sought to collect a vast array 
of data and data types in Wave 1, and then to analyze this data longitudinally after collecting a second set of data in Wave 
2. The modalities we collected include imaging data (structural MRI [sMRI], functional MRI [fMRI], diffusion tensor imaging 
[DTI]), electroencephalography (EEG), genomics, and phenotype data.  Data have been obtained under two major 
collection efforts, described briefly here: 

ACE Wave 1:  Wave 1 of the project involved four data collection sites and a centralized data coordination center 
(DCC). The data collection sites (Harvard University, Seattle Children’s Hospital, UCLA, and Yale Child Study Center) each 
recruited and collected data from approximately 125 participants (523 participants in total). Of these participants, 245 
were ASD (46.8%), 200 were neurotypical controls (38.2%), and 78 were neurotypical siblings of ASD participants (14.9%). 
Even numbers of male and female participants were recruited, most importantly in the ASD group (107 female; 43.7%), 
as the skewed ratio of males-to-females diagnosed with ASD is apparent in the cohort breakdown in many prior studies. 
Each participant went through the entire protocol, which included two structural imaging scans, four task-based functional 
scans, a resting-state functional scan, a diffusion tensor imaging scan, an electroencephalography scan, genetic testing, 
and various phenotypic assessments. This multimodal dataset is uniquely complex and presented significant data transfer, 
storage, and analysis challenges. The imaging data was aggregated at the DCC in a large-scale imaging database where 
raw data was stored locally and collaborators could access the data via either web interface or by directly interacting with 
the compute cluster via secure shell programs. The phenotype and genomics data was sent to the DCC stored on hard 
drives and disks. 

ACE Wave 2:  The second data collection phase of the project, beginning five years after the completion of Wave 
1, will encompass the same participants and data modalities, with some improvements. The first and most important 
addition will be the incorporation of REDCap, an online database and survey distribution hub that we will be using to 
collect and aggregate the phenotype data. REDCap will eliminate the need to send hard copies of the phenotype data to 
a brick-and-mortar location by ensuring that all data will be collected and stored securely online. The intention is to re-
recruit approximately half of the prior cohort, while recruiting new participants that will be age-matched with the Wave 
1 cohort in order to better compare results since the participants from the Wave 1 cohort will have aged at least five years. 
Additionally, imaging data will be collected from our participants at two separate instances to increase the fidelity of the 
results.  

Data Migration, Synthesis, and Security:  The network’s funding is contingent on consistent reporting of the data 
collection progress to the NIH as well as bi-annual data deposits into the National Database for Autism Research (NDAR). 
NDAR is a massive government database comprised of de-identified ASD data from any study that even tangentially 
involves examining the ASD phenotype. While it is important for the network to maintain a local database, NDAR is an 
invaluable resource for autism researchers around the world to analyze different cohorts and experimental designs within 
the ASD research environment. 

Because the network is collecting human data, investigators are ethically bound by both Health Insurance 
Portability and Accountability Act (HIPAA) standards and Institutional Review Boards (IRB). While cloud computing and 
other cutting-edge data storage solutions are becoming more and more prevalent for huge datasets, the added layer of 
sensitivity encompassing personal health information (PHI) precludes us from utilizing such technologies. Additionally, 
data migration from one technology to another carries the risk of data loss and transcription errors, and such technologies 
tend to be prohibitively expensive at the outset. Longitudinal research typically spans many years, and cloud computing 
in particular is frequently charged as an ongoing expense, the cost of which compounds rapidly. As a result, local data 
storage and dissemination is the preferred methodology, which requires vast computing power and resources. This too is 
expensive, but as a one-time cost it becomes worthwhile as studies extend across years and potentially decades. At the 
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University of Virginia, we soon expect to house the nation’s premier compute cluster designed for human subject research. 
This state of the art cluster will boast the highest level of security while maintaining inter-connectivity between sites 
sending us an enormous array of multimodal data. Collaboration is a major factor in successful research, and we intend 
to leverage our compute cluster to facilitate collaboration and eventually, scientific success, for years to come. 
 Recommendations:  The ACE Network, based at UVA, is only one such example of modern human neuroscientific 
research having needs for not only HIPAA-compliant security but also for high-performance computing. Current UVA 
systems are efficient and robust; however, they have been designed to compartmentalize data from various sources and 
lack ability to centrally coordinate and synthesize data between projects, networks, and institutions. The ACE Network at 
UVA will likely necessitate an augmented system architecture model: vastly upgraded local computing cluster in terms of 
hardware as well as the implementation of more sophisticated neuroscience data transfer protocols, specifically utilizing 
transfer services such as Globus. When handling the estimated petabyte of subject data the ACE Network expects to 
collect, transfer speed and security become imperative to consortium-wide research efforts. Additionally, front-end 
containerization solutions are necessary not only to standardize the processing workflow involved in these data types, but 
also to simplify the human-compute cluster interaction. Research at a granular level is often carried out by transient 
research assistants, and due to the high turnover rate among research assistants, the on-boarding process needs to be 
simple enough that anyone with access to an internet browser can effectively produce research-quality results. Stable, 
robust, and reliable data storage and high-performance computation are, broadly speaking, needed to ensure a solid 
foundation for neuroscience research conducted ‘at scale’. 

Conclusion:  The UVA network has encountered and addressed unique needs for high performance computing in 
many ways. Existing UVA computing is excellent though room to expand the middle ground between heavily secure and 
multi-CPU processing provides a unique opportunity.  While this represents the cutting-edge of research computing, soon 
many more research institutions and universities will likely follow our lead in an attempt to examine disorders and, indeed, 
the human experience more generally, by collecting multimodal datasets that require large computing resources. With 
such a system deployed, a large-scale network effect is likely to emerge, where collaboration among compute cluster hubs 
is commonplace and data are shared as quickly as the internet allows. Moving forward, UVA neuroscience computing 
resources will represent the next generation of research computing as the community looks to further enhance ways to 
address the challenges presented by ever-larger brain research data sets. We envision UVA being the standard-bearer for 
neuroscience research computing and to lead the way toward understanding, treating, and perhaps eventually curing, 
disorders associated with brain development, dysfunction, and cognitive function across the lifespan.  
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