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Abstract — Scientists often wait long queue times to perform experiments, observations, and simulations on
advanced scientific instruments. To utilize them efficiently, researchers often need to analyze huge data streaming
from these instruments in near-real time, so that results from one experiment/simulation can guide selection of the
next—or even influence the course of a single experiment/simulation. However, streaming analysis of huge data still
faces challenges regarding network capacity between sites and redistribution of streaming data to multiple consumers.
In this white paper we explore how the emerging trends of network programmability and in-network computing
could aid the realization of streaming analysis of huge data for scientific applications. For instance, offloading
computations to the network may reduce the volume of streaming data, while using network programmability may
help to efficiently stream huge data to multiple consumers.

1 Streaming Analysis of Huge Data from Light Source Instruments
Light sources are crucial tools for addressing grand challenge problems in the life sciences, energy, climate
change, and information technology [1]. For instance, the X-rays produced at a light source enable scientists
to study internal morphology of materials and samples with very high spatial (atomic and molecular scale)
and temporal (<100 ps) resolutions. These experiments can generate massive amounts of burst data. For
example, tomographic imaging stations can collect 1,500 projections (images each with 2,048 x 2,048 pixels) in
9 seconds, generating data at a rate of >8 Gbps. Real-time streaming and analysis of these experimental data
enable scientists (or the control software) to (1) make timely decisions that can significantly accelerate the
execution of experiments, and (2) do smart experimentation, such as changing the parameters interactively
or finalizing experimentation with only sufficient data.
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Figure 1: Real-time analysis and quality
tests for data collected in a light source
experiment. The x-axis is the number of
projections processed, and the y-axis is the
quality score.

We have developed an autonomous stream-processing sys-
tem that allows data streamed from a light source instrument
to be processed in real time on a remote compute system, with a
control feedback loop used to make decisions during experimen-
tation. This system can be used to analyze collected data and
measure the output quality with low latency. The measured
output quality is then used to make decisions for terminating
the experiment, not only saving time but also saving sensi-
tive samples (e.g., biological samples) from radiation damage.
For example, for a real-world sample, this system showed that
collecting 100 rather than 180 projections is sufficient to recon-
struct relevant sample features (Figure 1). Collecting only the
required amount of data resulted in a speedup of 1.8x for both
data acquisition and analysis.

Could we achieve higher speedups by offloading some projec-
tion normalization operations to the network? Normalization
of projections requires simple arithmetic operations that can be easily executed by networking devices. Any
switch in the network could execute the required operations, as we split operations along the path between
source and destination. The advantage of pipelining data transfer and computation may save time compared
to doing it after moving all the data. Furthermore, by executing these computations in the network, we can
free cycles from supercomputers that could be used for more complex tasks.

Could we achieve more efficient streaming data distribution by leveraging network programmability? Some
huge data streaming workflows may involve more that one consumer, and they may probably consume data
for different purposes. For instance, one consumer could be a supercomputer performing streaming data
analysis, while another consumer could be a visualization process. Instead of sending separate unicast flows,
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we could leverage network programmability to apply multicast techniques to save bandwidth on the network.
Furthermore, different consumers may use different transport protocols, i.e., protocol A for some subset of
the flows and protocol B for the rest.

2 Network Programmability and In-network Computing
Network programmability is reaching higher levels with the separation between switch hardware and control
software, and the availability of programmable network switches in which the data plane functionality can be
programmed rather than being controlled by vendors. Software-defined networking (SDN) [2]—a networking
paradigm in which the control and data planes of network devices are decoupled—enables global, agile
network programmability, rapid innovation, and independent evolution of control and data planes. On the
other hand, programmable data planes [3] are reconfigurable networking devices that allow programmers to
define exactly how packets are processed.

In-network computing is the process of offloading operations from end hosts into networking devices
(e.g., switches, routers, or smart NICs) [4]. Two emerging technologies have made in-network computing
possible: programmable data planes and networked compute accelerators (e.g., GPUs and FPGAs) [5]. As
networking devices are limited in memory (use of expensive TCAMs), set of actions (only arithmetic/boolean
operations), and operations per packet (no loops), Sapio et at. [4] study what type of computations should
be performed in-network. The authors identified applications that follow a partition/aggregate pattern as a
plausible class of applications that could benefit from in-network computing. Examples of these applications
are big data analytic and machine learning, graph processing, and streaming analysis.

3 Challenges
Breaking end-to-end TCP connections: By manipulating headers or changing the payload with in-
network computing, we will change the checksum of TCP packets. Furthermore, IP packets that belong to
the same TCP flow are not expected to take the same path. We need to obtain more understanding on
the communication patterns of flows subject to in-network computing. For instance, would it be required
to explore ways to disable TCP checksums on those flows, or would it be sufficient to use UDP transport?
We suggest that circuit-switched approaches such as MPLS and Segment Routing combined with SDN may
help keep packets from the same flow on the same path.
Data Segmentation/Partitioning: In the case of light source data streaming, the size of a typical pro-
jection is 1K by 1K or 1 MB, which is larger that a jumbo frame (9 KB). Fortunately, we do not need each
projection to fit on a single packet. If the algorithm allows element-wise operation, i.e., operation to each
independent pixel, we can certainly pack several pixels in one packet. However, applications that work with
bigger chunks of data may require to develop novel approaches to data segmentation/partitioning.
Added Complexity: Using SDN combined with MPLS or Segment Routing to control and program
networks increases complexity. Furthermore, for streaming applications to take advantage of network pro-
grammability and in-network computing, changes to the application will be needed. For instance, APIs for
interacting with the network through SDN or knowing when data have been changed by lightweight opera-
tions on the network. We need to understand the tradeoffs of adding in-network computing into huge data
streaming workflows by evaluating changes on network and application architectures.
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